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ABSTRACT
As Moore’s Law has slowed and Dennard Scaling has ended, ar-
chitects are increasingly turning to heterogeneous parallelism and
hardware-software co-design. These trends present new challenges
for simulation-based performance assessments that are central
to early-stage architectural exploration. Simulators must be light-
weight to support heterogeneous combinations of general-purpose
cores and specialized processing units. They must also support
agile exploration of hardware-software co-design, i.e. changes in
the programming model, compiler, ISA, and specialized hardware.

Tomeet these challenges, we describe our compiler and simulator
pair: DEC++ and MosaicSim. Together, they provide a lightweight,
modular simulator for heterogeneous systems, offering accuracy
and agility designed specifically for hardware-software co-design
explorations. The simulator and corresponding compiler were de-
veloped as part of the DECADES project, a multi-team effort to
design and tape out a new heterogeneous architecture. We will
present two case-studies in important data-science applications
where DEC++ and MosaicSim enable straightforward design space
explorations for emerging full-stack systems.

CCS CONCEPTS
• Computing methodologies → Modeling and simulation; •
Software and its engineering → Compilers.
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1 INTRODUCTION
At this point, technologists have all seen the obituaries for Moore’s
Law and Dennard Scaling. Powerful eulogies, in the form of flat-
tening scaling graphs (e.g. see [26]), have been widely shown at
various conferences and events. This death was inevitable as our
communities pushed transistor technologies to their fundamental
limits: transistors now are at the point where they can no longer
get smaller and faster. These trends will be dearly missed, as they
helped describe romantic pop science facts, e.g. a 2019 smart phone
has roughly 100, 000× as much processing power as the computer
on the Apollo 11 spacecraft that first landed on the moon [14].

When these transistor scaling trends existed, computer architects
and programming language (PL) designers could focus on improv-
ing the design (and the programmability) of general-purpose com-
putational units (e.g. CPUs). As transistor technology improved, it
created opportunities for CPU performance improvement through
these designs. However, with the death of transistor scaling trends,
room for improvement by architects and PL researchers now lies
in specialization, i.e. because transistors are not getting faster, we
must think about how they can be used more efficiently. To achieve
this, problem domains are distilled into abstract building blocks, for
which specialized architectures (and PLs) can be designed. Modern
architectures, or Systems On a Chip (SoCs), are mosaics of special-
ized processing units. A microscopic view shows small, specialized
processing units patched together while a macroscopic view gives
the illusion of a unified system performing one complex task, e.g.
taking a picture on a smart phone. Die photo analysis has shown
that over half the area of modern smartphone SoCs comprises pro-
cessing elements that are neither CPUs nor GPUs [28].

Designing the architecture of a heterogeneous system is extremely
difficult. Individual processing units, e.g. ASIC accelerators, semi-
programmable accelerators, data supply components, and general-
purpose processors, now have mature tooling for design. Thus,
a heterogeneous system design has a buffet of processing units
and data supply techniques to choose from; ideally, it employs a
combination such that the system is optimally efficient across its
problem domains, while also respecting resource constraints. De-
signing the programming language for a heterogeneous system is
also extremely challenging. Legacy software should run efficiently
with minimal (preferably no) modifications. Users should be able
to target the system with familiar languages (e.g. Python and C++).
Finally, the system should provide enough flexibility (or reconfig-
urability) to adapt to the latest algorithm, model, or input data.
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This architectural design space explosion, coupled with ambi-
tious PL goals, necessitates new simulator and compiler tooling for
the research community. Such tooling should support an agile archi-
tecture design, such that different heterogeneous components can
be easily swapped and evaluated. Likewise, the programming model
should be agile, such that new code transformations (both automatic
and manual) can be rapidly implemented and evaluated. Most im-
portantly, the simulator and compiler should have a straightforward
interface for each other, such that hardware-software co-designs
can be developed in an agile way.

Manywidely used simulators (e.g. Sniper [8], ZSim [27], gem5 [7])
are designed to simulate homogeneous ISA systems; this design
choice has several significant drawbacks when modeling heteroge-
neous systems: (1) Accelerator integration is not straightforward
as only a limited set of ASIC designs are currently supported; (2)
PL innovations are implemented in an ad-hoc manner, for example,
by invasive modifications in LLVM, and (3) Individual computation
components can have completely different ISAs, e.g. [5].

