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We present present a quantitative experimental investigation of the scalar chiral magnetic order
with in Nd3Sb3Mg2O14. Static magnetization reveals a net ferromagnetic ground state, and inelastic
neutron scattering from the hyperfine coupled nuclear spin reveals a local ordered moment of 1.76(6)
µB , just 61(2)% of the saturated moment size. The experiments exclude static disorder as the
source of the reduced moment. A 38(1) µeV gap in the magnetic excitation spectrum inferred from
heat capacity rules out thermal fluctuations and suggests a multipolar explanation for the moment
reduction. We compare Nd3Sb3Mg2O14 to Nd pyrochlores and show that it is close to a moment
fragmented state.

I. INTRODUCTION

A new family of rare earth kagome compounds
RE3Sb3A2O14 (RE = rare earth, A = Mg, Zn) has re-
cently been discovered [1–5]. These materials, some-
times called "tripod kagome", host a variety of mag-
netic phases, including topological scalar chiral order
[5], emergent charge order [6], quantum spin fragmen-
tation [7], and a quantum spin liquid phase [8]. To date,
the magnetic structures of three of these compounds
(Nd3Sb3Mg2O14, Dy3Sb3Mg2O14, and Ho3Sb3Mg2O14)
have been determined by powder neutron diffraction [5–
7] and found to share two characteristics: an average all-
in-all-out (AIAO) order (where the ordered spins point
into or out of a triangle center) with a net ferromag-
netic moment along the c axis, and an ordered magnetic
moment significantly below the saturated moment ex-
pected for the magnetic ion. The ferromagnetic AIAO
order is interesting because it indicates a net scalar chi-
rality (where the scalar triple product of three spins
around a triangle S1 · (S2 × S3) 6= 0) and topologically
protected magnon edge states [9–11]. The reduced or-
dered moment, meanwhile, seems to indicate a disor-
dered or fluctuating ground state. In Dy3Sb3Mg2O14

and Ho3Sb3Mg2O14 it has been proposed, based on elas-
tic diffuse neutron scattering, that the reduced moment
results primarily from static spin disorder in an emergent
magnetic charge ordered two-in-one-out two-out-one-in
state [6, 7].

In this paper we (i) use low temperature static mag-
netization to explicitly show there is a net ferromag-
netic component of the magnetic order in Nd3Sb3Mg2O14

as previously inferred from neutron diffraction. (ii)
Through neutron measurements of nuclear hyperfine
splitting, we show there is a uniform 40% reduction of
the ordered moment per site relative to the saturation
moment. (iii) We show there is a 40 µeV gap in the mag-

netic excitation spectrum through analysis of the low T
specific heat. These results lead to a broader discussion
of reasons behind and methods to detect moment reduc-
tion in frustrated rare earth based magnets.

II. EXPERIMENTS

Magnetization: We measured low temperature mag-
netization of 0.1 mg loose powder Nd3Sb3Mg2O14 using
a custom-built SQUID magnetometer. The loose powder
was mixed with silver paste and attached to silver foil
to ensure good thermal connection. We measured static
magnetization as a function of temperature from 40 mK
to 2.2 K at 5 Oe twice: once starting from a field-cooled
(FC) and again from a zero-field-cooled (ZFC) state. The
data is shown in Fig. 1. The low temperature SQUID
magnetometer only measures relative magnetization, so
we normalized the data to units of µB/Nd by scaling the
low temperature SQUID data from 1.8 K to 2.2 K to
match magnetization data taken on an MPMS (31.3 mg,
no silver powder, 800 Oe) [12].
Neutron Scattering: We measured neutron scattering

