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Abstract Seasonal predictions of Arctic sea ice on regional spatial scales are a8

pressing need for a broad group of stakeholders, however, most assessments of9

predictability and forecast skill to date have focused on pan-Arctic sea-ice ex-10

tent (SIE). In this work, we present the first direct comparison of perfect model11

(PM) and operational (OP) seasonal prediction skill for regional Arctic SIE within12

a common dynamical prediction system. This assessment is based on two com-13

plementary suites of seasonal prediction ensemble experiments performed with a14

global coupled climate model. First, we present a suite of PM predictability ex-15

periments with start dates spanning the calendar year, which are used to quantify16

the potential regional SIE prediction skill of this system. Second, we assess the17

system’s OP prediction skill for detrended regional SIE using a suite of retrospec-18

tive initialized seasonal forecasts spanning 1981-2016. In nearly all Arctic regions19

and for all target months, we find a substantial skill gap between PM and OP20

predictions of regional SIE. The PM experiments reveal that regional winter SIE21

is potentially predictable at lead times beyond 12 months, substantially longer22

than the skill of their OP counterparts. Both the OP and PM predictions display23

a spring prediction skill barrier for regional summer SIE forecasts, indicating a24

fundamental predictability limit for summer regional predictions. We find that a25

similar barrier exists for pan-Arctic sea-ice volume predictions, but is not present26

for predictions of pan-Arctic SIE. The skill gap identified in this work indicates a27

promising potential for future improvements in regional SIE predictions.28

Mitchell Bushuk
Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, New Jersey, USA;
University Corporation for Atmospheric Research, Boulder, Colorado, USA
E-mail: mitchell.bushuk@noaa.gov

Rym Msadek
CNRS/CERFACS, CECI UMR 5318, Toulouse, France

Michael Winton, Xiaosong Yang, Anthony Rosati, Rich Gudgel
Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, New Jersey, USA

Gabriel A. Vecchi
Department of Geosciences, Princeton University, Princeton, NJ, USA; Princeton Environ-
mental Institute, Princeton University, Princeton, NJ, USA



2 Mitchell Bushuk et al.

Keywords Sea ice · Seasonal predictability · Arctic29

1 Introduction30

Rapid changes in Arctic sea-ice extent (SIE), thickness (SIT), and age over the31

satellite era, and their implications for a broad group of stakeholders, have led to32

a burgeoning research interest in seasonal-to-interannual predictability and pre-33

diction skill of Arctic sea ice. Over the past decade, substantial progress in sea-ice34

prediction science has been made, including the first seasonal predictions of sea ice35

made using coupled global climate models (GCMs) [75,18,65,52,54,59,7,20,33,27,36

12,5,15], the first prognostic estimates of potential sea-ice prediction skill using37

“perfect model” approaches [45,35,6,70,30,21,22], diagnostic studies quantifying38

timescales and identifying key sources of sea-ice predictability [44,4,36,17,21,11,39

9,16,13,10], the development of novel statistical techniques for sea-ice forecasting40

[29,28,50,71,68,63,43,74,81,77,60], and the creation of the sea-ice prediction net-41

work (SIPN, [68,7]), which collects and communicates predictions of September42

Arctic SIE (see http://www.arcus.org/sipn/sea-ice-outlook).43

A crucial finding that has emerged from this body of work is that current sea-44

sonal forecasts of pan-Arctic SIE made with operational (OP) prediction systems45

could be substantially improved. State-of-the-art dynamical prediction systems,46

based on fully-coupled GCMs and initial conditions (ICs) constrained by observa-47

tions, can skillfully predict detrended pan-Arctic summer SIE at 1-6 month lead48

times and winter SIE at 1-11 month lead times depending on the prediction system49

used [75,18,65,52,54,59,7,20,33,27]. These OP skill estimates are based on retro-50

spective predictions (hindcasts), in which the fixed prediction system is run using51

only data available prior to the forecast initialization date. Perfect model (PM)52

studies, based on ensembles of model runs initialized from nearly identical ICs,53

complement these findings by providing estimates of the upper limits of prediction54

skill within a given GCM. These idealized experiments provide skill estimates in55

the case of perfectly known model physics and perfect ICs, and therefore are con-56

sidered to be an upper bound to the prediction skill achievable in an OP system.57

PM studies show that pan-Arctic SIE and sea-ice volume (SIV) are predictable at58

12-36 and 24-48 month lead times, respectively, highlighting a significant skill gap59

between PM and OP predictions [45,35,6,70,30,21].60

The principal focus of Arctic sea-ice predictability research has been pan-61

Arctic SIE, a quantity of minimal utility at stakeholder-relevant spatial scales. As62

prospects for skillful seasonal sea-ice prediction systems become more realistic, it is63

paramount for sea-ice predictability science to address the regional scales required64

by future forecast users, which include northern communities, shipping industries,65

fisheries, wildlife management organizations, ecotourism, and natural resource in-66

dustries [42]. Initial steps towards understanding Arctic regional predictability67

have been made, but many knowledge gaps remain. The PM study of [21] demon-68

strated a potential for skillful regional SIE predictions in the HadGEM1.2 GCM,69

finding greatest predictability for winter SIE in the Labrador, Greenland-Iceland-70

Norwegian (GIN), and Barents Seas (at lead times of 1.5-2.5 years) and lower71

predictability for summer SIE (skill at lead times of 2-4 months). [66] showed skill-72

ful OP predictions of detrended sea-ice retreat and advance dates, with notably73

high skill for ice-advance date predictions in the Labrador Sea/Baffin Bay, Beau-74



Regional Arctic sea-ice predictability 3

fort Sea, Laptev/East Siberian Seas, Chukchi Sea, and Hudson Bay (3-5 month75

leads for detrended anomalies). The work of [46] reported skillful OP predictions76

of detrended sea-ice area up to 6 month lead times in the Barents/Kara Seas and77

the Northeast passage region. [12] provided the first comprehensive assessment of78

OP regional SIE predictions, reporting detrended SIE skill at lead times of 5-1179

months in the Labrador, GIN, and Barents Seas, and 1-4 months in the Laptev,80

East Siberian, Chukchi, Beaufort, Okhotsk, and Bering Seas. This work attributed81

the high winter SIE skill of the North Atlantic to initialization of subsurface ocean82

temperature anomalies, and the summer SIE skill to initialization of SIT anoma-83

lies. Using two different OP seasonal prediction systems, [20] and [27] both found84

that improved SIT ICs led to improvements in regional predictions of summer85

sea ice. On longer timescales, [80] demonstrated that decadal sea-ice trends in the86

North Atlantic are predictable, due to dynamical predictability of thermohaline87

circulation variations.88

While the gap between PM and OP prediction skill suggests a potential for89

improved OP predictions, it is important to note that the PM and OP studies90

cited above were performed with different GCMs. Since each GCM has unique91

model physics and a resulting unique set of model biases, this precludes a direct92

quantitative assessment of the PM/OP skill gap. In this study, we present the93

first formal comparison of PM and OP Arctic sea-ice prediction skill within the94

same GCM-based prediction system. In order to provide an “apples-to-apples”95

skill comparison, we first address the general problem of how to make a robust96

comparison between PM and OP skill. PM and OP studies often utilize different97

metrics to quantify prediction skill, or use different definitions for metrics with98

the same name [34]. In this study, we begin by introducing a consistent set of99

PM and OP skill metrics, which can be computed analogously for both PM and100

OP prediction applications. These metrics are specifically designed to allow for a101

robust comparison between PM and OP skill.102

In this work, we perform a suite of PM experiments initialized from six start103

months spanning the calendar year and from six start years spanning different ini-104

tial SIV states. This experimental design provides better seasonal coverage than105

earlier PM studies, allowing for an evaluation of PM skill for all target months and106

lead times of 0-35 months. We also consider a suite of retrospective OP predictions107

made with the same model, initialized on the first of each month from January108

1981–December 2016. Using these complementary experiments, we directly com-109

pare PM and OP prediction skill for regional Arctic SIE, providing a quantitative110

assessment of the gap between current and potential Arctic seasonal-to-interannual111

prediction skill.112

The plan of this paper is as follows. In section 2, we describe the experimental113

design and introduce prediction skill metrics that allow for a direct comparison114

between PM and OP skill. Section 3 presents predictability results for pan-Arctic115

