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Abstract. We present a method for model checking list-based concurrent data
structures. These data structures, increasingly available in libraries such as Intel
Thread Building blocks and Java.util.concurrent (JSR), are notorious for being
error prone. This stems from the usage of sophisticated synchronization tech-
niques in their implementation for high efficiency. This efficiency comes at the
cost of increasing the number of possible thread interleavings during execution,
thus making them hard to verify. Consequently, the verification of concurrent data
structures has been of interest to the formal methods community.

Concurrent data structures are unbounded in two dimensions: the list size is un-
bounded and an unbounded number of threads access them. Thus, their model
checking requires abstraction to a model bounded in both the dimensions. In pre-
vious work, we showed how the unbounded threads can be model checked by
using the CMP (CoMPositional) method. The method abstracted the unbounded
threads by keeping one thread as is and abstracting all the other threads to a single
environment thread. Next, this abstraction was iteratively refined by the user in
order to prove correctness. However, in that work we assumed that the number
of list elements were bounded to a fixed value. In practice this fixed value was
small; model checking could only complete for small sized lists.

In this work, we overcome this limitation and model check the unbounded list as
well. Our method has the same flavor as the CMP method in the thread dimension,
but differs significantly in the list dimension. In the list dimension, our method
constructs an abstraction of the unbounded list by keeping the nodes pointed to
by the pointers in the model as is (referred to as concrete nodes), and abstract-
ing away chains of all the nodes which are not pointed to by any pointers to
abstract nodes. Since the accesses to the abstract nodes return non-deterministic
field values, the abstraction may have to be refined to constrain these values. This
is accomplished by the iterative addition of lemmas by the user. We show the
soundness of our method and establish its utility by model checking challenging
concurrent data structure examples.

1 Introduction

We present a method for model checking list-based concurrent data structures. These
data structures are highly efficient concurrent list-based implementations of popular
data structures such as sets, queues etc. and are increasingly available in libraries such
as Intel Thread Building Blocks and Java.util.concurrent. These list-based implementa-
tions utilize sophisticated synchronization techniques, such as fine-grained locking or



lock free synchronization, to achieve high efficiency. Due to the complex synchroniza-
tion used, these data structures are notorious for being highly error prone, as exemplified
by bugs in published algorithms [13]. Consequently, verification of these data structures
has been of interest to the verification community [1-4,6,20-22,24,25].

Linearizability [9] is the widely accepted correctness criterion for concurrent data
structures. Intuitively, Linearizability implies that the execution of every access method
of the concurrent data structure appears to occur atomically at some point — the [lin-
earization point — between the invocation and the response of the method.

In previous work [18], we showed how to model check Linearizability for concur-
rent data structures. Concurrent list-based data structures are unbounded in two dimen-
sions — they have an unbounded number of list nodes and an unbounded number of
threads accessing the list items. In our work, we verified these data structures for an un-
bounded number of threads. This was accomplished by using the CMP (CoMPositional)
method [5]. The CMP method is used to verify symmetric parameterized systems of the
form P(N), with N identical threads 1..N. The properties verified are candidate in-
variants of the form Vi € [1..N].®(i), where $(7) is a propositional logic formula on
the variables of thread ¢ and shared variables.

The CMP method exploits symmetry and locality; i.e., it assumes that the violation
occurs at a particular thread, say thread 1. Consequently, the CMP method constructs
an abstract model which consists of one thread from the original system (say thread
1 since the system is symmetric) and an environment thread (named Other) that over-
approximates the remaining threads. Then, if the property ¢(1) holds on thread 1 in the
abstract model, Vi € [1..N].®(7) holds for P(N) by symmetry. The verification of the
abstract model is done by using a model checker. The refinement of the abstract model is
done in a loop, referred to as the CMP loop. In the loop, if the abstract model is falsified
by the model checker, the model is refined by the user by supplying non-interference
lemmas, in order to constrain the other thread [18].

The key advantage of using the CMP method is that the user-added lemmas also get
verified. Thus, the CMP method is sound in the sense that if the CMP loop converges
and the property is verified, all user-added lemmas along with the property under check
hold. Another advantage of the CMP method is that it uses a model checker as a proof
assistant. Thus, the added lemmas together with the property under check need not add
up to be inductive, unlike most theorem proving based approaches [19]. These features
in practice have been instrumental in making the CMP method useful in verifying com-
plex cache coherence protocols [15, 19].

Since the CMP method does not handle unbounded list size, in our initial work [18],
we had assumed the list size to be bounded. Further, in practice, we were only able to
scale to a small number of list nodes. This, we believe was primarily due to the large
number of interleavings in the execution of concurrent data structures and is consis-
tent with the limited success of other model checking based efforts for concurrent data
structures [4,22,24,25]. The limited scalability in bounding the number of list nodes
motivated us to study possible extensions of the CMP method approach in order to
model check Linearizability for data structures with an unbounded list size as well.



1.1 Challenges in extending the CMP method to the list dimension

The list dimension has some key differences from the thread dimension which make the
extension of the CMP method to the list dimension challenging. First, unlike the thread
dimension, the list dimension lacks symmetry: the heap elements are connected asym-
metrically depending on the heap shape. Second, in the list dimension, while checking
the correctness can be localized to the few nodes that are being updated (additions and
deletions), these localized nodes will change as the list is traversed. This dynamic na-
ture of the nodes of interest precludes consideration of one or a small set of fixed nodes
for the abstract model.

1.2 Extending the CMP Method to list dimension

In this work we extend the CMP method to the list dimension and show how abstraction
and refinement can be done in this dimension.

Abstraction Intuition: The abstraction in the list dimension has been used earlier and
is straightforward. It proceeds by retaining the nodes pointed to by the pointers in the
program as is. These retained nodes are referred to as concrete nodes. Next, all nodes
which are not pointed to by any pointers are abstracted. This is done by replacing all
chains of nodes, such that no node in the chain is pointed to by any pointer, by abstract
nodes. Fig 1a shows the intuition behind replacing a chain of concrete nodes by an
abstract node. In the figure, nodes 2 and 3 are replaced by the abstract node (shown by
a rectangle) on abstraction.