on 20.3 g loose powder Nd3Sb3Mg2O14 using the HFBS
backscattering spectrometer at the NCNR. The sample
was sealed under 10 bar helium in a copper can that was
attached to the mixing chamber of a dilution refrigerator.
We measured at a bandwidth of ±36 µeV and an elastic
full width at half maximum energy resolution of 1.04 µeV
at 50 mK for 21.5 hours, 700 mK for 4 hours, and at 4.5
K for 2 hours. To more accurately measure the hyperfine
excitations, we switched to the ±11µeV mode (0.79 µeV
resolution), measuring for six hours at base temperature,
two hours at 300 mK, and for two hours at 700 mK. The
data measured in the ±11µeV mode are shown in Fig. 2.
The ±36µeV data (in which no spin waves are visible) is
given in the supplemental information.
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Figure 1. Low temperature powder-averaged magnetization
of Nd3Sb3Mg2O14. Measurements were taken upon heating
from a field-cooled (green) and zero-field-cooled (blue) state.
The splitting of these two curves indicates a ferromagnetic
ground state.

The high energy resolution of the HFBS spectrometer
allows detection of nuclear spin flip excitations in the hy-
perfine enhanced field associated with the 4f electronic
dipole moments. The corresponding scattering cross sec-
tion takes the form of a low-energy peak at the nuclear
spin flip energy with an intensity that is Q-independent
(except for the Debye Waller factor). This scattering
is distinguished from magnetic inelastic scattering which
is typically dispersive with an intensity that follows the
electronic magnetic form factor [13, 14]. Nd has two
isotopes with nuclear moments: 12.2% Nd143 (incoher-
ent cross section σi = 55(7) barn) and 8.29% Nd145

(σi = 5(5) barn), both with nuclear spin I = 9/2. When
Nd3Sb3Mg2O14 orders below 540 mK, the nuclear spin
levels will be split, and we expect to see nuclear hyper-
fine excitations.

The neutron cross section of powder-averaged nuclear
hyperfine excitations is

( d2σ

dΩdE

)±
=

1

3

kf
ki
e−2W (Q)I(I + 1)

σi
4π
δ(∆M − E), (1)

where ± refers to positive and negative energy transfer,
∆M is the hyperfine splitting energy, σi is the incoher-
ent scattering cross section for the magnetic ion, I is
the nuclear spin state, 2W (Q) = 〈u2〉Q2 and 〈u2〉 is the
mean squared displacement of the nucleus, ki and kf are
the incident and scattered neutron wave vectors, and the
horizontal bar indicates an isotope average [15]. For Nd,
I(I + 1) σi

4π = 8.98 barn. Using eq. 1, we were able to de-
termine the energies of the nuclear hyperfine excitations
and use the hyperfine integrated intensity to convert the
data to absolute units.
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Figure 2. Hyperfine nuclear excitations in Nd3Sb3Mg2O14

measured by neutron scattering at 0.1 K, 0.3 K, and 0.7 K.
These data are the sum over all detectors (0.25 Å−1 to 1.75
Å−1). Each nuclear excitation peak is slightly wider than the
resolution width as shown in panel (a). The energy of the ex-
citation peaks indicate the size of the ordered electronic mag-
netic moment. There is an unknown temperature independent
offset of the measured intensity from zero arising from back-
ground contributions to the detector count rate. Error bars
represent one standard deviation.

III. RESULTS

Magnetization: The bifurcation between the FC and
ZFC magnetization measurements in Fig. 1 clearly indi-
cate a ferromagnetic transition at Tc = 0.54 K. When
a ferromagnet orders in zero field, the domains form
with random orientations resulting in a net zero mag-
netization. When cooled in field, the ferromagnetic
domains preferentially order along the field direction,
giving a non-zero magnetization. Thus, a key signa-
ture of a ferromagnetic material is a difference between
the field-cooled and zero-field-cooled magnetization—
precisely what we observe in Nd3Sb3Mg2O14. In the
ZFC data, the normalized magnetization dips slightly
below zero. This negative value can be neglected, as
it is within the systematic error bars for in the normal-
ization to MPMS data (which can have have nonlinear
effects below 0.5 K). Therefore, we confirm the predic-
tion from previous neutron scattering work [5] that the
canted antiferromagnetic order of Nd3Sb3Mg2O14 has a
net ferromagnetism.Dy3Sb3Mg2O14 and Ho3Sb3Mg2O14

have also been inferred to have a ferromagnetic moment
based on analysis of the antiferromagnetic diffraction
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Table I. Low temperature ordered moment of Nd3Sb3Mg2O14

measured by neutron diffraction, hyperfine excitations, nu-
clear Schottky anomaly, and calculated the CEF Hamiltonian.
The experimental values agree with each other, but not the
theoretical value.