At the same time, the PL community has largely rallied behind
the LLVM compiler framework [17]. There is mature support for
various frontends, including C/C++ through Clang [1], Python
through Numba [16], and many others [33]. A program written
in a supported frontend is first compiled to LLVM IR bytecode.
The compiler can then apply transformations, including custom
optimizations written for a hardware-software co-design. After
these transformations, the LLVM backend can produce binaries for
a variety of microarchitectures, including X86, ARM, and RISC-V.
Thus, this framework enables software to flexibly target heteroge-
neous hardware and should be leveraged by a lightweight, modular
simulation infrastructure.

1.1 DEC++ and MosaicSim: a New Compiler
and Simulator Infrastructure

This paper describes DEC++ and MosaicSim: a compiler and simu-
lator infrastructure to support agile development of heterogeneous
architectures and corresponding programming models. Together,
they facilitate early-stage evaluations of hardware-software co-
designs by providing interchangeable heterogeneous architecture
component models and a robust compiler framework. Our compiler,
DEC++, leverages the mature LLVM infrastructure. Our innova-
tions are largely LLVM IR compiler passes that can target code from
LLVM’s wide variety of frontends, including C/C++ and Python.

Unlike prior simulators, MosaicSim is not tied to a concrete
ISA. Instead, it directly simulates LLVM IR. While this can lead
to direct instruction-to-instruction mismatches, we have shown
that our simulator can accurately characterize critical performance
bottlenecks, and capture performance trends, e.g. related to parallel
scalability. Simulating LLVM IR provides a straightforward interface
to the DEC++ compiler infrastructure, which allows the simulator
to target a variety of frontends and support the addition of new
instructions (in the form of LLVM functions).

Additionally, our infrastructure is not simply for performance
evaluations. The mature backends provided by LLVM allow pro-
grams compiled by DEC++ to be further compiled down to an ISA
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Figure 1: Theflowof an application through theDEC++ com-
piler. Because DEC++ is based on LLVM IR, there are several
backends that are straightforward to target.

backend and executed as a binary on various architectures. For ex-
ample, DEC++ can invoke the LLVM x86 backend after compilation
to run the application on modern workstations.

Looking forward, DEC++ and MosaicSim were developed for
designing a heterogeneous architecture as part of the DECADES
project. This design uses the OpenPiton framework with RISC-
V Ariane cores [4] to drive accelerator tiles. Because LLVM can
target RISC-V, our framework allows a one-stop shop to compile
for: (1) x86 emulation; (2) MosaicSim architectural simulation, and
(3) execution on a RISC-V based open-source tiled architecture.

This paper is not intended to describe the novel scientific con-
tributions of the DECADES project in either architecture, nor PL.
Instead, it gives an overview of our design philosophies, experiences
in developing the tools, and use-cases where our tools have pro-
vided valuable insights. Related to this work, we have published a
technical overview of MosaicSim [21], and given a technical talk on
accelerating graph applications using DEC++ and MosaicSim [19].

The paper is organized as follows: Section 2 describes the DEC++
compiler, including provided APIs and automated compiler passes;
Section 3 discusses the MosaicSim simulator, including how cores,
accelerators, and data supply components are modeled; Section 4
presents two case studies where our tooling has allowed straight-
forward evaluations of the performance of complex heterogeneous
systems; and finally, Sections 5 and 6 discuss related work and
conclude, respectively.



2 THE DEC++ COMPILER
Our compiler framework is named DEC++, a name that combines its
robust C++ frontend with its development as part of the DECADES
project. DEC++ does not implement its own parser or IR; it is a col-
lection of LLVM compiler passes and linker invocations. Because we
leverage the mature LLVM framework for its foundational compiler
technology, we can focus on novel innovations in programming
languages for hardware-software co-designs.

We first describe the programming model supported by DEC++.
It varies slightly depending on the frontend, e.g. C++ or Python,
but is implicitly parallel, employing a single program, multiple data
(SPMD) model. An extensible API targets accelerators and data
supply components. We then detail several LLVM transformations
that apply data supply optimizations automatically. The section
concludes with a discussion on our design approach.

2.1 Programming Model
A DEC++ program consists of two parts: a kernel function of inter-
est, and a wrapper that calls the kernel. The wrapper is executed
sequentially and can perform any operation allowed by its host
language and architecture. This includes input-output, data prepa-
ration, etc. The kernel function is implicitly SPMD (single-program,
multiple-data) parallel, i.e. the same kernel function is executed by
many different threads.

A kernel function may use two built-in variables: num_threads,
which specifies the total number of threads executing the kernel,
and thread_id, which provides a unique thread id for each thread.
The thread id starts at 0 and is consecutive up to num_threads -
1. Given these two values, kernels can partition the work amongst
the threads. It is best practice to write kernels that are agnostic to
number of executing threads. This allows the simulator to more
easily explore the design space, as the number of threads and cores
in a heterogeneous system can vary. The number of threads is
specified at compile-time through a command line flag.