Observe that as the program state evolves, the pointers move. This moves the po-
sition of the concrete nodes as well. This movement of concrete nodes happens when
the abstract nodes are accessed by pointers during transitions. Intuitively, access to an
abstract node can be understood as a non-deterministic access to some concrete node
which is a part of the chain of concrete nodes represented by the abstract node.

As an example in Fig 1b, when pointer p3 accesses the abstract node, the abstract
node is split into a concrete node with an abstract node on each side. The concrete node
is assigned a non-deterministic value v. The pointer p3 then points to this newly created
concrete node. Since this newly created node v has a non-deterministic value, it may
lead to a violation of the property under check. Thus, a refinement step may be required
to constrain the value taken by v.

Refinement Intuition: Refinement is done by constraining the value v. This is done
by specifying list lemmas (invariants on the heap) which v should not violate. As an
example, a list lemma could state that the list elements are ordered (also referred to as
ordering invariant). Then, the splitting may be done by assuming the invariant that the
list nodes are ordered; and thus v € (1,4).

1.3 Framework description:

Fig 2 shows the extended CMP method loop with the extensions circled. As shown in
the figure, the loop proceeds by first abstracting the threads as in the prior CMP method
approach. Next, the unbounded list is abstracted. 3 On abstraction, in case the model

3In general, the abstractions are commutative. But, we present them in the order of the thread
abstraction first and then the list abstraction.
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(a) Abstraction: nodes 2 and 3 are replaced by an abstract node
(represented by a rectangle)
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(b) Splitting: abstract node is split into multiple nodes.

Fig. 1: Abstract node creation and splitting: the concrete nodes are shown as circles with indicated
values and the abstract nodes are represented as rectangles.

is falsified by the model checker, the user inspects the counter-example. If the counter-
example is a valid counter-example, a real bug has been found and the loop terminates.
On the other hand, if the counter-example is spurious, the user refines the model in
either the thread or list dimension.

Concurrent Data
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Fig. 2: Extended CMP Method: the circled steps indicate the key extensions in this work

1.4 Key Contributions:

Our extension preserves the advantages of the CMP method: in case the extended CMP
loop converges, both, the property under check and the added invariants to constrain the
list are proven to be correct. Thus the extended CMP loop is sound. Further, as in the
CMP method, the added invariants need not add up to be inductive.



We make the following contributions in this work:

— We extend the CMP method to the list dimension and provide a syntactic abstrac-
tion of the unbounded list (Section 3) and mechanisms for refinement in the list
dimension (Section 4).

— We show the soundness of the extended CMP method and show how the added list
lemmas are also proven correct if the extended loop converges. (Section 4).

— We establish the utility of our method by model checking Linearizability of the
Fine-grained [8] and Optimistic [8] data structures. (Section 5)

Key Limitations: (1) The user has to manually come up with lemmas to refine the
model. However due to the small length of concurrent data structure implementations
(most implementations fit in one page [8]), this has not been a problem in practice. (2)
The abstraction used for verifying certain key properties of the Optimistic algorithm did
not scale well. This is because of a large number of interleavings.

1.5 Related Work

Concurrent data structures have been proposed as a promising approach to harness the
power of multi-core processors [8]. Given their importance and the challenges asso-
ciated with proving them right, verification of concurrent data structures is garnering
much recent attention [1-4,6,20-22,24,25].

In [21], verification of concurrent data structures was done using a mechanical
proof assistant and the interference between concurrent threads was specified using rely
and guarantee conditions. These approaches allow both arbitrary number of accessing
threads and elements but they are manual effort intensive.

Among model checking approaches, Vechev et al. [22] describe their experience
with verifying Linearizability using the SPIN model checker. Similarly, the work by
Zhang et al. [24,25] and Liu et al. [11] also performs model checking to verify concur-
rent data structures. Both these approaches use a refinement based proof approach and
scale to not more than a small number of threads and list nodes. A different approach
is taken by Alur et al. [4]: they treat a list as a string and the thread as an automaton
and then derive conditions on the automaton to prove decidability of Linearizability.
The key focus of their work is on decidability instead of scalability; while they handle
unbounded list size, they do not scale to more than 2-3 threads. Noll et al. [14] handle
unbounded lists and unbounded number of threads. Their list abstraction is similar to
ours. In the thread dimension, instead of fully throwing away threads 2..N, they do a
counter abstraction which results in increased state. Further, their refinement approach
in both list and thread dimensions results in more added state, thus limiting scalability
(they only apply their method to a small example).

Among analysis based approaches for verifying Linearizability of concurrent data
structures, the RGSep based approach [20] works by combining separation logic with
rely-guarantee reasoning into a logic called RGSep. Their approach is automatic for a
subset of RGSep. While automatic, the designer still needs to specify concurrent actions
which model the interference, just like in rely-guarantee reasoning, for proving asser-
tions. Further, the designer also has to have an understanding of RGSep. In contrast,



our method requires the user to specify lemmas, which are standard Boolean formulas.
Further, these lemmas are checked for correctness as well: any false lemmas will be
weeded out. Next, shape analysis based approaches, like based on the tool TVLA [1]
and thread modular analysis [7], are able to verify unbounded concurrent data struc-
tures. The primary focus of these approaches is to lift the heap abstractions for single
threaded programs to concurrent programs. In [23], multiple threads in the same lo-
cal state are abstracted into one abstract configuration and mechanisms for refinement
through addition of more predicates are provided. In contrast to these approaches, our
method focusses on mechanisms for efficient abstraction and refinement without the
addition of extra state, to enable efficient model checking. Further, the user-supplied
lemmas for refinement are also checked for correctness.