Neutron Hyperfine Nuclear CEF
diffraction excitations Schottky Theory
1.79(5) µB 1.76(6) µB 1.73(4) µB 2.89 µB

[6, 7].
Hyperfine Excitations: The neutron scattering results

in Fig. 2 show the appearance of finite energy nuclear
spin flip excitations below Tc. The nuclear hyperfine cou-
pling is too weak to influence the spin dynamics in this
system, but it can be used to calculate the local electronic
ordered moment. To extract precise values for the ener-
gies, we fit the data with Gaussian peaks weighted by a
population factor e±βh̄ω/2/(e−βh̄ω/2 + eβh̄ω/2) as shown
in Fig. 2. (The temperature was treated as a fitted pa-
rameter for the lowest temperature data in Fig. 2(a),
giving a value of 0.10(3) K. For higher temperature data,
T was determined by resistive thermometry.) The 0.1 K
data shows an excitation energy of 2.20(3) µeV, and the
0.3 K data shows an excitation energy of 2.13(3) µeV.
At 0.7 K no nuclear hyperfine excitations are visible, in-
dicating no static electronic moment. Using the empiri-
cal relation (extracted from multiple neutron diffraction
and hyperfine experiments on Nd-based magnetic materi-
als) between Nd nuclear hyperfine energies ∆E and static
magnetic moment µ in ref [16],

∆E = µ× (1.25± 0.04)
µeV

µB
, (2)

we calculate a mean ordered Nd moment of 1.76(6) µB

at 0.1 K, and 1.70(6) µB at 0.3 K. The hyperfine peaks
are slightly wider than the central elastic peak: FWHM
= 1.131(6) µeV (inelastic 0.1 K) and FWHM = 1.178(7)
µeV (inelastic 0.3 K) vs FWHM = 0.9059(1) µeV (cen-
tral elastic). This evidences either a finite relaxation
rate or a distribution of ordered moments in the sam-
ple: ±0.19(2) µB at 0.1 K, ±0.23(3) µB at 0.3 K or (see
the supplemental materials for details).

It is worth emphasizing that these nuclear hyperfine
measurements are local probes of the Nd magnetism: the
hyperfine excitation energy is proportional only to mo-
ment size and is independent of the number of atoms
involved. In contrast, magnetization and neutron diffrac-
tion are extensive quantities that vary in proportion to
the sample mass. Although there is a small distribution
of ordered moments (from 1.99µB to 1.53µB) the order is
nearly homogeneous with all spins between 1/2 and 2/3
the expected ordered moment.

The mean hyperfine ordered magnetic moment agrees
to within the experimental uncertainty with the ordered
moment measured by neutron diffraction: 1.79(5) µB [5].
As shown in Table I, the measurements of the ordered

moment are 38% less than the theoretical ordered mo-
ment for Nd3Sb3Mg2O14 calculated from the crystal elec-
tric field (CEF) Hamiltonian: 2.89 µB [17] (which fully
takes into account atomic scale anisotropies and quantum
effects).

This remarkable agreement between a local probe (hy-
perfine excitations) and a bulk probe (neutron scatter-
ing) of the ordered moment means that the moment
reduction cannot arise from any static disorder, as in
Dy3Sb3Mg2O14. And yet the measured ordered moment
is only 2/3 the saturation moment for the Kramers dou-
blet. This indicates an ordered state that incorporates
rather strong quantum fluctuations as might be expected
for a frustrated spin system in two dimensions, poten-
tially involving higher-order magnetic order that is invis-
ible to neutrons and hyperfine coupling like in ref. [18]
(e.g., order in the octupolar level).
Heat Capacity Fits: The point group symmetry for

Nd3+ in Nd3Sb3Mg2O14 is 2/m corresponding to a lig-
and environment with a strong easy-axis character [17].
Absent an accidental degeneracy, it would be surprising if
gapless spin excitations existed in Nd3Sb3Mg2O14 which
produce the reduced ordered moment.