SIV and SIE. In section 4, comparisons between PM and OP skill are made for116

fourteen Arctic regions. We conclude in section 5.117
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2 Experimental Design and Prediction Skill Metrics118

2.1 The Dynamical Model119

This study is based on experiments performed with the Geophysical Fluid Dynam-120

ics Laboratory Forecast-oriented Low Ocean Resolution (GFDL-FLOR) GCM.121

FLOR is a fully-coupled global atmosphere-ocean-sea ice-land model, which em-122

ploys a relatively high resolution of 0.5◦ in the atmosphere and land components123

and a lower resolution of 1◦ in the ocean and sea-ice components [72]. The choice of124

a coarser resolution for the ocean and sea-ice components was made for computa-125

tional efficiency, as this model was developed for seasonal prediction applications126

requiring ensemble integrations and many start dates, and for consistency with127

the ocean and sea ice components of GFDL-CM2.1 [23], which is the basis of the128

assimilation system with which the initial conditions for the OP predictions are129

generated. The sea-ice component of FLOR is the sea-ice simulator version 1 (SIS1,130

[23]), which utilizes an elastic-viscous-plastic rheology to compute the internal ice131

stresses [37], a modified Semtner 3-layer thermodynamic scheme with two ice lay-132

ers and one snow layer [78], and a subgrid-scale ice-thickness distribution with 5133

thickness categories [2]. FLOR’s ocean component is the Modular Ocean Model134

version 5 (MOM5, [31]), which uses a rescaled geopotential height coordinate (z*,135

[32]) with 50 vertical levels. The atmospheric component of FLOR is Atmospheric136

Model version 2.5 (AM2.5, [24]), which uses a cubed-sphere finite-volume dynam-137

ical core [49,62] with 32 vertical levels, and the land component of FLOR is Land138

Model, version 3 (LM3, [53]).139

2.2 The Control Integration140

The perfect model (PM) experiments described in the following subsection are141

branched from a 300-year control integration of FLOR, which uses radiative forcing142

and land use conditions that are representative of 1990. This 300-year control143

integration (“the new control run”) was initialized from year 800 of another 1400-144

year 1990 control run (henceforth “the original control run”), which had been145

previously run on a now-decommissioned high-performance computing cluster. The146

new control run and PM experiments were run on a new computing cluster, which147

does not bitwise reproduce numerical solutions obtained on the previous cluster148

but does reproduce the climate mean state and variability. The original control149

run shows clear signs of model spin up, with a notable adjustment occurring in150

the first 500 years of the run (see the evolution of SIV anomalies in Fig. 1a).151

After roughly year 600, the model reaches a statistically steady equilibrium for152

the variables of interest in this study. The new control run was initialized from the153

well-equilibrated year 800 of the original control run, and does not show signs of154

model drift over the 300-year integration period (see Fig. 1a). Centennial-timescale155

drift of Arctic SIE and SIV associated with model spin up is a ubiquitous feature156

across GCMs (e.g., see Fig. 1 of [22]) and has the potential to significantly bias157

PM skill results. These potential skill biases are particularly relevant for regional158

sea ice, as a drifting climatology can cause a formerly high-variability region to159

shift to a low-variability region as it becomes ice covered or ice free, and vice versa.160

Therefore, the well-equilibrated control run shown in Fig. 1a is a crucial feature161
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of this regional sea-ice study. Henceforth, we will refer to the new 300-year control162

run simply as “the control run.”163

We evaluate the FLOR sea-ice model biases using monthly-averaged passive164

microwave satellite SIC observations from the National Snow and Ice Data Center165

(NSIDC) processed using the NASA Team Algorithm (dataset ID: NSIDC-0051,166

[14]). We also consider SIT data from the Pan-Arctic Ice Ocean Modeling and167

Assimilation System (PIOMAS, [82]), an ice-ocean reanalysis that agrees quite168

well with available in situ and satellite thickness observations [64]. For comparison169

with FLOR, both the NSIDC and PIOMAS data were regridded onto the FLOR170

sea-ice grid. The pan-Arctic SIE climatology of FLOR has fairly good agreement171

with satellite observations, with a slight low bias in August–October and good172

agreement in other months (see Fig. S1a). The model biases are more pronounced173

when considering SIC spatial patterns. FLOR’s winter SIC has negative biases174

(too little sea ice) in the Labrador, Okhotsk, and Bering Seas, and positive biases175

(too much sea ice) in the Greenland-Iceland-Norwegian (GIN) and Barents Seas176

(Fig. S2a-c). The summer SIC pattern is dominated by a negative bias wrapping177

the Alaskan and Eurasian coastlines, and a positive bias in the northern GIN and178

Barents Seas (Fig. S2d-f). Compared to PIOMAS, FLOR has a substantial thin179

bias of 0.5–1m at most central Arctic gridpoints (Fig. S3) and a lower pan-Arctic180

SIV in all months of the year (Fig. S1b). The spatial biases in SIC variability are181

largely dictated by biases in the mean ice-edge position, which result in dipole bias182

patterns in the SIC standard deviation fields (Fig. S4). One notable exception to183

this is the Labrador Sea during winter, in which FLOR has less SIC variability184

throughout the region.185

2.3 Perfect Model Predictability Experiments186

The 300-year control simulation serves as the baseline for our PM predictability187

experiments. Using this run, we choose a number of start dates, initialize a twelve-188

member initial condition ensemble for each start date, and run these ensembles189

forward in time for three years. A novel aspect of our experimental design is the190

choice of start dates with uniform seasonal coverage. Prior PM studies have focused191

primarily on January, May, and July start dates [22]. In this study, for each start192

year, we initialize ensembles on January 1, March 1, May 1, July 1, September 1,193

and November 1 (see Table 1 for a summary of the PM experiments). This uniform194

seasonal coverage allows us to investigate the lead-dependence of seasonal forecast195

skill and to make a clean quantitative comparison with the OP prediction skill196

reported in [12]. These start dates also allow us to identify optimal initialization197

months for given regions or target months of interest. In order to assess how198

predictability varies with the initial SIV state, we choose start years based on199

SIV anomalies, selecting two high volume years, two typical volume years, and200

two low volume years. The high/low volume years are years in which the SIV201

anomaly exceeds ±1.2σ in all months of the year, and the typical volume years202

have SIV anomalies with absolute value less than 0.25σ in all months of the year203

(see Fig. 1b). The SIV standard deviation of the FLOR control run (σ = 1.1e12 m3)204

is comparable to the detrended SIV standard deviation of PIOMAS (σ = 1.3e12205

m3), indicating that the chosen high/low SIV anomalies have similar magnitude206

to those in the PIOMAS record. The start years are chosen at least 20 years apart,207
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Table 1 Summary of GFDL-FLOR PM experiments

Start year Volume State Start Months Ensemble members Integration time

839 High Jan, Mar, May, Jul, Sep, Nov 12 3 years
874 Low Jan, Mar, May, Jul, Sep, Nov 12 3 years
898 Typical Jan, Mar, May, Jul, Sep, Nov 12 3 years
933 High Jan, Mar, May, Jul, Sep, Nov 12 3 years
981 Low Jan, Mar, May, Jul, Sep, Nov 12 3 years
1008 Typical Jan, Mar, May, Jul, Sep, Nov 12 3 years

so that each start year of ensembles can be considered independent of other start208

years.209

A key aspect of PM experiments is the availability of model restart files which210

can be used to construct an ensemble of initial conditions. In the control run,211

restart files were saved at monthly frequency, which allows us to initialize an en-212

semble from any month of the year. The ensembles were constructed by adding213

a random spatially uncorrelated Gaussian perturbation with standard deviation214

10−4K to the SST field at each ocean gridpoint. This ensemble generation tech-215

nique mirrors the protocol used in the APPOSITE experiments [21,70,22]. Our216

PM experiments were run with 12 ensemble members, which is the ensemble size217

used for GFDL’s initialized seasonal predictions (see following subsection). This218

suite of experiments, consisting of six start years, six start months per start year,219