Finally, while the CMP (CoMPositional) method [5] is a highly successful param-
eterized verification technique, numerous work has been done in the area of param-
eterized verification, for e.g. [10, 16, 17]. While some of these classical methods are
potentially applicable to concurrent data structures as well, given the success of the
CMP method in verifying industrial cache coherence protocols [15], we believe that
our method, which has a similar flavor to the CMP method, provides a scalable and
effective alternative approach.

2 Modelling Concurrent Data Structures

2.1 Preliminaries

We model a concurrent list-based data structure as a program P (M, N) with M heap
nodes and N identical threads with ids 1../NV, where M and IV are arbitrary but fixed.
The set of threads is denoted by T hreads and the set of heap nodes is denoted by List.

Each node n of the heap consists of the fields key, next, lock and {l1,ls,...}, a
finite set of local fields with values from a finite domain. The key field is defined on
a generic data domain D which has comparison (<) and equality (=) operations. The
next field is used to indicate the adjacent node. If n; = n;.next, we say that n; is a
successor of n; (or next to n;), and that n; is the predecessor of n;. Finally, the lock
field takes values from 0.. N, where O represents unlocked and value 7 represents locked
by thread i.

The heap nodes are pointed to by global pointers and by threads. Each thread
consists of a finite number of local state variables (with finite domain) for program
execution and a finite number of pointer variables which access the heap nodes. We
assume that the local variables of all threads (both local state and pointer variables) are
stored in arrays ranging over thread ids [1..N]. Thus, a local variable v of thread i is
written as v[¢]. Similarly, p[i] represents a local pointer of thread i.

Verification of concurrent data structures is done by checking for refinement against
a specification set [21]. The specification set, denoted by S, is a sequential specification
of the set implemented by the concurrent data structure implementation. The set S is
essentially a set of key values from the domain D.

Transitions: Following the approach of [4], we model each statement of thread ¢ as
a transition of the form (I;, G, Act, Ins, l}), where [; and I} are initial and final states



of thread i for the transition, G is the guard, Act is an action on the heap and Ins is the
instrumented action on the set S. The guards G are Boolean expressions constructed on
the global pointers, thread local state variables and their values, and thread local pointer
variables.

The thread actions are defined as follows:

Heap Traversal: p,[i] := pp[i], pali] := ppli]-next,
Heap shape update: p,[i].next := py[i], and
Heap node update: p[i]. field = val, where val is a value of appropriate type. 4

Finally, the instrumented action Ins can either be (1) a nél action or, (2) an addition
of e € D to S, denoted by seqAdd(e) or, (3) a removal of an element e € D from S,
denoted by seqRemove(e) or, (4) a check for containment of an element e € D in .S,
denoted by seqContains(e).

Definitions: We define predicate R, (p) to indicate that the node pointed to by p

o~

is reachable from that pointed to by pl. R, refers to the set of all the nodes reachable
from p. This definition extends in an obvious way to a set of pointers. Next, we call
a node a referred node if it is pointed to by a thread pointer or a global pointer. We
write Ref;(n) to indicate that some pointer in thread ¢ points to node n. Further, we
use Ref(n) to indicate that the node n is pointed to by some pointer (thread local or
global pointer) in the system. Finally, we define isMulInt(n;,n;) to indicate that no
node from the list segment n; to n; is referred to by any thread or global pointer in the
program and further, the predecessor of n; and successor of n; are both referred nodes.
Such a list segment is also referred to as a maximally uninterrupted list segment.

Property: In this paper we focus on verifying invariants specified on the above pro-
gram. These invariants are of the form Vi : ¢(i), where ¢(¢) is an invariant involving
the local variables of thread ¢ and global variables quantified on the heap.

2.2 Running Example

We present the ideas in this paper through a Fine-grained list-based set ( [8]) implemen-
tation. This implementation uses a linked list to implement a standard set. The methods
in the implementation are the standard Add, Remove and Contains methods. The linked
list consists of nodes with fields: 1) a key field holding values as integers, 2) a next
pointer for accessing the next node in the list, and 3) a lock field representing whether
that node is currently locked. In addition, there are two special (sentinel) nodes, the
node Head and the node Tail, that can neither be added nor be removed. These nodes
are pointed to by global pointers H and T respectively.

The concurrent implementation consists of potentially an unbounded number of
threads. These threads are assumed to be symmetric. > Instead of locking the entire list,
each method of the Fine-grained data structure traverses the list by using hand-in-hand
locking. Fig 3a shows the implementation of the Remove function of the Fine-grained
data structure. The Remove method uses hand-in-hand locking during traversal: po|i]

# This includes synchronization mechanisms; i.e., updates to the lock field.
5 While the threads are symmetric, they can execute different methods (such as Add or Remove
or Contains) by non-deterministically calling any of these methods.



is unlocked (line 6), pointed to successor p;[i] (line 7), p;[¢] is advanced (line 8) and
locked again (line 9).

The concurrent list-based implementation implements a sequential set specification,

denoted by .S. The methods of the specification set are denoted by seqAdd, seqRemove
and seqContains. These methods have standard sequential set semantics.

Murphi Encoding: We show the encoding of the Remove method in the Murphi
language for model checking. Our choice of Murphi was based on the powerful model
checker which comes along with Murphi, and the legacy implementation of both, our
abstraction tool (Abster [19]) and Fine-grained and Optimistic data structures.

Murphi uses a standard guard-action based syntax: the applications are written as a
collection of rules of the form p = a, where p is the guard and a is the action. Fig 3b
shows the guard-action based encoding of a few statements of the method. ® Observe
that the variable pc|[i] represents the program counter and is used to enforce a sequential
execution of the rules. This is done in order to simulate the sequential execution of
statements within a thread, since we assume a sequentially consistent memory model.
This guard-action based encoding is useful in presenting the ideas in this paper.