Because DEC++ is built on LLVM, the programming constraints
correspond to the constraints of the frontend language. For example,
Clang robustly supports C++20 and DEC++ will compile kernels
written in arbitrary C++20. The LLVM IR that the kernel is com-
piled into is largely supported by MosaicSim. This includes nearly
all primitive instructions, e.g. memory accesses, arithmetic opera-
tions, etc. As we describe later, function calls are either inlined or
treated as ISA-extensions to control new architecture components
in hardware-software co-designs. We find this support is sufficient
to accurately simulate many kernels with very little modifications.

However, the MosaicSim simulator does not support all C++20
features and users that expect accurate simulation results need to
further constrain their kernels. Specifically, these features are not
supported in kernels: file input/output, dynamic memory manage-
ment (allocation, copy, or free), system calls, and recursion. These
are not fundamental constraints and we aim to continue adding
support for these operations in MosaicSim as the tools mature and
gather more use-cases.

2.2 Frontends: C++ and Python
Here we describe the two frontends we have developed for DEC++:
a C/C++ frontend using Clang [1] and a Python frontend using

Numba [16]. DEC++ requires parallelism to be provided by the
frontend. That is, the compiler passes expect that the kernel is
launched with N threads and provided with the two built-in vari-
ables: num_threads and thread_id.

C/++ Frontend. As one might expect, DEC++, being based on
LLVM, most robustly supports the C/C++ frontend through Clang.
The user specifies the kernel function through a special function
name: _kernel_. This function can take any number (and type) of
arguments. It should be called exactly once by the wrapper, and
the wrapper can consist of arbitrary C/C++ code. For example, the
wrapper can read in a data file and prepare the data in an efficient
object. The wrapper can then call the kernel function, passing the
objects and other data that the kernel needs.

The last two arguments of the kernel function are reserved for
two integer values: num_threads and thread_id. The program
should pass special macro values when calling the kernel. These
will be used in the compilation pass to provide SPMD parallelism.

The first stage of the C/C++ DEC++ frontend invokes a Clang
Visitor, i.e. a source-to-source transformation. This transforma-
tion is responsible for adding parallelism. First, it searches for the
_kernel_ invocation. It then wraps the invocation in a for loop
with a bound of N. The loop is annotated with an OpenMP parallel
pragma that launches all iterations in parallel. The final two argu-
ments of the kernel are replaced with the loop iteration (the thread
id), and the total number of threads (the loop bound).

After the transformation, Clang is called again to emit LLVM
for the program. This uses Clang’s OpenMP implementation and
creates parallel LLVM IR that the DEC++ LLVM transformations
can operate on and further optimize.

Python Frontend. In order to provide data scientists with a more
familiar language, DEC++ provides a prototype Python interface.
This interface works through Numba: a Python toolkit that allows
functions to be annotated with types and then compiled to LLVM
IR. The LLVM IR can then be compiled to a native executable using
LLVM’s backends. Using Numba, we have demonstrated kernel
execution speedups ranging from 2 − 250×. These improvements
attribute to removing the interpreter overhead from the compiled
code. For example, extreme speedups can arise from representing
irregular graph data-structures as efficient CSRNumpy arrays when
compiled with Numba instead of inefficient Python dictionaries
when interpreted.

Due to Python’s flexibility with passing and returning func-
tions, this frontend does not have the same constraints as the C/++
frontend in terms of calling the kernel function with macro argu-
ments. Users can write a type-annotated Numba kernel function,
with the two reserved final integer arguments: num_threads and
thread_id. However, to compile the kernel, the user calls DEC++
through a higher-order function, DECpp, which takes as arguments
1) the kernel function and 2) all of its arguments.

The DECpp function first wraps the kernel function in a Numba
parallel loop1. This special Numba construct launches each loop iter-
ation in parallel (implemented using OpenMP). The SPMD variables
can then be instantiated in a similar way to the C/++ frontend. This

1http://numba.pydata.org/numba-doc/latest/user/parallel.html#explicit-parallel-
loops



creates a new parallel kernel function that can then be compiled to
LLVM IR using Numba. Next, the DEC++ LLVM transformations
are applied to the LLVM IR. The DECpp Python function returns
an object that can be executed (using Numba’s binary backend) or
passed to MosaicSim to simulate the kernel.