We can determine the spin excitation gap by fitting the
low temperature heat capacity from ref. [5] assuming a
gapped bosonic (spin-wave) spectrum:

U =
v0

(2π)3
4π

∫
ε(q)

1

eε(q)/kbT − 1
q2dq. (3)

Here ε(q) =
√

∆2 + (cq)2 is the spin-wave dispersion
with velocity c and gap ∆, and heat capacity is com-
puted as C = ∂U

∂T . We solved these equations numeri-
cally, added a Nd nuclear Schottky anomaly [? ] so that
Ctot = Celectronic + Cnuclear, and fit the resulting Ctot
to the data. The fits are shown in Fig. 3 (details are
given in the supplemental information). The fitted gap
is ∆ = 38±1.4µeV, which is consistent with the absence
of magnetic excitations in the neutron scattering data
within a bandwidth of ±36µeV. There is in fact evidence
for this gap even in the higher temperature heat capacity
data from the x intercept in a plot of C/T vs T 2 plot [see
Fig. 3(c)]. Specifically,

∆ =

(√
8

5
πkB

)
√
xi. (4)

where xi is the x intercept of a high temperature linear
extrapolation in K2 and ∆ is the gap in meV. (The deriva-
tion is given in the supplemental information.) This re-
lation and holds for bosonic quasiparticles with a disper-
sion relation that can be approximated by the relativistic
form, and allows for determination of a gap from data
above the gap temperature scale.

The fitted spin wave velocity is c = 46.31 ± 0.08 m/s,
and a fitted ordered moment is 1.73 ± 0.04 µB. This
ordered moment agrees to within uncertainty with the
neutron values in Table I and again indicates a significant
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Figure 3. Low temperature heat capacity of Nd3Sb3Mg2O14

fitted to a gapped spin wave spectrum. (a) Heat capacity
from ref. [5] with fit based on eq. 3 plus a nuclear Schottky
anomaly. (b) Best fit χ2 as a function of gap energy, show-
ing a minimum at 38(1) µeV. (c) Data with the fitted nuclear
Schottky term subtracted, revealing high temperature T 3 be-
havior with the x intercept determined by the gap size. (d)
Gap size plotted against extrapolated x intercept from panel
(c), revealing a perfect square root relationship.

moment reduction. The existence of this gap means that
the reduced ordered moment cannot be from low-lying
spin wave states, because they would be depopulated at
the lowest temperatures. A possible explanation for the
reduced ordered magnetic moment is spin order in a ro-
tated basis involving higher multipoles, as was calculated
for Nd2Zr2O7 [18], as neutron scattering and hyperfine
splitting are both only sensitive to the ordered dipole
moment (see supplemental materials for details, which
includes refs. [30–33]).

IV. DISCUSSION

The tripod kagome compounds may be described as 2D
versions of pyrochlores compounds. Theory suggests [3],
and experiments confirm that they often exhibit similar
magnetic properties of their pyrochlore parents. For ex-
ample, Dy3Sb3Mg2O14 and Ho3Sb3Mg2O14 both exhibit
kagome-ice magnetic ground states [6, 7], like 2D ver-
sions of classical spin ices Dy2Ti2O7 and Ho2Ti2O7 [20].
The same correspondence exists for Nd3Sb3Mg2O14: the
Nd3+ pyrochlore compounds Nd2Sn2O7, Nd2Hf2O7, and
Nd2Zr2O7 all show AIAO magnetic order with strongly
reduced magnetic ordered moments [21–26].

