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Bloch’s theorem is the centerpiece of topological band theory, which itself has defined an era of
quantum materials research. However, Bloch’s theorem is broken by a perpendicular magnetic field,
making it difficult to study topological systems in strong flux. For the first time, moiré materials have
made this problem experimentally relevant, and its solution is the focus of this work. We construct
gauge-invariant irreps of the magnetic translation group at 2π flux on infinite boundary conditions,
allowing us to give analytical expressions in terms of the Siegel theta function for the magnetic Bloch
Hamiltonian, non-Abelian Wilson loop, and many-body form factors. We illustrate our formalism
using a simple square lattice model and the Bistritzer-MacDonald Hamiltonian of twisted bilayer
graphene, obtaining reentrant ground states at 2π flux under the Coulomb interaction.

I. INTRODUCTION

Motivated by developments in the fabrication of moiré
materials with greatly enlarged unit cells1–8, this work re-
visits the solution of continuum Hamiltonians in strong
flux from the modern perspective of topological band the-
ory. The essential difficulty of the problem was identified
by Zak who demonstrated that translations do not com-
mute in generic magnetic flux and instead form a projec-
tive representation of the translation group9. As such,
Bloch’s theorem does not apply. The result is a fractal
energy spectrum as a function of magnetic flux known as
the Hofstadter butterfly10–13. In this work, we present
a new formalism to obtain the exact band structure
and topology of a continuum Hamiltonian when the flux
through a single unit cell is 2π. At 2π flux, correspond-
ing to ∼ 25T in magic angle twisted bilayer graphene
(TBG)14, the magnetic translation group commutes due
to the Aharonov-Bohm effect, allowing reentrant Hofs-
tadter phases9,10. Although methods already exist to
study the spectrum in arbitrary magnetic fields15–30,
they are unsuitable for determining the topology and
dominant many-body effects essential to moiré physics.
Our formalism is manifestly gauge-invariant, leading to
analytical expressions for the magnetic Bloch Hamil-
tonian, non-Abelian Berry connection, and many-body
form factors. Importantly, numerical implementation is
also straightforward, and we are able to study reentrant
phases, which have recently become of interest31,32, with-
out using simplified models. The methods detailed here
were used to study reentrant correlated insulators33 in
twisted bilayer graphene, which have been observed in
experiment34.

We begin with a general discussion of the symmetry
operators in Sec. II which are used to construct gauge-
invariant magnetic translation group irreps on infinite
boundary conditions in Sec. III. A discussion of the Siegel
theta function35–37, a multi-dimensional generalization of
the Jacobi theta function which appears in our states,

may be found in App. A. We provide a general expres-
sion for the magnetic Bloch Hamiltonian in Sec. IV and
compute the band structure for a square lattice model.
Then in Sec. V, we define the Berry connection which re-
ceives two new magnetic contributions (Abelian and non-
Abelian), and we discuss the topological transition be-
tween the strong flux or Landau level regime where the ki-
netic energy dominates and the crystalline regime where
the potential dominates. In Sec. VII, we give convenient
expressions for the form factors of generic density-density
interactions. Finally in Secs. VIII and IX, we study the
Bistritzer-MacDonald (BM) Hamiltonian14 of twisted bi-
layer graphene which reaches 2π flux at ∼ 25T. We dis-
cuss the symmetries of TBG at 2π and find that the
degree of particle-hole breaking strongly determines the
topology of the flat bands, which realize a decomposable
elementary band representation39.

We note that the Hofstadter spectrum of tight-binding
models under the Peierls substitution40 is periodic in flux
with the period equal to an integer multiple of 2π de-
pending on the orbitals41. This is because gauge fields
on the lattice are compact. Such systems differ from the
continuum models considered here where there is no ex-
act periodicity in φ (though see Ref.42 for a discussion of
approximate periodicity) and we are not reliant on the
validity of the Peierls approximation. Notably, the spec-
trum and topology of the BM model we obtain at 2π flux
compares well to tight-binding calculations of twisted bi-
layer graphene at a small commensurate angle43.

II. SYMMETRY ALGEBRA

We consider a two-dimensional Hamiltonian minimally
coupled to a background gauge field A(r) in the form

H = h(−i∇∇∇− eA) + U(r), ∇∇∇×A = B > 0 (1)

where we study h(p) = p2/2m and h(p) = vF (pxσx +
pyσy) and set ~ = 1. Here e > 0 is the electron charge,
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the magnetic field B is perpendicular to the plane, and
the cross product is a scalar in two dimensions. We ne-
glect the Zeeman coupling, but it is trivial to add. The
potential U(r) is periodic: U(r) = U(r + R) where R is
on the Bravais lattice with basis vectors a1,a2 oriented
so a1 × a2 = Ω > 0.44 The reciprocal lattice is spanned
by the vectors 2πbi satisfying ai ·bj = δij . The magnetic
flux is φ = eBΩ which is dimensionless (setting ~ = 1).

In absence of a periodic potential, the Hamiltonian
h(p) in flux can be solved in terms of Landau levels by
introducing an oscillator algebra. The algebra is formed
from the canonical momentum πππ = −i∇∇∇− eA obeying

[πµ, πν ] = ie(∂µAν − ∂νAµ) = ieBεµν (2)

where throughout this section, greek letters correspond
to cartesian indices, e.g. µ, ν ∈ {x, y}, and we sum over
repeated indices. We define the ladder operators [a, a†] =
1 by

a =
πx + iπy√

2eB
, a† =

πx − iπy√
2eB

. (3)

In the simplest case of h(p) = p2/2m = eB(a†a+ 1/2) in
magnetic field, the eigenstates are Landau levels given by
powers of a†. The macroscopic degeneracy of the Landau
levels is accounted for by the guiding center momentaQµ.
The gauge-invariant definition is

Qµ = πµ − eBεµνxν = −i∂µ − e(Aµ +Bεµνxν) . (4)

The guiding center operators commute with the canonical
momenta and obey

[Qµ, πν ] = [πµ − eBεµρxρ, πν ] = ieBεµν − ieBεµν = 0

[Qµ, Qν ] = [πµ − eBεµρxρ, πν − eBενσxσ] = −ieBεµν .
(5)

The guiding centers form a separate oscillator system
with [b, b†] = 1 defined by (see App. A 1)

b =
(a1 − ia2) ·Q√

2φ
, b† =

(a1 + ia2) ·Q√
2φ

, (6)

Note that the b-oscillators commute with the a-oscillators
by Eq. (A5). Comparing Eq. (A6) and Eq. (A2), we see
that the a, a† operators are defined using cartesian vari-
ables while the b, b† operators are defined using the lattice
vectors. This is because the a, a† operators are used to
build the continuum kinetic term which has SO(2) rota-
tion symmetry, while the b, b† operators will be used to
construct states that respect the lattice periodicity.

The kinetic term h(πππ), which is built out of a and
a† operators, commutes with b, b†. Hence without a po-
tential, every Landau level eigenstate has an infinite de-
generacy (on infinite boundary conditions) from acting
repeatedly with b† because [h(πππ),Q] = 0. A periodic po-
tential breaks this degeneracy. However, we observe that
the magnetic translation operators

Tai = exp (iai ·Q) (7)

formed from the Qi algebra commute with a periodic
potential. Using the Baker-Campbell-Hausdorff (BCH)
formula, we check

eiai·QU(r)e−iai·Q =

∞∑
n=0

1

n!

(
[iai ·Q,

)n
U(r)]

=

∞∑
n=0

1

n!

(
[iai · (−i∇∇∇),

)n
U(r)]

= eai·∇∇∇U(r)e−ai·∇∇∇

= U(r + ai) = U(r) .

(8)

where the nested commutator ([X, )nY ] = [X, [X, . . . , Y ]]
has n factors of X and in the last line we used the lattice
periodicity. This is sufficient to prove that Tai commutes
with the whole Hamiltonian H (kinetic plus potential)
because [Q,πππ] = 0 and the kinetic term only contains πππ
operators. Note that [H,Q] 6= 0 but [H, eiai·Q] = 0 for
a periodic potential. The algebra of the Tai operators is
derived from the BCH formula by

Ta1Ta2 = exp
(

[ia1 ·Q, ia2 ·Q]
)
Ta2Ta1 = eiφTa2Ta1 .

(9)
Eq. (9) shows that the magnetic translation operators de-
fine a projective representation of the translation group.
For generic φ ∈ R, Ta1

and Ta2
do not commute and

there is no band structure. The cascade of band splitting
that occurs as the flux is increased leads to the fractal
Hofstadter energy spectrum10. The a† and b† operators
form a basis of the Hilbert space which is used to solve
continuum Hamiltonians in terms of degenerate Landau
levels. In Sec. III, we will produce basis states which are
magnetic translation operator irreps by recombining the
b† basis.

So far, the flux φ = eBΩ has been unrestricted. In the
following sections, we fix φ = 2π where Eq. (9) shows
that the magnetic translation operators commute. This
is an intrinsically quantum mechanical effect because 2π
flux corresponds to one flux quantum h/e piercing each
unit cell where h is Planck’s constant. In a conventional
crystal where the unit cell area is on the order of 10Å2,
φ = 2π corresponds to extreme fields between 104T and
105T. However, moiré materials have an effective unit
cell which is larger by a factor of θ−2 where θ is the twist
angle. For angles near 1◦, the moiré unit cell is enlarged
by a factor of 3000 allowing ∼ 25T fields to probe the
Hofstadter regime.

III. MAGNETIC TRANSLATION GROUP
IRREPS

In this section, we construct wavefunctions which are
irreps of the magnetic translation group at φ = 2π on
infinite boundary conditions in a gauge-invariant manner.
These states are the building blocks of all subsequent
calculations. To motivate them, we first revisit Bloch’s
theorem in zero flux.
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A. Bloch’s Theorem

Let us briefly recall the traditional Bloch theorem.
The translation group in zero flux on infinite bound-
ary conditions is isomorphic to the infinite group Z2

which is Abelian. Hence its irreducible representations
(irreps) are all one-dimensional. They are eigenstates
of the translation operators labeled by a crystal mo-
mentum k = k1b1 + k2b2 where ki ∈ (−π, π) de-
fines the Brillouin zone (BZ). It is trivial to construct
the first-quantized eigenstates of the zero-flux transla-
tion operators TR = eR·∇∇∇ with eigenvalue eik·R where

R = R1a1 + R2a2, Ri ∈ Z: the functions ψφ=0
k,n (r) =

eik·ruk,n(r) are momentum eigenstates for any periodic
function uk,n(r) = uk,n(r + ai) which we normalize to∫

Ω

d2xu∗k,m(x)uk,n(x) = δmn (10)

by integrating over the unit cell Ω. Hence the functions
u∗k,m(x) form a complete basis of periodic functions on
the unit cell at each k. In this case, the Bloch waves

ψφ=0
k,n (r) normalized on infinite boundary conditions as∫

d2r ψφ=0
k,m (r)∗ψφ=0

k′,n(r)

=
∑
R

ei(k
′−k)·R

∫
Ω

d2x ei(k
′−k)·xu∗k,m(x)uk′,n(x)

= (2π)2δ(k− k′)

∫
Ω

d2xu∗k,m(x)uk,n(x)

= (2π)2δmnδ(k− k′)

(11)

using the identity (2π)2δ(k − k′) =
∑

R e
iR·(k−k′) with

k − k′ ∈ BZ. The periodic functions uk,n(r) form an
orthonormal basis of states within a single unit cell, and
can be chosen as the eigenstates of the effective Bloch
Hamiltonian e−ik·rHeik·r which is a function of k. Note
that there are an infinite number of eigenstates uk,n(r)
because the Hilbert space is infinite dimensional. At each
k ∈ BZ, n = 1, 2, . . . indexes Bloch waves of increasingly
high energy. This contrasts the tight-binding approxima-
tion where only a finite number of Bloch waves are kept
and the local Hilbert space is finite dimensional.

To parallel our construction at φ = 2π in Sec. III B,
we now give an alternative representation for the Bloch
waves. We introduce the Wannier functions

wφ=0
R,n (r) ≡ TRwφ=0

n (r) =

∫
d2k

(2π)2
eik·(r+R)uk,n(r)

(12)
which, being formed from states at different k, are gen-
erally not energy or momentum eigenstates. Instead

the Wannier functions wφ=0
Rn (r) form a local basis of the

Hilbert space which is complementary to the entirely de-
localized Bloch wave basis (see Ref.45 for a thorough dis-
cussion). A Bloch state can be built from the Wannier

functions according to

ψφ=0
k,n (r) =

∑
R

e−ik·RTRw
φ=0
n (r) (13)

which can be proven directly from Eq. (12):

∑
R

e−ik·RTRw
φ=0
n (r) =

∫
d2k′

(2π)2

∑
R

ei(k−k
′)·Reik

′·ruk′,n(r)

= ψφ=0
k,n (r)

(14)
Note that the construction in Eq. (13) is guaranteed to
be a momentum eigenstate (if not an energy eigenstate)
for any wφ=0

n (r), not necessarily a Wannier function. We
now make use of this observation to produce magnetic
translation group eigenstates at φ = 2π.

B. Magnetic Bloch Theorem at φ = 2π

At 2π flux, the magnetic translation group commutes
(see Eq. (9)) and is isomorphic to Z2. Hence its irreps
are again labeled by k = k1b1 + k2b2 ∈ BZ which we
refer to as the momentum. This quantum number is es-
sential to determining the topology of the Hamiltonian.
This differentiates our approach from the open momen-
tum space diagonalization technique developed in Ref.28

which does not make use of the momentum, but achieves
a sparse matrix representation of the Hamiltonian at all
fluxes.

To derive a magnetic Bloch Hamiltonian in each k sec-
tor, we must construct eigenstates ψk,n(r) of the mag-
netic translation operators. We will do so on infinite
boundary conditions so that k is continuous. Using the
explicit operators in Eq. (7), there is a natural construc-
tion by summing over the infinite Bravais lattice R.46

Noting that R · bi ∈ Z, we define the states

ψk,n(r) =
1√
N (k)

∑
R

e−ik·RTR·b1
a1

TR·b2
a2

wn(r) (15)

where wn(r) is a function to be chosen momentarily.
Importantly, the states Eq. (15) take the same form
in any gauge. It is direct to check that Taiψk,n(r) =
eik·aiψk,n(r) because [Tai , Taj ] = 0 at φ = 2π. Hence
the states ψk,n are orthogonal in k ∈ BZ. Similar states
have been constructed for tight-binding models in Ref.41.
To achieve orthogonality in n, we use the a, a† operators
which commute with Tai to define

wn(r) =
a†n√
n!
ψ0(r), aψ0(r) = bψ0(r) = 0 . (16)

It follows that the states ψk,n(r) are orthogonal because
they are eigenstates of the Hermitian Landau level oper-
ator a†a with eigenvalue n. We will not need an explicit
expression for the Landau level groundstate ψ0(r), but
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one can be obtained because a and b are commuting lin-
ear differential operators, so the first order differential
equations in Eq. (16) can be directly integrated.47

Lastly, the normalization N (k) in Eq. (15) is defined
by requiring∫

d2r ψ†k,m(r)ψk′,n(r) = (2π)2δ(k− k′)δmn (17)

which, after a detailed calculation contained in App. A 2,
yields

N (k) = ϑ

(
(k1, k2)

2π

∣∣∣∣Φ) , Φ =
i

2

(
1 i
i 1

)
. (18)

The function ϑ (z|Φ) is called the Siegel theta function.48

It is a multi-dimensional generalization of the Jacobi
theta function defined for z ∈ C2 by

ϑ (z |Φ) =
∑
n∈Z2

e2πi( 1
2n·Φ·n−z·n) . (19)

The matrix Φ which defines the Siegel theta function is
sometimes called the Riemann matrix. For the sum in
Eq. (19) to converge, Im Φ must be a positive definite
matrix. In App. A 4, we show that Φ is a special “self-
dual” Riemann matrix which permits the Siegel theta
function to be written in terms of Jacobi theta func-
tions at φ = 2π. It is apparent from Eq. (19) that
N (k + 2πbi) = N (k), which matches the periodicity
of the BZ. The Siegel theta function is quasi-periodic
for complex z. A self-contained derivation of the quasi-
periodicity may be found in App. A 3. We show in
App. A 4 that N (k) ≥ 0 for k ∈ BZ but at πb1 + πb2,
N (k) has a quadratic zero. Thus the states ψk,n do not
exist exactly at k∗ = πb1 + πb2. We show in App. A 1
that the wavefunction can be defined in patches by shift-
ing the operator Q → Q + p which shifts the undefined
states to k∗ + p. In fact, the existence of a zero is topo-
logically protected because the states ψk,n carry nonzero
Chern number (see Sec. V) and hence cannot be well-
defined and periodic everywhere in the BZ. We will show
in Sec. IV that the magnetic Bloch Hamiltonian used to
compute the spectrum is an analytic function of k, so the
zero in N (k) only introduces a removable singularity in
the Hamiltonian. Lastly, we give a gauge-invariant proof
in App. A 5 that the ψk,n basis is complete when acting
on suitable test functions.

For brevity, we now define braket notation for the mag-
netic translation operator eigenstates Eq. (15):

|k, n〉 ≡ 1√
N (k)

∑
R

e−ik·RTR·b1
a1

TR·b2
a2

|n〉 , |n〉 =
a†n√
n!
|0〉 ,

(20)
and a |0〉 = b |0〉 = 0. For Hamiltonians with additional
degrees of freedom indexed by α, such as spin, sublattice,
valley, or layer (see Sec. VIII), the basis states of the
Hamiltonian can be defined |k, n, α〉 = |α〉 ⊗ |k, n〉. In
braket notation, Eq. (17) reads

〈k,m|k′, n〉 = (2π)2δmnδ(k− k′) (21)

and it should be implicitly understood that k = πb1 +
πb2 is excluded from the basis. While discussing single-
particle physics in Sec. IV and Sec. V, the braket notation
is useful for shortening expressions. Lastly, the structure
of the states in Eq. (20) generalizes to the q-dimensional
irreps of the magnetic translation group at rational flux
φ = 2πp

q . We leave this construction to future work.