2.3 Data supply and Accelerator APIs
The DEC++ programming model contains several APIs that can
target components of a heterogeneous system. The compiler un-
derstands the API and passes the correct hooks to the MosaicSim
simulator for performance evaluations. The API also includes soft-
ware implementations that can efficiently be emulated on work-
station machines (e.g. with x86 processors). Thus, applications can
be rapidly developed and debugged with efficient native execution.
Simulation can be performed later when there is sufficient confi-
dence in application correctness. DEC++ currently supports two
APIs: core-to-core communication queues and accelerators. New
APIs can straightforwardly be added on the compiler side by pro-
viding a software implementation and registering the API calls with
the compiler so that it knows to pass them down to the simulator.

Accelerator API. ASIC accelerators are a key component of a
heterogeneous system and there is a rich set of processing units
that a system could incorporate. Common examples are matrix
multiplication and fast Fourier transform. As part of the DECADES
project, we are working closely with the ESP team at Columbia [20]
to actively add APIs for the accelerators they support. These ac-
celerators are simulated using RTL-derived performance models
(provided by the ESP team) to be used by MosaicSim. The team
has recently reported supporting a sufficient set of accelerators to
perform state-of-the-art embedded ML inference tasks, which we
aim to support in the near future [11].

Core-to-Core Communication API. A key research goal for the
DECADES project is to explore efficient data supply and commu-
nication designs. Recently, there has been a resurgence of classic
Decoupled Access Execute (DAE) [31] designs, such as DeSC [12],
and DSWP [23]. These approaches require core-to-core commu-
nication through specialized hardware queues. The DeSC scheme
additionally requires a specialized hardware unit to perform asyn-
chronous memory loads.

To support such research, we have developed a core-to-core
message passing API that programmers can use for fine-grained
communication between cores. This API consists of send, recv,
and async_load (for latency tolerance) commands for various bit-
widths. To support software emulation, we have provided a software
implementation in C++ which uses non-blocking circular buffers
as communication queues between threads.

2.4 Compiler Passes
While a user is free to use the DEC++ APIs to write applications,
DEC++ can also use LLVM compiler passes to automate several
data supply transformations that have been previously published.
To use these transformations, the user does not need to use the
communication API in their program. Instead, the compiler can
transform the code to use the communication API in a data supply
scheme. We discuss three such transformations now.

Decoupled Access Execute (DAE). The classic DAE [31] scheme
slices a sequential program into a parallel pair of instruction streams:
the Access and the Execute. The Access is responsible for all the
memory accesses in the program; it only performs the computation
required for the sequential stream of memory loads and stores in
the program. On the other hand, the Execute slice does not touch
memory and performs value computation. The Access loads values
and communicates them to the Execute, while the Execute performs
value computation and sends values back to the Access to store
to main memory. This scheme can provide latency tolerance by
overlapping memory accesses with computation.

DEC++ provides a DAE scheme straightforwardly as an LLVM
pass. First the kernel function is copied to Access and Execute
kernels. Next, the Access is transformed to follow every load with
a communication to the Execute. Stores are transformed to remove
the value and replace it with a communication from the Execute.
The Execute is transformed to remove all loads with a recv from the
Access. Stores on Execute are replaced with a send to the Access.

After the memory access transformations are applied, we lever-
age the LLVM framework to clean up all unnecessary instructions
by doing a dead-code elimination. This removes value computation
from the Access because the resulting value is never used (it is
replaced with a communication from the Execute).

Decoupled Supply-Compute (DeSC). A more recent implemen-
tation of DAE, called DeSC [12], exploits the insight that many
loaded values are not actually needed on the Access slice. Thus,
significant performance gains can be achieved if the hardware is
able to asynchronously load a value and send the resulting data to
the Execute from the Access. This allows the Access to not have to
stall waiting for the memory hierarchy to return the data that is
loaded. Such loads are called terminal loads.

We have provided a DeSC transformation as part of DEC++. The
implementation builds directly on top of our DAE implementation.
It requires only one additional pass on the Access slice to determine
if loaded values are ever used on the Access slice apart from com-
municating them to the Execute. If not, they can be transformed
into terminal loads, using the async_load API call.

2.5 DEC++ Design Choice Discussion
Here we briefly discuss design decisions that we found especially
useful, and those we found to cause difficulty. Overall, we are opti-
mistic about our design, and given the active, well-supported LLVM
community, we believe our difficulties will reduce over time.