12 ensemble members per start month, and 3 years of integration time, totals 1296220

years of model integration.221

In each ensemble experiment, the ensemble members are initialized infinites-222

imally close to one another and diverge over time due to the chaotic dynamics223

of the system (see Fig. 1c). The rate at which this ensemble divergence occurs224

provides information on the inherent predictability of the system, quantifying the225

timescale at which a skillful prediction could be made in the case of perfect ICs226

and perfectly known model physics. In subsection 2.6, we present a set of metrics227

used to quantity the prediction skill of PM predictability experiments.228

2.4 Retrospective Seasonal Prediction Experiments229

As a complement to the PM experiments, we analyze the seasonal prediction230

skill of a suite of retrospective OP prediction experiments made using the FLOR231

model. These twelve-member ensemble predictions are initialized on the first of232

each month from January 1981–December 2016, and integrated for one year.233

The initial conditions come from GFDL’s Ensemble Coupled Data Assimilation234

(ECDA; [83,84]) System, which is based on the ensemble adjustment Kalman fil-235

ter [1]. The ECDA system assimilates satellite sea-surface temperatures (SST),236

subsurface temperature and salinity data, and atmospheric reanalysis data from237

National Centers for Environmental Prediction [12]. Note that while this system238

does not explicitly assimilate sea-ice data, the sea-ice state in the coupled assimila-239

tion is constrained via surface heat fluxes associated with assimilation of SST and240

surface-air temperature data. This assimilation system captures the climatology,241

long-term trend, and interannual variability of pan-Arctic SIE with reasonable242

fidelity [54]. These FLOR retrospective seasonal predictions have been used to ex-243
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amine pan-Arctic [54] and regional [12] SIE prediction skill in addition to a diverse244

set of other climate prediction applications, including regional SST [67], tropical245

cyclones [72,55], temperature and precipitation over land [39,38], and extratropi-246

cal storm tracks [79]. Using FLOR for both the PM and OP predictions allows us247

to make a clean “apples-to-apples” comparison between operational and potential248

prediction skill within the same prediction system.249

2.5 Operational Prediction Skill Metrics250

We assess the skill of the OP predictions using the anomaly correlation coefficient251

(ACC) and the mean-squared skill score (MSSS). We let o and p be observed and252

predicted values, respectively, of a time series of interest, for example pan-Arctic253

SIE. We let τ be the forecast lead time, oj be the observed value at time j, K be254

the number of years in the observed timeseries, and N be the number of prediction255

ensemble members. We let pij(τ) be the predicted value given by the ith ensemble256

member initialized τ months prior to time j. Our lead τ prediction of oj is given257

by the ensemble-mean prediction 〈pj(τ)〉, where:258

〈pj(τ)〉 =
1

N

N∑
i=1

pij(τ). (1)

We let ·̄ denote the time-mean over the K samples. The ACC is given by the259

Pearson correlation coefficient between the predicted and observed timeseries:260

ACC(τ) =

∑K
j=1

(
〈pj(τ)〉 − p(τ)

)(
oj − ō

)√∑K
j=1

(
〈pj(τ)〉 − p(τ)

)2√∑K
j=1

(
oj − ō

)2 . (2)

The mean-squared error (MSE) is given by261

MSE(τ) =

∑K
j=1

(
〈pj(τ)〉 − oj

)2
K

, (3)

and the MSE of a climatological forecast ō is given by262

MSEclim =

∑K
j=1(ō− oj)2

K
. (4)

The MSSS [56] is a skill score based on a comparison between MSE and MSEclim,263

and is given by264

MSSS(τ) = 1− MSE(τ)

MSEclim
. (5)

The MSSS is directly related to the ACC via the decomposition of [56], which265

shows that266

MSSS(τ) = ACC2(τ)−
(
ACC(τ)− σp

σo

)2 − (p(τ)− ō)2

σ2
o

, (6)

where the last two terms are negative definite and correspond to the conditional267

and unconditional forecast biases, respectively, and σ is the standard deviation of268
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the given time series. The unconditional bias term is related to the mean offset269

between the observed and predicted time series, whereas the conditional bias term270

represents the degree to which the slope of the regression line between these time271

series deviates from 1 (i.e. the degree to which predictions are underconfident or272

overconfident).273

Since the focus of this study is the initial-value predictability of Arctic sea ice,274

we assess prediction skill relative to a linear trend reference forecast. Specifically,275

we detrend the regional SIE time series’ using a linear trend forecast which is276

updated each year using all available past data [60,12] and compute OP ACC277

and MSSS values using these detrended data. This differs from the approach used278

in other hindcast studies, which compute detrended anomalies using linear or279

quadratic trends based on the full hindcast period, providing an a posteriori as-280

sessment of detrended prediction skill [75,18,65,52,54,59,33,27]. A drawback to281

this full-hindcast period approach is that the detrended anomaly of a given year re-282

lies upon future information, and therefore the linear trend reference forecast does283

not represent a viable forecasting strategy. The approach employed here amelio-284

rates this issue, by computing a linear trend forecast each year using all available285

past data (we assume a linear trend of zero for the first three hindcast years).286

After this detrending, the OP ACC and MSSS can be cleanly compared to the287

PM ACC and MSSS, respectively. Note that we also computed detrended regional288

SIE prediction skill using linear and quadratic trends computed over the full hind-289

cast period, and found that regional prediction skill is relatively insensitive to the290

choice of detrending method.291

2.6 Perfect Model Skill Metrics292

We next introduce a set of predictability metrics, which are used to judge the293

prediction skill of the PM experiments. These metrics utilize a technique com-294

monly used in the PM literature [19,34] in which each ensemble member in turn295

is taken to be the “truth” and the remainder of the ensemble is used to predict296

this “truth” member. In order to facilitate a clean comparison between OP and297

PM skill, we define our PM skill metrics in analogy to the OP skill metrics pre-298

sented in the previous section. Note that these metrics differ somewhat from other299

metrics commonly used in the PM predictability literature [19,61,34], and offer300

conceptual advantages when comparing to OP prediction skill (see Appendix 6.2301

for a discussion of how these metrics relate to other commonly used definitions). In302

particular, these PM metrics can be compared directly with their OP analogues,303

while other commonly used PM metrics cannot.304

We let x be a timeseries of interest, for example pan-Arctic SIE or SIV. We let305

xij(τ) be the prediction of x from start date j and ensemble member i at lead time306

τ . Suppose that we have M ensemble start dates, with each ensemble consisting307

of N members (in this study M = 6 and N = 12). We now motivate a definition308

for the PM MSE. Suppose that ensemble member i is the synthetic observation309

(the “truth” member). We use the remaining N − 1 ensemble members to predict310

this synthetic observation. Specifically, we take the ensemble mean of these N − 1311

members as our prediction of xij . As a notation, we let xîj be a vector of ensemble312

members from the jth ensemble with the ith member removed:313

xîj = (x1j , . . . , xi−1j , xi+1j , . . . , xNj), (7)
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and let 〈·〉 denote the ensemble mean operator. Thus, 〈xîj(τ)〉 is our prediction314

of xij , and has a squared error of (〈xîj(τ)〉 − xij(τ))2. Letting each ensemble315

member take a turn as the truth and averaging over all ensemble members (N)316

and ensemble start dates (M), we obtain the mean-squared error (MSE):317

MSE(τ) =

∑M
j=1

∑N
i=1

(
〈xîj(τ)〉 − xij(τ)

)2
MN

. (8)

This metric is the PM analogue to the OP MSE defined in Eqn. 3. This MSE318

formula satisfies a necessary condition for forecast reliability [41,58,40,48,76],319

which states that the MSE of ensemble-mean forecasts is equal to the mean intra-320

ensemble variance, σ2
e , up to a scaling factor related to the finite ensemble size.321

Specifically, we show in Appendix 6.1 that322

MSE(τ) =
N

N − 1
σ2
e(τ), (9)

where323

σ2
e(τ) =

1

M

M∑
j=1

1

N − 1

N∑
i=1

(
〈xj(τ)〉 − xij(τ)