Before concluding this section, we will emphasize
the difference between our gauge invariant construction
and the commonly used Landau gauge states (see e.g.
Ref.16,27,29). In the Landau gauge A = B(0, x) which
preserves translation along the y direction for instance, a
basis of “Landau level states” can be labeled by ky and
a Landau level index n. These states are fully delocal-
ized along y and localized on the scale of the magnetic
length in harmonic oscillator wavefunctions along x29.
To form eigenstates of the magnetic translation group,
these states are resummed to obtain magnetic transla-
tion invariance along x. This process is somewhat in-
volved and obscures the physical symmetry of the system
since it treats x and y differently due to the asymmetry
of the Landau gauge. In contrast, our gauge-invariant
construction in Eq. (20) is manifestly symmetric under
the magnetic translation group and is immediately valid
for arbitrary lattices. It has many practical advantages:
all calculations can be performed using the oscillator al-
gebra Eq. (A5), and the singularity due to the Chern
number of the states is made explicit. This latter feature
in particular has not been discussed in earlier treatments,
and makes it possible for us to apply the tools of topo-
logical band theory in direct analogy to the Bloch wave
formalism at zero flux.

IV. MATRIX ELEMENTS

Because the Hamiltonian Hφ=2π commutes with the
magnetic translation group, it must be diagonal in k be-
cause of the selection rule

〈k′,m|Hφ=2π|k, n〉 = ei(k−k
′)·ai 〈k′,m|Hφ=2π|k, n〉

(22)
which shows that if ki − k′i 6= 0 mod 2π, then
〈k′,m|Hφ=2π|k, n〉 = 0. Eq. (22) follows from inserting
1 = T †aiTai and commuting Tai through Hφ=2π. Hav-
ing constructed a basis of states which is diagonal in k,
we define an effective “Bloch” Hamiltonian Hφ=2π

mn (k) ac-
cording to

(2π)2δ(k− k′)Hφ=2π
mn (k) = 〈k′,m|Hφ=2π|k, n〉 (23)

which can be diagonalized after imposing a Landau level
cutoff. To compute the effective Hamiltonian, we need
formulas for the matrix elements of Eq. (1). The kinetic
term is simple because h(πππ) is composed of a, a† opera-
tors, so it only acts on the m,n indices and its matrix
elements will not depend on k (see Sec. VI for an exam-
ple). Hence we focus on the potential term U(r) which
causes scattering between different Landau levels. Recall
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that U(r) is periodic so can be expanded as a Fourier
series. Hence we need to compute the general scattering
amplitude

〈k,m|e−2πiG·r|k, n〉 , G = G1b1 +G2b2, G1, G2 ∈ Z .
(24)

It is possible to perform the calculation exactly without
choosing a gauge for A(r) because G ·r can be expressed
simply in terms of πππ and Q using

(eB)−1εµν(Qν − πν) = −εµνενρxρ = xµ (25)

which allows the us to perform the calculation using
BCH. The details may be found in App. A 6. The re-
sult is

〈k′,m|e−2πiG·r|k, n〉 =

(2π)2δ(k− k′)e−iπG1G2−i(G1k2−G2k1)H2πG
mn

(26)

where we have defined the Landau level scattering matrix
for a general momentum q with qi = q · ai and zj =

(x̂+ iŷ) · aj/
√

Ω:

Hq
mn = 〈m| exp (iεijqiZj) |n〉 , Zj =

z̄ja+ zja
†

√
2φ

.

(27)
Here i, j ∈ {1, 2} are the crystalline indices which are
summed over. A closed-form expression for the unitary
matrix Hq in terms of Laguerre polynomials is provided
in Eq. 140 of App. A 6. With Eq. (26), the action
of any periodic potential on the magnetic translation
group eigenbasis is easily obtained. The kinetic term in
Eq. (23) does not depend on k because it only contains
a, a† operators and creates flat Landau levels. We ob-
serve that all the k-dependence of Eq. (23) is contained
in the potential term matrix elements Eq. (26) in the
form exp(iΩk ×G) = exp(−i(G1k2 − G2k1)) and hence
Hφ=2π(k) is analytic in k. From the k-dependence of
Eq. (20), we deduce that |k + 2πG, n〉 = |k, n〉. Thus
Hφ=2π
mn (k+ 2πG) = Hφ=2π

mn (k) is explicitly periodic in k,
so no embedding matrices41 are required.

V. BERRY CONNECTION

Our basis of magnetic translation eigenstates
(Eq. (15)) is built from continuum Landau levels.
These states are known to carry a Chern number49,
and it will be important to see how this arises in our
formalism. To study the topology, we need to compute
the continuum Berry connection:

(2π)2δ(k− k′)Amn(k) = 〈k′,m|r|k, n〉 . (28)

In zero flux where the basis states are plane waves or
Fourier transforms of localized orbitals, Amn(k) would
be trivial. However, the basis states at 2π flux are built

FIG. 1. (a) The Siegel theta function N (k) (see Eq. (18)) is
plotted with arrows denoting the vector field Ann(k). The
winding in A around the zero located at k1 = π, k2 = π leads
to a Chern number in the basis states. (b) The Wilson loop

W (k1) = eiθ(k1) of a single Landau level integrated along k2

is plotted as a function of k1. The Wilson loop is computed
analytically in App. A 7 to be W (k1) = e−ik1 (shown in solid
blue) which winds once crossing the vortex at (π, π). The
numerical approximation of W (k1) is dotted.

out of Landau levels, which by themselves are topolog-
ically nontrivial. We can see this directly by comput-
ing 〈k′, n|r|k, n〉 (here the Landau level index n is un-
summed), the Abelian Berry connection of the nth Lan-
dau level, using the oscillator algebra. The result from
App. A 7 is

Anni (k) = −1

2
εij∂j log ϑ

(
(k1, k2)

2π

∣∣∣∣Φ) (29)

where ∂i = ∂
∂ki

here for brevity, Ai = bi · A, and we

emphasize that Ann(k) is independent of n. Interest-
ingly, a similar formula has appeared recently in flat band
Chern states in Ref.50. We now show that the connec-
tion Eq. (29) has Chern number −1.51 In App. A 7, we
show with a direct computation that the Berry curvature
is given by

εij∂iAnnj =
1

2
∂2 log ϑ = − 1

2π
+ 2πδ(k− πb1 − πb2)

(30)
and has two contributions. The −1/2π term in Eq. (30)
is the constant and nonzero Berry curvature of a Lan-
dau level29,50. The delta function appearing at k∗ =
πb1 + πb2 is an artifact of the undefined basis states at
k∗ where N (k∗) = 0 and is discussed fully in App. A 7.
In fact, the 2π delta function is unobservable in the Wil-
son loop winding because the Berry phase is only defined
mod 2π. To see this, we explicitly calculate the Abelian
Wilson loop (or Berry phase) in App. A 7 and show the
result in Fig. 1(b) where we see that the Wilson loop
eigenvalues are indeed continuous mod 2π. Hence we
can think of the the basis states in Eq. (15) as lattice-
regularized Landau levels. We also see that the zero in
the normalization factor N (k) (see Sec. III) is an essen-
tial feature of the basis rather than a pathological one:
it is a manifestation of the topology of the basis states.
If there were no zero, then we would have written down
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wavefunctions which were periodic and differentiable on
the entire BZ, hence precluding a Chern number52.

Finally, we obtain an explicit expression for the non-
Abelian Berry connection AMN (k) in the occupied bands
indexed by M,N :

(2π)2δ(k− k′)AMN (k)=
∑
mn

[U†(k′)]Mm 〈k′,m|r|k, n〉UNn (k)

(31)
where U(k) is the NLL × Nocc matrix of eigenvectors.
Nocc is the number of occupied bands and NLL is the
dimension of the matrix Hamiltonian, which is truncated
at NLL Landau levels. Leaving the details of the calcu-
lation to App. A 7, we give the general formula

AMN
i (k) = [U†(i∂i − εijZ̃j)U ]MN

− δMN

2
εij∂j log ϑ

(
(k1, k2)

2π

∣∣∣∣Φ) .
(32)

The Abelian term in the second line of Eq. (32) de-
scribes the Chern numbers of the basis states as in
Eq. (29). Note that it is proportional to the identity
δMN and so can be factored out of the Wilson loop to give
an overall winding factor per Landau level as shown in
Fig. 1(b). The new non-Abelian term U†Z̃jU of Eq. (32)
describes coupling between Landau levels where the Her-
mitian matrix [Z̃j ]mn = 〈m|Zj |n〉 is given in Eq. (27).
Returning to Eq. (32), we write the non-Abelian Wilson
loop as the path-ordered matrix exponential

[WC ]
MN =

[
exp

(
i

∮
C
dk · A(k)

)]MN

= e
−i
∮
C dk×

1
2∇∇∇ log ϑ

(
(k1,k2)

2π

∣∣∣Φ)

×
[
exp

(
i

∮
C
dki U

†(i∂i − εijZ̃j)U
)]MN

(33)
with a sum over i, j implied. For numerical computa-
tions, Eq. (33) should be expanded into an ordered prod-
uct form using the projectors Pk = U(k)U†(k). This pro-
cedure can be carried through exactly (the details may
be found in App. A 7) and the result is

WC = exp

[
−i
∮
C
dk× 1

2
∇∇∇ log ϑ

(
(k1, k2)

2π

∣∣∣∣Φ)]

× U†(kL)H−dkL
(L−1)←1∏

n

P (kn)H−dkn
U(k0)

(34)
where C is a closed path with starting at k1 which is bro-
ken into L segments labeled by kn, and dkn = kn−kn−1.

The insertions of non-Abelian terms Hdk = eiεijdkiZ̃j act
off-diagonally on the Landau level index (see Eq. (27)).
The appearance of these non-Abelian terms reflects the
fact that the Landau level states in Eq. (15) are not lo-
calized below the magnetic length, which is 1/

√
φ in di-

mensionless units. In Sec. VI, we use the results of this

FIG. 2. (a, b) Square lattice in zero flux, at low potential
w = 1 and high potential w = 7 respectively. (c, d) Square
lattice in 2π flux, at low potential and high potential respec-
tively. (e, f) Wilson loops of the square lattice in flux. At low
hoppings, the Hamiltonian resembles a Landau level system,
resulting in nearly flat bands and a winding in the Wilson loop
for the lowest band. At large hoppings, a gap closing occurs
and allows the lowest band to have Chern number zero.

section to calculate the Wilson loop in a square lattice
model tuned through a topological phase transition at 2π
flux by increasing the strength of the crystalline poten-
tial.

VI. SQUARE LATTICE EXAMPLE

The simplicity of implementing our formalism is illus-
trated with a model of a scalar particle mass m = 1
which feels a square lattice cosine potential. While it
may be possible to simulate this type of model on an
optical lattice53–55, we intend this example to be peda-
gogical rather than physically motivated. We take the
lattice vectors and reciprocal vectors to be a1 = b1 =
(1, 0),a2 = b2 = (0, 1) so Ω = 1 and define the zero-flux
Hamiltonian as

Hφ=0 = −1

2
∇∇∇2 +

w

2
(e−2πib1·r + e−2πib2·r +H.c.), (35)

where we have taken ~ = 1. When w = 0, the Hamil-
tonian Hφ=0 has continuous translation symmetry and
solutions can be labeled by momentum k. When w is
nonzero, the continuous translation symmetry is broken
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to a discrete symmetry which weakly couples the plane
wave states and opens gaps at the corners of the BZ. By
Bloch’s theorem, the states are labeled by momentum k
in the BZ and the effective Hamiltonian reads

Hφ=0
G,G′(k) =

1

2
(k−G)2δGG′ (36)

+
w

2
(δG,G′−2πb1

+ δG,G′−2πb2
+H.c.)

and G = G1b1 +G2b2, Gi ∈ Z (see App. B for details).
We show the Bloch band structure in Fig. 2 in the weak
and strong potential regimes. In flux, the Hamiltonian
Eq. (35) is written in terms of the canonical momentum

Hφ =
1

2
πππ2 +

w

2
(e−2πib1·r + e−2πib2·r +H.c.), (37)

that is, Landau levels in a lattice potential. In 2π flux
using the matrix elements in Eq. 139 of Ref.38, the mag-
netic Bloch Hamiltonian is

Hφ=2π
mn (k) = φ(m+

1

2
)δmn

+
w

2
(e−ik2H2πb1

mn + eik1H2πb2
mn +H.c.)

(38)
and recalling that the kinetic term acts on the |k,m〉 ba-
sis as 1

2πππ
2 = φ(a†a+ 1

2 ). The potential term H2πG
mn cou-

ples the Landau levels, giving nontrivial dispersion. We
numerically calculate the band structure in the weak cou-
pling (w = 1) and strong coupling (w = 7) regimes. The
Landau level regime in weak coupling exhibits nearly flat
bands (Fig. 2(c)), and its lowest band carries a Chern
number, as exemplified by the winding of the Wilson
loop shown in Fig. 2(e). Increasing w pushes the model
through a phase transition with a band touching at the
Γ point. At strong coupling (w = 7), the 2π flux spec-
trum is gapped (Fig. 2(d)) and its lowest band has zero
Chern number (Fig. 2(f)). Hence the lowest band cannot
be interpreted as a Landau level, despite the strong flux.

VII. MANY-BODY FORM FACTORS

Thus far, we have discussed the single-particle spec-
trum and Wilson loop topology of continuum Hamiltoni-
ans at 2π flux. In this section, we extend our formalism
to many-body physics and derive a convenient expression
for the Coulomb Hamiltonian

Hint =
1

2

∫
d2rd2r′ n(r)V (r− r′)n(r′) (39)

in terms of the magnetic translation operator eigenbasis
Eq. (15). Here n(r) = c†(r)c(r) is the local density oper-
ator at r and c(r), c†(r) are the continuum fermion oper-
ators satisfying {c†(r), c(r′)} = δ(r− r′). In Sec. IX, we
will project the Coulomb interaction on the flat bands of
TBG in order to study its many-body insulating ground-
states, as done in zero flux in Refs.56,57. The calculation

for TBG is more involved because there are additional
indices corresponding to valley and spin (see App. D 3
for details). For simplicity, we focus on models with only
a single orbital per unit cell in this section and study the
projected Coulomb Hamiltonian at 2π flux.

To avoid confusion with the Fock space braket notation
in many-body calculations, we return to a wavefunction
notation for the magnetic translation group eigenstates:

ψk,n(r) =
1√
N (k)

∑
R

e−ik·RTb1·R
a1

Tb2·R
a2

a†n√
n!
ψ0(r),

(40)

where ψ0 is the zeroth Landau level aψ0 = bψ0 = 0.
Throughout this section, |0〉 is the Fock vacuum satisfy-
ing c(r) |0〉 = 0 (not the Landau level vacuum) as is clear
from context. The second-quantized creation operators

ψ†k,n are defined by

〈r|ψ†k,n |0〉 = 〈0|crψ†k,n|0〉 = ψk,n(r) (41)

and {ψ†k′,m, ψk,n} = (2π)2δmnδ(k − k′). We study

the a general density-density interaction (essentially the
Coulomb interaction with arbitrary screening) which can
be put into the form

Hint =
1

2

∫
d2rd2r′ n(r)V (r− r′)n(r′)

=
1

2

∫
d2q

(2π)2
V (q)ρ−qρq, ρq =

∫
d2r e−iq·rn(r)

(42)
where V (q) is the Fourier transform of the position-space
potential. Throughout, we use q = k + 2πG to denote
a continuum momentum. We assume that V (q) > 0
but is otherwise fully general. Our goal is to express

the Fourier modes ρq in terms of the ψ†k,m operators.
This is accomplished by calculating the matrix elements

〈0|ψk,mρqψ
†
k′,n|0〉 because ρq is a one-body operator.

The calculation is performed in App. C, and yields

ρq =
∑
mn

∫
d2k

(2π)2
eiξq(k)ψ†k−q,mHq

mnψk,n, (43)

with the phase factor ξq(k) defined by

eiξq(k) =
e−

q̄q
4φϑ

(
(k1−q/2,k2+iq/2)

2π

∣∣∣Φ)√
ϑ
(

(k1,k2)
2π

∣∣∣Φ)ϑ( (k1−q1,k2−q2)
2π

∣∣∣Φ) . (44)

with q = (a1 + ia2) · q. The unitary matrix Hq defined
in Eq. (27). We prove analytically that eiξq(k) is a pure
phase at the end of App. A 6. At k = πb1 + πb2 and
k = πb1 + πb2 + q, the denominator of Eq. (44) has
zeroes which are exactly canceled by the zeros of the
numerator (they are removable singularities), so ξq(k) is
always real. We plot ξq(k) in Fig. 3 which shows that a
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FIG. 3. Phase ξq(k) in Eq. 44 for q = π
2
b1+ π

2
b2, plotted as a

density. Note the branch cut linking (1/2, 1/2) to (3/4, 3/4).

branch cut connects the removable singularities at (π, π)
and (π + q1, π + q2).