Design Choice Positives. The most obvious positive of our design
choice is being based on LLVM. The community is well-supported
and active. Being built on LLVM allowed us to instantly plug into a
variety of frontends. Our most widely used frontend is C/C++ using
Clang. To enable a more familiar language for data-scientists, we
were able to provide a Python prototype frontend through Numba.
According to the LLVMWikipedia page, frontends exist for many
more languages, spanning many domains and programming idioms.
This list includes Rust, Fortran, and Haskell [33]. While a DEC++
frontend would not be supported out-of-the-box, e.g. because of our
programming model constraints described in Section 2.1, it would
be significantly easier than starting from scratch.



Because our compiler passes are all built in a way that does
not require any LLVM source code changes, DEC++ can be built
alongside existing installations of LLVM. We do not have to host,
andmaintain, a large custom LLVM repository, whichwould require
manually merging updates to stay up-to-date.

Finally, because of LLVM’s well-supported backends, DEC++ can
not only target the MosaicSim simulator (described next), but also
compile to binaries for a variety of targets. For example, compiling
to x86 can create binary applications that natively execute on mod-
ern workstations. This allows for rapid development and debugging
(although new hardware features are emulated in software). Finally,
the DECADES architecture plans to have compute cores that exe-
cute the RISC-V ISA. Because modern versions of LLVM support
RISC-V, DEC++ can be used as not only a compiler for development
and design exploration, but also for producing binaries for the new
DECADES architecture.

Design Choice Difficulties. By far the biggest difficulty in the
DEC++ design is that LLVM (and the associated tools) have a large
learning curve. Developers (or students) who have not been exposed
to LLVMmay have significant difficulties understanding how passes
are written, the nuances of LLVM IR instructions, etc. It is not just
the LLVM passes that are complicated; we have found that different
frontends, e.g. Numba for Python, are also complex and evolve
rapidly. We hope that our suite of passes and frontends can help
newcomers get started, and the lively online LLVM community
can provide additional support as needed. We believe the learning
curve of LLVM tools is countered by their robustness.

The second difficulty is keeping the tools up-to-date. LLVM
releases major new versions roughly twice a year. Each new version
release typically slightly changes the compiler pass API. Because of
this, it is difficult for DEC++ to support multiple versions of LLVM
and each update requires the passes to be updated with the new
API. To account for this, we have not updated DEC++ with every
LLVM release; our trend has been to support every other one. We
have updated DEC++ twice now and each update takes around
one day of engineering effort. We hope to provide more frequent
updates (and possibly support for multiple versions of LLVM) in
the future as the tools gain more interest.

3 THE MOSAICSIM SIMULATOR
MosaicSim is a cycle-driven simulator for agile performance eval-
uation of heterogeneous systems. It works with DEC++ in that
it does not simulate a concrete ISA. Instead, it simulates LLVM
IR. This design choice allows close coupling with the compiler for
hardware-software co-designs, and the ability to simulate designs
before committing to low-level details, such as concrete ISAs. A
more detailed manuscript was published at ISPASS 2020 [21].

3.1 Design Overview
MosaicSim simulates a heterogeneous system that is made up of
tiles, which can either be cores or accelerators. Communication
between tiles can occur through a traditional memory hierarchy
or through inter-tile communication queues. The simulator takes
cycle-level steps; at each step, each tile is activated for exactly one
cycle. At this stage, users can specify the depth (one, two, or three
cache levels) and parameters (latency, bandwidth) of the memory

hierarchy. Users can also specify how many tiles and if they are
compute cores (e.g. CPUs) or ASIC accelerators.

To simulate an application, MosaicSim requires an execution
trace, which details memory accesses, control-flow decisions, and
accelerator arguments. This is achieved through an LLVM pass that
annotates instructions of interest in the kernel with logging calls.
The transformed LLVM IR can then be compiled to a native binary,
e.g. for x86, and run to collect the required trace.

3.2 Core Modeling
To simulate a compute core, MosaicSim first collects a static Data-
Dependency Graph (DDG) of the kernel. Because MosaicSim’s par-
allel model is SPMD, the DDG for the single kernel file is replicated
and sent to all tiles instantiated as a compute core. From the entry
point of the DDG, MosaicSim sees a frontier of active nodes, i.e.
instructions that have no unmet dependencies. Each cycle, a set
of these frontier nodes are executed and retired, which allows a
new frontier to be computed. Nodes that influence control flow
query the execution trace to determine their next step. Nodes that
are memory accesses query the execution trace to determine the
address. A request is then sent to the memory hierarchy model,
which returns the latency (number of cycles) incurred by the access.