Remove (key)
1: poli] := H,;
2: poli].lock();
3: p1[i] := poli].next; : :
4: pfi].lock(); Vi € Threads : (pc[i] = 1) — {
5: while (p1[i].key < key) poli] == H;
6: poli].unlock(); peli] ++; }
7. poli] = i) | |
8: pu[i] == poli].next; Vi € Threaalf (pcli] = 3) — {
9: pit].lock(); b1 [Z] := poli].newt;
10: if p1[i].key = key then peli ++; }
H: Pz [Z] = h [z].nea:'t; Vi € Threads : (pc[i]| = 12) — {
t polil.neat := pafil; poli]-next := palil;
[*SeqRemove(key)] peli] + 4+ ;
e e [*SeqRemove(key)] }
15: result := false;
[*SeqRemove(key)] (b) Murphi based guard-action pairs for
16: poli].unlock(); statements with line numbers 1,3 and 12

17: pi[i].unlock();

(a) Pseudo-code for linked list-based Fine-grained
set algorithm. The linearization points are marked
with a *.

Fig. 3: Remove function and Murphi encoding.

® The complete guard-action based encoding of the Remove method is provided in Ap-
pendix A.1.



Example State: Fig 4 shows an example of a state in the execution of the list-based
implementation. In this state, the linked list is accessed by 3 threads, with ids 1, 2
and 3. Further, the value of the specification set .S is also shown in the figure. Ob-
serve that ConcSet and S match, where ConcSet is the set of key values of all the
nodes reachable from H. Next, observe that Ref(1) is false but Ref(0) is true. Fur-
ther, isMulnt(1,1), isMulnt(9,9) are true and isMulInt(n;, n;) is false for all other
pairs of n; and n, as all the other nodes are referred nodes.

Pol1]  p4[1] P11 pol3] T

$:{0,1,3,5,6,7,9}

Fig. 4: Heap accessed by pointers of threads 1,2 and 3. p;[i] denotes the ** pointer of thread 7.

Property under verification Linearizability [9] is a key property of interest in prov-
ing the correctness of concurrent data structures. Intuitively, Linearizability implies that
the execution of every access method for the concurrent data structure appears to oc-
cur at some point between the invocation and the response of the method. This point is
referred to as the linearization point.

In this work, we verify Linearizability by a refinement based approach, as described
in [21]. The refinement is proven against the specification set S. This is done by match-
ing the results of the call to .S against the return value of the implementation method.
Calls to the S are inserted at the linearization point.

As an example, for the Remove method shown in Fig 3a, the linearization point
for Remove in case the call is successful is marked with [*SegRemove(key)] on Line 3.
Similarly, [*SeqRemove(key) ] on Line 8 denotes the linearization point in the failing
case. If both, the concurrent methods and the embedded specification methods return the
same value, the concurrent data structure is Linearizable. Formally, for each Method &
{Add, Remove, Contains}, we check that Method(key) < SeqMethod(key).

Another key property of interest checks if the list nodes refine the specification set
S. This invariant is referred to as the refinement map. The refinement map states that .S
matches with the set of values of nodes reachable from the head node, the C'oncSet.
Formally, the refinement map is then stated as: Vv.v € S < v € ConcSet, where
ConcSet = {Uy, ez, : n-key}.

Finally, another key property is the ordering invariant. This states that if n; is the
successor of ng, then the key of n; is greater than the key of n.

3 Abstraction

In this section we show how the unbounded threads and list nodes can be abstracted to
obtain a finite model.



3.1 Abstracting Unbounded threads

We abstract the unbounded number of threads by using data type reduction [12]. This
abstraction keeps thread 1 unchanged and creates an environment thread Other repre-
senting threads [2..N]. The abstraction operation involves throwing away all the state
variables of threads [2..N] and over-approximating expressions in the guards involving
them. For instance pc[i] = 12 for i € [2..N] is thrown away and replaced by true or
false (depending on which replacement leads to an over-abstraction). Next, the action
in the transitions of thread other may refer to the heap using local pointers. Since the
thread other is stateless, the local pointers do not have any stored value. Then, the local
pointer values are non-deterministically chosen to complete the actions. This abstrac-
tion is completely syntactic in nature [18].

Example Consider for example, the transition corresponding to line 12 in Fig 3a, the
Murphi rule for which is shown in Fig 3b. In the constructed abstraction, the transition
for thread 1 is obtained by substituting i with 1 in the rule . Next, for the other thread,
the transition is obtained by first over-abstracting the guard with ¢rue and second, by
replacing po[i] and ps [¢] by non-deterministic pointers Npy and Np;. The obtained rule
is as follows:

VNpo, Npy € List : (true) — { Npg.next := Npa; } .

3.2 Abstracting Unbounded List

Abstracting the state: The list abstraction consists of two components: first, the shape
of the list, and second, the values (key values in particular) of the nodes. These are
discussed below:

Shape Abstraction Since the unbounded number of threads have been abstracted to
only a single thread, certain nodes in the model may not be reachable from the pointer
variables of thread 1 or the global pointers. These nodes are discarded and replaced by
a representative node nd. 7 The shape abstraction of the remaining heap proceeds by
replacing all maximally uninterrupted chains of nodes by abstract nodes.

Value Abstraction: In order to prove the refinement map, the correspondence of
ConcSet and S must be checked. This requires defining key values for the abstract
node also. This is done by replacing D with D%, where D"* is an interval set induced
on D and has a comparison operator. In D (a,b) < (c,d), if b < cin D.

Specification set abstraction: Correspondingly, the specification set .S is also ab-
stracted to S?** with values from D%, The sequential methods are also abstracted:
as an example, seqContains is abstracted to seqContains®*. seqContains®(e)
is specified for e being a singleton set only. It returns true if e € S and false if
Vinterval € S5 : e ¢ interval. Otherwise, it has a non-deterministic behavior. The
methods of S are straightforward and are provided in Appendix A.4.