)2
, (10)

and 〈xj(τ)〉 is the ensemble mean of the jth ensemble.324

We can now define a PM MSSS, given by325

MSSS(τ) = 1− MSE(τ)

σ2
c

, (11)

where σ2
c is the climatological variance of x computed from the control run. σ2

c is326

the MSE of a climatological reference forecast, which can be seen by replacing the327

ensemble-mean forecast in Eqn. 8 with µ, the monthly climatological mean of the328

control run. In practice, computing the climatological variance from the control329

run is more robust than using Eqn. 8, due to the relatively small number of start330

dates used in most PM studies. MSSS values close to one indicate high PM skill331

and a value of zero indicates no prediction skill relative to a climatological forecast.332

The MSSS is closely related to the potential prognostic predictability (PPP, [61]),333

and can be interpreted analogously (see Appendix 6.2).334

We also consider root-mean squared error (RMSE)335

RMSE(τ) =
√
MSE(τ), (12)

which quantifies the error in physical units, and the normalized RMSE (NRMSE),336

NRMSE(τ) =
RMSE(τ)

σc
, (13)

which normalizes the RMSE by the RMSE of a climatological forecast. NRMSE337

values close to zero indicate skillful PM predictions and a value of one indicates no338

prediction skill relative to a climatological forecast. The MSSS is directly related339

to the NRMSE via340

MSSS(τ) = 1− (NRMSE(τ))2. (14)
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This RMSE definition provides a more natural comparison with OP RMSE than341

the definition of [19] (which includes an additional factor of
√

2), reducing potential342

for confusion when interpreting PM RMSE values (see Appendix 6.2).343

We define the ACC as the correlation between predicted and “observed”344

anomalies, where each ensemble member xij takes a turn as the “truth” and the345

ensemble means 〈xîj(τ)〉 are used to predict these synthetic observations:346

ACC(τ) =

∑M
j=1

∑N
i=1

(
〈xîj(τ)〉 − µ(τ)

)(
xij(τ)− µ(τ)

)
√∑M

j=1

∑N
i=1

(
〈xîj(τ)〉 − µ(τ)

)2√∑M
j=1

∑N
i=1

(
xij(τ)− µ(τ)

)2 .
(15)

Note that the anomalies are computed relative to µ(τ), which is the climatological347

value of x at lead time τ computed using the control run. In a non-stationary348

climate, µ is a function of start date j. Given that the control run considered in349

this study has a statistically steady climate, we drop the j dependence in this350

formula. ACC values near 1 indicate high PM skill, and values of zero indicate no351

skill relative to a climatological forecast.352

2.7 Significance Testing353

Throughout the manuscript, we assess statistical significance using a 95% confi-354

dence level. The statistical significance of the PM RMSE, NRMSE, and MSSS355

values is assessed using an F -test based on the FMN−1,s∗−1 distribution, where356

M and N are the number of start dates and ensemble members from the PM357

experiments, respectively, and s∗ is the effective number of degrees of freedom in358

the control run, given by s∗ = s1−r(∆t)
2

1+r(∆t)2 where s is the number of samples in359

the control run and r(∆t) is the lag-1 year autocorrelation computed from the360

control run [8]. For the initialized forecast RMSE, NRMSE, and MSSS values,361

we use an F -test based on the FK∗−1,K∗−1 distribution. Here K∗ is given by362

K∗ = K 1−r1(∆t)r2(∆t)
1+r1(∆t)r2(∆t)

, where K = 35 is the number of years in the retrospective363

forecast experiments and r1(∆t) and r2(∆t) are the lag-1 year autocorrelation364

values for each time series.365

We assess whether the PM ACC values are significantly greater than zero based366

on a t-test with MN − 2 degrees of freedom. Similarly, we assess the OP ACC367

values using a t-test with K∗ − 2 degrees of freedom. Scatterplots of predicted vs368

observed regional SIE show that the assumptions of linearity and homoscedasticity369

are satisfied in all regions except for the Central Arctic, which is fully ice-covered370

for many of the verification years. When directly comparing PM and OP forecast371

ACC, we use the OP forecast significance threshold, which is the higher (more372

conservative) threshold of the two.373
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3 Pan-Arctic Predictability374

3.1 Pan-Arctic SIV375

We begin by investigating the ensemble evolution and PM prediction skill for pan-376

Arctic SIV. As an example, Fig. 2 shows the ensemble evolution of SIV anomalies377

for ensembles initialized in year 839, a high volume year. As the ensembles evolve378

in time, they progressively diverge under the chaotic dynamics of the system. This379

divergence occurs on a timescale of years for pan-Arctic SIV: After three years of380

integration, most ensemble members have retained a portion of their initial posi-381

tive SIV anomaly, indicating that SIV is predictable beyond three-year lead times382

in this model. The rate of ensemble divergence also has a clear seasonal depen-383

dence. In particular, the ensemble members diverge rapidly over the months of384

May–July, and experience a much slower rate of divergence over the late summer,385

fall, and winter months (for example, compare the May initialized ensemble to the386

July initialized ensemble). This qualitative behavior is consistent with the physi-387

cal expectation that the positive ice-albedo feedback should drive rapid ensemble388

divergence during the months of maximum solar insolation. Conversely, negative389

feedbacks active in fall and winter should act to reduce ensemble divergence, pos-390

sibly even leading to ensemble convergence. These feedbacks include the negative391

feedback between ice growth and ocean entrainment ([51], ice growth increases392

the amount of heat entrained into the mixed layer, reducing ice growth rates), ice393

growth and ice thickness ([3], thin ice has larger growth rates than thick ice), and394

ice strength and ice thickness ([57], thin, weak ice has a greater propensity for395

thickening via ice convergence and for open-water formation via ice divergence,396

which leads to increased thermodynamic growth).397

The PM skill metrics help to quantify the qualitative impressions obtained398

from Fig. 2. In Fig. 3, we plot the PM RMSE, NRMSE, ACC, and MSSS for pan-399

Arctic SIV. Note that each of these curves is computed over all six start years.400

Each of these metrics shows statistically significant prediction skill for SIV to lead401

times beyond 36 months, consistent with earlier PM studies [6,70,21,30,22]. We402

find that error growth rates and normalized error growth rates, as indicated by the403

slopes of the RMSE and NRMSE curves, respectively, vary strongly with target404

month. For both RMSE and NRMSE, the largest error growth occurs in May–July,405

which is followed by a sharp decrease in error growth in August and September.406

These low error growth rates continue into the fall and winter seasons, reaching407

their lowest values in the months of January–April (the error growth rates are408

negative in the winters of the second and third years). This is followed by rapid409

error growth in May as the melt season begins, and the error growth cycle roughly410

repeats again. Similar behavior is also observed in the ACC and MSSS metrics,411

with precipitous decreases in skill from May–July and much slower skill declines412

for the remainder of the year. The MSSS, and to a lesser extent the ACC, display413

a winter reemergence of prediction skill in years two and three, in which the winter414

skill values are higher than the skill of the previous summer.415

The clear seasonality of SIV error growth rates highlights the crucial impor-416

tance of initialization month in Arctic SIV predictions. In particular, there is a417

significant skill gap between predictions initialized prior to June and those initial-418

ized post June, suggesting a melt season “predictability barrier” for SIV. These419

results demonstrate that this barrier lies somewhere between May 1 and July 1,420
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Ensemble Anomaly Evolution: SIV, Initial Year 839
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Fig. 2 Temporal evolution of sea ice volume anomalies for ensembles initialized in year 839
and months (A) January; (B) March; (C) May; (D) July; (E) September; (F) November. The
control run realization is shown in black.

but further experiments are required to pinpoint its precise date. In other words,421

how far into the melt season must a prediction be initialized in order to avoid the422

unpredictable effects of atmospheric chaos, melt onset variability, and ice-albedo423

feedbacks? It is important to note that while this melt season predictability barrier424

is quite stark for SIV, it is less clearly defined for predictions of pan-Arctic SIE425

(see subsection 3.4, ahead).426
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Fig. 3 Pan-Arctic SIV PM prediction skill for different initialization months. Shown here are
the temporal evolutions of (A) RMSE; (B) NRMSE; (C) ACC; and (D) MSSS. The curves are
colored based on their initialization month. The gray dashed lines indicate the 95% threshold
for statistical significance. Note that the RMSE significance level is not constant due to the
seasonal cycle in pan-Arctic SIV standard deviation.