Depending on the type of instruction, frontier nodes can be
placed in different data structures to model different architectural
features. Memory access nodes that have been issued, but not com-
mitted, can be placed in a Load Store Queue (LSQ) object. The
simulated RoB is sliding window across frontier nodes that can
issue younger nodes even if older ones have not fully committed.
Together, these features provide sufficient capability to model com-
plex out-of-order cores, as well as simple in-order cores.

3.3 ASIC Accelerator Modeling
To model ASIC accelerator designs, the programmer must use the
ASIC accelerator API given in the programming model (see Sec-
tion 2.1). The API calls are registered with the DEC++ compiler,
which maintains the API function calls in the kernel. These function
calls become nodes in the DDG, which the simulator can call into
accelerator timing models.

Our current accelerator performance models come from the ESP
design team [20]. They have provided closed-form performance
models for a variety of accelerators, including matrix multiplication
and matrix element-wise operations which are commonly used in
machine-learning applications (e.g. ReLU). The concrete arguments
for each accelerator call are recorded similar to the memory trace.
Most importantly, these arguments include data dimension sizes,
which are the crucial parameters in accelerator performancemodels.
An accelerator performance model can simply take these argument
traces and return the number of cycles required for the accelera-
tor invocation. More details on this modeling (including accuracy
measurements) can be found in the conference publication [21].

3.4 Inter-Core Communication Modeling
To explore data supply designs, the simulator understands the pro-
gramming model’s data-communication API (see Section 2.1). The
compiler maintains kernel calls to this API and then the simulator



checks DDG nodes to see if they correspond to an API call. Mo-
saicSim models a producer/consumer queue between every pair of
cores. These queues are blocking; a producer that tries to enqueue
to a full queue must wait until the consumer dequeues a value.
Similarly, a consumer that dequeues from an empty queue must
wait until a producer enqueues a value. To support asynchronous
memory accesses, the simulator provides an extra memory request
unit that can asynchronously issue a memory access and buffer
the value in a queue at the point where it was requested. This can
simulate the terminal load buffer hardware features of DeSC [12].

The designer can explore various resource constraints by plac-
ing limits on the queue sizes and changing the read/write latencies.
Prior designs, e.g. DeSC, have modeled queue latencies to be ex-
tremely short, e.g. similar to an L1 cache. Other designs may not be
able to place queues so close to the core, and latency may have to
be increased. For example, a tiled architecture, e.g. DECADES, may
have dedicated storage tiles as heterogeneous components, which
leads to significantly increased access latency, as requests must go
through the NoC.

3.5 MosaicSim Design Choice Discussion
Much like Section 2.5, here we briefly describe MosaicSim design
choices that we found useful as well as ones that we found dif-
ficult. Similar to DEC++, we believe the positives outweigh the
negatives and that a simulator for LLVM-IR is a powerful tool for
agile heterogeneous system designs.

Design Choice Positives. Being based on LLVM, MosaicSim could
evaluate architectural designs early for the DECADES project, even
before a concrete ISA was implemented. Moreover, recent research
suggests the rise of heterogeneous systems with cores that mix ISAs,
a simulation challenge that MosaicSim completely avoids. Without
needing to focus on cycle-level accuracies, we were able to focus on
high-level application characterizations. That is, we showed that
MosaicSim can accurately classify applications as memory-latency
bound, bandwidth-bound, or compute-bound. We could then fo-
cus on developing hardware-software co-designs to alleviate these
bottlenecks, e.g. [19] explores accelerating data supply for graph
applications. Our experience is that the LLVM IR level is a sweet
spot for architecture and PL researchers, as they can accurately
characterize applications and explore designs without committing
to low-level details, such as ISAs.

Our overall design is efficient, with a simulation speed of 0.5
MIPS (millions of instructions per second). This is comparable to the
Sniper simulator [8] (also reported at 0.5 MIPS). MosaicSim is faster
than gem5 [7] (0.05 MIPS), but is not as detailed, e.g. for coherence
models. Future work could add optimizations for instruction-driven
simulation and parallel simulation execution, which could signifi-
cantly increase simulation speed, e.g. similar to ZSim [27].

Design Choice Negatives. The tradeoff of simulating LLVM IR is
cycle-level inaccuracies in simulation results. Our conference pub-
lication reports up to a 3× difference when simulating an Intel X86
Xeon processor compared to detailed native profiling. Diving deeper,
these inaccuracies attribute to ISA mismatches. For example, LLVM
requires two instructions for an offset load, getelementpointer
and load, while x86 requires just one: MOV. These mismatches could

Microarch. Parameter Out-of-Order In-Order
Issue Width 4 1
Instruction Window/RoB/LSQ 128/128/128 1/1/1
Frequency/Tech 2GHz/22nm 2GHz/22nm
Core Count 1 8
Core Area mm2 8.44 1.01

Table 1: Microarchitecture parameters of the simulated OoO
and InO cores. Wemake an equal-area comparison based on
the aggregated area of all cores.

be tuned for a given ISA, e.g. by ignoring certain LLVM IR in-
structions, but this defeats the purpose of agile and early-stage
development and exploration of heterogeneous architectures.