So far, we have developed an expression for the den-
sity operators (Eq. (43)) and thus for the many-body
Coulomb Hamiltonian in terms of the single-particle
magnetic translation group eigenstates. This will make it
possible to perform a projection onto a set of low-energy
bands. To do so, define the energy eigenstate operator

γ†k,N that creates state at momentum k in band N :

γ†k,N =
∑
m

UNm (k)ψ†k,m, (45)

with UN (k) the eigenvector of the Hamiltonian corre-
sponding to band N . (In models with more orbitals in-
dexed by α, Eq. (45) would also contain a sum over α.)
In second quantized notation, we arrive at the general
expression

ρq =

∫
d2k

(2π)2

∑
MN

γ†k−q,MMMN (k,q)γk,N , (46)

where the form factor matrix M(k,q) obtained from
Eq. (46) is defined as

MMN (k,q) = eiξq(k)[U†(k− q)HqU(k)]MN . (47)

Note that M(k,q) is not a gauge-invariant quantity be-
cause the eigenvectors in the matrices U(k) and U(k−q)
are only defined up to overall phases (or in general uni-
tary transformations if there are degeneracies in the
bands). App. D 3 contains a complete discussion, which
we summarize by noting the “gauge freedom” taking
M(k,q)→W †(k−q)M(k,q)V (k) whereW (k−q), V (k)

FIG. 4. Construction and conventions of the moiré BZ, blue
hexagon, from the graphene layers with relative twist θ.

are arbitrary unitary matrices. There are gauge-invariant
quantities determined from M(k,q) such as its singu-
lar values, which are the eigenvalues of M†(k,q)M(k,q).
We will use the singular values to study the flat metric
condition58 in Sec. IX A.

Having discussed the form factors, we emphasize that
Eq. (46) is an exact expression for the density operator.
To define a projected density operator, we restrict the
indices M,N to a subset of low-energy bands so that ρq
annihilates all other bands. Our result in Eq. 46 is struc-
turally similar to the form factor expression obtained in
Ref.58 in zero flux. We discuss the behavior of the form
factor in App. D 3.

VIII. TWISTED BILAYER GRAPHENE:
SINGLE-PARTICLE PHYSICS

Twisted bilayer graphene (TBG) is a metamaterial
formed from twisting two graphene sheets by a relative
angle θ14,59,60. The resulting moiré pattern is responsi-
ble for the very large unit cell that allows experimental
access to φ = 2π. Let us set our conventions for the ge-
ometry of the moiré twist unit cell. First, the graphene
unit cell has a lattice vector of length ag = .246nm and

an area Ωg = a2
g

√
3

2 . The monolayer graphene K point

is Kg = 2π
ag

(0, 2/3). The moiré vectors qj are defined by

the difference in momentum space of the rotated layers’
K points:

2πq1 = (Rθ/2 −R−θ/2)Kg, qj = C3qj−1,

2π|qj | ≡ kθ = 2|Kg| sin
θ

2
=

8π sin θ
2

3ag

(48)

where Rθ is a 2D rotation matrix. The moiré reciprocal
lattice vectors are defined

bj = qj − q3, b1 × b2 =
(2 sin θ

2 )2

Ωg
. (49)

The moiré lattice is defined by ai · bj = δij which yields

a1 =
ag

2 sin θ
2

{−
√

3

2
,−1

2
} a2 =

ag

2 sin θ
2

{
√

3

2
,−1

2
} .

(50)
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FIG. 5. Phase diagram of TBG in 2π flux at magic angle. We
plot the gap between the flat and passive bands as a function
of parameters w0, w1. Phase A, containing the physical TBG
parameters is in the crystalline regime where the flat bands
have zero Chern number, while phase B is connected to the
Landau level limit where each flat band has Chern number
−1. The first chiral limit where w0 is in phase B at w1 =
110meV. C and D are phases connected to the second chiral
limit w1 = 0 where the bands have strong dispersion (see
Fig. 6).

Finally, the moiré unit cell has area

Ω = a1 × a2 =
Ωg

(2 sin θ
2 )2

. (51)

The moiré Brillouin zone is depicted in Fig. 4. At the
magic angle where θ = 1.05◦, the moiré unit cell is∼ 3000
times larger than the graphene unit cell. The magnetic
translation group commutes when φ = eBΩ

~ = 2π, which
occurs at B ∈ (25, 32)T for θ ∈ (1.03◦, 1.15◦). These
fields are experimentally accessible, making it possible to
explore the Hofstadter regime of TBG. Ref.33 focuses on
TBG at the magic angle, as well as the evolution of the
spectrum in flux.

The following sections contain a thorough treatment
of TBG at 2π flux. We discuss the Bistritzer-MacDonald
(BM) Hamiltonian in Sec. VIII A and show the phase dia-
gram of TBG, identifying a crystalline regime (including
the physical TBG parameters) where the flat bands have
vanishing Chern number and a Landau level regime (in-
cluding the first chiral limit) where the flat bands each
have Chern number −1, denoted by A and B respec-
tively in the phase diagram Fig. 5. In Sec. VIII A, we
discuss the symmetries, topology, and Wannier functions
which are different than at zero flux. Importantly, we
find that the C2zT symmetry, which is essential in pro-
tecting the nontrivial topology at φ = 0, is broken. At
φ = 2π, we find that the TBG flat band structure can be
obtained from atomic limits but still has Wannier func-
tions pinned to the corners of the moiré unit cells. In

Sec. VIII C, we focus on the chiral limit of TBG where
the chiral anomaly, a well-studied feature of relativistic
gauge theory61–69, protects a pair of perfectly flat bands
in TBG at all angles at 2π flux.

A. Band structure

We begin with the Bistritzer-MacDonald model of
twisted bilayer graphene in the untwisted graphene K
valley (and arbitrary spin) at zero flux:

HBM =

(
−i~vFσσσ · ∇∇∇ T †(r)

T (r) −i~vFσσσ · ∇∇∇

)
, (52)

with σ labeling the sublattice degree of freedom and the
2×2 matrix notation labeling the layer index. Note that
HBM neglects the twist angle dependence in the kinetic
term and thus has an exact particle-hole symmetry60.
For simplicity, we work in this approximation, but we
note that incorporating the twist angle dependence poses
no essential difficulty for our formalism. The moiré po-
tential is T (r) =

∑3
j=1 e

2πiqj ·rTj where

Tj+1 = w0σ0 + w1

(
σ1 cos

2π

3
j + σ2 sin

2π

3
j

)
. (53)

To add flux into HBM , we employ the canonical substi-
tution −i~∇∇∇ → πππ. As written, HBM is not translation-
invariant: the qi vectors which appear in the moiré po-
tential are not reciprocal lattice vectors. However, HBM

can be made translation invariant by a unitary transfor-
mation:

V1 =

(
eiπq1·r 0

0 e−iπq1·r

)
(54)

which acts only on the layer index.70 Acting on the states,
V1 shifts the momentum in the different layers by 2πq1,
reflecting separation of the Dirac points in Fig. 4. We
then define the Hamiltonian in flux by

Hφ
BM (r) = V1

(
vFσσσ · πππ T †(r)
T (r) vFσσσ · πππ

)
V †1

=

(
vFσσσ · πππ − πvFq1 · σσσ T̃ †(r)

T̃ (r) vFσσσ · πππ + πvFq1 · σσσ

) (55)

with T̃ (r) = T1 + T2e
2πib1·r + T3e

2πib2·r. In this form,

the matrix elements of T̃ (r) in the magnetic translation
operator basis can be directly obtained with Eq. 139 in
Ref.38 in a sublattice/Landau level tensor product basis.
An explicit expression is given in Eq. 228 of Ref.38. The
kinetic term can be expressed simply with Landau level
operators. Expanding the Pauli matrices, we find

vFσσσ · πππ = vF
√

2eB

(
0 a†

a 0

)
= vF

√
2φ/Ω

(
0 a†

a 0

)

= vF kθ

(
3
√

3

2π

)1/2(
0 a†

a 0

) (56)
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FIG. 6. Band structures (left), density of states (middle),
and Wilson loops (right) of TBG at 2π flux. The parame-
ters

(√
3w0/(vF kθ),

√
3w1/(vF kθ)

)
given by (a): (0.8, 1), (b):

(0.05, 0.8), (c): (0.7, 0.15), (d): (0.97, 0.32), (e): (0.0, 1.0). (a-
d) are chosen to be connected to phases A −D (see Fig. 5),
and (e), the chiral limit, is connected to B but has a very
small gap (< 2meV). The very small gap makes the flat band
Wilson loop ill-conditioned, so we compute the Wilson loop
of the middle 4 bands.

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

E
n

er
gy

(m
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)

Γ K M Γ −M K ′

FIG. 7. Close-up of the flat bands of TBG in flux at magic
angle. Note the protected Dirac points at K,K′ due to the
different C3 eigenvalues of the flat bands (see Eq. (59)) and
MT,P symmetries, as well as the maximal gap at Γ where
the C3 eigenvalues are the same.

using φ = 2π and the moiré wavevector kθ in Eq. (48).
The numerical factor coming from the unit cell geome-
try is (3

√
3/2π)1/2 ' .91. Lastly, the momentum shift

πvFq1 ·σσσ in Eq. (55) acts as the identity on the Landau

level index, and πvFq1 · σσσ = vF kθ
2 σ2 using 2πq1 = kθŷ.

The Dirac Hamiltonian Eq. (56) in flux is well-studied.
At 2π flux and θ = 1.05◦, the low energy spectrum of
Eq. (56) consists of a zero mode and states at ±E1 =
±.91vF kθ = ±170meV. This is on the same scale as the
potential strength w1 = 110meV.

Numerical analysis of the band structure is straight-
forward and yields two flat bands (per valley and spin,
or 8 total) gapped from the dispersive bands by ap-
proximately 40 meV. See Fig. 6(a) for the band struc-
ture, density-of-states, and the Wilson loop of the flat
bands for TBG, Fig. 6(b-e) for other choices of parame-
ters w0, w1. For a close-up of the flat-band dispersion at
the magic angle see Fig. 7.

B. Symmetries and Topology

In zero flux, the topology of the TBG flat bands is
protected by C2zT symmetry60,72,73. However, C2zT is
broken in nonzero flux because T reverses the magnetic
field and C2z preserves it41. On the lattice in the Peierls
approximation, C2zT is restored as a (projective) symme-
try at certain values of the flux41, but we do not consider
this approximation here. In this section, we show that
the band representation of TBG at φ = 2π can be ob-
tained from inducing atomic orbitals at the corners of the
moiré unit cell, so the fragile topology at φ = 0 is broken
by magnetic field. However, we find that band repre-
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FIG. 8. C3-symmetric Wilson loops, discussed in Refs.60,71.
In (a), the path 1 begins at K, goes to K′, then back to K.
The midpoint of the path is continuously changed until Γ at
50; further paths then follow a more complicated trajectory
linking K back to K and then back again. In (b), Wilson loops
are taken in successively larger hexagons surrounding the Γ
point. Neither loop has nontrivial winding because there are
no symmetries that protect crossings at ±π, so the Wilson
loops can be deformed to flat lines as depicted in (c) which
shows a caricature of the deformation process.

sentation is decomposable39,71,74,75, so the flat bands are
topologically nontrivial when gapped from each other via
a particle-hole breaking term.

First we review the topology in zero flux which is dis-
cussed comprehensively in Refs.60,72. The space group
of TBG is p6′2′2 which is generated by C3, C2zT , and
C2x.76 The symmetries are: three-fold rotations around
the AA moiré site C3, spacetime inversion C2zT , and
two-fold rotation around the x-axis C2x. Note that in
2D, C2x is indistinguishable from My, a mirror taking
y → −y. The band representation of the flat bands is

Bφ=0 = Γ1 + Γ2 +K2K3 +M1 +M2 (57)

and the irreps are defined at the high symmetry mo-
menta Γ = (0, 0),K = 2πq1,M = πb1 by

6′m′m 1 C3 My

Γ1 1 1 1

Γ2 1 1 −1

,
6′ 1 C3

K2K3 2 −1
,

2′m′m 1 C2x

M1 1 1

M2 1 −1

.

(58)
The presence of the anti-unitary C2zT (PC2zT )

symmetry in the space group is required to prove
that the band representation Bφ=0 is fragile (stable)
topological60,72.

At 2π flux, the C2zT and C2x symmetries are broken
because they reverse the magnetic field41. The resulting
band topology is mentioned in Ref.33, which we review
here for completeness. Without C2zT , the topology of
the flat bands is not protected. The most direct way to
see this is from the Wilson loop (see Eq. (33)) integrated
along b2 in Fig. 8(a) which shows no relative winding.
The same Wilson loop at zero flux has C2zT -protected
relative winding60. We also plot the C3-symmetric Wil-
son loops discussed in Refs. 60 and 71 and find no wind-
ing, as shown in Fig. 8(a,b). The lack of winding in any
Wilson loop suggests that localized, symmetry-respecting
Wannier states may be formed from the two TBG flat
bands at 2π flux (per valley per spin)74,77. Below, we
discuss the flat bands in detail from the perspective of
topological quantum chemistry.

At 2π flux, the 2D space group is reduced to p31m′ (the
kz = 0 plane of the 3D space group 157.55 in the BNS
setting) generated by C3 and MT ≡ C2xC2zT . The full
algebra, including the anti-commuting unitary P symme-
try, is

MT C3 = C†3MT , C3
3 = 1

[P,C3] = 0, P 2 = −1

{P,MT } = 0 (MT )2 = +1

and their action on the Hamiltonian is

C3H
φ=2π(k)C†3 = Hφ=2π(C3k),

MT Hφ=2π(kx, ky)(MT )−1 = Hφ=2π(kx,−ky),

PHφ=2π(k)P † = −Hφ=2π(−k).

(59)
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The operator P = PMT squares to +1 and satisfies
PC3 = C2

3P. P sends (kx, ky) → (−kx, ky) and hence is
local at the K and K ′ points. Because P anticommutes
with the Hamiltonian at Γ,K, and K ′, it switches the
two flat bands if they are at nonzero energies ±E. If
P |Ψ+E〉 = |Ψ−E〉 and |Ψ+E〉 carries C3 eigenvalue ω,
then |Ψ−E〉 also carries eigenvalue ω. For the Γ point
this is indeed what happens – we find the Γ point is
gapped in Fig. 7 – but the K,K ′ points cannot gap, as
a Dirac cone carries different C3 eigenvalues in the two
flat bands.

Ref.41 demonstrated that no symmetries or topology
protect a gap closing between the flat bands and pas-
sive bands at nonzero flux, matched by experimental
evidence in Refs.34,78. As such, the irreps in nonzero
flux are obtained from Bφ=0 by reduction to the p31m′

subgroup of p6′2′2. We use the Bilbao Crystallo-
graphic Server79,80 to determine the irreps and elemen-
tary band representations of p31m′. They may be
found at https://www.cryst.ehu.es/cgi-bin/cryst/
programs/mbandrep.pl. The irreps of p31m′ are very
simple: the high symmetry momenta are Γ,K, and K ′

where all irreps are those of the point group 3, so irreps
at φ = 0 reduce to their C3 eigenvalues at φ 6= 0. We
find

Bφ=2π = Bφ=0 ↓ p31m′ = 2Γ1 +K2 +K3 +K ′2 +K ′3
(60)

where the irreps in p31m′ that appear in Eq. (60) are
defined

3m′ 1 C3

Γ1 1 1
,

3 1 C3

K2 1 e
2πi
3

K3 1 e−
2πi
3

,

3 1 C3

K ′2 1 e−
2πi
3

K ′3 1 e
2πi
3

. (61)

As discussed, the particle-hole symmetry P ensures that
the irreps at the K and K ′ points are degenerate, so K2+
K3 andK ′2+K ′3 should be thought of as co-irreps. We can
induce Bφ=2π from the elementary band representations
of p31m′:

Bφ=2π = A2b ↑ p31m′ (62)

where 2b is the Wyckoff position consisting of the MT -
related corners of the moiré unit cell (the AB and BA
positions shown in Fig. 9) and the two-dimensional A
irrep is two s orbitals, i.e. the representation of C3 is
12×2. From Eq. (62), we see that the band representa-
tion of TBG at 2π flux can be obtained from elementary
band representations. This fact, coupled with the calcu-
lation of trivial Wilson loops, demonstrates the elemen-
tary band representation is not topological. Note that the
unitary particle-hole symmetry P acts as inversion in real
space, and is implemented on the A2b irrep by exchang-
ing the s orbitals at AB and BA sites. Because there
is no obstruction to locally realizing all symmetries of
TBG at 2π flux, lattice model approaches81,82 can faith-
fully capture the the topology. However, although Bφ=2π

is an elementary band representation, the Bilbao crystal-
lographic server reveals that it is decomposable into two

FIG. 9. Moiré lattice in real space, with colored regions de-
noting the AA and AB, BA stacking regions. The band rep-
resentation Bφ=2π can be induced from s orbitals at the 2b
position, which is composed of the AB and BA moiré sites.

topological bands with Chern numbers ±1 if the particle-
hole symmetry P is broken and the flat bands gap. This
case is discussed in Ref.33.

C. Chiral Anomaly in TBG

Ref.83 first identified a special region in the TBG pa-
rameter space called the chiral limit where w0 = 0 (w1

is unrestricted). In the chiral limit, an anti-commuting
symmetry C = τ0⊗σ3⊗1 (τ0 is the 2×2 identity on the
layer indices and 1 is the identity on the Landau level
indices) appears which obeys

{C,Hφ
BM} = 0 (63)

for all flux φ. We see this from Eq. 228 of Ref.38 be-
cause only σ1 and σ2 matrices appear when w0 = 0 (see
App. D 2). In zero flux, Ref.83 identifies a discrete series
of w1 values where the two bands become exactly flat and
have opposite chirality.

