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Abstract—Nonlinear and dispersive transmission impairments
in coherent fiber-optic communication systems are often com-
pensated by reverting the nonlinear Schrödinger equation, which
describes the evolution of the signal in the link, numerically. This
technique is known as digital backpropagation. Typical digital
backpropagation algorithms are based on split-step Fourier
methods in which the signal has to be discretized in time and
space. The need to discretize in both time and space however
makes the real-time implementation of digital backpropagation
a challenging problem. In this paper, a new fast algorithm for
digital backpropagation based on nonlinear Fourier transforms is
presented. Aiming at a proof of concept, the main emphasis will
be put on fibers with normal dispersion in order to avoid the issue
of solitonic components in the signal. However, it is demonstrated
that the algorithm also works for anomalous dispersion if the
signal power is low enough. Since the spatial evolution of a
signal governed by the nonlinear Schrödinger equation can be
reverted analytically in the nonlinear Fourier domain through
simple phase-shifts, there is no need to discretize the spatial
domain. The proposed algorithm requires only OpD log2 Dq

floating point operations to backpropagate a signal given by D
samples, independently of the fiber’s length, and is therefore
highly promising for real-time implementations. The merits of
this new approach are illustrated through numerical simulations.

Index Terms—Optical Fiber, Digital Backpropagation, Nonlin-
ear Fourier Transform, Nonlinear Schrödinger Equation

I. INTRODUCTION

The evolution of a signal Epx, tq P C in optical fiber, where
x ě 0 denotes the position in the fiber and t P R the time,
is well-described through the nonlinear Schrödinger equation
(NSE). Through proper scaling and coordinate transforms, the
NSE can be brought into its normalized form

i
BE

Bx
`
B2E

Bt2
` 2κ|E|2E “ ´ i ΓE, κ P t˘1u. (1)

The parameter κ in Eq. (1) effectively determines whether the
fiber dispersion is normal (´1) or anomalous (`1), while the
parameter Γ determines the loss in the fiber. In the following, it
will be assumed that the loss parameter is zero. There are two
important cases in which a fiber-optic communication channel
can be modeled under this assumption. When the fiber loss
is mitigated through periodic amplification of the signal, the
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average of the properly transformed signal is known to satisfy
the NSE with zero loss [1]. Furthermore, recently a distributed
amplification scheme with an effectively unattenuated optical
signal (quasi-lossless transmission directly described by the
lossless NSE) has been demonstrated [2]. If the loss parameter
is zero, the NSE can be solved using nonlinear Fourier
transforms (NFTs) [3]. The spatial evolution of the signal
Epx, tq then reduces to a simple phase-shift in the nonlinear
Fourier domain (NFD), similar to how linear convolutions
reduce to phase-shifts in the conventional Fourier domain. The
prospect of an optical communication scheme that inherently
copes with the nonlinearity of the fiber has recently led to
several investigations on how data can be transmitted in the
NFD instead of the conventional Fourier or time domains
[4], [5], [6], [7], [8], [9], [10], [11], with the original idea
being due to Hasegawa and Nyu [12]. Next to potential
savings in computational complexity, it is anticipated that
subchannels defined in the NFD will not suffer from intra-
channel interference, which is currently limiting the data rates
achievable by wavelength-division multiplexing systems [13].

The mathematics behind the NFT are however quite in-
volved, and despite recent progress in the implementation of
fast forward and inverse NFTs [14], [15], [16] no integrated
concept for a computationally efficient fiber-optic transmission
system that operates in the NFD seems to be available. In
this paper, therefore the problem of digital backpropagation
(DBP), i.e. recovering the fiber input Ep0, tq from the output
Epx1, tq by solving (1), is addressed instead using NFTs [5].
Both concepts are compared in Fig. 1. Although DBP does
not solve the issue of intra-channel interference in fiber-optic
networks because it is usually not feasible to join the individ-
ual subchannels of the physically separated users into a single
super-channel in this case [13, X.D], we note that there are
other scenarios where this issue does not arise [17]. The advan-
tage of digital backpropagation over information transmission
in the NFD is that it is not necessary to implement full forward
and backward NFTs. Together with recent advantages made
in [14], [15], [16], this observation will enable us to perform
digital backpropagation in the NFD using only OpD log2Dq
floating point operations (flops), where D is the number of
samples. This complexity estimate is independent of the length
of the fiber because the spatial evolution of the signal will
be carried out analytically. Conventional split-step Fourier
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Figure 1. Information transmission (top) vs DBP (bottom) in the NFD

methods, in contrast, have a complexity of OpMD logDq
flops, where M is the number of spatial steps [18, III.G].