The similarity is particular striking between the tri-

pod kagome system Nd3Sb3Mg2O14 and the pyrochlore
Nd2Sn2O7, which has a local ordered moment of 1.7
µB/Nd (measured by both nuclear hyperfine and neutron
diffraction) [23]. Meanwhile, the pyrochlores Nd2Hf2O7

and Nd2Zr2O7 show more dramatically reduced mo-
ments: 0.62(1) µB/Nd [21] for Nd2Hf2O7 and 0.80(5)
µB/Nd [25, 26] or 1.26(2) µB/Nd [? ] (depending on
the sample used) for Nd2Zr2O7. This massive reduction
suggests an additional mechanism behind the moment
reduction in Nd2Hf2O7 and Nd2Zr2O7.

Petit et al. have suggested that Nd2Zr2O7 is a
"fragmented" spin ice [26]: wherein emergent magnetic
monopoles order in a long range pattern, forming a three-
in-one-out three-out-one-in order on teach tetrahedra.
This creates an average AIAO order with a 50% reduced
net magnetic moment [27]. In this way, a spin is "frag-
mented": part of each spin contributes to a long range
pattern but part contributes to a short-range pattern.
The main evidence for this in Nd2Zr2O7 is a spin-ice
like pinch point neutron spectrum at finite energy. How-
ever, ref. [18] showed these experimental features can
exist without a fragmented spin-ice state involving or-
dered octupolar moments. A moment fragmented state
would feature a local ordered moment much larger than
the spatial-average moment measured by neutron diffrac-
tion, and this remains to be demonstrated.

Assuming the moment fragmentation hypothesis is
correct, the mere substitution of Sn for Zr changes
conventional ordered Nd2Sn2O7 to moment frag-
mented Nd2Zr2O7. Given the similarities between
Nd3Sb3Mg2O14 and Nd2Sn2O7, this suggests that if ap-
propriate ions could be substituted, Nd3Sb3Mg2O14 may
be driven to a fragmented, fluctuating ground state.

V. CONCLUSION

In conclusion, we have verified the net ferromagnetic
moment in the ordered phase of Nd3Sb3Mg2O14, con-
firming non-zero scalar chirality and non-zero Berry cur-
vature, leading us to expect topologically protected edge
states. Even so, the data clearly indicate a ferromag-
netic magnetization and therefore a net scalar chirality
from the AIAO structure, leading to the expectation of
topological features [9–11]. We have also provided un-
ambiguous evidence of a local magnetic moment reduced
to less than 2/3 the expected value in Nd3Sb3Mg2O14 by
measuring nuclear hyperfine excitations, which precludes
static disorder as an explanation.

We have also quantified the excitation gap (38 ±
1.4 µeV) using specific heat measurements, showing that
the ordered magnetic moment reduction cannot be from
dynamic spin disorder, leaving the possibility that the
reduced moment is due to order in a rotated basis (possi-
bly on the octupolar level). Comparing Nd3Sb3Mg2O14

to other Nd3+ pyrochlores, we have argued that the
Nd3Sb3Mg2O14 magnetic Hamiltonian is close to a mo-
ment fragmented crystallized monopole state.
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SUPPLEMENTAL INFORMATION FOR
HOMOGENOUS REDUCED MOMENT IN A

GAPFUL SCALAR CHIRAL KAGOME
ANTIFERROMAGNET

VI. FITTING HYPERFINE EXCITATIONS

The nuclear spin incoherent scattering cross section for
Nd145 is smaller than that of Nd143 by an order of mag-
nitude, so we are mostly sensitive to spin flip scattering
from Nd143. Thus, we use a single Gaussian peak to fit
the nuclear hyperfine enhanced inelastic neutron scatter-
ing data.

The instrumental resolution is inferred from the vari-
ance of the incoherent elastic peak σres = 0.384(4) µeV.
After correcting for this resolution we find the physical
variance of the inelastic peak to be σmom = 0.29(5) µeV
at 0.1 K σmom = 0.32(6) µeV at 0.3 K. With the empir-
ical relation between Nd hyperfine energy and ordered
moment (eq. 2), this translates to ±0.23(4) µB at 0.1 K,
±0.26(5) µB at 0.3 K as noted in the text.