We now show that in chiral TBG at 2π flux, there are
two exactly flat bands for all values of w1, as we observe
in Fig. 6(e). We will prove this is protected by the two
flat bands having the same chirality. This is known as the
chiral anomaly, which is a non-crystalline representation
of chiral symmetry and cannot be realized in zero flux.
First, recall that any state |E〉 at energy E 6= 0 yields
a distinct state |−E〉 = C |E〉 of energy −E, and the
chiral eigenvalues on the basis |E〉 , |−E〉 are ±1 because

https://www.cryst.ehu.es/cgi-bin/cryst/programs/mbandrep.pl
https://www.cryst.ehu.es/cgi-bin/cryst/programs/mbandrep.pl
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they are exchanged by C. We can determine the chiral
eigenvalues of the flat bands in TBG analytically in the
small w1 limit where the kinetic term dominates and

Hφ
BM (r)→

(
vFσσσ · πππ 0

0 vFσσσ · πππ

)
, as w1 → 0 . (64)

The eigenstates are in the form (|En〉 ,± |En〉)T where
the ± states are orthogonal (so there are two states of
energy En to account for the two layers) and the Dirac
Hamiltonian eigenstates are defined

|E0〉 =

(
|0〉
0

)
, |En〉 =

1√
2

(
||n|〉

sgn(n) ||n| − 1〉

)
, n 6= 0

(65)

with energies σσσ · πππ |En〉 = sgn(n)
√

2|n|φ/Ω |En〉 and
sgn(0) = 0. The chirality operator on the Dirac states
obeys

σ3 |E0〉 = + |E0〉 , σ3 |En〉 = |E−n〉 . (66)

In the w1 → 0 limit, the zero energy flat band eigenstates
of HBM in the chiral limit are

1√
N (k)

∑
R

e−ik·RTb1·R
a1

Tb2·R
a2

(
|E0〉
± |E0〉

)
(67)

at every k ∈ BZ. The bands in Eq. (67) carry chiral
eigenvalues +1,+1. Note that the chiral eigenvalues pro-
tect the perfectly flat bands at all k: if the energy of
either of the flat bands states was not exactly zero, then
C |E〉 would be a distinct state and the pair would have
chiral eigenvalues ±1. Hence the +1,+1 eigenvalues pin
the states to zero energy. We now show this is true for
w1 6= 0. The proof is by contradiction. First, we increase
w1 away from zero so the flat band eigenstates are su-
perpositions of many Landau levels. However, the chiral
eigenvalues cannot change from +1,+1. All gap closings
occur as states |±E〉 touch the zero energy flat bands,
but a pair of states |±E〉 necessarily has chiral eigenval-
ues ±1 so the sum of the chiralities of the occupied bands
is always 2. Thus two states are always pinned to zero
energy at every k and all w1, yielding exactly flat bands
at all angles. We emphasize that this situation is very
different than at zero flux where the chiral eigenvalues of
the flat bands are ±1 which allows them to gap at generic
values of w1.

The +1,+1 chiral eigenvalues are called the chiral
anomaly because the trace of C over all bands at fixed k
formally satisfies

Tr C =

∞∑
N=−∞

U†N (k)σ3UN (k)

=
∑
N=±1

U†N (k)σ3UN (k) = 2

(68)

which is anomalous because Tr σ3 = 0. As in Eq. (45),
UN (k) is the eigenvector of the Nth band at momentum

k. In the second line of Eq. (68), we used the ±1 chi-
ral eigenvalues of states at E 6= 0 to cancel them from
the sum, leaving only the passive bands. The fact that
Tr C = 2 can be understood from the Atiyah-Singer in-
dex theorem84,85 which states that each Dirac Hamilto-
nian contributes φ/(2π) to the trace of the chirality op-
erator, so Tr C = 2 at φ = 2π because there are two
layers66. Strictly speaking, we cannot apply the index
theorem because we have constructed the spectrum on
an infinite plane which is not compact. However, we can
effectively compactify the spectrum by taking k to be
discrete with L2 values in the BZ corresponding to an
La1 × La2 torus in real space. Then there are a total of
2L2 zero modes of +1 chirality from Eq. (68), so Tr C = 2
at each k.

We can also consider the second chiral limit of TBG
identified in Ref.58 where w0 6= 0 and w1 = 0. This limit
has the chiral symmetry C ′ = τ3σ3 where τ3 is the Pauli
matrix acting on the layer index. Numerically, we do not
find zero-energy bands in the second chiral limit. This
is because the Dirac zero modes in the top and bottom
layers have opposite chiralities due to τ3, so there is no
chiral anomaly to protect the exact flatness.

IX. TWISTED BILAYER GRAPHENE:
MANY-BODY PHYSICS

The rich single-particle physics of TBG at 2π flux, dis-
cussed at length in Sec. VIII, is characterized by the
presence of low-energy flat bands. At the magic an-
gle θ = 1.05, the theoretically predicted small band-
width ∼ 2meV means that the Coulomb interaction,
which is ∼ 24meV, is the dominant term in the TBG
Hamiltonian86. The large gap to the passive bands of
∼ 40meV makes a strong coupling approximation viable
where the Coulomb Hamiltonian is projected into the flat
bands and the flat band kinetic energy is neglected. This
strategy has been used to great effect in predicting the
groundstate properties of TBG near zero flux56,57,86–89.

Because the kinetic band energy is < 2meV and the
Zeeman spin splitting is also ∼ 2meV at 30T, it is con-
sistent to neglect both terms in the Hamiltonian at 2π
flux. In this case, a U(4) symmetry emerges in the
strong coupling approximation just like at φ = 0. Briefly,
the spin and valley degeneracies act locally on the mo-
mentum k and lead to a U(2) × U(2) symmetry group,
which is expanded in the strong coupling approximation
to U(4) by the operator C2zP which also acts locally on
k (see App. D 2). Note that C2zP commutes with the
Coulomb term in Eq. (42) but anti-commutes with the
single-particle Hamiltonian H0 which is why only the en-
hanced symmetry appears only in the strong coupling
approximation where H0 is set to zero in the flat bands.
This is briefly reviewed in App. D 3 and explained in
depth in Ref.86.

We now apply the results of Sec. VII to TBG, setting
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the screened Coulomb interaction to

V (q) = πξ2Uξ
tanh ξ|q|/2
ξ|q|/2 (69)

where the parameters of the screened Coulomb interac-
tion are ξ = 10nm, Uξ = e2/(εξ) = 24meV where ε is the
dielectric constant86.

A. Many-body Insulator Eigenstates

Because the flat bands, approximate spin rotation, and
valley symmetry survive the addition of 2π flux, one may
add Coulomb interactions in the same manner as TBG
in zero flux: by projecting density-density terms into the
8 flat bands. These 8 bands have the creation operators

γ†k,M,η,s where M = ±1 is the band, η is the valley, and

s is the spin. We note that γ†k+2πG,M,η,s = γ†k,M,η,s be-

cause the eigenstates are periodic in k (see Sec. III B).
Just as in zero-flux, the density-density form of the
Coulomb interaction in Eq. (42) (that has neither spin
nor valley dependence) takes the positive-semidefinite
form

Hint =
1

2Ωtot

∑
q∈BZ

∑
G

O−q,−GOq,G, (70)

where Ωtot is the total area of the sample and the oper-

ators Oq,G = O†−q,−G are

Oq,G =
√
V (q + 2πG)

∑
k∈BZ

∑
η,s

∑
MN

M̄η
MN (k,q + 2πG)

× (γ†k−q,M,η,sγk,N,η,s −
1

2
δMNδq,0) . (71)

An expression for the form factor M̄η
MN (k,q) is given

in Eq. 282 of App. D. The term 1
2δMNδq,0 is added

to make Hint symmetric about charge neutrality as in
Ref.86. To project in the flat bands, we merely restrict
M,N to the flat bands which we label ±1. If all flat
band states of a given valley η and spin s are filled, Oq,G

annihilates the state for all q 6= 0 mod 2πG. This allows
for the construction of exact eigenstates at filling ν =
−4,−2, 0, 2, 4:

|Ψν〉 =
∏
k

(ν+4)/2∏
j

γ†k,+,sj ,ηjγ
†
k,−,sj ,ηj |0〉 , (72)

where γ†k,±,sj ,ηj operators create flat band eigenstates

with spin sj and valley ηj which are arbitrary. Differ-
ent choices of j are related by U(4)56. The states |Ψν〉
all have zero Chern number because the two flat bands
have no total winding (see Sec. VIII A). The operators
Oq act simply on these states as calculated in App. D 4:

Oq,G |Ψν〉 = δq,0λG |Ψν〉 (73)

where q here is restricted to the BZ and

λG = ν
√
V (2πG)

∑
k∈BZ

1

2
Tr M̄(k, 2πG) . (74)

We prove in App. D 4 that M̄η(k, 2πG) and
M̄−η(k, 2πG) are related by a unitary transform,
so we drop the η label on quantities which are indepen-
dent of valley, such as Tr M̄η(k, 2πG). Appealing to
Eq. (70), we show in App. D 4 that the energy of the
eigenstates is

Hint |Ψν〉 =

(
1

2Ωtot

∑
G

|λG|2
)
|Ψν〉 (75)

which vanishes at the charge neutrality point ν = 0 be-
cause λG ∝ ν. Because Hint is positive semi-definite,
|Ψ0〉 must be a groundstate because it has zero energy at
ν = 0. Additionally, the ν = ±4 eigenstates are trivially
groundstates because they are fully filled/fully empty.
Whether the |Ψν〉 are true groundstates for ν = ±2 is
still in question. One way to assess the groundstates at
ν = 2 is with the flat metric condition58, which is the
approximation

M̄η(k, 2πG) = mG12×2, (76)

in other words that M̄(k, 2πG) is multiple of the iden-
tity matrix which does not depend on k at each G.
In Ref.56 it was shown that if the flat metric condi-
tion is satisfied, then |Ψν〉 are necessarily groundstates.
App. D 4 contains a detailed review of this claim. In
Fig. 10, we numerically calculate the singular values of
M(k, 2πG) as in Ref.56 and argue that Eq. (76) holds

to a high degree of accuracy for all 2π|G| 6=
√

3kθ,
as is also the case at φ = 0. For six G momenta
±b1,±b2,±(b1−b2) where 2π|G| =

√
3kθ, the flat met-

ric condition is still an acceptable approximation to an
accuracy in energy of Ω−1V (2π

√
3kθ) ∼ 10meV times a

numerical O(1) constant depending on the violation of
Eq. (76). From Eq. (10), the difference of the eigenval-
ues of M†(k, 2πG)M(k, 2πG) is . .33, whereas if the
flat metric condition held, the difference would be zero.
Hence we estimate that the flat metric condition holds
within Ω−1V (2π

√
3kθ) ×

√
.33 ∼ 5meV. Unless states

other than |Ψν〉 are very competitive in energy, we can
assume that |Ψν〉 is a groundstate at ν = ±2. The ex-
citation spectrum above these ground states at 2π flux
is studied in Ref.33. Ref.90 uses a complimentary tech-
nique to study the strong coupling excitations in small
magnetic fields.

X. DISCUSSION

The techniques developed in this paper allow for an
analysis of general periodic Hamiltonians in 2π flux
— most notably the continuum models of moiré meta-
materials — generalizing Bloch’s theorem in a way that
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FIG. 10. The validity of the flat metric condition can
be evaluated by examining the eigenvalues of P (k, 2πG) =
M†(k, 2πG)M(k, 2πG) as a function of k. At G = 0 (red),
M(k, 0) = U†(k)U(k) is the identity matrix so the flat met-
ric condition is exactly satisfied. Because the form factor
M(k, 2πG) decays exponentially in G, the flat metric condi-
tion is very nearly true for |G| ≥ 3 (blue) because the eigen-
values are quite small. Thus the validity of the flat metric con-
dition is determined to very good approximation by only the
first momentum shell composed of G = ±b1,±b2,±(b1−b2)
(green). We see that, while M(k, 2πG) is not proportional
to the identity, the differences between the eigenvalues of
P (k, 2πG) are . .33 which is only a small violation of the
flat metric condition. We used the parameters θ = 1.05 and
w0 = .8w1, but we checked that the flat metric condition is
reliable over a range of parameters.

allows theoretical access to non-Peierls physics. We de-
rived formulae for matrix elements, Wilson loops and
Berry curvature, and projected density-density interac-
tions. These tools expand the reach of modern topolog-
ical band theory to the strong flux limit, opening Hofs-
tadter topology to analytical and numerical study in the
continuum.

Using these techniques, we build a physical picture of
twisted bilayer graphene in 2π flux — a tantalizing ex-

perimental setup as the large moiré unit cell allows for
laboratory access to the Hofstadter limit for intermediate
and large flux34,91. We find that in magic angle twisted
bilayer graphene, the flat bands are reenter at 2π flux
after splitting and broadening into Hofstadter bands at
intermediate flux. The chiral limit of TBG, although
physically inaccessible, showcases the chiral anomaly and
exemplifies the non-crystalline properties of Hofstadter
phases.

A natural development of this work is the extension
of our gauge-invariant method to study the topology of
band structures at general rational flux, which we pursue
in future work. Such a development would be a powerful
tool to study non-Peierls physics in topological magnetic
systems, particularly with the ability to perform gauge-
invariant Wilson loop calculations within our formalism.
Investigations of strongly correlated phases like super-
conductivity and the fractional quantum hall effect are
also made possible due to our expressions for the form
factors.

During the preparation of this work, Ref.92 indepen-
dently studied the chiral limit in magnetic field. They
find exact eigenstates for the zero-energy flat bands pro-
tected by chiral symmetry at all flux, but their tech-
niques do not generalize to non-chiral Hamiltonians. We
identify the same phase transition in Fig. 6(e) as de-
scribed in their work.
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the final results below.
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App. C develops a gauge-invariant formula for the Coulomb interaction and an expression for the many-body form
factors.

App. D applies the magnetic Bloch theorem to Twisted Bilayer Graphene. App. D 1 defines the conventions of
the Bistritzer-MacDonald Hamiltonian. App. D 2 discusses the symmetries of the continuum model in magnetic
flux. App. D 3 reviews the strong coupling expansion used to study the many-body physics. App. D 4 derives exact
many-body groundstates at even integer fillings.
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Appendix A: Ladder Operator Calculations and the Siegel Theta function

In this Appendix, we define the operators and special functions used to derive the magnetic Bloch theorem at 2π
flux. This section is technical, and the important results are highlighted for the convenience of readers. App. A 1
contains a derivation of the symmetry operators in flux. In App. A 2, we prove a central formula for the magnetic
translation operator eigenstates. The Siegel theta function, a generalization of the Jacobi theta function, arises in this
construction and is discussed in App. A 3. In App. A 4, we derive a simple expression (related to the Green’s function
of the Laplacian on the torus) for the Siegel theta function appearing as a normalization factor. With this result, we
then prove the completeness of the magnetic translation group irreps in App. A 5. Moving on to the spectrum, we then
prove a general formula for the scattering amplitude between eigenstates in App. A 6 which is used to compute the
magnetic Bloch Hamiltonian and many-body form factors. Finally, App. A 7 derives expressions for the non-Abelian
Berry connection and demonstrates that the Landau levels forming the basis carry nonzero Chern numbers.

1. Operator Definitions

First, we must set our index conventions. We sum over repeated indices and use greek letters µ, ν, ρ, σ for cartesian
indices and roman letters i, j, k, l for the crystalline indices of the lattice vectors ai. For instance, the reciprocal lattice
vectors bi are defined by ai · bj = δij , where we used the dot product as a shorthand for contracting the cartesian
indices of the vectors ai,bi.

We recall the definitions of the canonical momentum and ladder operators defined in Sec. II of the Main Text. The
canonical momentum with ~ = 1 is πππ = −i∇∇∇− eA obeying

[πµ, πν ] = ie(∂µAν − ∂νAµ) = ieBεµν (A1)

and the Landau level ladder operators [a, a†] are defined

a =
πx + iπy√

2eB
, a† =

πx − iπy√
2eB

=⇒ πx =

√
eB

2
(a† + a), πy = i

√
eB

2
(a† − a) . (A2)

The guiding center momenta Qµ are defined in a gauge-invariant way by

Qµ = πµ − eBεµνxν = −i∂µ − e(Aµ +Bεµνxν) . (A3)

We note that Qµ = Aµ + Bεµνxν can be interpreted as the canonical momentum corresponding to a system with
opposite magnetic field −B. At zero flux, where the time-reversal is not broken, Qµ and πµ are identical (up to a
gauge choice). We will make frequent use of the simple identity

(eB)−1εµν(Qν − πν) = −εµνενρxρ = xµ (A4)

which gives a gauge-independent formula for xµ. The guiding center operators commute with the canonical momenta
and obey

[Qµ, πν ] = [πµ − eBεµρxρ, πν ] = ieBεµν − ieBεµν = 0

[Qµ, Qν ] = [πµ − eBεµρxρ, πν − eBενσxσ] = −ieBεµν .
(A5)

The guiding centers form a separate oscillator system with [b, b†] = 1 defined by

b =
(a1 − ia2) ·Q√

2φ
, b† =

(a1 + ia2) ·Q√
2φ

=⇒
√
φ/2(b+ b†) = a1 ·Q, i

√
φ/2(b− b†) = a2 ·Q . (A6)

To prove [b, b†] = 1, it is useful to note [a1 ·Q,a2 ·Q] = −ieBa1×a2 = −iφ. From Eq. (A5), we have [a, b] = [a†, b] =
[a, b†] = [a†, b†] = 0. Because a, b commute, we can find simultaneous eigenstates of a†a and b†b. In particular, they
have a simultaneous groundstate |0〉 satisfying a |0〉 = b |0〉 = 0.