4 CASE-STUDIES
Here we detail two case-studies of how our tooling has enabled us
to perform early-stage evaluations of heterogeneous system designs
for different application domains. These use cases are drawn from
our previous publication with permission from the authors. We are
able to provide a more holistic context in this manuscript, as we
can tie our motivation to the overarching DECADES project.

As mentioned previously, the DECADES core architecture is
being developed and implemented by the research group who de-
signed OpenPiton [6]. They have a robust infrastructure to support
a manycore system based on Ariane RISC-V cores [34]. When eval-
uating performance, one of the most interesting evaluations is to
compare the small, energy efficient, in-order (InO) RISC-V cores to
state-of-the-art out-of-order (OoO) cores, e.g. Intel Xeon.

Our investigations have so far focused on hardware-software
co-designs that enable a heterogeneous system based on these
slim in-order cores to compete against beefy OoO for select data-
science applications. Because modern OoO cores can have wide
issue-widths (allowing multiple instructions to execute at a time)
and complex hardware to tolerate latencies, e.g. LSQs and RoBs, we
perform an equal area performance comparison between OoO cores
and IO cores. We have determined, with input from the OpenPiton
team and the McPAT tool [18], that one OoO core is roughly the
same area as 8 IO cores. We give the details in Table 1.

We present two examples: one where decoupled access/execute
latency tolerance schemes can yield significant performance im-
provements for graph analytics running on in-order cores and one
where an ASIC accelerator tile can help latency tolerance for appli-
cations that have both dense and sparse linear algebra routines.

4.1 Latency Tolerance in Graph Analytics
Graph analytic kernels are becoming increasingly important for
data science. Graphs are used to represent social networks, con-
sumer relations to products, communication networks, etc. These
graphs are rapidly growing in size. For example, the number of
active Instagram users has nearly doubled every year since 2012 [9].
However, the ability to process such massive social network graphs
has not kept up with dataset trends. For example, the Graph500
reports that the top single-node performer (machine and software)
on the Breadth First Search (BFS) algorithm has remained the same
since 2016 [2]. Because of this disparity, we investigated graph
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Figure 2: Speedups for the graph projections application.
1 InO core as a baseline; 1 OoO core is representative of
state-of-the-art modern cores; 8 InO is a homogeneous par-
allel system that is area-equivalent to the OoO core; and 4+4
DeSC InO configuration shows an decoupled data-supply ap-
proach that is area equivalent to the OoO core. Our results
show that in-order systems can be more performant that
OoO cores if enough of them are used, and especially if het-
erogeneous data-supply approaches are implemented.

applications as one of our first hardware-software co-designs using
DEC++ and MosaicSim.

Graph Projection. As a starting point, we examined the graph
projections algorithm. This application takes a bipartite graph with
nodes in one partition, 𝑋 , connected to nodes in a disjoint partition,
𝑌 . The application relates nodes in𝑌 based on common neighbors in
𝑋 . This application is used, e.g. in recommendation systems, where
𝑋 might be a set of consumers and 𝑌 might be a set of products.
This application allows products to be related to one another based
on relations through different consumers.

We developed the application in C++ and through DEC++, de-
bugged using native compilation to an X86 binary that we could
execute and examine on a workstation. After confidence that the
application was correct, we utilized the DEC++ compilation mode
to target MosaicSim, where we could characterize the application
performance on a single in-order processor. We found that the
main bottleneck was the memory latency from irregular memory
accesses that occur when nodes access neighbors, which can be
scattered seemingly randomly through the graph.

To explore several design choices, we compiled and ran the ap-
plication for several systems: 1 InO core as a baseline, 1 OoO as
representative of a state-of-the-art modern processor, 8 homoge-
neous parallel InO cores to compare against an OoO core in equal
area, and 4 pairs of Access/Execute InO cores using DeSC [12] ter-
minal load optimizations. Figure 2 presents these results. While an
OoO core significantly outperforms a single IO core, in an equal
area comparison, homogeneous InO parallelism slightly outper-
forms an OoO core and a DeSC-style decoupling approach is sig-
nificantly better. This shows that non-invasive hardware-software
co-designs for InO architectures are an attractive target for acceler-
ating certain graph applications. Our current work is extending this
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Figure 3: Speedups for the Sinkhorn Distances application.
The configurations are the same as Figure 2, with the addi-
tion of an accelerator tile for the matrix multiplication half
of the application. This application shows that data-supply
optimizations and accelerators can cooperate in a heteroge-
neous system to outperform modern OoO systems.

decoupled data supply for more involved graph applications, e.g.
breadth-first search, for which DeSC is not efficient due to complex
data-dependencies between the Access and Execute.