3.2 State-dependence of predictability427

Next, we consider the state-dependence of SIV predictability, asking: Does the428

initial SIV state have an influence on SIV predictability characteristics? In Fig. 4,429

we plot SIV predictability metrics for each initial month binned into high, low,430

and typical volume states. For the skill metrics based on ensemble spread (RMSE,431

NRMSE, and MSSS), we find no clear dependence on the volume state; however,432

the ACC metric shows a striking difference between the high/low volume states433

and the typical volume states. This result is consistent with the findings of [22]434

and can be explained via the ACC formula given in Eqn. 15. For the high/low435

volume ensembles, the ensemble means retain positive/negative anomalies over436

some timescale as the model relaxes towards its climatology (e.g. Fig. 2a), and the437

ensemble members fluctuate randomly around this ensemble mean. Therefore, the438

high/low ensembles each contribute positive values to the numerator of Eqn. 15,439

since both the synthetic observations and synthetic predictions have like-signed440

anomalies. On the other hand, the typical-anomaly ensembles fluctuate randomly441

around a near-zero anomaly state, making both positive and negative contributions442

to the numerator of Eqn. 15, and producing an ACC that is close to zero. A similar443
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Fig. 4 PM prediction skill (A: RMSE; B: NRMSE; C: ACC; D: MSSS) for pan-Arctic SIV
in high (red curves), low (blue curves), and typical (black curves) volume states for different
initialization months.

ACC state-dependency holds for pan-Arctic SIE and other variables (not shown).444

445

3.3 An unbiased estimate of perfect model ACC446

Because the PM ACC is strongly state dependent, the ACC computed using447

Eqn. 15 will be highly sensitive to the set of start dates chosen for a given PM448

study. This is an important caveat to consider when evaluating PM ACC: If start449

dates are not drawn randomly from the climatological distribution of states, the450

ACC estimates will have systematic biases. For example, in this study, start dates451

were selected specifically to have high, low, and typical volume states (see Fig. 1b).452

These states do not obey the climatological distribution of volume states, as four453

of the six have notably large anomalies. Since large-anomaly states have higher454

ACC values, our ACC estimates are likely biased high due to the non-random455

sampling of start dates used in this study.456

To remedy this issue, we appeal to the decomposition of [56], which relates457

the MSSS to the ACC (see Eqn. 6). In a PM framework, predictions are free458

of conditional and unconditional biases, therefore [56] suggests that the identity459

MSSS = ACC2 should hold for PM predictions [70,34]. However, we find that460

PM MSSS is not equal to ACC2 (e.g. see Fig. 6, ahead). Why is this? The461
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decomposition of [56] is a mathematical identity, which holds identically when462

the climatological mean and variance are computed “in sample” (i.e. using the463

available samples from the PM experiments, and not the control run values). In464

Eqns. 11 and 15, the climatological mean and variance are computed using the465

control run. If the start dates are non-randomly sampled, the control run mean466

and variance will be biased relative to the “in sample” mean and variance. This467

results in a breakdown of the decomposition of [56]. Since the MSSS shows much468

less sensitivity to start date than the ACC, it is less prone to sampling bias,469

and provides a more robust assessment of PM skill. We use this fact to define470

an unbiased estimate of the ACC, ACCU , which can be cleanly compared to OP471

ACC values:472

ACCU =
√
MSSS. (16)

The ACCU is the value the ACC would have if the decomposition of [56] held,473

which is the case when the PM states are sampled from the climatological distri-474

bution. Therefore, up to the independence of MSSS with respect to start date,475

this formula provides an ACC estimate which is insensitive to start-date sampling476

error. In the following section, we directly compare OP ACC and PM ACCU .477

Note that we could also directly compare OP and PM predictions based on MSSS478

values. If this comparison is made, many of the skill structures present in OP ACC479

are degraded and the PM/OP skill gap is larger than the gap based on ACC, due480

to conditional biases in the OP predictions (not shown). For these reasons, we481

make our skill comparisons using OP ACC, which provides a lower bound on the482

PM/OP skill gap.483

3.4 Pan-Arctic SIE predictability484

In this subsection, we compare the PM and OP prediction skill of pan-Arctic SIE.485

Figure 5 shows the evolution of RMSE, NRMSE, ACC, and MSSS for different486

initialization months for both PM and OP predictions of pan-Arctic SIE. Figure 6487

takes a different vantage point, plotting the skill as a function of target month488

(the month we are trying to predict) and forecast lead time. These “target month”489

style PM skill plots are a unique contribution of this study, made possible by our490

choice of equally-spaced initialization months spanning the calendar year. Previous491

PM studies have typically focussed on January and/or July initializations, not492

providing enough initial-month “resolution” to construct a target-month style plot.493

These plots allow for a systematic study of the skill dependence on target month,494

initial month, and lead time. Note that we have PM predictions initialized at two-495

month intervals. For example, for target month January, we have predictions for496

all even lead times, from lead-0 through lead-34 (note that a lead-0 prediction is497

defined as the January-mean value from a prediction initialized on January 1). To498

obtain skill estimates for the odd lead times, we perform a linear interpolation499

between the even-lead values. This method provides reasonable results, as most500

skill variations occur over lead times of many months (see Fig. 6).501

We find a striking gap between the PM and OP prediction skill for pan-Arctic502

SIE. While the OP predictions have statistically significant ACC at lead times of503

0–5 months depending on the target month (Fig. 6c), the PM predictions have504

statistically significant ACC and ACCU up to lead times of 35 months, for all505
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Fig. 5 Comparison of PM (solid lines) and OP (dashed lines) prediction skill (A: RMSE; B:
NRMSE; C: ACC; D: MSSS) for pan-Arctic SIE for different initialization months. The 95%
significance levels for ACC and MSSS are plotted as dashed gray lines.

target months (Fig. 6a,b). It is important to note that PM skill should be consid-506

ered an upper limit of prediction skill, and may overestimate the skill achievable507

in reality (see discussion in Section 4.3, ahead). Nevertheless, the skill gap shown508

in Fig. 5 and 6 suggests that substantial skill improvements are possible in current509

OP prediction systems. In particular, Fig. 5 shows large differences in lead-0 skill,510

indicating that the OP predictions likely suffer from initialization errors and/or511

initialization shocks. These lead-0 predictions could presumably be improved by512

assimilating more observational data, improving data assimilation techniques, and513

expanding existing observational networks. In addition, we find that the loss of514

skill in the OP predictions occurs much more rapidly than in the PM experiments.515

This rapid loss of skill likely results from a combination of i) model physics errors;516

ii) model drift associated with initialization shock; and iii) differences between517

the model and nature in their underlying predictability, possibly resulting in an518

overestimated upper limit of predictability in the PM experiments.519

Comparing Fig. 6a and 6b, we find that pan-Arctic SIE ACC is higher than520

ACCU , consistent with our a priori expectation from subsection 3.3. ACC and521

ACCU offer similar qualitative conclusions, but have quantitative differences when522

assessing limits of predictability. For the skill comparisons throughout the remain-523

der of the paper, we will use the ACCU values when comparing to OP prediction524

ACC. The PM skill shows a clear seasonality, with higher skill for winter SIE pre-525

dictions than summer SIE. As a reference-level for a “highly skillful” prediction,526
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target month and forecast lead time. Panel A shows PM ACC computed using Eqn. 15, Panel
B shows PM unbiased ACC, defined as ACCU =

√
MSSS, and Panel C shows ACC from

the OP prediction experiments. The thick black lines indicate the ACC=0.7 contours. Dots
indicate months in which the ACC values are statistically significant at the 95% confidence
level.