Example: Fig 5 shows the state obtained after doing the list abstraction followed by
thread abstraction of Fig 4. The node corresponding to node 4 is thrown away. Next,

" Nodes which become a part of nd can, in practice, never become reachable from any thread
pointer again. This is true for the list-based concurrent set data structures we have seen in [8]
and is discussed in the Appendix A.2.
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§%:{0,(0,3),3,5,6,(6, )}

Fig. 5: Abstracting unbounded nodes: maximally uninterrupted nodes replaced by abstract nodes
(rectangles).

the node 1 and nodes 7-9 are replaced by abstract nodes. Finally, the key values as well
as the values of the abstracted specification set S%** are replaced by values from the
interval set induced on [0, o).

Abstracting the transitions: A key requirement for abstracting the transitions is
that they over-abstract the original transitions and they transition from one valid abstract
state to another. The abstracted transitions proceed in 3 phases: (1) a setup phase where
the abstract nodes are split if required, (2) a transition phase, where the transition from
the original program is executed, and (3) a cleanup phase, where after the transition the
newly obtained state is lifted to a valid abstract state. We explain these in detail below.

Setup phase: interaction with abstract nodes Since the list abstraction is intuitively
designed to have threads accessing only concrete nodes, any access to an abstract node
is resolved by non-deterministically splitting the abstract node into a chain of concrete
and abstract nodes. The accessing thread then accesses the created concrete node.

Accesses to an abstract node happen in two cases:

(a) Access to next field of a node with an abstract node as successor. This, is re-
solved by, intuitively, selecting the leftmost node in the chain of concrete nodes rep-
resented by the abstract node. This is implemented by the GETNEXT function shown
in Fig 7a. The GETNEXT function returns the next value by splitting the next abstract
node (pointed by p.next) non-deterministically in the following two cases: (1) it splits
the abstract node into a concrete node followed by an abstract node, and (2) it assumes
that the abstract node represents exactly one concrete node and so replaces it by a con-
crete node. This is accomplished by calling the SPLIT method. The SPLIT method also
assigns non-deterministic field values to the newly created nodes by calling the AS-
SIGNKEYS function. Fig 6 shows how this works for our running example.

H Pol1] pa[1] pa[1] T

COH{E PO~

$%:{0,(0,3),3,5,(5,7),7,(7, =)}

Fig. 6: List traversal by thread 1 by the operation: p2[1] := getNext(pz[1]). A new concrete
node with key 7 and an abstract node with key (7, co) are created. The node with key 6 becomes
an abstract node.

(b) Thread other accesses an abstract node: In this case the abstract node is split by
calling the GETNODE function shown in Fig 7b. This function splits the abstract node



GETNEXT(p) GETNODE(p;[o])

if p.next is concrete if p;[o] is concrete
return p.next; return p; [o];
else else
n,n1 = new nodes; n,ni, N2, N3 := new nodes;
Switch(non-det value v € {1,2}) Switch(non-det value v € {1,2,3,4})
Case 1: Case 1:
SPLIT (p.next, (n,n1)); SPLIT (p;i[o], (n1,n,n2));
Case 2: return n;
SPLIT (p.next, (n)); Case 2:
return n; SPLIT (p;i[o], (n1,n));
END return n;
(a) Case 3:
SPLIT (p’i [O]’ (nv nQ));
return 7;
Case 4:
SPLIT (absNode,n_list) SPLIT (pi[o], (n));
pred, succ := predecessor, successor return n;
of absNode; END
replace pred — absNode (b)
— succ by
pred — nlisto — ... ASSIGNKEYS (node_list)
n_listy — succ; for each node n € node_list
Gabs .— gabs _ absNode.key; assign non-det value to n.key;
ASSIGNKEYS (n_list); S = S 1 key;
END END
© ()

Fig.7: The GETNEXT and GETNODE methods.

non-deterministically in one of four ways: (1) it assumes that the concrete node to be
returned on splitting is the leftmost node and so splits into a concrete node followed
by an abstract node, (2) it assumes that the concrete node is the rightmost node and
so splits into an abstract node followed by the concrete node, (3) it assumes that the
concrete node is some central node and so splits into an abstract node followed by the
concrete node followed by another abstract node, and (4) it assumes that abstract node
represents exactly one concrete node and so replaces it by the concrete node. Non-
deterministic values are assigned to the newly created nodes by the SPLIT function by
calling ASSIGNKEYS. Fig 8 shows how this is done for our running example.

Transition phase Since all the pointers now refer to concrete nodes, and further, the
reads of the next nodes of any pointers also are concrete nodes, the transitions can be
executed as though they were executing on the original program with no list abstraction.
This is essential in enabling syntactic construction of the list abstraction, as discussed
in Section 4.2.

Cleanup phase: canonicalizing to a valid abstract state Once the transition executes
as described above, the new state may not be a valid abstract state; i.e., there may be
nodes which are not pointed to by any thread pointer which need to be replaced by
abstract nodes. Further, there may be nodes which are not reachable from any pointer
in the system. The mapping of the new state to a valid abstract state is accomplished by
calling the CANONICALIZE method at the end of the transition, as shown in Fig 9.
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Fig. 8: Splitting of abstract node when a pointer of the other thread non-deterministically accesses
it. There are four possibilities: the concrete node (1) is the rightmost node (2) is the leftmost node
(3) is some node in middle or (4) is the only node in the chain of nodes represented by the abstract
node.

Example: As an example, consider the transition corresponding to line 3 in Fig 3a,
the corresponding Murphi rule for which is shown in Fig 3b (rule with pc[i] = 3). For
that transition, on doing the list abstraction to the rule for thread 1 (which is obtained
by thread abstraction), the following rule is obtained:

(pc[l] = 3) — { p1[1] := getNext(po[1]); pe[l] + +;

CANONICALIZE (); }

For the other thread, the above rule becomes a no-op since no update to the heap is
involved.