The goal of this paper is to present a new, fast algorithm
for digital backpropagation that operates in the NFD and to
compare it with traditional split-step Fourier methods through
numerical simulations. The impact of noise resulting from the
use of distributed Raman amplification will be of particular
interest. The paper is structured as follows. In Sec. II, the
theory behind digital backpropagation in the NFD will be
outlined, and the new, fast algorithm will be given and
discussed. The simulation setup is described in Sec. III, while
results are reported in Sec. IV. Sec. V concludes the paper.

II. DIGITAL BACKPROPAGATION IN THE
NONLINEAR FOURIER DOMAIN

In this section, first the theoretical and computational results
that are required to perform digital backpropagation in the
NFD are briefly recapitulated from [16]. Afterwards, the fast
algorithm is presented and its limitations are discussed.

A. Theory for the Continuous-Time Case
The Zakharov-Shabat scattering problem associated to any

signal Epx, tq that vanishes sufficiently fast for tÑ ˘8 is

d

dt
φpx, t, λq “

„

´ iλ Epx, tq
´κĒpx, tq iλ



φpx, t, λq, (2)

φpx, t, λq “

„

e´ iλt

0



` op1q, tÑ ´8. (3)

With φ1 and φ2 denoting the components of φ, now define

αpx, λq :“ lim
tÑ8

eiλt φ1px, t, λq, (4)

βpx, λq :“ lim
tÑ8

e´ iλt φ2px, t, λq,

where λ P C is a parameter. If Epx, tq satisfies the NSE (1)
with zero loss parameter Γ “ 0, the corresponding αpx, λq
and βpx, λq turn out to depend on x in very simple way:

αpx, λq “ αp0, λq, βpx, λq “ e´4 iλ2x βp0, λq. (5)

These functions are not the final form of the NFT, but for our
needs it will be sufficient to stop here.

The complicated spatial evolution of the signal Epx, tq thus
indeed becomes trivial if it is transformed into αpx, λq and
βpx, λq. Based on this insight, ideal continuous-time digital
backpropagation reduces to three basic steps in the NFD:

Epx1, tq
A
Ñ

„

αpx1, λq
βpx1, λq



B
Ñ

„

αp0, λq
βp0, λq



C
Ñ Ep0, tq. (6)

B. Discretization of the Continuous-Time Problem

In order to obtain a numerical approximation of αpx, λq
and βpx, λq for any fixed x, choose a sufficiently large interval
rT1, T2s inside which Epx, tq has already vanished sufficiently.
Without loss of generality, one can assume that T1 “ ´1 and
T2 “ 0. In this interval, D rescaled samples

Erx, ns :“ εE
´

x,´1` nε´
ε

2

¯

, ε :“
1

D
, n P t1, . . . , Du,

are taken. With z :“ e´2 iλε, (2)–(3) becomes

φrx, n, zs :“z
1
2

„

1 z´1Erx, ns
´κĒrx, ns z´1



ˆ
φrx, n´ 1, zs

a

1` κ|Erx, ns|2
, (7)

φrx, 0, zs :“z´
D
2

„

1
0



. (8)

This leads to the following polynomial approximations:

αpx, λq « apx, zq :“
řD´1
i“0 aipxqz

´i :“ φ1rx,D, zs,

βpx, λq « bpx, zq :“
řD´1
i“0 bipxqz

´i :“ φ2rx,D, zs.

C. The Algorithm

The three steps in the diagram (6) can be implemented with
an overall complexity of OpD log2Dq flops as follows.

Step A : The discrete scattering problem to find the poly-
nomials apx1, zq and bpx1, zq from the known fiber output
Epx1, tq through (7)–(8) is solved with only OpD log2Dq
flops using [15, Alg. 1] (also see [14, Alg. 1]).

Step B: The unknown polynomials ap0, zq and bp0, zq are
defined by the unknown fiber input Ep0, tq through (7)–(8).
In this step, approximations âp0, zq and b̂p0, zq of ap0, zq and
bp0, zq are computed based on Eq. (5). The left-hand in (5)
suggests the choice âp0, zq :“ âpx1, zq. For finding b̂p0, tq, let
us denote the D-th root of unity by w :“ e´2π i {D. The right-
hand in (5) motivates us to find b̂p0, zq “

řD´1
i“0 b̂ip0qz

´i by
solving the well-posed interpolation problem

b̂p0, wn´
1
2 q “ e

4 i
´

logpwn´ 1
2 q{p´2 i εq

¯2
x1 bpx1, w

n´ 1
2 q (9)

“ e4π
2 ipn´ 1

2 q
2x1 bpx1, w

n´ 1
2 q, n P t1, . . . , Du,

with the fast Fourier transform, using only OpD logDq flops.
Step C: The inverse scattering problem of estimating

Er0, ns from âp0, zq and b̂p0, zq by inverting (7)–(8) is solved
using OpD log2Dq flops as described in [16, IV].