An alternative to the empirical relation for fitting the
hyperfine excitations is calculating the excitation en-
ergy directly from a nuclear hyperfine Hamiltonian. We
tried this as well, using the hyperfine coupling constants
given in ref. [19]. The results from this calculation
were 2.17(2) µB at 0.1 K and 2.10(3) µB at 0.3 K with
σmom = 0.19(2) µB and σmom = 0.23(3) µB respectively.
This still shows a 25% reduction from the theoretical or-
dered moment, but the ordered moment is greater than
predicted by the empirical formula from ref. [16]. We
attribute this discrepancy to the fact that the hyperfine
coupling is somewhat sample dependent, and the values
in ref. [19] were derived from rare earth metals, whereas
the empirical formula in ref. [16] was derived for oxide
insulators such as we have here. Thus, because our com-
pound is more similar to those in ref. [16], we take the
values of the empirical formula as more accurate. How-
ever, the moment variance from the hyperfine model in-
cludes broadening from the two different isotopes, so we
take the moment variances from this model to be more
accurate.

VII. SPIN WAVE EXCITATIONS

We initially hoped to measure the spin wave density
of states in Nd3Sb3Mg2O14, but no signal was visible.
The neutron backscattering spectrum in ±36 µeV mode
data are in Fig. S1. We also collected fixed window
(elastic only) data cooling in 100 mK steps to ensure
thermal equilibrium conditions during data acquisition.
These data are shown in the inset of Fig. S1. Figure S1
shows the full neutron spectrum for wave vector transfer
between 1.1 Å−1 and 1.3 Å−1, which is near the (101)
Bragg peak (Q(101) = 1.041Å−1). Although the sam-
ple was clearly in the magnetic ordered phase (Fig. S1
inset), no statistically significant changes were observed
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Figure S1. Inelastic neutron spectrum of Nd3Sb3Mg2O14

from 0 µeV to 36 µeV between |Q| = 1.1 Å−1 and 1.3 Å−1. No
spin wave scattering is apparent, which is consistent with an
excitation gap exceeding the measurement bandwidth. The
elastic channel (inset) at 1.1 Å−1 clearly shows the onset of
magnetic order from the (101) magnetic Bragg peak. Error
bars represent one standard deviation.

between spectra acquired above and below TN. This is
consistent with the 38µeV gap gap in the excitation spec-
trum inferred from specific heat data.

VIII. SPECIFIC HEAT FITS

To quantify the spin wave gap size, we fitted the low
temperature heat capacity to Eq. 3 of the main text.
This equation was integrated numerically from q = 0 to√

(35kBT )2 + ∆2/c (at which point the expression inside
the integral is nearly zero) with 5000 steps, and we found
that increasing the number of steps or the upper inte-
gration bound did not significantly change the results.
Therefore we are confident that the numerical routine
accurately captures the integral’s behavior.

Because the Schottky anomaly calculation in ref. [5]
haa a less accurate estimate of hyperfine splitting, we also
recalculated and fit the nuclear Schottky anomaly. The
final fitted values were a gap of ∆ = 38±1.4µeV, a fitted
spin wave velocity of c = 46.31±0.08m/s, and a fitted or-
dered moment of 2.06±0.03µB (quoted uncertainties are
statistical only). The fitted spin wave velocity is higher
than our previous estimate of 33 m/s [5]. This is because
of a calculation error in ref. [5] so the new estimate is the
correct one. The ordered moment inferred from the nu-
clear Schottky anomaly is also different, but only because
the moment reported in [5] was