Next, for the rule corresponding to pc[i] = 12, the rule obtained by doing a list
abstraction of the rule for thread other (obtained after thread abstraction) is:

VNpo, Npy € List : (true) — { getNode(Npy).next := get Node(Nps);

CANONICALIZE (); } .

CANONICALIZE:
‘P : Set of all thread local & global point-
ers

Throw away nodes n ¢ Rop: ISMUINT (n4,n;):
for each n;, nj € Rp pn; := predecessor of n;;
if ISMUINT (n4, nj)) sn; := successor of n;;
JOIN (ni, nj); if (Ref(pni)&Ref(snj))
JOIN (n;, nj): noc?e n = pn;;
pni := predecessor of n;; while(n.next! = sn;) do
smn; := successor of n;; n= n.newt;
pni.next == nfj; if(Ref(n)) then
nf‘j.next = sny; return false;
for eachnode ninn; — ... — n; return true;
Sabs — Sabs _ 'I’lk’@y else
ASSIGNKEYS (n{}); return false;

Fig. 9: CANONICALIZE Method

Syntactic construction of the abstraction: The thread and list abstractions can be
constructed syntactically. The syntactic construction of the thread abstraction is dis-
cussed in our previous work [18]. The syntactic construction of the list abstraction can



be done in the following 3 steps: (1) replace accesses to all nodes by pointer Np of
the other thread with GETNODE (Np). (2) Next, replace all reads to the next field of
any node, say of the form p.next, with GETNEXT (p). (3) Finally, at the end of each
transition, insert a call to CANONICALIZE () function.

While the syntactic construction of the thread abstraction has been implemented in
a tool called Abster [19], we have not extended the tool for list-abstraction. This is part
of our ongoing work.

4 Refining the abstraction: extended CMP method

The above defined abstraction may be too coarse to prove the property. This may be
due to two reasons: (1) the environment thread, other, may non-deterministically exe-
cute transitions which spuriously violate the property, and (2) the method ASSIGNKEYS
called by SPLIT and JOIN may non-deterministically assign key values to the newly cre-
ated nodes which violate the property. Thus, to prove the property, the above abstraction
may have to be refined either in the thread dimension (refining other) or in the list di-
mension (by constraining values assigned by ASSIGNKEYS).

The abstraction and refinement is then done in a loop which is shown in Fig 2. The
loop proceeds by iteratively model checking the system model. If the system model at
any stage in the refinement loop passes the model checker, the property is proven. If, on
the other hand, there is a counterexample for the system model, the user must examine
the counterexample. In case the counterexample is valid, a bug has been found. On the
other hand, if the counterexample is invalid, the user needs to distinguish between two
possible cases. 1) The spurious counterexample is caused due to a spurious transition
non-deterministically executed by the other thread. 2) The spurious counterexample is
due to a new node introduced by the ASSIGNKEYS method. We discuss both these cases
in detail below.

4.1 Refinement in thread dimension

Since the environment thread other non-deterministically selects nodes and executes
transitions, it may exhibit spurious behaviors. In order to constrain the other thread, the
user adds candidate lemmas which are conjoined with the guards of the rules. Formally,
suppose that the candidate lemma L is used. Now consider a rule r of the program P
defined as: p = a, where p is the guard and a is an action. Then, refining P with L
involves strengthening the guard by L to obtain the strengthened rule p A L = a, and
then re-abstracting the new program with the new rule obtained. Observe that in this
refinement approach, no extra state gets added to the abstract model. This is important
for efficiency in model checking.

Example: Consider our example for rule with pc = 12, for which the abstracted
rule for thread other is discussed in Section 3.2.

Since that rule is highly unconstrained and may lead to a spurious counterexample,
the user may add the lemma that ps|¢] is the successor of p;[¢] which is the successor of
poli]. This lemma can be expressed as po[i].next = p1[i] & p1[i].next = ps[i]. Thus,
the strengthened rule is now:



(pcli] = 12 & poli].next = p1[i] & p1[i].next = ps[i]) — { poli].next := poi];
peli] ++; }

Re-abstracting this strengthened rule leads to a more constrained abstract rule for
the other thread.

VNpo, Np1, Nps € Nodes : (true & Npg.next = Npy & Npy.next = Npy) —
{ getNode(Npg).next := get Node(Nps);
CANONICALIZE (); }

4.2 Refinement in list dimension

In order to prevent property violations due to non-deterministic values assigned by AS-
SIGNKEYS method, the user strengthens the model by adding list lemmas (i.e., invari-
ants on list variables). These lemmas are then used to constrain the values assigned to
the newly created node.

This list lemma based strengthening is implemented in the GETNODE and GET-
NEXT functions by modifying the ASSIGNKEYS function to ASSIGNKEYS’, as shown
in Fig 10. The ASSIGNKEYS’ method checks the added list invariants before assign-
ing the key values and exits the while loop when such values are found. Observe that
refinement in the list dimension also does not add extra state to the abstract model.
ASSIGNKEYS’ (node_list)

while(true)
for (node n € node_list)
assign non-det value to n.key and update .S
if (list lemmas satisfied)
break;
END

Fig. 10: The ASSIGNKEYS’ method

Example: As an example, the keys of the nodes are assumed to be sorted (ordering
invariant). Thus, in case the new node is assigned a value such that the ordering invariant
is violated, it will lead to a violation of properties like Linearizability as well. The user
then adds the ordering lemma during the refinement process.

We show how the strengthening in the list dimension with the ordering lemma af-
fects the following operations: (1) list traversal by thread 1 through call to GETNEXT
and (2) list updates by thread other by call to GETNODE.

Fig 6 shows how after list traversal (p2[1] := pa[1].next) from the original state
shown in Fig 5, the key value of the newly created nodes respect the ordering lemma.