We define the magnetic translation operators to be

Tai = exp(iai ·Q) (A7)

which obey the projective algebra

Ta1
Ta2

= exp
(

[ia1 ·Q, ia2 ·Q]
)
Ta2

Ta1
= eiφTa2

Ta1
(A8)
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obtained using the Baker-Campbell-Hausdorff (BCH) identity expX expY = exp([X,Y ]) expY expX when [X,Y ] is
a c-number: since [[Qµ, Qν ], Qγ ] = 0 for all µ, ν, γ, higher-order commutators in the BCH formula disappear. Lastly,
it is also useful to define the gauge-invariant? angular momentum operator

Lz =
Q2 − πππ2

2eB
. (A9)

This choice is convenient because it decouples the a and b oscillators. To motivate the form of Eq. (A9), we check
that

Q2 − πππ2

2eB
=

1

2eB
(Qµ − πµ)(πµ +Qµ)

= −1

2
εµρxρ(2πµ − eBεµσxσ)

= εµνxµ(−i∂ν) + eεµρxρ

[
Aµ +

B

2
εµσxσ

] (A10)

and the term in brackets is pure gauge (curl-free), i.e. εµν∂µ(Aν + B
2 ενσxσ) = 0. Thus in the symmetric gauge

Aµ = −B2 εµνxν where πµ = −i∂µ + eB
2 εµνxν , Qµ = −i∂µ − eB

2 εµνxν , we find

Q2 − πππ2

2eB
= εµνxµ(−i∂ν) (A11)

which is the canonical angular momentum operator. We now check the algebra of rotations with the magnetic
translation operators. These results will be useful when we derive the real-space form of the symmetry operators in
flux. The first identity we need is

[Q2, Qµ] = Qν [Qν , Qµ] + [Qν , Qµ]Qν = 2eBiεµνQν (A12)

which leads to (
[
Q2

2eB
,

)n
Qµ] = (iεµµ1

)(iεµ1µ2
) . . . (iεµn−1µn)Qµn(

[
Q2

2eB
,

)n
Q] = σn2 Q

(A13)

where σ2 is the Pauli matrix acting on the µ, ν indices. Defining ([A, )nB] = [A, [A, · · · [A,B]]], and using an alternate
version of BCH:

eXeY e−X = eY+[X,Y ]+ 1
2! [X,[X,Y ]]... (A14)

we perform the following calculation using Eq. (A13):

eiθLzTRe
−iθLz = eiθLz exp[iR ·Q]e−iθLz

= exp

∞∑
n=0

1

n!

(
[iθ

Q2

2eB
,
)n
iR ·Q]

= exp

∞∑
n=0

1

n!
(iθ)niR ·

(
[
Q2

2eB
,
)n

Q]

= exp

∞∑
n=0

1

n!
(iθ)niR · σn2Q

= exp (iR ·R−θQ)

= TRθR .

(A15)

This result shows that the algebra of rotations with translations is the same as at zero flux. Trivially, [Lz,πππ
2] = 0,

so Lz commutes with the scalar kinetic term. For a Dirac-type Hamiltonian, we compute directly

[Lz +
1

2
σ3, πµσµ] = [− πππ2

2eB
+

1

2
σ3, πµσµ]

= iεµνπνσµ + iεµνπµσν = 0

(A16)
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which shows that Lz + 1
2σ3 is the conserved angular momentum, appropriate for a particle with Berry phase. Finally,

we need the action of functions of r to show that Lz commutes with rotationally symmetric potential terms. We use

[Lz, xµ] =
1

eB
εµν [Lz, Qν − πν ]

=
1

2(eB)2
εµν([Q2, Qν ] + [πππ2, πν ])

=
1

eB
εµν(iενρQρ − iενρπρ)

=
1

eB
εµν(iενρ(Qρ − πρ))

= iεµνxν

(A17)

which is the same action as the canonical angular momentum [ενρxν(−i∂ρ), xµ] = −iενµxµ. Hence a Cn-symmetric
potential at B = 0 is also symmetric under rotations by Eq. (A9) in nonzero magnetic field. This is just the classical
statement that a perpendicular magnetic field does not break rotation symmetry.

2. Eigenstate Normalization

The calculation of the basis states in Eq. (15) of the Main Text is straightforward but involved. To streamline the
notation, we use |n〉 = 1√

n!
a†n |0〉 to denote the Landau level wavefunctions, which obey a |0〉 = b |0〉 = 0 and 〈m|n〉.

The magnetic translation eigenstates are

|k, n〉 =
1√
N (k)

∑
R

e−ik·RTR·b1
a1

TR·b2
a2

|n〉 (A18)

and Tai = eiai·Q. We have defined R = R1a1 +R2a2 for Ri ∈ Z.

All calculations can be performed with the BCH identity expX expY = exp( 1
2 [X,Y ]) exp(X + Y ) when [X,Y ] is a

c-number. We also set φ = 2π. The first step is

TR·b1
a1

TR·b2
a2

= eiR1a1·QeiR2a2·Q = eiR·Q+iφ2R1R2 = eiR·Q+iφ2 (R·b1)(R·b2) (A19)

using [a1 ·Q,a2 ·Q] = −iφ. Hence we can write our states

|k, n〉 =
1√
N (k)

∑
R

e−ik·R+iφ2 (R·b1)(R·b2)eiR·Q |n〉 . (A20)

Recall that the Q operators are built of b, b† operators, and |n〉 is a b-vacuum because a† and b commute. We now
use the oscillator variables

R ·Q =
√
φ/2(b+ b†)R1 + i

√
φ/2(b− b†)R2 =

√
φ/2(Rb+ R̄b†), R = R1 + iR2, R̄ = R1 − iR2

(A21)

along with the BCH identity to compute

〈m| eiR·Q |n〉 = e−φ/4R̄R 〈m| ei
√
φ/2R̄b†ei

√
φ/2Rb |n〉 = e−

φ
4 R̄Rδmn . (A22)
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With this expression, a direct calculation yields√
N (k)N (k′) 〈k′,m|k, n〉 =

∑
R,R′

e−ik·R+ik′·R′+iφ2 (R·b1)(R·b2)−iφ2 (R′·b1)(R′·b2) 〈m| e−iR′·QeiR·Q |n〉

=
∑
R,R′

e−ik·R+ik′·R′+iφ2 (R·b1)(R·b2)−iφ2 (R′·b1)(R′·b2) 〈m| e−i
√
φ/2(R′b+R̄′b†)ei

√
φ/2(Rb+R̄b†) |n〉

=
∑
R,R′

e−ik·R+ik′·R′+iφ2 (R·b1)(R·b2)−iφ2 (R′·b1)(R′·b2)−φ4 R̄R−
φ
4 R̄
′R′

× 〈m| e−i
√
φ/2(R̄′b†)e−i

√
φ/2(R′b)ei

√
φ/2(R̄b†)ei

√
φ/2(Rb) |n〉

=
∑
R,R′

e−ik·R+ik′·R′+iφ2 (R·b1)(R·b2)−iφ2 (R′·b1)(R′·b2)−φ4 R̄R−
φ
4 R̄
′R′ 〈m| e−i

√
φ/2R′bei

√
φ/2R̄b† |n〉

= δmn
∑
R,R′

e−ik·R+ik′·R′+iφ2 (R·b1)(R·b2)−iφ2 (R′·b1)(R′·b2)−φ4 R̄R−
φ
4 R̄
′R′+φ

2R
′R̄ .

(A23)
We have reduced the calculation to a double infinite sum over the lattice vectors. A sum of this form with quadratic
term in the exponential is given by a generalized theta function, called a Siegel theta function (also called a Riemann
theta function). The trick to computing the sum is noticing that the sign of the imaginary terms is arbitrary because
φ
2R1R

′
2 is a multiple of π so ei

φ
2R1R

′
2 = ±1 = e−i

φ
2R1R

′
2 . Expanding out the quadratic terms, we find that

i
φ

2
(R · b1)(R · b2)− iφ

2
(R′ · b1)(R′ · b2)− φ

4
R̄R− φ

4
R̄′R′ +

φ

2
R′R̄

= −φ
4

(
R1 R2 R′1 R′2

)
1 i −1 −i
i 1 −i −1

−1 −i 1 i

−i −1 i 1



R1

R2

R′1
R′2

 mod 2πi
(A24)

This matrix is a quadratic form has two zero modes and two eigenvalues with positive real part (not counting the
−φ/4 prefactor) which ensures the convergence of the sum. The positive eigenvalues introduce Gaussian decay in the
terms as R,R′ →∞. Note that we have assumed φ > 0 in Eq. (A2). The zero modes disappear from the quadratic
form and summing over them enforces momentum conservation as we will show. (This is identical to the Fourier
transform of 1 being a delta function). We start by introducing the center-of-mass variables

si =
Ri +R′i

2
, di = Ri −R′i . (A25)

The R,R′ variables each lie on the lattice Z2, and hence s ∈ 1
2Z and d ∈ Z. These two variables are not independent:

if si is half-integer, then di is odd, and if si is integer, then di is even. In terms of these variables, the sum in Eq. (A23)
can be simplified because the summand of Eq. (A23) factors into s-dependent and d-dependent terms:

e−is1(k1−k′1)−is2(k2−k′2) exp

(
− i

2
d1(k1 + k′1)− i

2
d2(k2 + k′2)− φ

4

(
d1 d2

)(
1 i

i 1

)(
d1

d2

))
. (A26)

Here ki = ai · k. In the original sum all four variables R1, R2, R
′
1, R

′
2 are all interconnected by the Riemann matrix.

However, after switching to center of mass variables only the variables d1, d2 are connected. This is made obvious by
noting the original 4× 4 matrix can be written as a tensor product

1 i −1 −i
i 1 −i −1

−1 −i 1 i

−i −1 i 1

 =

(
1 −1

−1 1

)
⊗
(

1 i

i 1

)
(A27)

and so its eigenstates factor. Using the center of mass variables Eq. (A25), we can write the double sum as∑
R,R′

=
∑

s∈(Z+ 1
2 ,Z+ 1

2 )

∑
d∈(2Z+1,2Z+1)

+
∑

s∈(Z,Z)

∑
d∈(2Z,2Z)

+
∑

s∈(Z+ 1
2 ,Z)

∑
d∈(2Z+1,2Z)

+
∑

s∈(Z,Z+ 1
2 )

∑
d∈(2Z,2Z+1)

(A28)
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which separates into decoupled sums of odd (2Z+ 1) and even (2Z) lattices. We consider the two cases. If the si sum
is over Z and the di sum is over 2Z, so the ki-dependent terms can be simplified to∑

si∈Z
eisi(ki−k

′
i)
∑
di∈2Z

e−
i
2di(ki+k

′
i) = 2πδ(ki − k′i mod 2π)

∑
di∈2Z

e−
i
2di(ki+k

′
i)

= 2πδ(ki − k′i mod 2π)
∑
d∈Z

e−
i
2 2d(ki+ki+2πZ)

= 2πδ(ki − k′i mod 2π)
∑
d∈Z

e−id(2ki+2πZ)

= 2πδ(ki − k′i mod 2π)
∑
d∈Z

e−id(2ki)

= 2πδ(ki − k′i mod 2π)
∑
di∈2Z

e−idiki

(A29)

If the si sum is over Z+ 1/2, then the di sum is over 2Z+ 1 and∑
si∈Z+1/2

eisi(ki−k
′
i)

∑
di∈2Z+1

e−
i
2di(ki+k

′
i) = 2πδ(ki − k′i mod 2π)e

i
2 (k1−k′i)

∑
di∈2Z+1

e−
i
2di(ki+k

′
i)

= 2πδ(ki − k′i mod 2π)e
i
2 (2πZ)

∑
d∈Z

e−
i
2 (2d+1)(ki+ki+2πZ)

= 2πδ(ki − k′i mod 2π)
∑
d∈Z

e−
i
2 2d(ki+ki+2πZ)− i

2 (ki+ki+2πZ)+ i
2 (2πZ)

= 2πδ(ki − k′i mod 2π)
∑
d∈Z

e−
i
2 2d(2ki)− i

2 (2ki)

= 2πδ(ki − k′i mod 2π)
∑

di∈2Z+1

e−idiki .

(A30)

We have shown that both the even and odd type sums give the 2π periodic delta function that enforces momentum
conservation. Hence we arrive at∑

R,R′

e−ik·R+ik′·R′+iφ2 (R·b1)(R·b2)−iφ2 (R′·b1)(R′·b2)−φ4 R̄R−
φ
4 R̄
′R′+φ

2R
′R̄

= (2π)2δ(k− k′)

( ∑
d1∈2Z

+
∑

d1∈2Z+1

)( ∑
d2∈2Z

+
∑

d2∈2Z+1

)
exp

(
−id1k1 − id2k2 −

φ

4

(
d1 d2

)(
1 i

i 1

)(
d1

d2

))

= (2π)2δ(k− k′)
∑
d1,d2

exp

(
−id1k1 − id2k2 −

φ

4

(
d1 d2

)(
1 i

i 1

)(
d1

d2

))
.

(A31)

We will omit further mentions of ‘mod 2π’ in delta functions relating momenta. The remaining d sum is a Seigel
theta function (sometimes called the Riemann theta function) defined by the quadratic form Φ:

ϑ (z |Φ) =
∑
n∈Z2

e2πi( 1
2n·Φ·n−z·n)

(A32)

which is a multi-dimensional generalization of the Jacobi theta function (see App. A 3). We can write our normalization
factor explicitly in terms of this special function√

N (k)N (k′) 〈k′,m|k, n〉 = (2π)2δ(k− k′)ϑ

(
(k1, k2)

2π

∣∣∣∣Φ) , Φ =
iφ

4π

(
1 i

i 1

)
(A33)

where we defined the matrix Φ for later convenience. We now prove that ϑ (z |Φ) is real for real z for φ = 2π. This
is because

ϑ (z |Φ)
∗

=
∑
n∈Z2

e−2πi( 1
2n·Φ

∗·n−z∗·n)

=
∑
n∈Z2

e2πi( 1
2n·(−Φ∗)·n−z∗·n)

= ϑ (z∗ |Φ)

(A34)
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where in the second line we took n→ −n in the sum, and in the third line we used 1
2n ·Φ ·n = 1

2n · (−Φ∗) ·n mod 1.

If k is real, then z = (a1 · k,a2 · k)/(2π) is real. As will be shown later in Eq. (A55) of App. A 3, ϑ
(

(k1,k2)
2π

∣∣∣Φ) for

φ = 2π is non-negative for ki ∈ R so we can take

N (k) = ϑ

(
(k1, k2)

2π

∣∣∣∣Φ) . (A35)

In fact, we find that N (k) has a quadratic zero at k = πb1 + πb2 (we prove this in App. A 3), so the states at
(k1, k2) = (π, π) are not well-defined. However, this zero must exist in the BZ for topological reasons: when a band has
nonzero Chern number, it is impossible to define a smooth gauge that makes the wavefunction well-defined everywhere
throughout the BZ. Our basis states |k, n〉 correspond to Landau levels with Chern number −1 (see App. A139), and
hence there must be a point in the BZ where |k, n〉 is ill-defined. In our basis this occurs at k = (π, π), but it can be

shifted arbitrarily (allowing the wavefunction to be defined in patches) by taking Q → Q̃ = Q + p for any complex

number p. We define T̃ai = exp(iai · Q̃) = eiai·pTai so that from Eq. (A18), we see that the state

1√
N (k− p)

∑
R

e−ik·RT̃R·b1
a1

T̃R·b2
a2

|n〉 =
1√

N (k− p)

∑
R

e−i(k−p)·RTR·b1
a1

TR·b2
a2

|n〉 (A36)

is a properly normalized eigenstate of T̃ai with an undefined point at k = πb1 + πb2 + p. Moreover, we will show
in App. A 6 that the zero does not impact the spectrum because magnetic Bloch Hamiltonian only has a removable
singularity at (π, π) and thus is analytic in k with a smooth spectrum.

3. Properties of the Siegel Theta Functions

We will prove some useful properties of the Siegel theta functions used throughout the rest of the work. Recall that
the one-dimensional theta functions ϑ(z|τ) enjoy the (quasi-)periodicity relations

ϑ(z + 1|τ) = ϑ(z|τ), ϑ(z + τ |τ) = e−2πi(z+τ/2)ϑ(z|τ) (A37)

which define the function in the whole complex plane from the principal domain. We now prove the analogous
properties for the Siegel theta functions.

First recall the definition of the Siegel theta function for a symmetric matrix M where Im M > 0 as the convergent
sum:

ϑ (z |M ) =
∑
n∈Z2

e2πi( 1
2n·M ·n−z·n) . (A38)

By shifting variables in the sum, we find for any integer vector n

ϑ (z |M ) =
∑

m∈Z2

e2πi( 1
2 (m−n)·M ·(m−n)−z·(m−n))

= eiπn·M ·n+2πiz·n
∑

m∈Z2

e2πi( 1
2m·M ·m−n·Mm−z·m)

= eiπn·M ·n+2πiz·n
∑

m∈Z2

e2πi( 1
2m·M ·m−(z+Mn)·m)

= eiπn·M ·n+2πiz·nϑ (z +Mn |M )

(A39)

which gives the quasi-periodicity associated with the theta function. There is also the simpler periodicity
ϑ (z + n |M ) = ϑ (z |M ) for integer vectors n. In our application, we have M = Φ (Eq. (A33)) for φ = 2π which gives
the elementary relations

ϑ

(
z +

1

2
(i,−1) |Φ

)
= eπ/2−2πiz1ϑ (z |Φ)

ϑ

(
z +

1

2
(−1, i) |Φ

)
= eπ/2−2πiz2ϑ (z |Φ) .