4.2 Sparse and Dense Linear Algebra Routines
Some applications, when viewed holistically, have more complex
characterizations than compute-bound vs. memory-bound. As an
example, we examined Sinkhorn Distances [10], an algorithm for
solving the optimal transportation problem that is used in computer
vision [25] and NLP [15]. When characterizing this application, we
found that there were two bottlenecks: one in a classic dense matrix
multiplication and one in a linear algebra routine that sparsely
samples a dense matrix.

We found that the sparse linear algebra routine could be acceler-
ated the same way as the graph application, i.e. with DeSC-style
latency tolerance. However, this is not useful for the dense matrix
multiplication. Luckily, matrix multiplication is a prime kernel for
an accelerator tile. We used the accelerator API in DEC++ and then
configured MosaicSim to use a matrix multiplication accelerator tile.
This yielded 4 systems to evaluate: 1 InO as a baseline, 1 OoO core
to represent modern state-of-the-art, 8 InOs for homogeneous paral-
lelism, 4 InODeSC decoupled pairs, and 4 InODeSC decoupled pairs
with a matrix multiplication accelerator. Figure 3 presents these
comparisons. With more heterogeneity and software-hardware co-
designs, performance improves. Therefore, coupling the modular
design of MosaicSim (different cores and tiles can easily be mod-
eled) with the DEC++ compiler (automatic decoupling techniques)
allows for evaluations of such complex heterogeneous systems.

5 RELATEDWORK
As mentioned throughout, there is a long history of academic
simulators in the research community, e.g. gem5 [7], Sniper [8],
Graphite [22], ZSim [27]. Each of these simulators fills a certain
role and their track record has shown them to be valuable assets to
the community. However, we believe DEC++ and MosaicSim are



uniquely positioned in the post-Moore’s Law era of architecture
and PL research. Prior simulators require commitment to low-level
details, e.g. a single ISA, and only support homogeneous parallelism.
Furthermore, they are not coupled with a compiler, which requires
ad hoc development on both the simulator and programming model.
This is difficult to both develop and maintain.

Heterogeneous simulators have been built on top of classic homo-
geneous simulators. Notably, a collaboration between gem5 and the
Aladdin accelerator toolkit [29] has produced gem5-Aladdin [30].
This work has been used to evaluate several data supply schemes
between compute cores and accelerators. MosaicSim distinguishes
itself with a more abstract accelerator interface and simulations at a
higher-level, which allows for an order of magnitude more efficient
simulation. Another gem5-based work uses LLVM dependency
graphs to model accelerators for a simulator environment [24]. Mo-
saicSim uses similar ideas, e.g. simulating dependency graphs, but
has extended the functionality to model important components of
out-of-order cores, such as LSQs and RoBs.

While there exist many academic simulators, LLVM has become
the de facto standard for PL research, especially related to hardware-
software co-design. Two recent decoupled data supply works were
built upon LLVM: DeSC [12] and DSWP [23]. Other works leverage
the framework to provide load hoisting [32] and prefetching via
software hooks automatically added by LLVM passes [3]. Binary
instrumentation, e.g. PIN, has been used as an alternative to LLVM,
but again commits the user to a specific ISA.

6 FUTURE WORK AND CONCLUSION
DEC++ and MosaicSim are at the beginning of a long and fruitful
life. Over the last two years, we have laid the groundwork for a
compiler/simulator infrastructure built with agile development and
hardware-software co-design as first class principles. Built upon
active and well-supported LLVM tools, our infrastructure allows: (1)
our framework to be extendedwith new frontends; (2) programming
model innovations to be rapidly developed; and (3) compilation sup-
port for a variety of ISAs, which can natively execute on the buffet
of modern architectures, including RISC-V. Our MosaicSim simu-
lator accurately characterizes applications, allowing subsequent
development of hardware-software co-designs for performance ac-
celeration. DEC++ and MosaicSim are design evaluation tools built
for the new golden age of computer architecture [13], and we hope
to cultivate a vibrant community around these tools and ideas.
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