D. Limitations

It was already mentioned above that the algorithm works for
fibers with normal dispersion. In that case, the sign κ in the
NSE (1) will be negative and Epx, tq is determined through the
values that αp0, λq and βp0, λq take on the real axis R Q λ [19,
p. 285]. If the dispersion is anomalous, the sign will be positive
and Epx, tq is determined through the values that αp0, λq and
βp0, λq take on the real axis and around the roots of αp0, λq
in the complex upper half-plane =pλq ą 0 [19, IV.B]. Taking
the coordinate transform z “ e´2 iλε into account, one sees
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Figure 2. a) Simulation setup of coherent optical communication systems
with DBP in the NFD, b) basic block functions of OFDM and Nyquist
transceivers

that the interpolation problem (9) however enforces the phase-
shift only for certain real values of λ. Thus, the algorithm is
unlikely to work if αp0, λq has roots in the upper half-plane.
The condition

ş8

´8
|Ep0, tq|dt ă π

2 is sufficient to ensure that
there are no such roots [20, Th. 4.2]. The actual threshold
where solitons start to emerge however is expected to be higher
due to the randomly oscillating character of waveforms used
in fiber-optic communications [21], [22].

III. SIMULATION SETUP

In this section, the simulation setup that was used to assess
the performance of DBP in the NFD is presented.

The transmission link was assumed to be lossless due to
ideal Raman amplification, with an amplified spontaneous
emission (ASE) noise density NASE “ ΓLhfsKT . Here, Γ
is the fiber loss, L is the transmission distance, hfs is the
photon energy, fs is the optical frequency of the Raman
pump providing the distributed gain, and KT “ 1.13 is
the photon occupancy factor for Raman amplification of a
fiber-optic communication system at room temperature. In
the simulations, it was assumed that the long-haul fiber link
consisted of 80-km spans of fiber (standard single-mode fiber
(SSMF) in the anomalous case) with a loss of 0.2 dB/km,
nonlinearity coefficient of 1.22 W/km, and a dispersion of
˘16 ps/nm/km (normal and anomalous dispersions). A photon
occupancy factor of 4 was used for more realistic conditions.
The ASE noise was added after each fiber span.

The data was modulated using high spectral efficiency mod-
ulation formats (QPSK and 64QAM) and either Nyquist pulses
(i.e. sinc’s) [8] or orthogonal frequency division multiplexing
(OFDM) [6], [7], [8]. The block diagram of the simulation
setup and basic block functions of the OFDM and Nyquist
transceivers are presented in Fig. 2. In Fig. 2(a), DBP in the
NFD is performed at the receiver after coherent detection, syn-
chronization, windowing and frequency offset compensation.
For simplicity, both perfect synchronization and frequency
offset compensation were assumed. The net data rates of
the considered transmission systems were, after removing 7%
overhead due to the forward error correction (FEC), 100 Gb/s
and 300 Gb/s for QPSK and 64QAM, respectively. For the
OFDM system, the size of the inverse fast Fourier transform

Packet K-1 Packet K

(a)

Packet K+1

One burst

(b)

Packet KPacket K-1 Packet K+1

Packet K Packet K

Windowing 

Zeros Zeros

Processing Window
(c)

Transmitted signal

Received signal

Windowing signal for DBP in NFT domain

One burst

Figure 3. a) Illustration of a burst mode transmission at the transmitter side, in
which neighboring packets are separated by a guard time, b) received signal
at the receiver, which is broadened by chromatic dispersion, c) windowing
signal for processing in the proposed nonlinear compensation scheme.

(IFFT) was 128 samples, and 112 subcarriers were filled with
data using Gray coding. The remaining subcarriers were set
to zero. The useful OFDM symbol duration was 2 ns and
no cyclic prefix was used for the linear dispersion removal.
An oversampling factor of 8 was adopted resulting in a total
simulation bandwidth of ~448GHz. At the receiver side, all
digital signal processing operations were performed with the
same sampling rate. The receiver’s bandwidth is assumed to
be unlimited in order to estimate the achievable gain offered
by the proposed DBP algorithm.

The data was transmitted in a burst mode where data
packets where separated by a guard time. See Fig. 3 for
an illustration. The guard time was chosen longer than the
memory ∆T “ 2πBβ2L induced by the fiber chromatic
dispersion (CD), where B is the signal’s bandwidth, β2 is
the chromatic dispersion and L is the transmission distance.
One burst consisted of one data packet and the associated
guard interval. At the receiver, after synchronization, each
burst is extracted and processed separately. Since the forward
and inverse NFTs require that the signal has vanished early
enough before it reaches the boundaries, zero padding was
applied to enlarge the processing window as in Fig. 3(c).