(A40)
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We emphasize that this identity only holds at 2π flux.
We now use a property known as the addition formula35 to prove that ϑ

(
(1/2, 1/2)|Φ

)
= 0. This property is crucial

for proving the Chern number of the Landau levels. Let the vector ννν take values in (0, 0), (1, 0), (0, 1), (1, 1). The
addition formula (https://dlmf.nist.gov/21.6) reads

ϑ(x|M)ϑ(y|M) =
∑
ννν

ϑννν/2(x + y|2M)ϑννν/2(x− y|2M), ϑννν/2(x|M) =
∑
n

e2πi( 1
2 (n+ννν/2)·M ·(n+ννν/2)−x·(n+ννν/2))

(A41)
where ννν/2 is often called a semi-integer characteristic. This addition formula follows from straightforward algebraic
manipulations of the definitions of the theta functions36. Expanding, we find

ϑννν/2(x|M) =
∑
n

e2πi
(

1
2 (n+ννν/2)·M ·(n+ννν/2)−x·(n+ννν/2)

)
= e−πix·ννν+πi

4 ννν·M ·ννν
∑
n

e2πi( 1
2n·M ·n+(Mννν/2−x)·n)

= e−πix·ννν+πi
4 ννν·M ·νννϑ(x−Mννν/2|M)

(A42)

We now apply the addition formula applied to M = Φ and x = y = (1/2, 1/2) and use the invariance of ϑ(z|Φ) under
z→ z +Z2 and z→ −z to find

ϑ((1/2, 1/2)|Φ)ϑ((1/2, 1/2)|Φ) =
∑
ννν

e−πi(1,1)·ννν+πi
4 ννν·(2Φ)·νννϑ((1, 1)− Φννν|2Φ)eπi(0,0)·ννν+πi

4 ννν·(2Φ)·νννϑ(Φννν|2Φ)

=
∑
ννν

e−πi(1,1)·ννν+iπννν·Φ·νννϑ(Φννν|2Φ)ϑ(Φννν|2Φ)

= ϑ((0, 0)|2Φ)2 − e−π/2ϑ((i/2,−1/2)|2Φ)2 − e−π/2ϑ((−1/2, i/2)|2Φ)2

− e−πϑ((−1/2 + i/2,−1/2 + i/2)|2Φ)2 .

(A43)

The next important fact is that ϑ(z|2Φ) = θ(z1|i)θ(z2|i) where the Jacobi theta function is

θ(z|τ) =
∑
n

e2πi( τ2 n
2−zn), θ(z|τ) = θ(−z|τ) (A44)

which follows because the off-diagonal term in 2Φ disappears:

2πi
n · (2Φ) · n

2
= −πn2

1 − πn2
2 − 2πin1n2 = −πn2

1 − πn2
2 mod 2π . (A45)

Using the Jacobi theta functions in the result of Eq. (A43), we find

ϑ((1/2, 1/2)|Φ)2 = θ(0|i)4 − 2e−π/2θ
( i

2
|i
)2
θ
(1

2
|i
)2

(A46)

where the term involving ϑ((−1/2 + i/2,−1/2 + i/2)|2Φ) has vanished because − 1
2 + i

2 is a zero of the Jacobi theta

functions. We now use the sum-of-squares identity? (https://dlmf.nist.gov/20.7)

θ(0|τ)2θ(z|τ)2 = θ(1/2|τ)2θ(z + 1/2|τ)2 + e2πiz+iπτθ(i/2|τ)2θ(z + i/2|τ)2 (A47)

which implies θ(0|i)4 = θ(1/2|i)4 + e−πθ(i/2|i)4 and hence

ϑ((1/2, 1/2)|Φ)2 =
(
θ(1/2|i)2 − e−π/2θ(i/2|i)2

)2

. (A48)

Lastly, we use the modular identity
√
−iτθ(z|τ) = e−iπz

2/τθ(z/τ | − 1/τ) at the self-dual point τ = i = −1/i, giving

θ(1/2|i) = e−π/4θ(−i/2|i) = e−π/4θ(i/2|i) (A49)

using the evenness of θ(z, τ) in the second equality:θ(−z, τ) = θ(z, τ). Squaring Eq. (A49) proves Eq. (A48) is equal to
zero. Numerically, we check that the zero is second order via the winding in Fig. 1 of the Main Text. Note that N (k)
is reflection symmetric about (π, π) in both k1, k2 directions, indicating a quadratic (or higher) zero. This follows
because ϑ ((1/2, 1/2) + z |Φ) = ϑ (−(1/2, 1/2)− z |Φ) = ϑ ((1/2, 1/2)− z |Φ) using the periodicity and evenness in z.

https://dlmf.nist.gov/21.6
https://dlmf.nist.gov/20.7
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In fact, we can prove a more general identity relating ϑ(z|Φ) to Jacobi theta functions. Returning to Eq. (A41), we
have

ϑ(z|Φ)2 =
∑
ννν

ϑννν/2(2z|2Φ)ϑννν/2(0|2Φ) . (A50)

To fit with the usual conventions for the Jacobi theta functions (see https://en.wikipedia.org/wiki/Theta_
function), we define

θ1(z|τ) ≡ −ieiπz+iπτ/4θ(z +
1

2
+
τ

2
|τ)

θ2(z|τ) ≡ eiπz+iπτ/4θ(z +
τ

2
|τ)

θ3(z|τ) ≡ θ(z|τ)

θ4(z|τ) ≡ θ(z +
1

2
|τ)

(A51)

which are convenient parameterizations of the theta functions defined in Eq. (A44) shifted by 0, 1
2 ,

i
2 ,

1
2 (1 + i). These

shifted theta functions will be useful when calculating the four semi-integer characteristics. It is helpful to remember
that θ1(z|τ) is odd in z and θ2(z|τ), θ3(z|τ), θ4(z|τ) are even.

Using Eq. (A42), we check that

ϑ(0,0)(z|2Φ) = θ3(z1|i)θ3(z2|i)
ϑ(1/2,0)(z|2Φ) = e−πiz1−π/4ϑ(z− (i/2,−1/2)|2Φ) = θ2(z1|i)θ4(z2|i)
ϑ(0,1/2)(z|2Φ) = e−πiz2−π/4ϑ(z− (−1/2, i/2)|2Φ) = θ4(z1|i)θ2(z2|i)

ϑ(1/2,1/2)(z|2Φ) = e−πi(z1+z2)−π2−i
π
2 ϑ((z1 + 1/2− i/2, z2 + 1/2− i/2)|2Φ) = iθ1(z1|i)θ1(z2|i) .

(A52)

and hence the Siegel theta function with our matrix Φ can be expressed in terms of the Jacobi theta functions by
plugging into Eq. (A50)

ϑ(z|Φ)2 = θ3(2z1|i)θ3(2z2|i)θ3(0|i)2 +
(
θ2(2z1|i)θ4(2z2|i) + θ4(2z1|i)θ2(2z2|i)

)
θ2(0|i)θ4(0|i) . (A53)

No θ1(z|i) term appears because θ1(0|i) = 0 because it is odd. We emphasize that Eq. (A53) relies on the precise
form of Φ at φ = 2π. We now need the brief identity

θ3(0|i)2

θ2(0|i)θ4(0|i) = eπ/4
θ(0|i)2

θ(1/2|i)θ(i/2|i) =
θ(0|i)2

θ(1/2|i)2
=
√

2 (A54)

which is proved using the sum-of-squares identity in Eq. (A47) and the definitions Eq. (A51). We simplify Eq. (A53)
to find

ϑ(z|Φ) = θ3(0|i)
√
θ3(2z1|i)θ3(2z2|i) +

1√
2

(
θ2(2z1|i)θ4(2z2|i) + θ4(2z1|i)θ2(2z2|i)

)
. (A55)

The sign of the square root above (Eq. (A55)) is positive for real arguments z ∈ R2, as we know ϑ(z|Φ), θ3(0|i) are
non-negative. In App. A 4, we give another expression for ϑ(z|Φ) in terms of Jacobi theta functions which is useful for
numerical implementation because many common software packages, such as Python, do not implement Siegel theta
(while they do implement the Jacobi theta function).

Eq. (A55) is also useful for proving a useful property of the form factors. In Eq. 44 of the Main Text, we give an
important expression for a phase factor that appears in our calculations:

eiξq(k) =
e−

q̄q
4φϑ

(
(k1−q/2,k2+iq/2)

2π

∣∣∣Φ)√
ϑ
(

(k1,k2)
2π

∣∣∣Φ)ϑ( (k1−q1,k2−q2)
2π

∣∣∣Φ) , q = q1 + iq2. (A56)

At k1, k2 = π, the denominator tends to zero as

√
ϑ
(

(π,π)
2π

∣∣∣Φ) = 0. In order for this phase factor to be well defined,

we must show the numerator ϑ
(

(π−q/2,π+iq/2)
2π

∣∣∣Φ) = 0. We perform this calculation below.

https://en.wikipedia.org/wiki/Theta_function
https://en.wikipedia.org/wiki/Theta_function
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Let z1 = 1/2− q/2, z2 = 1/2 + iq/2 where q ∈ C. (Note that Eq. 44 generally has complex arguments in its theta
functions.) Then we find

ϑ((1/2− q/2, 1/2 + iq/2)|Φ) = θ3(0|i)
√
θ3(q|i)θ3(iq|i)− 1√

2

(
θ2(q|i)θ4(iq|i) + θ4(q|i)θ2(iq|i)

)
(A57)

where we used the elementary properties θ3(1 − q|τ) = θ3(q|τ), θ4(1 − q|τ) = θ4(q|τ), and θ2(1 − q|τ) = −θ2(q|τ)? .
For general complex arguments, there is branch cut in the square root of Eq. (A57). This will not concern us here
because we will prove both sides of Eq. (A57) are zero.

We now use the modular identities at τ = i which, using evenness, read

θ2(q|i) = e−πq
2

θ4(iq|i)
θ3(q|i) = e−πq

2

θ3(iq|i)
θ4(q|i) = e−πq

2

θ2(iq|i)
(A58)

to find

ϑ
(

(1/2− q/2, 1/2 + iq/2)
∣∣∣Φ) = θ3(0|i)eπq2/2

√
θ3(q|i)2 − 1√

2

(
θ2(q|i)2 + θ4(q|i)2

)
. (A59)

Once again, we use the sum-of-squares identity in Eq. (A47) which can be written

θ3(0|i)2θ3(q|i)2 = θ2(0|i)2θ2(q|i)2 + θ4(0|i)2θ4(q|i)2

θ3(q|i)2 =
1√
2
θ2(q|i)2 +

1√
2
θ4(q|i)2 (A60)

where we used Eq. (A54) and θ2(0|i) = θ4(0|i). Plugging in to Eq. (A59), we find the surprising consequence

ϑ
(

(1/2− q/2, 1/2 + iq/2)
∣∣∣Φ) = 0 ∀q ∈ C . (A61)

Thus ξq(k) (see Eq. (44) of the Main Text) is well-defined. We now prove that the ratio of theta functions is a pure

phase, i.e. it has magnitude 1, so ξq(k) is real. We need to show eiξq(k)(eiξq(k))∗ = 1, which is equivalent to

e−
q̄q
2φϑ

(
(k1−q/2,k2+iq/2)

2π

∣∣∣Φ)ϑ( (k1−q̄/2,k2−iq̄/2)
2π

∣∣∣Φ)
ϑ
(

(k1,k2)
2π

∣∣∣Φ)ϑ( (k1−q1,k2−q2)
2π

∣∣∣Φ) = 1 (A62)

where we used ϑ(z|Φ)∗ = ϑ(z∗|Φ). Both the numerator and denominator are products of theta functions which are
amenable to the addition formula. Using Eq. (A41), the numerator of Eq. (A62) is

ϑ

(
(k1 − q/2, k2 + iq/2)

2π

∣∣∣∣Φ)ϑ( (k1 − q̄/2, k2 − iq̄/2)

2π

∣∣∣∣Φ)
=
∑
ννν

ϑννν/2

(
(2k1 − (q + q̄)/2, 2k2 + i(q − q̄)/2)

2π

∣∣∣∣ 2Φ

)
ϑννν/2

(
((q̄ − q)/2, i(q + q̄)/2)

2π

∣∣∣∣ 2Φ

)
=
∑
ννν

ϑννν/2

(
(2k1 − q1, 2k2 − q2)

2π

∣∣∣∣ 2Φ

)
ϑννν/2

(
(−iq2, iq1)

2π

∣∣∣∣ 2Φ

) (A63)

and the denominator of Eq. (A62) is written

ϑ

(
(k1, k2)

2π

∣∣∣∣Φ)ϑ( (k1 − q1, k2 − q2)

2π

∣∣∣∣Φ) =
∑
ννν

ϑννν/2

(
(2k1 − q1, 2k2 − q2)

2π

∣∣∣∣ 2Φ

)
ϑννν/2

(
(q1, q2)

2π

∣∣∣∣ 2Φ

)
. (A64)

The first k-dependent factors in Eqs. (A63) and (A64) are identical, so we only need to prove

e−
q̄q
2φϑννν/2

(
(−iq2, iq1)

2π

∣∣∣∣ 2Φ

)
= ϑννν/2

(
(q1, q2)

2π

∣∣∣∣ 2Φ

)
(A65)
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for each of the four ννν. To do so, we only need to use Eq. (A52) to write the Siegel theta functions in terms of Jacobi
theta functions and use the modular identities in Eq. (A58). It is direct to show that

ϑννν/2

(
(−iq2, iq1)

2π

∣∣∣∣ 2Φ

)
=


θ3(−iq2/(2π)|i)θ3(iq1/(2π)|i), ννν = (0, 0)

θ2(−iq2/(2π)|i)θ4(iq1/(2π)|i), ννν = (1, 0)

θ4(−iq2/(2π)|i)θ2(iq1/(2π)|i), ννν = (0, 1)

= eπ(q2
1+q2

2)/(2π)2


θ3(q2/(2π)|i)θ3(q1/(2π)|i), ννν = (0, 0)

θ4(q2/(2π)|i)θ2(q1/(2π)|i), ννν = (1, 0)

θ2(q2/(2π)|i)θ4(q1/(2π)|i), ννν = (0, 1)

= e
q̄q
2φϑννν/2

(
(q1, q2)

2π

∣∣∣∣ 2Φ

)
(A66)

which directly proves three of the four cases in Eq. (A65). For the last case where θ1(z|i) is an odd function of z, we

use Eq. (A52) and the modular identity θ1(z|i) = −ie−πz2

θ1(iz|i) to show

ϑ(1/2,1/2)

(
(−iq2, iq1)

2π

∣∣∣∣ 2Φ

)
= iθ1(−iq2/(2π)|i)θ1(iq1/(2π)|i)

= −ii2eπ(q2
1+q2

2)/(2π)2

θ1(q2/(2π)|i)θ1(q1/(2π)|i)

= e
q̄q
2φϑ(1/2,1/2)

(
(q1, q2)

2π

∣∣∣∣ 2Φ

) (A67)

which takes the same form as Eq. (A66) and completes the proof. Hence we have shown that

eiξq(k) =
e−

q̄q
4φϑ

(
(k1−q/2,k2+iq/2)

2π

∣∣∣Φ)√
ϑ
(

(k1,k2)
2π

∣∣∣Φ)ϑ( (k1−q1,k2−q2)
2π

∣∣∣Φ) (A68)

is a pure phase. This is numerically verified in Fig. 3 of the Main Text, which also shows there is a branch cut
connecting (k1, k2) and (k1 + q1, k2 + q2).

4. Siegel Theta as the Green’s Function on the Torus

In App. A 3, we found an expression (Eq. (A55)) for the Siegel theta function ϑ(z|Φ) in terms of Jacobi theta
functions, which we used to prove some helpful identities. We now prove a different expression in terms of holomorphic
variables k = k1 + ik2, k̄ = k1 − ik2 which we need to study the completeness of the magnetic translation group basis
states in Eq. (A20). We will also show that log ϑ((k1, k2)/2π|Φ) is a Green’s function on the torus? ? ? ? , which is
essential for proving that the basis states have constant nonzero Berry curvature in App. A 7.