we have marked the ACC = 0.7 contour in Fig. 6, as this is the level at which half527

the variance of the observed signal can be predicted. This shows that half the win-528

ter SIE variance is predictable at 18-26 month lead times, whereas the analogous529

limits for summer SIE are 5-11 months.530

The study of [21] found evidence of a May “predictability barrier” for pan-531

Arctic SIE, in which predictions initialized in May lost skill more rapidly in the532

first four months than those initialized in January or July. In this model, there is no533

clear evidence of such a barrier, as the error growth rates over the first four months534

are similar for all initialization months (see Fig. 5b,d). Also, a May predictability535

barrier would result in a diagonal ACCU feature corresponding to initial month536

May in Fig. 6b, which is not seen. This lies in contrast to SIV, which shows clear537
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evidence of a melt-season predictability barrier (see Fig. 3). Interestingly, the OP538

predictions of summer SIE show evidence of a spring prediction skill barrier, with539

lower skill for forecasts initialized prior to May. A similar feature is also seen in540

SIE persistence forecasts (see Fig. S8), suggesting that SIE persistence is a key541

source of skill for the OP predictions, whereas the PM predictions presumably542

benefit from other sources of predictability, such as perfect SIT ICs, which extend543

skill beyond this barrier. We find that both PM and OP predictions show spring544

skill barriers in certain regions, which we explore in Section 4 ahead.545

4 Regional Sea-Ice Predictability546

4.1 SIC Predictability547

In this section, we move to smaller spatial scales, exploring the ability of this548

model to make skillful predictions at the regional and gridpoint scale. In Fig. 7,549

we plot PM MSSS values for SIC for different target months and lead times of 0–14550

months. We find that for all target months, the lead-0 SIC predictions are highly551

skillful, indicating a year-round potential for regional-scale sub-seasonal sea-ice552

predictions in this model. The loss of SIC predictability with lead time is highly553

dependent on the region and target month. We observe a clear difference between554

summer and winter SIC predictions, with summer predictions losing most of their555

skill beyond six-month lead times and winter predictions retaining skill beyond556

14-month lead times. This long-lead winter prediction skill is notably high in the557

Barents and GIN Seas, with lower values in the Labrador, Bering, and Okhotsk558

Seas. The SIC prediction skill for even target months and odd lead times has559

analogous skill characteristics (not shown).560

To synthesize the information of Fig. 7, we introduce a “predictable area”561

metric, defined as562

Predictable area(τ) =

∫
MSSS(x, y, τ)dA∫

MSSS(x, y, τ = 0)dA
, (17)

which is the area integral of the SIC MSSS for a given target month, normalized by563

its lead-0 value. Fig. 8 shows the evolution of SIC predictable area with lead time.564

We find that predictions of summer and winter SIC lose predictability at a similar565

rate over the first 3 months, after which the rates of predictability loss begin to566

diverge. At lead times beyond 6 months, the winter SIC predictions (target months567

December–May) have higher predictable area values than summer SIC predictions568

(target months June–November). Consistent with the pan-Arctic SIE results, this569

shows that there is a greater potential for skillful long-lead predictions of winter570

SIC compared with summer SIC.571

4.2 Regional SIE predictability572

Next, we consider the predictability of regional SIE, providing a direct comparison573

between PM and OP regional SIE prediction skill. Regional SIE is likely a more574

“forgiving” metric than SIC, as it is less sensitive to local-scale ice dynamics asso-575

ciated with unpredictable atmospheric forcing. The region definitions follow those576
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Fig. 7 SIC PM MSSS for different target months and lead times of 0–14 months. A mask
has been applied such that only gridpoints with SIC standard deviation greater than 10% are
plotted.
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plotted as a thin red curve. The thick black and red curves are the mean over all winter and
summer target months, respectively.

used in [21,12] (See Fig. S5). We find that for nearly all regions and all target577

months, there is a substantial gap between PM and OP prediction skill, indicating578

a potential for large improvements in regional SIE predictions (see Figs. 9–11). We579

also find that the ACC skill structures are broadly similar between the PM and580

OP predictions. This correspondence indicates that OP prediction skill is partially581

governed by the fundamental predictability limits found in the PM experiments,582

and that common physical mechanisms underlie the prediction skill of both PM583

and OP predictions. Finally, we find that the regional differences in PM prediction584

skill generally mirror the skill differences found in the OP SIE predictions.585

In both the PM and OP predictions, the highest regional prediction skill is586

found for winter SIE in the North Atlantic sector (see Fig. 9). PM predictions587

in the Barents and GIN Seas are highly skillful (defined here as ACC ≥ 0.7; a588

prediction capable of capturing more than half the variance) at lead times beyond589

24 months. This lies in contrast to the OP predictions, which have statistically590

significant skill in these regions at lead times of 5–11 months, but are not highly591

skillful. In both PM and OP predictions, regional SIE skill in the North Pacific592

sector is lower than that of the North Atlantic. This suggests that the Bering593

Sea and Sea of Okhotsk are fundamentally less predictable, lacking the potential594

for highly skillful predictions beyond 12-month lead times. Compared with the595



22 Mitchell Bushuk et al.
L

ea
d
 (

m
o
n
th

s)

Target Month

A GIN Seas

J F MAM J J A S O N D

35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

L
ea

d
 (

m
o
n
th

s)

F

Target Month

GIN Seas

 

 

J F MAM J J A S O N D

11
10
9
8
7
6
5
4
3
2
1
0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Target Month

B Barents Sea

J F MAM J J A S O N D

35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

G

Target Month

Barents Sea

J F MAM J J A S O N D

11
10
9
8
7
6
5
4
3
2
1
0

Target Month

C

Perfect Model Skill (ACC
U

)

Labrador Sea

J F MAM J J A S O N D

35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Initialized Forecast Skill (ACC)

H

Target Month

Labrador Sea

J F MAM J J A S O N D

11
10
9
8
7
6
5
4
3
2
1
0

Target Month

D Bering Sea

J F MAM J J A S O N D

35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

I

Target Month

Bering Sea

J F MAM J J A S O N D

11
10
9
8
7
6
5
4
3
2
1
0

Target Month

E Sea of Okhotsk

J F MAM J J A S O N D

35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

J

Target Month

Sea of Okhotsk

J F MAM J J A S O N D

11
10
9
8
7
6
5
4
3
2
1
0

Fig. 9 Comparison of PM prediction skill (ACCU ) and OP prediction skill (ACC) for Arctic
regional SIE for the GIN, Barents, Labrador, and Bering Seas and the Sea of Okhotsk. ACC
values are plotted as a function of target month and forecast lead time, and are only plotted
for target months with SIE standard deviation greater than 0.03×106 km2. The thick black
lines indicate the ACC=0.7 contours. Dots indicate months in which the ACC values are
statistically significant at the 95% confidence level.

large PM/OP skill gap found in other regions, the Labrador Sea is an exception,596

showing similar PM and OP skill. The PM skill of this model may underestimate597

the fundamental limit of Labrador SIE predictability, as this model has too little598

SIC variability in this region (See Fig. S4). This SIC variability bias likely results599

from excessive deep open ocean convection in the Labrador sea, which restricts sea-600

ice variability in this region. Indeed, the study of [21] found that the Labrador Sea601

had the longest duration of predictability in HadGEM1.2, suggesting that model602

formulation and biases may strongly affect Labrador Sea predictability estimates.603

The study of [12] identified a spring prediction skill barrier in the Laptev, East604

Siberian and Beaufort Seas, in which summer SIE prediction skill dropped off605

sharply for OP forecasts initialized prior to May, May, and June, respectively (see606

Fig. 10g,10h,10j). Interestingly, the PM forecasts show a similar skill barrier in607

these regions, with highly skillful summer SIE predictions for forecasts initialized608

May 1 and later, and a clear drop-off in skill for predictions initialized before this609

(see Fig. 10b,10c,10e). The diagonal ACC contours in these regions indicate that610
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Fig. 10 Comparison of PM prediction skill (ACCU ) and OP prediction skill (ACC) for Arctic
regional SIE for the Kara, Laptev, East Siberian, Chukchi, and Beaufort Seas.

summer SIE skill tends to be roughly constant for a given initialization month.611

The fact that the spring prediction skill barrier is present in both OP and PM612

predictions suggests that it is a fundamental predictability feature of this model,613

rather than resulting from IC errors in the OP predictions. In particular, the614

perfect SIT ICs in the PM experiments are not sufficient to overcome this spring615

barrier. Additional PM experiments using other GCMs are required to determine616

if the spring barrier is truly a feature present in nature. Summer SIE predictions in617

the Chukchi Sea are highly skillful at 2-4 month lead times in the PM experiments.618

While there is some diagonal structure in the Chukchi ACC plots, both the PM619

and OP predictions do not have a clearly defined spring barrier in this region. The620

Kara Sea has highly skillful PM predictions for summer and fall SIE at lead times621

of 2-11 months and also does not show a spring prediction skill barrier.622

The Central Arctic has relatively low PM and OP prediction skill (see Fig. 11),623

whereas the Canadian Archipelago has slightly higher skill, with highly skillful PM624

forecasts of August and September SIE at 2-3 month lead times. The Canadian625

Archipelago results should be viewed with some caution, given the model’s coarse626

resolution of this bathymetrically complex region. The PM forecasts have skill627

in predicting both melt season and growth season SIE anomalies in Hudson and628
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Fig. 11 Comparison of PM prediction skill (ACCU ) and OP prediction skill (ACC) for Arctic
regional SIE for Hudson Bay, Baffin Bay, the Canadian Arctic Archipelago, and the Central
Arctic.