Next, Fig 8 shows that when the other thread accesses an abstract node, the node is
split non-deterministically in one of four ways. Observe that after splitting, the values
to the newly created nodes are assigned such that the ordering lemma holds.

Proof of Correctness: The correctness of the refinement in the list dimension
can be established by the following theorem, the proof for which is provided in Ap-
pendix A.3.8

8 For the proof of correctness of the refinement in the thread dimension, we refer the interested
reader to [19].



Theorem. Let P be the original program, let P** be the abstracted program and let
Pg“bS be the program obtained by strengthening the list with list invariants g1, g2, ...
Then, if the strengthened program Pg“b“' satisfies ¢ N\ g, where g is g1&g2&g3 ... and
¢ is any invariant, the original program P also satisfies ¢ N\ g.

Note that the above theorem implies that if P;bs satisfies ¢ A g, the added list
lemmas, g, hold for P as well. This shows the soundness of our extension in the list
dimension.

S Experiments

We verified properties of the Fine-grained and Optimistic algorithms presented in [8]
using our method. The Optimistic algorithm differs from the Fine-grained algorithm in
the sense that it reduces contention by traversing the list without locking.

We modeled the two concurrent data structures and their access methods in the Mur-
phi language. The abstraction was implemented by hand. This step is fully automatable
but the abstraction tool we used in our earlier work [18] does not yet handle lists (this
extension is part of our ongoing work). The strengthening was carried out manually as
well.

Verifying Linearizability As discussed in Section 2.2, we verify Linearizability by
a refinement based approach.

Added Lemmas: The list lemmas which had to be added to verify Linearizability
were: (1) the ordering lemma, which states that the ordering invariant holds, and (2) the
refinement lemma °, which states that the refinement map holds.

Next, in order to refine the thread dimension, the following (classes of) thread lem-
mas were added. (1) Lemmas specifying relationships between thread pointers while
the thread makes updates. For example, for line 12 of the Remove method, a lemma
stating that the node pointed to by pj [¢] is next to that pointed to by po[¢] was added.
And (2), synchronization lemmas for stating that certain updates be made only when
the node pointed to by the pointer is locked by that thread. As an example, in lines 11
and 12 of Remove method, the pointers po[i], p1[i] and p3[i] should have the nodes they
point to locked. In all, we had to add 5 thread lemmas for Fine-grained algorithm and
6 for the Optimistic algorithm.

Runtime: The model checking of the Fine-grained algorithm took about 0.97 hours
to finish, with 463385 states explored and 344365137 rules fired. The model checking
of the Optimistic algorithm on the other hand took 24 hours with 6851860 states and
7591017821 rules. ©

The increased model checking time is due to the large number of fired rules and state
space explored. This is due to the large number of interleavings due to fine-grained syn-
chronization and is consistent with similar scalability challenges faced by other model
checking efforts in this domain [4,22,24,25].

° The refinement lemma is not explicitly added to ASSIGNKEYS’; it is implicitly a part of SPLIT
and JOIN. This special treatment is given to it because, strictly speaking, it is a lemma across
both, the list and the specification set .S.

19 We did some manual optimizations for the Optimistic algorithm to reduce the maximum num-
ber of list nodes in the abstraction, in order to reduce the runtime.



Verifying Ordering Since just verifying the ordering invariant does not require
checking refinement against .S, there is no need to prove the refinement map. This sim-
plifies the proof as the pointers H and 7" can be dropped. Thus the abstraction size is
significantly reduced.

The runtime for checking ordering with above approach was about 79 secs for Fine-
grained algorithm, with 19620 explored states and 2264535 fired rules. For the Opti-
mistic algorithm, the runtime was about 35 min., with 408834 states and 143706285
rules.

While no list lemmas had to be added to verify ordering, 6 lemmas had to be added
to constrain the other thread for Fine-grained and 7 for Optimistic algorithms. Note that
most of the non-interference lemmas added for proving Linearizability got reused for
proving ordering as well.

6 Conclusion and Future Work

We have presented a powerful approach for verifying concurrent list-based data struc-
tures and have successfully applied it to verify challenging examples. The key advan-
tage of our approach is that, though it involves some manual guidance, it is largely
automatic and it scales to both unbounded number of threads and list nodes.

There are two natural directions in which our work can be extended. Firstly, we
can minimize the number of user supplied lemmas by automatically discovering useful
lemmas similar to the approach we take in [18]. Secondly, the model checking time for
verifying Linearizability can be reduced by designing more efficient abstractions. These
abstractions can be used as a part of our overall abstraction-refinement based extended
CMP method approach. We plan to take this up next.

In conclusion, our approach opens up a new way for verifying list-based concurrent
data structures, which thus far have been handled mainly by separation logic. The pre-
liminary experimental results presented in this paper clearly establish our approach as
an alternative model checking based method to verify such data structures.
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A Appendix

A.1 Murphi Encoding of the complete Remove method

The Murphi encoding of the complete Remove method is shown in Fig 11.

Vi € Threads : (pci] = 1) — {
poli] := H;
peli] + 45 }

Vi € Threads : (pcli] = 2) — {
poli].lock();
pcli] ++; }

Vi € Threads : (pc[i] = 3) — {
p1[i] := poli]-next;
peli] ++; }

Vi € Threads : (pcli] = 4) — {
p1[i].lock();
pefi] ++; }

Vi € Threads : (pc[i] = 5) — {
if (p1i]-key < Key);
peli + +;
else pcli] = 10;
peli] + 45}

Vi € Threads : (pc[i]| = 6) — {
poli].unlock();
pcli] ++; }

Vi € Threads : (pc[i]| = 7) — {
poli] = pa[i;
peli] + 45}

Vi € Threads : (pc[i]| = 8) — {
p1[i] := poli].next;
pelil ++; }

Fig. 11: Murphi model for method Remove for thread : each rule corresponds to a line in the

Remove method shown in Fig 3a.