The major technical result of this section is a proof of the following claim:

ϑ

(
(k1 − π, k2 − π)

2π

∣∣∣∣Φ) =
√

2

∣∣∣∣θ1

(
k

2π

∣∣∣∣ i) θ1

(
ik̄

2π

∣∣∣∣ i)∣∣∣∣ exp

(
−kk̄

4π

)
. (A69)

We start by considering the theta function product on the righthand side. First let us state the Jacobi theta addition
formula (see https://dlmf.nist.gov/20.7)

θ4(0|i)2θ1(w + z|i)θ1(w − z|i) = θ2
3(w|i)θ2

2(z|i)− θ2
2(w|i)θ2

3(z|i) (A70)

which in concert with the modular identity θ1(z|i) = −ie−πz2

θ1(iz|i) yields

−iθ4(0|i)2θ1(w + z|i)e−π(w−z)2

θ1(i(w − z)|i) = θ2
3(w|i)θ2

2(z|i)− θ2
2(w|i)θ2

3(z|i) . (A71)

https://dlmf.nist.gov/20.7
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Upon identifying w = k1/(2π) and z = ik2/(2π), we find

θ1

(
k

2π

∣∣∣∣ i) θ1

(
ik̄

2π

∣∣∣∣ i) =
i

θ4(0|i)2
ek̄

2/(4π)

(
θ2

3(
k1

2π
|i)θ2

2(
ik2

2π
|i)− θ2

2(
k1

2π
|i)θ2

3(
ik2

2π
|i)
)

=
i

θ4(0|i)2
ek̄

2/(4π)e2πk2
2/(2π)2

(
θ2

3(
k1

2π
|i)θ2

4(
k2

2π
|i)− θ2

2(
k1

2π
|i)θ2

3(
k2

2π
|i)
)

=
i

θ4(0|i)2
e(k2

1+k2
2)/4π−ik1k2/2π

(
θ2

3(
k1

2π
|i)θ2

4(
k2

2π
|i)− θ2

2(
k1

2π
|i)θ2

3(
k2

2π
|i)
) (A72)

where in the second line we used the modular identities for the θ2 and θ3 functions: θ3(iz|i) = eπz
2

θ3(z|i) and

θ2(iz|i) = eπz
2

θ4(z|i). The Jacobi theta functions θi(z|i) are real for real arguments, so we conclude∣∣∣∣θ1

(
k

2π

∣∣∣∣ i) θ1

(
ik̄

2π

∣∣∣∣ i)∣∣∣∣2 =
1

θ4(0|i)4
e(k2

1+k2
2)/2π

(
θ2

3(
k1

2π
|i)θ2

4(
k2

2π
|i)− θ2

2(
k1

2π
|i)θ2

3(
k2

2π
|i)
)2

(A73)

assuming that k1, k2 ∈ R. Returning to Eq. (A69) with this identity and using Eq. (A53), the claim in Eq. (A69) is
equivalent to

ϑ

(
(k1 − π, k2 − π)

2π

∣∣∣∣Φ)2

=
2

θ4(0|i)4

(
θ2

3(
k1

2π
|i)θ2

4(
k2

2π
|i)− θ2

2(
k1

2π
|i)θ2

3(
k2

2π
|i)
)2

. (A74)

Using the quasi-periodicities θ2(z − 1|i) = −θ2(z|i), θ3(z − 1|i) = θ3(z|i), and θ4(z − 1|i) = θ4(z|i) from Eq. (A51) to
rewrite Eq. (A55), we find

ϑ

(
(k1 − π, k2 − π)

2π

∣∣∣∣Φ)2

= θ3(0|i)2

(
θ3(

k1

π
|i)θ3(

k2

π
|i)− 1√

2

(
θ2(

k1

π
|i)θ4(

k2

π
|i) + θ4(

k1

π
|i)θ2(

k2

π
|i)
))

. (A75)

Recalling that
√

2θ4(0|i)2 = θ3(0|i)2, the claim in Eq. (A74) is equivalent to

θ3(2z|i)θ3(2w|i)− 1√
2

(
θ2(2z|i)θ4(2w|i) + θ4(2z|i)θ2(2w|i)

)
=

√
2

θ4(0|i)6

(
θ2

3(z|i)θ2
4(w|i)− θ2

2(z|i)θ2
3(w|i)

)2
(A76)

where z = k1/2π,w = k2/2π for brevity. The lefthand side can be simplified with the duplication formula

θi(2z|τ)θ4(0|τ)3 = θi(z|τ)4 − θ1(z|τ)4, i = 2, 4

23/4θ3(2z|τ)θ4(0|τ)3 = θ3(z|τ)4 + θ1(z|τ)4
(A77)

found in Ref.? . The identities in Eq. (A77) allow Eq. (A76) to be written as(
θ2

3(z)θ2
4(w)− θ2

2(z)θ2
3(w)

)2
=

1

4
(θ4

3(z) + θ4
1(z))(θ4

3(w) + θ4
1(w))

− 1

2

(
(θ4

2(z)− θ4
1(z))(θ4

4(w)− θ4
1(w)) + (θ4

4(z)− θ4
1(z))(θ4

2(w)− θ4
1(w))

) (A78)

where for brevity we dropped the i argument, e.g. θ3(z) ≡ θ3(z|i). The next step is to use the sum-of-square identities
at τ = i (see https://dlmf.nist.gov/20.7):

θ2
1(z) =

√
2θ2

4(z)− θ2
3(z)

θ2
1(z) = θ2

3(z)−
√

2θ2
2(z)

√
2θ2

1(z) = θ2
4(z)− θ2

2(z)

(A79)

which yield the identities

θ2
1(z) =

1√
2

(θ2
4(z)− θ2

2(z))

θ2
3(z) =

1√
2

(θ2
4(z) + θ2

2(z)) .

(A80)

https://dlmf.nist.gov/20.7
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Upon plugging in Eq. (A80) into Eq. (A78) so everything is written in terms of θ2
2(z), θ2

2(z), θ2
2(w), θ2

4(w), it is just a
matter of algebra to gather like terms and verify that Eq. (A78) is true. Thus we have proven

ϑ

(
(k1 − π, k2 − π)

2π

∣∣∣∣Φ) =
√

2

∣∣∣∣θ1

(
k

2π

∣∣∣∣ i) θ1

(
ik̄

2π

∣∣∣∣ i)∣∣∣∣ exp

(
−kk̄

4π

)
, (A81)

where k = k1 + ik2. It is also useful to have a shifted form of the identity:

ϑ

(
(k1, k2)

2π

∣∣∣∣Φ) =
√

2

∣∣∣∣θ1

(
k

2π
+

1 + i

2

∣∣∣∣ i) θ1

(
ik̄

2π
+ i

1− i
2

∣∣∣∣ i)∣∣∣∣ exp

(
−kk̄

4π
− 1

2
(k1 + k2)− π

2

)
. (A82)

To simplify the shifted theta functions, we recall from Eq. (A51) that θ1(z|i) = −ieiπz−π/4θ3(z + 1
2 + i

2 |i) which can
be rewritten

θ1(z +
1 + i

2
|i) = −ieiπz+iπ/2−π/2−π/4θ3(z + 1 + i|i) = eπ/4−iπzθ3(z|i) (A83)

where in the second equality we used the quasi-periodicity of the theta functions. Plugging Eq. (A83) into Eq. (A82),
we find

ϑ

(
(k1, k2)

2π

∣∣∣∣Φ) =
√

2

∣∣∣∣θ3

(
k

2π

∣∣∣∣ i) θ3

(
ik̄

2π

∣∣∣∣ i)∣∣∣∣ exp

(
−kk̄

4π

)
(A84)

where we used |e−i k2−i ik̄2 | = ek2/2+k1/2. As a byproduct, Eq. (A84) shows trivially that ϑ
(

(k1,k2)
2π

∣∣∣Φ) ≥ 0, and also

that the only zeros of ϑ
(

(k1,k2)
2π

∣∣∣Φ) occur when θ3(k/2π)θ3(ik̄/2π) = 0. Up to multiplies of 2π, the only zero is

k1 = k2 = π because θ3(1/2 + i/2|i) = 0.

Let us now show that log ϑ
(

(k1,k2)
2π

∣∣∣Φ) is a Green’s function on the torus. This is a well-known result? ? ? using

the Jacobi theta form (the righthand side of Eq. (A69)), but we give a self-contained argument here.
First we recall that the Laplacian on the torus ∂2 = ∂2

1 + ∂2
2 , where ∂i = ∂

∂ki
for brevity, can be rewritten as

∂2 = 4∂∂̄, 2∂ ≡ ∂1 − i∂2, 2∂̄ ≡ ∂1 + i∂2 (A85)

where the holomorphic derivatives satisfy ∂k = 1, ∂̄k = 0. Using Eq. (A69), we compute directly

∂2 log ϑ

(
(k1 − π, k2 − π)

2π

∣∣∣∣Φ) = ∂2 log

[√
2

∣∣∣∣θ1

(
k

2π

∣∣∣∣ i) θ1

(
ik̄

2π

∣∣∣∣ i)∣∣∣∣ exp

(
−kk̄

4π

)]
= 4∂∂̄

[
log |θ1(k/2π|i)|+ log

∣∣θ1(ik̄/2π|i)
∣∣− kk̄

4π

]
= 4∂∂̄

kk̄

4π
= − 1

π
, if k1, k2 6= 0

(A86)

where in the last line we dropped the log θ1 terms when k1, k2 6= 0 because ∂∂̄f(k) = ∂∂̄f(k̄) = 0 if f is differentiable.
At k1, k2 = 0 however, θ1(k|i) = 0 so log θ1(k|i) is singular and will yield a delta function contribution. Near k1, k2 = 0,
we Taylor expand θ1(z|i) = zθ′1(0|i) + . . . (see https://dlmf.nist.gov/20.4) to compute

lim
k,k̄→0

∂2 log ϑ

(
(k1 − π, k2 − π)

2π

∣∣∣∣Φ) = 4∂∂̄ log
(
kk̄
θ′1(0)2

(2π)2

)
= ∂2 log(k2

1 + k2
2)

= 4πδ(k)

(A87)

using the 2D Green’s function formula ∂2
(

1
2π log |k|

)
= δ(k). Thus we have derived the formula

1

2
∂2 log ϑ

(
(k1 − π, k2 − π)

2π

∣∣∣∣Φ) = 2πδ(k)− 1

2π
(A88)

which will play a crucial role in studying the Wilson loop of a Landau level state in App. A 7.

https://dlmf.nist.gov/20.4
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5. Completeness Relation

In this section, we study the completeness of the magnetic translation group eigenstates |k, n〉 defined in Eq. (A18).
So far, App. A 2 has shown that the states

|k, n〉 =
1√
N(k)

∑
R

e−ik·RTR·b1
a1

TR·b2
a2

|n〉 (A89)

are orthonormal, i.e. 〈k′, n′|k, n〉 = (2π)2δ(k− k′)δn′n, and well-defined except at k∗ = πb1 + πb2 where |k∗, n〉 = 0
because of the Chern number obstruction to periodic states defined everywhere on the BZ. Note that the position of
k∗ is arbitrary, and can be shifted by changing the overall phase of the magnetic translation operators (see Eq. (A36)).
In general, a complete basis satisfies

1 =

∞∑
`=0

∫
d2k

(2π)2
|k, `〉 〈k, `| (if complete) (A90)

where the righthand side in interpreted as a projector onto all states of the Hilbert space. Although the states at
k∗ vanish identically and do not appear in the integral, k∗ is a single point and thus is a set of measure zero. Thus
the missing states can be neglected when Eq. (A90) acts on a suitable test function which is a wave packet formed
from a smooth superposition of |k, n〉 states with finite weight on each |k,m〉. (Note that this excludes momentum
eigenstates, where an obvious pathological counterexample to Eq. (A90) is a state of momentum k∗ which is projected
out by the righthand side of Eq. (A90).) Quantitatively, we consider test functions in the form

|ρ〉 =

∞∑
n=0

∫
d2k

(2π)2
ρn(k) |k, n〉 (A91)

for a suitable smooth function ρn(k), which excludes the case of ρn(k) ∼ δ(k − k∗). Note that ρn(k) can always be
defined locally at some k by shifting the location of k∗ if necessary. The rigorous conditions ρn(k) should satisfy will
not concern us here. Because ρn(k∗) is necessarily finite and the states |k, n〉 are only undefined at k∗, we expect
the completeness relation Eq. (A90) holds up to a set of measure zero. We will now show that Eq. (A90) is true
when acting on test functions given by the continuum Landau levels ∝ a†nb†m |0〉 which are of the type in Eq. (A91)
because they are delocalized in momentum space.

We will prove Eq. (A90) using the known completeness relation? ? for the continuum Landau level operators:

∑
m,n

|m,n〉 〈m,n| = 1, |m,n〉 =
b†m√
m!

a†n√
n!
|0〉 (A92)

where a |0〉 = b |0〉 = 0. To study the completeness of the |k, n〉 basis, we will compute an expression for

Im′m,n′n = 〈m′, n′|
( ∞∑
`=0

∫
d2k

(2π)2
|k, `〉 〈k, `|

)
|m,n〉 . (A93)

Using Eq. (A92), the |k, n〉 basis is complete and Eq. (A90) holds iff Im′m,n′n = δmm′δnn′ . The rest of this section is
devoted to the calculation of Im′m,n′n.

We begin by simplifying the a oscillators in Eq. (A93). Because the a and b oscillators commute, we easily have

〈m′, n′|
(∑

`

∫
d2k

(2π)2
|k, `〉 〈k, `|

)
|m,n〉 = δnn′

∫
d2k

(2π)2
〈n| b

m′

√
m′!
|k, n〉 〈k, n| b

†m
√
m!
|n〉 , (n unsummed) . (A94)

The remaining overlaps can be evaluated using BCH. We expand the basis states with Eq. (A20) to find

〈n| b
m′

√
m′!
|k, n〉 =

1√
N (k)

∑
R

e−ik·R+iπR1R2 〈0| b
m′

√
m′!

eiQ·R|0〉

=
1√
N (k)

∑
R

e−ik·R+iπR1R2−φ4RR̄ 〈0| b
m′

√
m′!

ei
√
φ/2R̄b† |0〉

(A95)
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where in the second equality we used the normal ordering identity in Eq. (A22). We now use the coherent state

identity bexb
† |0〉 = xexb

† |0〉 to find

〈n| b
m′

√
m′!
|k, n〉 =

1√
N (k)

∑
R

e−ik·R+iπR1R2−φ4RR̄
(i
√
φ/2R̄)m

′

√
m′!

=
1√
N (k)

∑
R

(−√2φ∂)m
′

√
m′!

e−ik·R+iπR1R2−φ4RR̄

=
1√
N (k)

(−√2φ∂)m
′

√
m′!

N (k)

(A96)

where we introduced the holomorphic variables k = k1 + ik2, k̄ = k1− ik2 and the holomorphic derivative ∂ satisfying

R̄e−ik·R = R̄e−i
kR̄+k̄R

2 = 2i∂e−i
kR̄+k̄R

2 , 2∂ ≡ ∂

∂k1
− i ∂

∂k2
≡ ∂1 − i∂2 (A97)

which obeys ∂k = 1, ∂k̄ = 0. The anti-holomorphic derivative ∂̄ = ∂∗ satisfies ∂̄k̄ = 1, ∂̄k = 0. Taking complex
conjugates in Eq. (A96), we find

〈k, n| b
†m
√
m!
|n〉 =

1√
N (k)

∑
R

eik·R−iπR1R2−φ4RR̄
(−i
√
φ/2R)m√
m!

=
1√
N (k)

∑
R

e−ik·R+iπR1R2−φ4RR̄
(i
√
φ/2R)m√
m!

=
1√
N (k)

∑
R

(−√2φ∂̄)m√
m!

e−ik·R+iπR1R2−φ4RR̄

=
1√
N (k)

(−√2φ∂̄)m√
m!

N (k)

(A98)

Returning to Eq. (A94) with Eq. (A96) and its Hermitian conjugate, we arrive at the expression

Im′m,n′n = δnn′

∫
d2k

(2π)2

1

N (k)

(
(−√2φ∂)m

′

√
m′!

N (k)

)(
(−√2φ∂̄)m√

m!
N (k)

)

= δnn′
(2φ)(m+m′)/2

√
m!m′!

(−1)m
′+m

∫
d2k

(2π)2
N−1(∂m

′N )(∂̄mN )

= δnn′
(2φ)(m+m′)/2

√
m!m′!

(−1)m
′+m

∫
d2k

(2π)2
N (N−1∂m

′N )(N−1∂̄mN )

(A99)

suppressing the k-dependence for brevity. In the last line, we suggestively added a factor of N−1N which we make
use of shortly to introduce a covariant derivative structure. Eq. (A99) has reduced the computation of Im′m,n′n to a
single integral. Although it appears nontrivial, we can solve it exactly.

We now show that the integral can be evaluated at all m,m′ with an oscillator algebra of momentum space covariant
derivatives to be introduced shortly. The only other result required is the integral at m = m′ = 0:

I00,00 =

∫
d2k

(2π)2
N (k) =

∑
n∈Z2

∫
d2k

(2π)2
e−i(k1n1+k2n2)+πin·Φ·n =

∑
n∈Z2

δn,0e
πin·Φ·n = 1 . (A100)

To perform the integral in Eq. (A99) at general m,m′, we use the form of N (k) in Eq. (A84) which reads

N (k) =
√

2
∣∣θ3 (k/2π| i) θ3

(
ik̄/2π

∣∣ i)∣∣ exp

(
−kk̄

4π

)
≡
√

2f(k)f̄(k̄)e−kk̄/4π (A101)

where for brevity we defined f(k) = |θ3 (k/2π| i) | and f̄(k̄) = |θ3

(
ik̄/2π

∣∣ i) |. It should be noted that f(k) and f̄(k̄)

are not complex conjugates of each other. We will sometimes suppress the arguments of f and f̄ for brevity.
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We can now simplify the expressions for the derivatives because N factors into holomorphic and anti-holomorphic
parts, along with the exponential. First we note that the holomorphic derivative operators act in a simple way on
N (k):

∂ (e−kk̄/4πff̄) = e−kk̄/8π(∂ − k̄/8π)(e−kk̄/8πff̄) = e−kk̄/8π∇(e−kk̄/8πff̄), ∇ = ∂ − k̄/8π
∂̄ (e−kk̄/4πff̄) = e−kk̄/8π(∂̄ − k/8π)(e−kk̄/8πff̄) = e−kk̄/8π∇̄(e−kk̄/8πff̄), ∇̄ = ∂̄ − k/8π

(A102)

where we defined the covariant derivatives ∇ and ∇̄ which commute:

[∇̄,∇] = [∂̄,−k̄/8π] + [−k/8π, ∂] = −1/8π + 1/8π = 0 . (A103)

We also note that ∇f̄(k̄) = (∂ − k̄/8π)f̄(k̄) = f̄(k̄)(∂ − k̄/8π) = f̄(k̄)∇ and similarly [∇̄, f(k)] = 0, so

N−1∂̄mN =
1

ff̄
ekk̄/4π−kk̄/8π∇̄m(e−kk̄/8πff̄) =

1

f̄
ekk̄/8π∇̄m(e−kk̄/8π f̄)

N−1∂m
′N =

1

ff̄
ekk̄/4π−kk̄/8π∇m′e−kk̄/8πff̄ =

1

f
ekk̄/8π∇m′(e−kk̄/8πf) .

(A104)

Thus the integrand of Eq. (A99) can be written

N (N−1∂m
′N )(N−1∂̄mN ) =

√
2e−kk̄/4πff̄(

1

f̄
ekk̄/8π∇̄me−kk̄/8π f̄)(

1

f
ekk̄/8π∇m′e−kk̄/8πf)

=
√

2(∇̄me−kk̄/8π f̄)(∇m′e−kk̄/8πf) .