IV. SIMULATION RESULTS

In this section, the performance of DBP in the NFD is
compared with a traditional DBP algorithm based on the split-
step Fourier method [18] as well as with simple chromatic
dispersion compensation; the latter works well only in the low-
power regime where nonlinear effects are negligible.

A. Normal dispersion

In the normal dispersion case, a 56 Gbaud Nyquist-shaped
transmission scheme is considered in burst mode with 256
symbols in each packet. The duration of each packet is ~4.6ns.
The burst size is 16000 samples and the processing window
size for each burst after zero padding is D “ 65536 samples.
The guard time is ~10% longer than the fiber chromatic dis-
persion induced memory of the link. The forward propagation
is simulated using the split-step Fourier method [18] with
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80 steps/span, i.e. 1km step. Monte-Carlo simulations were
performed to estimate the system performance using the error
vector magnitude (EVM) [23, (5)]. For convenience, the EVM
is then converted into the Q-factor 20 logp

?
2 erfc´1

p2 BERqq
using the bit error rate (BER) estimate [23, (13)].

The performance of the 100-Gb/s QPSK Nyquist-shaped
system is depicted in Fig. 4 as a function of the launch power
in a 4000km link for various configurations. An exemplary
fiber in- and output as well as the corresponding reconstructed
input (via DBP in the NFD) are shown in Fig. 5. It can be
seen in Fig. 4 that the proposed DBP in the NFD provides a
significant performance gain of ~8.6 dB, which is comparable
with the traditional DBP employing 20 steps/span. Traditional
DBP with 40 steps/span can be considered as ideal DBP
in this experiment because a further increase of the number
of steps/span did not improve the performance further. In
the considered 4000km link, 40 steps/span DBP requires
M “ 2000 steps in total. This illustrates the advantage of
the proposed DBP algorithm whose complexity is in contrast
independent of the transmission distance. The performance of
DBP in the NFD was however found to degrade rapidly when
the launch power is sufficiently high. We believe that this
effect can be mitigated through an extension of the processing
window at the cost of increased computational complexity.

A similar behavior can be observed in Fig. 6 for a 300-Gb/s
64QAM Nyquist-shaped system. It can be seen in Fig. 6 that
DBP in the NFD shows ~1.5 dB better performance than DBP
employing 20 steps/span. The difference from ideal DBP (40
steps/span) is just ~0.6 dB. This clearly shows that NFD-DBP
can provide essentially the same performance as ideal DBP.

B. Anomalous dispersion

Most fibers used today (such as SSMF) have anomalous
dispersion. Therefore, it is critical to evaluate the performance
of the proposed DBP algorithm in optical links with anomalous
dispersion. The DBP-NFD algorithm proposed earlier however
cannot yet deal with signals where the function αp0, λq defined
in (4) has roots in the upper half-plane. See Sec. II-D. The
condition that the L1-norm of each burst is less than π{2
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is sufficient to ensure this condition. The packet duration
in a system with anomalous dispersion thus has to be kept
small enough in order to apply the proposed algorithm. This
constraint is not desirable in practice, as it reduces the total
throughput of the link because the guard interval, which is
independent of the packet duration, must be inserted more
frequently. The L1 norm of the Fourier transform is always
lower or equal to the L1 norm of the time-domain signal.
Motivated by this observation, OFDM was chosen instead of
Nyquist-shaping for anomalous dispersion.

The performances of both traditional DBP and DBP in the
NFD are shown in Fig. 7. DBP in the NFD can achieve a
performance gain of ~3.5 dB, which is ~1 dB better than DBP
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employing 4 steps/span. The performance however degrades
dramatically once the launch power has become larger than
´5dBm. We attribute this phenomenon to the emergence of
upper half-plane roots of αp0, zq, which corresponds to the
formation of solitonic components in the signal. This argument
is supported in Fig. 8, where the L1-norm and the ratio
between the power in the solitonic part (Ê in [4, p. 4320])
over the total signal power are plotted as functions of the signal
power. At a launch power of ´4 dBm, the signals begin to
have solitonic components, which seems to have a significant
impact on the DBP algorithm in the NFD. As anticipated in
Sec. II-D, solitons indeed only occur above an L1-norm which
is significantly higher than the bound π{2.

V. CONCLUSION

The feasibility of performing digital backpropagation in the
nonlinear Fourier domain has been demonstrated with a new,
fast algorithm. In simulations, this new algorithm performed
very close to ideal digital backpropagation implemented with
a conventional split-step Fourier method for fibers with normal
dispersion at a much lower computational complexity. In the
anomalous dispersion case, it was found that the algorithm

works well only if the signal power is low enough such that
solitonic components do not emerge. We are currently working
to remove this limitation.
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