Baffin Bay. In each of these regions, the melt season skill is higher than the growth629

season, suggesting that persistence of winter ice thickness anomalies is the greatest630

source of predictability in these regions. The Hudson and Baffin Bay OP skill is631

substantially lower than the PM skill, particularly for the growth season in Hudson632

Bay and the melt season in Baffin Bay. This skill discrepancy could possibly be633

reduced by directly assimilating SIT data in the OP system.634

We also note that there are a small number of instances in which an isolated635

month shows OP skill but not PM skill (for example, lead-6 September predictions636

in the Barents Sea, lead-8 October/November predictions in the Chukchi Sea, and637

lead-4 November predictions in the Kara Sea). These instances tend to have fairly638

low skill (ACC < 0.5), suggesting that sampling errors in the OP predictions could639

be playing a role. Also, in some of these instances the PM skill does not decay640

monotonically with lead time, violating a property that we expect PM predictions641

to satisfy. This suggests that sampling errors in the PM predictions could also642

explain these discrepancies.643
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4.3 Interpretation of the PM/OP skill gap644

The PM/OP skill gap demonstrated in Figs. 9-11 raises a natural question: To645

what extent can these PM skill estimates be realized in future OP prediction sys-646

tems? In other words, is it valid to interpret the PM/OP skill gap as possible647

“room for improvement” in prediction skill? The work of [47] directly addresses648

these questions, providing a framework to assess the fidelity of PM skill estimates.649

[47] argue that the interpretation of the PM/OP skill gap as “room for improve-650

ment” relies on an implicit assumption that the observed and model-predicted651

time series’ share the same statistical characteristics. In particular, they show652

that differences in PM skill between different models can largely be attributed to653

differences in temporal autocorrelation (persistence) and, by extension, argue that654

a model’s temporal autocorrelation should be compared to observations before655

making inferences based on PM skill.656

Following this, we compare the temporal autocorrelation of observed detrended657

regional SIE to the autocorrelation of the FLOR control run. Computing autocor-658

relation values for all target months and lead times of 0-35 months, we find that659

the model’s regional SIE persistence characteristics are generally quite consistent660

with observed persistence (see Figs. S6-S8). In particular, we find strong agree-661

ment in the Laptev, East Siberian, Beaufort, Bering, Canadian Arctic Archipelago,662

Hudson Bay, Baffin Bay, and Central Arctic regions. This suggests that in these663

regions the PM skill provides a reliable estimate of the true upper limits of skill664

achievable in nature. In the Chukchi Sea, Kara Sea, and Sea of Okhotsk, the model665

autocorrelation values agree well with observations for lead times less than or equal666

to 6 months. For lead times beyond 6 months, the model has higher correlation667

values than observed, although the values are quite modest (less than 0.4). Since668

the majority of highly skillful PM predictions in these regions occur for lead times669

of 6 months or less, we conclude that the PM skill estimates are also quite reliable670

in these regions. We find a larger discrepancy in the GIN and Barents Seas, with671

the model displaying higher autocorrelation values than the observations, partic-672

ularly for winters 1 and 2 years in advance of a given winter target month. This673

discrepancy could potentially arise due to the removal of low-frequency (period674

> 20 years) variability when the observed SIE is linearly detrended. However, we675

find that this cannot fully explain the discrepancy, as notable differences in au-676

tocorrelation remain present even if the model data is 20-year high-pass filtered.677

This suggests that the PM skill may overestimate the true upper limits of pre-678

diction skill in the Barents and GIN Seas. Conversely, we find that the model679

has lower autocorrelation values than detrended observations in the Labrador Sea,680

suggesting that the PM skill underestimates the true skill achievable in this region.681

This is consistent with the lack of a PM/OP skill gap in the Labrador Sea, and682

likely results from the model biases discussed in subsection 4.2. Finally, we find683

that the model’s pan-Arctic SIE is substantially more persistent than detrended684

observations, suggesting that the PM skill overestimates the true upper limit of685

predictability for the pan-Arctic domain. Overall, these findings provide general686

confidence in the interpretation of the PM/OP skill gap as possible “room for im-687

provement” in prediction skill, while highlighting some caveats that apply to the688

North Atlantic regions and the pan-Arctic domain.689
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5 Conclusions and Discussion690

In this work, we have established the first direct comparison of perfect model691

(PM) and operational (OP) Arctic sea-ice prediction skill within a common pre-692

diction system. Using the GFDL-FLOR coupled GCM, we have performed two693

complementary suites of ensemble prediction experiments. The first is a suite of694

PM experiments, consisting of ensembles initialized in January, March, May, July,695

September, and November, and in high, low, and typical sea-ice volume (SIV)696

regimes. Secondly, we have utilized a suite of retrospective initialized OP predic-697

tions spanning 1981-2016 made with GFDL-FLOR. The skill comparison between698

these OP predictions and the PM experiments forms the basis of this study.699

In order to make a robust skill comparison, we have introduced a set of PM skill700

metrics, defined in analogy with metrics used in OP prediction applications. These701

metrics were designed to allow for an “apples-to-apples” PM/OP skill comparison,702

and offer conceptual advantages over other commonly used PM skill metrics. We703

have found that PM skill metrics based on ensemble spread (RMSE, NRMSE,704

MSSS) do not have a clear dependence on the SIV state, whereas the ACC is705

clearly higher in high/low volume states compared with typical volume states.706

This state-dependency can lead to biased ACC estimates if start dates are not707

sampled from the climatological distribution. We have defined an unbiased ACC,708

ACCU , which does not suffer from this sampling bias. All comparisons with OP709

prediction skill in this study were made using ACCU . The unbiased ACC metric710

may be broadly useful for PM studies, since many of these studies do not sample711

start dates from the climatological distribution of states. Using these PM and OP712

skill metrics, we have investigated the predictability of pan-Arctic SIV, pan-Arctic713

SIE, and regional Arctic SIE.714

This study has shown that PM predictions of pan-Arctic SIV and SIE have715

statistically significant skill for all target months and lead times up to 35 months716

(the length of our PM simulations). The PM predictions of pan-Arctic SIE are717

highly skillful (ACCU ≥ 0.7) at leads of 18–26 months for winter SIE predictions718

and leads of 5–11 months for summer SIE predictions. In contrast, OP predic-719

tions of pan-Arctic SIE have statistically significant skill at lead times of 0–5720

months, and are not highly skillful beyond lead-0. This notable skill gap indicates721

that pan-Arctic SIE predictions could be improved in all months of the year, with722

particularly large opportunities for improvements in winter SIE predictions. Given723

that winter sea ice covaries strongly with the NAO (e.g. [26]) and that SIC anoma-724

lies can force an NAO response [25,69], improving winter SIE predictions has the725

potential to improve winter NAO predictions. For example, recent work by [73]726

shows that fall SIC is an important predictor of the winter NAO index, attributing727

their NAO skill to persistence of fall SIC conditions.728

The uniform seasonal coverage of PM start dates employed by this study has729

allowed us to shed additional light on the spring predictability barrier for pan-730