√
〈J〉(〈J〉+ 1), whereas

we quote 〈J〉.
We also fit the nuclear Schottky anomaly of Nd2Zr2O7

(shown in Fig. 4 in the main text), and we found that a
Schottky anomaly computed with the measured ordered
moment 0.8µB dramatically underestimates the observed
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low temperature upturn in heat capacity. To get the nu-
clear hyperfine specific heat to match the data, we had to
assume an ordered moment close to 2.7µB. This splitting
indicates a static dipolar Nd order in Nd2Zr2O7 far larger
than what is reported in refs. [25, 26]. Neutron diffrac-
tion probes on a shorter timescale than low temperature
specific heat, so spin fluctuations cannot account for the
discrepancy. This leaves three possibilities: (a) there is
static disorder in Nd2Zr2O7 which suppresses the ordered
moment, (b) there is a strong sample dependence to the
magnetic order such that in ref. [28] the sample is mostly
static order and in refs. [24, 26] the sample is mostly dy-
namic, and (c) the sample may not have been as cold
as indicated by thermometry in refs. [24, 26]. The hy-
pothesis of moment fragmentation supports possibility
(a), where a crystallized monopole state would have a
local magnetic ordered moment of twice the average or-
dered magnetic moment. Presumably, defects and disor-
der could also cause the reduced moment to occur, but
this remains to be explored experimentally.

A. High temperature expansion of heat capacity

Here we derive eq. 4 in the main text using a high
temperature expansion of specific heat. Given a disper-
sion of the form ε(q) =

√
c2q2 + ∆2 in three dimensions,

∆ being the energy gap, we have the relation ∆ ∝ √xi
where xi is x the intercept on the C

T vs T 2 graph.
The energy associated with bosonic spin wave excita-

tions is given by

u(T ) =
1

2π2

∫ ∞
0

ε(q)q2

eβε(q) − 1
dq (S.1)

where β = 1/(kBT ). Introducing the density of states
g(ε) = V

2π2 q
2 ∂q
∂ε = V

2c3π2 ε
√
ε2 −∆2, then u(T ) can be

rewritten as

u(T ) =
1

2π2

∫ ∞
∆

εg(ε)

eβε − 1
dε =

1

2c3π2

∫ ∞
∆

ε2
√
ε2 −∆2

eβε − 1
dε.

(S.2)
In the integral we use the substitution z = βε, to obtain
an integral in terms of z,

u(T ) =
1

2c3π2

1

β4

∫ ∞
|β∆|

z2
√
z2 − (β∆)2

ez − 1
dz. (S.3)

Let us concentrate on the functional form of the integral

f(β∆) =
∫∞
|β∆|

z2
√
z2−(β∆)2

ez−1 dz. From the structure of the
integral we infer that f(β∆) is even, and that it is non
singular at β∆ = 0. In fact f(0) = π4

15 . Hence we can
always expand f as a power series in ∆β around ∆β = 0
and drop higher order terms in a high temperature (small
β) approximation. This gives us an expression for the

energy as:

u(T ) =
1

2c3π2

n=∞∑
n=0

αn∆nT 4−n. (S.4)

From this we calculate the specific heat as,

cv
T

=
1

T

∂u

∂T
=

1

2c3π2

n=∞∑
n=0

(4− n)αn∆nT 2−n. (S.5)

cv
T

= 4α0T
2 + 3α1∆T + 2α2∆2 +O

(
1

T

)
.

In the series expansion at high T we can drop terms of
order O

(
1
T

)
. The quadratic equation can now be solved

to obtain an expression for the intercept on the T 2 axis.
Setting 4α0T

2 + 3α1∆T + 2α2∆2 = 0 we obtain T =
∆

8α0
(−3α1 ±

√
9α2

1 − 32α0α2) as the solution. Notably
we have T ∝ ∆ and hence if our x-axis is T 2 we have the
relation ∆ ∝ √xi, where xi is the x intercept.

Let us now extract the proportionality constant from
the original integral. To do this we make two approx-
imations. Firstly, we binomially expand the numerator
of the integral Eq.(S.3) as z3

(
1− (∆β)2

2z2

)
, retaining the

lowest order correction term only. Note the limits of the
integral impose ∆β

z < 1 and the next term in the series
is quartic in β which is a small number. Secondly we
extend the integration limits from

∫∞
|β∆| →

∫∞
0

. This as-
sumption neglects terms of order |β∆|3 and higher. It is
justified in hindsight as the coefficient obtained with it
matches numerical simulations quite well. We are thus
left with,

u(T ) =
1

2c3π2

1

β4

(∫ ∞
0

z3

ez − 1
dz − (β∆)2

2

∫ ∞
0

z

ez − 1
dz

)
.

u(T ) =
1

2c3π2

1

β4

(
π4

15
− π2

12
(β∆)2

)
.