A.2 Nodes in nd

Nodes in nd are those nodes which have been allocated but have become unreachable
from any node in the system. In this section we explain why nodes in nd can never

Vi € Threads : (pci] = 9) — {
p1[i].lock();
peli] :=5; }

Vi € Threads : (pcfi] = 10) — {
if (p1[i].key = Key)
then pcli] + +;
else pcfi] = 15; }

Vi € Threads : (pc[i] = 11) — {
p2 [i] =Dp1 [i].next; pc[i] ++; }

Vi € Threads : (pcfi] = 12) — {
poli].next := pail; peli] + +; }

Vi € Threads : (pcfi] = 13) — {
result[i] := true;
peli] := peli] + 3; }

Vi € Threads : (pcfi] = 14) — {
[else] pcfi] + +; }

Vi € Threads : (pc[i] = 15) — {
resultli] := false; pc[i] + +; }

Vi € Threads : (pcfi] = 16) — {
po[i].unlock(); peli] + +; }

Vi € Threads : (pcli] = 17) — {
p1[i].unlock(); }



become reachable in the system again and thus affect the abstraction state space. Not
that this condition gets automatically verified in the model checking because of the
relationship lemma, discussed in Section 5.

We informally explain the reasoning for this as applied to the Remove method of the
Fine-grained algorithm. For nd to become reachable again, there must be a node n, such
that n is reachable in the system and n.next is assigned to nd. Since the relationship
lemma holds, there must exist a node nq, such that n.next is ny and ni.next is nd.
But, if this holds, 7/18 is reachable from n and thus reachable in the system. Since this is
a contradiction, such a node n; does not exist.

A.3 Proof of correctness

Theorem. Let P be the original program, let P** be the abstracted program and let
Pg‘lbS be the program obtained by strengthening the list with list invariants g1, g2, ...
Then, if the strengthened program Pg“bs satisfies ¢ N\ g, where gis g1 AN g2 N g3...and
¢ is any invariant, the original program P also satisfies ¢ A g.

Proof. We show that any counter-example in the original program is also a counter-
example in P;bs.

Suppose the original program does not satisfy ¢ A g and let s9 —" s; —
...8p—1 —!"=1 s, be the counterexample, where ¢; are transitions and s; are states.
Further, the counterexample is assumed to be of minimal length, i.e., s,, is the first state
in which ¢ A g is violated.

We prove this in two parts: first we show that the correct part of the counterexample
cane be simulated (part 1) and next, we show that the bug is also simulatable (part 2).

Part 1: We first show that s —% s; — .. .s,_; =2 s,_; can be simulated in
the program. We prove this by induction on the counterexample trace. Suppose sg —%
ti . s;_1 —b-1 g; can be simulated in Pg“bs. We show that the transition ¢; can
also be simulated. Suppose t; involves reading or writing to nodes n1, ns..., ny in the
original program. Since ¢ < n and the counterexample is minimal, the list satisfies g.
This includes the nodes n1, ns..., ng.

For the corresponding execution in Pgabs, some of the nodes from nq, ns..., ng
might be created from splitting abstract nodes. In order to show that the transition ¢;
is possible in P;bs, we need to show that if any nodes are created from splitting the
abstract nodes, they can still take the field values which are taken by these nodes in the
original program. In other words, we need to show that constraining the nodes obtained
by splitting abstract nodes to satisfy g by ASSIGNKEYS’ does not constrain the nodes
to take values taken by nq, ng, ...in P. But, since nj, ng, ...satisfy g in the original
program, constraining by g in Pgabs will not prevent the newly created nodes from taking
these values. Thus, the transition will be simulated.

Part 2: Next we show that a violation of ¢,,_; will also be simulated, assuming the
rest of the counterexample has been simulated thus far. Without loss of generality, by
symmetry, we assume that ¢,,_; is a transition of thread 1. Now, if this happens, we
have the following 2 cases:

to t1

S1 —



Case 1: The property ¢ is violated. In this case, like in part 1, assumption of g
by ASSIGNKEYS’ does not rule out any transitions. Thus, the error-prone transition
violating ¢ will be simulated, leading to a violation of ¢ in P;bs as well.

Case 2: The list-lemma g is violated. In this case, we need to show that the vio-
lation occurs and occurs at the transition phase. The violation occurs, due to the same
reasoning as for case 1. We show that it occurs in the transition phase.

In case g is violated, the transition ¢,,_; can not be a heap traversal operation in the
program P, since it lead to a violation of a list invariant. This is because list invariant
depends only on heap values (and potentially on S for refinement map); but none of
these change in list traversal in P.

Further, for heap update transitions for thread 1, in P;bs, the following two con-
ditions hold: (1) all actions by thread 1 occur on concrete nodes, and (2) the nodes
which are referred do not change. Consequently, the setup and cleanup phases of this
transition do not make any updates to the heap. Thus the violation of the property will
occur exclusively at the transition phase. Then, this violation will be simulated in P;bs
as well.

Thus we have shown that any counter-example in the original program P has a
corresponding counter-example in P;bs. Then, our abstraction-refinement method is
sound. O

A.4 Methods of Sabs

seqContains®®(e) : {

if (e not singleton) unspecified;

else if (Vinterval € S : e ¢ interval) then return false;
else if (e € S** ) then return true;

else return non-det; }

seqAdd®® (e) : {

if (e not singleton) unspecified;

else if (Vinterval € S : e ¢ interval) then §bs.= §s 4 e return true;
else if (e € S** ) then return false;

else return non-det; }

seqRemove®? (e) : {

if (e not singleton) unspecified;

else if (Vinterval € S : e ¢ interval) then return false;
else if (e € S ) then S°*:= §°**_ {e}; return true;

else return non-det; }

Fig. 12: Methods of the sequential set S*°°.