Arctic SIE proposed by [21]. We have found that PM predictions of pan-Arctic SIV731

display a spring predictability barrier related to rapid error growth during the early732

melt season, in which predictions initialized prior to June lose skill much faster733

than those initialized post June. Unlike SIV, we have found that pan-Arctic SIE734

does not display a clear spring predictability barrier. This finding, which may be735

model-dependent, suggests that there is not an optimal month in which to initialize736

pan-Arctic SIE predictions. While the spring barrier is not present for pan-Arctic737
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SIE, we have found clear evidence of spring predictability barriers in certain Arctic738

regions. In particular, the Laptev, East Siberian, and Beaufort Seas each display739

spring prediction skill barriers in both the PM and OP predictions, suggesting740

that these barriers are a fundamental predictability feature of these regions. These741

barriers suggest that summer SIE predictions in these regions should be initialized742

May 1 or later, since skill is substantially lower for predictions initialized prior to743

May 1.744

In nearly all Arctic regions, we have identified substantial skill gaps between745

PM and OP predictions of Arctic regional SIE. While their absolute skill values are746

different, the PM and OP regional predictions generally display similar correlation747

skill structures, indicating that similar physical mechanisms are contributing to748

both PM and OP skill. We have found that PM predictions in the Barents and GIN749

Seas are highly skillful at lead times beyond 24 months, whereas OP predictions750

have statistically significant skill at 5-11 months but are not highly skillful beyond751

1 month lead times. In both the PM and OP predictions, the North Pacific sector752

has lower winter SIE skill than these North Atlantic regions, suggesting that the753

North Pacific is fundamentally less predictable. This finding is consistent with the754

PM study of [21] and the statistical prediction study of [81], and is relevant for755

fisheries industries active in these regions that could benefit from skillful winter756

SIE predictions.757

We have found that regional winter SIE is generally more predictable than758

summer SIE. PM predictions of regional summer SIE in the Laptev, East Siberian,759

Chukchi, and Beaufort Seas are highly skillful at leads of 1–5 months, displaying760

similar correlation structures to their OP counterparts. The PM/OP skill gap761

suggests that substantial improvements are possible at these 1–5 month lead times,762

but that long-lead skillful predictions are not possible in these regions. This finding763

is relevant for the predictability of summer shipping lanes along the Northern Sea764

Route, implying that these lanes could be skillfully predicted from May 1, but not765

earlier.766

This study has identified a striking skill gap between OP and PM predictions767

made with the GFDL-FLOR model, suggesting that skillful long-lead predictions768

of SIE are possible in many regions of the Arctic. The large gap in lead-0 prediction769

skill indicates a clear potential for improved predictions via improved initialization.770

Additionally, the rapid decay of OP prediction skill relative to the PM experiments771

indicates that improved model physics and/or more balanced ICs are required in772

future prediction systems. It is important to note that these findings are based773

upon a single GCM and similar studies with other seasonal prediction systems774

are required to solidify these results. This work has provided a robust comparison775

of regional PM and OP prediction skill, but has not investigated the physical776

mechanisms underlying this skill. Future work exploring these mechanisms, and777

identifying the key modeling and observational deficiencies in current dynamical778

prediction systems, is required in order to close the gap between PM and OP skill779

identified in this study.780
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6 Appendix787

6.1 Reliability condition for ensemble forecasts788

Claim: The PM MSE given by Eqn. 8 satisfies the necessary condition for forecast789

reliability:790

MSE(τ) =
N

N − 1
σ2
e(τ). (18)

Proof: The mean intra-ensemble variance, σ2
e , is given by791

σ2
e(τ) =

1

M

M∑
j=1

1

N − 1

N∑
i=1

(
〈xj(τ)〉 − xij(τ)

)2
, (19)

where 〈xj(τ)〉 is the ensemble mean of the jth ensemble. The MSE is given by792

MSE(τ) =

∑M
j=1

∑N
i=1

(
〈xîj(τ)〉 − xij(τ)

)2
MN

. (20)

First, we note a relation between the ensemble mean 〈xj(τ)〉 and the ensemble793

mean with the ith member removed 〈xîj(τ)〉. These ensemble means are defined794

respectively as795

〈xj(τ)〉 =
1

N

N∑
k=1

xkj(τ), (21)

and796

〈xîj(τ)〉 =
1

N − 1

N∑
k 6=i

xkj(τ), (22)

and are related by:797

〈xj(τ)〉 =
1

N

N∑
k=1

xkj(τ) =
xij(τ)

N
+

1

N

N∑
k 6=i

xkj(τ) =
xij(τ)

N
+
N − 1

N
〈xîj(τ)〉. (23)

Therefore,798

σ2
e(τ) =

∑M

j=1

∑N

i=1

(
〈xj(τ)〉−xij(τ)

)2

M(N−1) (24)

=

∑M

j=1

∑N

i=1

(
1
N
xij(τ)+

N−1
N
〈xîj(τ)〉−xij(τ)

)2

M(N−1) (25)

=

∑M

j=1

∑N

i=1

(
N−1
N
〈xîj(τ)〉−

N−1
N

xij(τ)

)2

M(N−1) (26)

=

(
N−1
N

)2
∑M

j=1

∑N

i=1

(
〈xîj(τ)〉−xij(τ)

)2

M(N−1) (27)
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= N−1
N

∑M

j=1

∑N

i=1

(
〈xîj(τ)〉−xij(τ)

)2

MN (28)

= N−1
N MSE(τ). (29)

6.2 Relation of perfect model skill metrics to other metrics799

6.2.1 PPP800

A commonly used PM skill metric is the potential prognostic predictability (PPP,801

[61]), which compares the ensemble variance, σ2
e(τ), to the climatological variance,802

σ2
c . The PPP is defined as803

PPP (τ) = 1− σ2
e(τ)

σ2
c
, (30)

which has a similar form to the MSSS defined in Eqn. 11. Since MSE = N
N−1σ

2
e ,804

for any finite N , MSSS < PPP and MSSS → PPP as N → ∞. For most805

typical values of N , the PPP and MSSS will be quite similar and share the same806

qualitative interpretations. However, we believe that the MSSS metric provides807

a more natural comparison with the MSSS metric used in OP predictions. In808

the PPP formulation, the ensemble mean 〈xj〉 is used to predict a given truth809

member xij . This implies that the prediction has knowledge of the observed value,810

since the xij truth member is included in the ensemble mean computation. This811

is an undesirable property for a skill metric, and will tend to bias skill scores high.812

The MSSS does not suffer from this issue, as only non-truth members are used to813

predict a given truth member.814

6.2.2 RMSE815

In the PM MSE formula given in Eqn. 8, we have used the (N − 1)-member816

ensemble mean to predict a given truth member. In general, we could use an E-817

member ensemble mean to make this prediction, where 1 ≤ E ≤ N − 1. It can818

be shown that an MSE based on an E-member ensemble mean satisfies MSE =819

E+1
E σ2

e , where the proof uses the Central Limit Theorem and follows the same820

approach as that of [41]. The formula in 6.1 is the special case when E = N − 1.821

The PM RMSE definition of [19], uses 1-member ensembles to predict a given truth822

member, and therefore satisfies MSE = 2σ2
e . At long lead times, the PM RMSE823

of [19] converges to
√

2σc (note that this is strictly true only if the normalization824

of MN(N − 1)− 1 used in [19] is replaced with MN(N − 1)).825

This factor of
√

2 is a potential source of confusion, since in the PM literature826

a “no skill” forecast has RMSE =
√

2σc, whereas in the OP literature a “no skill”827

(climatological) forecast has an RMSE of σc. This can lead to confusion when828

quoting PM RMSE in physical units, or when comparing PM and OP RMSE829

values (e.g. as done in [7,70]). In particular, the RMSE values obtained via the830

formula of [19] are too large, since they do not benefit from ensemble averaging. If831

ensemble means are used for the PM prediction, this issue is greatly ameliorated,832

since the PM RMSE values converge to
√

N
N−1σc, allowing for cleaner comparison833

with OP predictions.834
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