Using this expression we obtain the specific heat as cv =
1

2c3π2

(
4k4Bπ

4

15 T 3 − 2k2Bπ
2

12 ∆2T
)
. This we can solve for the

intercept xi as,

∆ =

(√
8

5
πkB

)
√
xi. (S.6)

IX. MAGNETIZATION

Because the Nd3Sb3Mg2O14 zero-field ordered moment
is reduced, it is worthwhile to ask whether the moment
extracted from saturation magnetization is similarly re-
duced. Simulating the magnetization using PyCrystal-
Field [30] and the Hamiltonian derived in ref. [17], we
find that the estimated saturation magnetization is larger
than measured in experiment (data from ref. [5]) as
shown in Fig. S2.
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Figure S2. Powder-averaged magnetization of
Nd3Sb3Mg2O14 from 0 T to 9 T at 2 K. The measured
value is smaller than the calculated magnetization from the
CEF Hamiltonian (solid line), but larger than the calculated
value assuming 13% nonmagnetic impurities (dashed line).
Given the presence of magnetic impurities not accounted for
by this calculation [17], it is reasonable to expect that the
measured saturation magnetization lies somewhere between
these two values.

The calculated powder-averaged saturated moment is
larger than measured, but this is reconciled when we as-
sume 13% impurities (inferred from susceptibility in ref.
[17]). We do not know the the magnetization curve of the
impurities, so we plotted the Nd CEF result assuming
nonmagnetic impurities with a dashed line. The exper-
imental data lies between these two predictions, which
is reasonable for an impurity contribution. The differ-
ences in initial slope in magnetization are probably due
to magnetic exchange [5], which is not accounted for in
this calculation.

X. OCTUPOLAR PSEUDOSPIN COMPONENTS

The ground state doublet reported in ref. [17] is very
Ising-like, but the symmetry of the environment is so low
that there are many pathways for transverse terms to
appear—particularly if octupolar exchange is present (as

is theorized for other Nd pyrochlores). These pathways
may stabilize magnetic order in a basis which includes
octupolar order.

The most general equation for exchange between two
spins is

H =
∑
Λ,Λ′

∑
µ,µ′

Iµµ
′

ΛΛ′O
µ
ΛO

µ′

Λ′ (S.7)

where Λ is the order of the multipole (1 = dipole, 2 =
quadrupole, 3 = octupole, etc.), µ = −Λ, ...,Λ, OµΛ are
Stevens Operators, and I are the exchange constants [31].
One can simplify the expression by defining pseudospin
vectors based off the ground state eigenkets of an ion
with

τΛ =
∑
µ

〈σ′|OµΛ|σ〉 (S.8)

where |σ〉 and |σ′〉 are the ground state doublet, yield-
ing a set of τΛ which are 2 × 2 Pauli spin matrices
[18, 32, 33]. The pseudospin operators up to rank 3 for
Nd3Sb3Mg2O14, based of the CEF ground state deter-
mined in ref. [17], are

τ1 =

(
−3.469 0.479− 0.231i

0.479 + 0.231i 3.469

)
(S.9)

τ2 =

(
23.47 0.0

0.0 23.47

)
(S.10)

τ3 =

(
−89.94 −52.14− 6.99i

−52.14 + 6.99i 89.94

)
. (S.11)

The diagonal elements represent Ising components τz,
and the off-diagonal elements represent transverse com-
ponents τ±. The dipolar pseudospins are clearly Ising-
like, with the transverse components an order of magni-
tude smaller than the z components. The same holds for
the quadrupolar case. The octupolar pseudospin, how-
ever, has significant transverse and longitudinal compo-
nents, which could be a mechanism for fluctuating spins
if octupolar exchange coupling is strong.
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