(A105)

The simplicity of Eq. (A105) justifies our definition of the covariant derivatives ∇ and ∇̄. To further develop
Eq. (A105), we will need an integration by parts identity. Observe that for test functions u(k), v(k)∫

d2k

(2π)2
u(k)∇v(k) =

∫
d2k

(2π)2
(u(k)∂v(k)− u(k)v(k)k̄/8π)

=

∫
d2k

(2π)2
(u(k)

∂1 − i∂2

2
v(k)− u(k)v(k)k̄/8π)

=

∫
d2k

(2π)2
(−v(k)

∂1 − i∂2

2
u(k)− v(k)u(k)k̄/8π) +

∫
d2k

(2π)2
(∂1 − i∂2)(u(k)v(k))

= −
∫

d2k

(2π)2
(v(k)∂u(k) + v(k)u(k)k̄/8π)

= −
∫

d2k

(2π)2
v(k)(∂ + k̄/8π)u(k)

(A106)

where we have discarded the total derivative term because the integral is over the BZ which has no boundary. Hence
we are led to define ∇̄† ≡ −∂ − k̄/8π which satisfies∫

d2k

(2π)2
u∇v =

∫
d2k

(2π)2
v∇̄†u, ∇̄† ≡ −(∂ + k̄/8π) (A107)

suppressing the k dependence for brevity. An identical calculation shows that∫
d2k

(2π)2
u∇̄v =

∫
d2k

(2π)2
v∇†u, ∇† ≡ −(∂̄ + k/8π) . (A108)

The full algebra of the covariant derivatives is

[∇, ∇̄] = [∇, ∇̄†] = [∇†, ∇̄] = [∇†, ∇̄†] = 0

[∇,∇†] = [∂ − k̄/8π,−(∂̄ + k/8π)] = −1/8π − 1/8π = − 1

4π

[∇̄, ∇̄†] = [∂̄ − k/8π,−(∂ + k̄/8π)] = −1/8π − 1/8π = − 1

4π

(A109)
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which form two decoupled oscillator algebra analogous to the a and b operators in real space. The last identity we
need is

−(∇†e−kk̄/8πf(k)) = ∂̄(e−kk̄/8πf(k)) + e−kk̄/8πf(k)k/8π

= f(k)∂̄e−kk̄/8π + e−kk̄/8πf(k)k/8π

= −f(k)e−kk̄/8πk/8π + e−kk̄/8πf(k)k/8π

= 0 .

(A110)

In the analogy to the a and b real space algebra, we should think of e−kk̄/8πf(k) as the vacuum of the ∇† operator,

and the states ∇m(e−kk̄/8πf(k)) as the (unnormalized) mth excited state. In an identical manner, we check that

∇̄†(e−kk̄/8π f̄(k̄)) = 0.
Integrating by parts in Eq. (A105), we find∫

d2k

(2π)2
N (N−1∂m

′N )(N−1∂̄mN ) =

∫
d2k

(2π)2

√
2(∇̄me−kk̄/8π f̄)(∇m′e−kk̄/8πf)

=

∫
d2k

(2π)2

√
2(e−kk̄/8π f̄)∇†m∇m′(e−kk̄/8πf)

(A111)

which is analogous to the correlator 〈0|ama†m′ |0〉. In particular, the expression e−kk̄/8π f̄(k̄)∇†m∇m′(e−kk̄/8πf(k))

can be evaluated with Wick’s theorem as a standard textbook computation. Wick’s theorem states that ∇†m∇m′
is equal to the normal-ordered sum of all possible contractions, where in our case the normal ordering is defined by
moving all ∇† operators to the right, and a contraction replaces ∇†∇ by ∇†∇ − ∇∇† = [∇†,∇] = 1/4π. Then we
just need the fact that any normal ordered string of operators ∇ . . .∇† obeys∫

d2k

(2π)2

√
2e−kk̄/8π f̄∇ . . .∇†(e−kk̄/8πf) = 0 (A112)

because . . .∇†e−kk̄/8πf = 0 on the righthand side and
∫
d2k e−kk̄/8π f̄∇ · · · = 0 on the lefthand side after an integration

by parts because ∇̄†(e−kk̄/8π f̄) = 0 (see Eq. (A110)). Thus we find that the only nonzero term from Wick’s theorem
arises when m = m′ and all ∇ and ∇† operators can be fully contracted. Counting the m! possible ways of totally
contracting the m ∇ and m ∇† operators, we find∫

d2k

(2π)2

√
2e−kk̄/8π f̄∇†m∇m′(e−kk̄/8πf) = δmm′m!

(
1

4π

)m ∫
d2k

(2π)2

√
2e−kk̄/8π f̄(e−kk̄/8πf)

= δmm′m!

(
1

4π

)m ∫
d2k

(2π)2

√
2f̄(k̄)f(k)e−kk̄/4π

= δmm′m!

(
1

4π

)m ∫
d2k

(2π)2
N (k)

= δmm′m!

(
1

4π

)m
(A113)

where in the last line we used Eq. (A100). We arrive at our final result by plugging Eq. (A113) into Eq. (A99) to find

Im′m,n′n = δnn′
(2φ)(m+m′)/2

√
m!m′!

(−1)m+m′δmm′m!

(
1

4π

)m
= δnn′δmm′ (A114)

using φ = 2π. Hence we have shown that

1 =

∞∑
`=0

∫
d2k

(2π)2
|k, `〉 〈k, `| (A115)

is true when acting on the complete |n,m〉 basis. In position space, the states |n,m〉 are localized on the scale of the
magnetic length? , and hence we expect them to be suitably well behaved such that Eq. (A115) does not encounter
pathological cases. This is confirmed by our direct calculation.
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6. Scattering Amplitudes

To compute the effective Hamiltonian, we need expressions for the matrix elements. Our calculations are similar

to those of Landau level overlaps in the symmetric gauge, where ψl,n(z) ∝ (b†)l−n(a†)ne−π
|z|2

2 , l being the angular
momentum quantum number. Our states are different in that they are built from the momentum operators TR instead
of b† directly, and are manifestly gauge-invariant.

The choice of Landau level states (which are localized on the scale of the magnetic length 1/
√
eB) in the definition

of magnetic translation irreps (Eq. (A18)) makes the kinetic term of the Hamiltonian very simple (see App. B for an
example), so we focus on the potential term U(r). The potential term will create scattering between different Landau
levels. Recall that U(r) is periodic so can be expanded as a Fourier series. Hence we need to compute the general
scattering amplitude

〈k,m|e−2πiG·r|k, n〉 . (A116)

with G = G1b1 +G2b2, G1, G2 ∈ Z. It is possible to do this exactly because G · r can be expressed simply in terms
of πππ and Q using −(eB)−1εµν(πν −Qν) = −εµνενρxρ = xµ. We now define

ai · πππ =

√
φ

2

(
zia
† + z̄ia

)
, zi = Ω−1/2(x̂+ iŷ) · ai, z̄i = Ω−1/2(x̂− iŷ) · ai (A117)

in terms of which we can write the Fourier harmonics

b1 · r = a2 ·
Q− πππ
eBΩ

=
1√
2φ

(
i(b− b†)− (z2a

† + z̄2a)
)
, b2 · r = −a1 ·

Q− πππ
eBΩ

=
1√
2φ

(
−(b+ b†) + z1a

† + z̄1a
)
.

(A118)
We made use of the relations b1 × v = a2

Ω · v and b2 × v = −a1

Ω · v for any v. This is easily verified by testing
v = b1,b2 and using linearity of dot and cross products. The required matrix elements are in the form

〈m| e−i2πG·reiR·Q |n〉 (A119)

which can be evaluated exactly using the oscillator algebra. We now derive the normal-ordered form of Eq. (A119):

e−i2πG·r = exp

(
−2πiG1√

2φ

(
i(b− b†)− (z2a

† + z̄2a)
)
− 2πiG2√

2φ

(
−(b+ b†) + z1a

† + z̄1a
))

= exp

(
− 2πi√

2φ
i(Gb− Ḡb†)

)
exp

(
− 2πi√

2φ
((G2z1 −G1z2)a† + (G2z̄1 −G1z̄2)a)

)
, G = G1 + iG2

= exp

(
− 2πi√

2φ
i(Gb− Ḡb†)

)
exp

(
i√
2φ

(γ̄a† + γa)

)
(A120)

where in the last line we defined γ = 2πεijGiz̄j and we note γ is dimensionless. The exponentials separate in the last
line as [a, b] = [a, b†] = 0. Returning to Eq. (A120), we use the BCH formula to find the normal-ordered form

e−i2πG·r = e−
(2π)2

4φ ḠGe
2πi√

2φ
iḠb†

e
− 2πi√

2φ
iGb

e−
γ̄γ
4φ e

i√
2φ
γ̄a†

e
i√
2φ
γa
. (A121)

It is now a simple matter to use BCH identities to reorder the b oscillators to the vacuum state in Eq. (A119). To

avoid clutter, we keep exp
(

i√
2φ

(γ̄a† + γa)
)

in the following expression and will normal order it at a later stage. Using

Eq. (A22), as well as [a†, b†] = [a, b†] = 0, b |n〉 = 〈m| b† = 0, we compute

〈m| e−i2πG·reiR·Q |n〉 = e−
φ
4RR̄ 〈m| e−

2πi√
2φ
i(Gb−Ḡb†)ei

√
φ/2R̄b†e

i√
2φ

(γ̄a†+γa) |n〉

= e−
φ
4RR̄e−

(2π)2

4φ ḠG 〈m| e−
2πi√

2φ
iGb

ei
√
φ/2R̄b†e

i√
2φ

(γ̄a†+γa) |n〉

= e−
φ
4RR̄e−

(2π)2

4φ ḠGeiπGR̄ 〈m|e
i√
2φ

(γ̄a†+γa)|n〉 .

(A122)

We have factored out all of the b operators into exponential factors depending on R and G. This leaves only the a

operators in the correlator. We use Eq. (A121) to normal order the e
i√
2φ

(γ̄a†+γa)
term and find

〈m| e−i2πG·reiR·Q |n〉 = e−
φ
4RR̄e−

(2π)2

4φ ḠGeiπGR̄e−
γ̄γ
4φ 〈m| e

i√
2φ
γ̄a†

e
i√
2φ
γa |n〉 . (A123)
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We now use the Fock space identities a |n〉 =
√
n |n− 1〉 to prove the formula

exa |n〉 =

∞∑
k=0

1

k!
xkak |n〉 =

n∑
k=0

1

k!
xk

√
n!√

(n− k)!
|n− k〉 =

1√
n!

n∑
k=0

xk
n!

k!(n− k)!
a†(n−k) |0〉

=
1√
n!

n∑
k=0

xn−k
n!

k!(n− k)!
a†k |0〉 .

(A124)

Using the binomial formula, we find the expression

〈m| e
i√
2φ
γ̄a†

e
i√
2φ
γa |n〉 =

1√
n!m!

m∑
l=0

n∑
k=0

(
iγ̄√
2φ

)m−l(
iγ√
2φ

)n−k (
n

k

)(
m

l

)
〈0| ala†k |0〉

=
1√
n!m!

m∑
l=0

n∑
k=0

(
iγ̄√
2φ

)m−l(
iγ√
2φ

)n−k (
n

k

)(
m

l

)
δl,kk! 〈0|0〉

=
1√
n!m!

min(n,m)∑
k=0

(
iγ̄√
2φ

)m−k (
iγ√
2φ

)n−k
n!m!

k!(n− k)!(m− k)!
〈0|0〉 .

(A125)

This function may be exactly evaluated using the Laguerre polynomial definition? https://secure.math.ubc.ca/

~cbm/aands/page_775.htm:

L(α)
n (x) =

n∑
i=0

(−1)i
(n+ α)!

(n− i)!(α+ i)!

xi

i!
, (A126)

which allows us to write

min(n,m)∑
k=0

xm−kyn−k
n!m!

k!(n− k)!(m− k)!
=

{
m!yn−mL

|n−m|
m (−xy), n ≥ m

n!xm−nL
|m−n|
n (−xy), m > n

(A127)

where Lαn(x) are the associated Laguerre polynomials. We finally arrive at

〈m| e
i√
2φ (γa+γ̄a†) |n〉 = e−

γ̄γ
4φ


√

m!
n!

(
iγ√
2φ

)n−m
L
|n−m|
m

(
γ̄γ
2φ

)
, n ≥ m√

n!
m!

(
iγ̄√
2φ

)m−n
L
|m−n|
n

(
γ̄γ
2φ

)
, m > n

(A128)

We now have computed closed form expressions for all of the oscillator states.
Finally, we will give a formula for the matrix elements of the full momentum eigenstates. For brevity, we denote

TR = TR·b1
a1

TR·b2
a2

. The expression

〈k,m|e−2πiG·r|k, n〉 =
1

N (k)

∑
R,R′

e−ik·(R−R
′) 〈m|T †R′e−2πiG·rTR |n〉 (A129)

can be simplified using the fact that T †R′ commutes with e−2πiG·r because e−2πiG·r is periodic in ai. We then use
BCH (as in Eq. (A21)) to simplify the TR operators in the first line and Eq. (A122) and the BCH formula in the
second to find:

〈m| e−2πiG·rT †R′TR |n〉 = ei
φ
2R1R2−iφ2R

′
1R
′
2 〈m| e−2πiG·re−iR

′·QeiR·Q |n〉

= ei
φ
2R1R2−iφ2R

′
1R
′
2+iφ2 (R1R

′
2−R2R

′
1)e−

φ
4 (R−R′)(R̄−R̄′)e−

(2π)2

4φ ḠGeiπG(R̄−R̄′) 〈m| e
i√
2φ (γa+γ̄a†) |n〉 .

(A130)
Recall that R = R1 + iR2. Collecting terms, we find

〈k,m|e−2πiG·r|k, n〉

=
〈m| e

i√
2φ (γa+γ̄a†) |n〉
N (k)

e−
(2π)2

4φ ḠG
∑
R,R′

e−ik·(R−R
′)ei

φ
2R1R2+iφ2R

′
1R
′
2−i

φ
2 (R1R

′
2−R2R

′
1)e−

φ
4 (R−R′)(R̄−R̄′)+iπG(R̄−R̄′)

(A131)

https://secure.math.ubc.ca/~cbm/aands/page_775.htm
https://secure.math.ubc.ca/~cbm/aands/page_775.htm
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We need only perform the sum of the R,R′ coordinates. We perform the same change of variables as in the normal-
ization calculation (Eq. (A25)) to s = (R+R′)/2 and d = R−R′. The calculation is identical to Eq. (A25) but with
the extra iπGd̄ term in the exponent which is linear and so does not enter the quadratic form. Explicitly, we have
shown in Eq. A31 that ∑

R,R′

e−ik·R+ik′·R′+iφ2 (R·b1)(R·b2)−iφ2 (R′·b1)(R′·b2)−φ4 R̄R−
φ
4 R̄
′R′+φ

2R
′R̄

= (2π)2δ(k− k′)ϑ

(
(k1, k2)

2π

∣∣∣∣Φ) .

(A132)

To evaluate the sum∑
R,R′

e−ik·(R−R
′)ei

φ
2R1R2−iφ2R

′
1R
′
2−i

φ
2 (R1R

′
2−R2R

′
1)e−

φ
4 (R−R′)(R̄−R̄′)+iπG(R̄−R̄′), (A133)

we note that we can simply absorb the extra term with G into the momentum:∑
R,R′

e−ik·(R−R
′)ei

φ
2R1R2−iφ2R

′
1R
′
2−i

φ
2 (R1R

′
2−R2R

′
1)e−

φ
4 (R−R′)(R̄−R̄′)+iπG(R̄−R̄′)

=
∑
R,R′

e−ik·(R−R
′)ei

φ
2R1R2−iφ2R

′
1R
′
2−

φ
4RR̄−

φ
4R
′R̄′+φ

2R
′R̄eiπ(G,−iG)·(R−R′)

=
∑
R,R′

e−i(k−(πG,−iπG))·(R−R′)ei
φ
2R1R2−iφ2R

′
1R
′
2−

φ
4RR̄−

φ
4R
′R̄′+φ

2R
′R̄

= ϑ

(
(k1 − πG, k2 + iπG)

2π

∣∣∣∣Φ) (2π)2δ(0) .

(A134)

Returning the Landau level factor in Eq. (A128) and using Eq. (A134) gives the closed-form expression

〈k,m|e−2πiG·r|k, n〉 = (2π)2δ(0)
ϑ
(

(k1−πG,k2+iπG)
2π |Φ

)
ϑ
(

(k1,k2)
2π |Φ

) e−
(2π)2

4φ ḠGe−
γ̄γ
4φ


√

m!
n!

(
iγ√
2φ

)n−m
L
|n−m|
m

(
γ̄γ
2φ

)
, n ≥ m√

n!
m!

(
iγ̄√
2φ

)m−n
L
|m−n|
n

(
γ̄γ
2φ

)
, m > n

.

(A135)

Recall that γ = 2πεijGiz̄j , G = (a1 + ia2) ·G, z̄i = (x̂− iŷ) · ai/
√

Ω. The most important feature is the factorization
of the momentum G dependence and the Landau level n,m dependence. This expression can actually be simplified
considerably using the quasi-periodicity of the Siegel theta functions. Let n = (G2,−G1) ∈ Z2 such that

(
k1

2π
−G/2, k2

2π
+ iG/2) + Φn = (

k1

2π
,
k2

2π
−G2) Φn =

1

2
(G,−iḠ). (A136)

Using the quasi-periodicity property Eq. (A39), we can transform the G dependence in the amplitude:

ϑ

(
(k1, k2)

2π

∣∣∣∣Φ) = ϑ

(
(k1, k2 − 2πG2)

2π

∣∣∣∣Φ) = ϑ

(
(k1 − πG, k2 + iπG)

2π
+ Φn

∣∣∣∣Φ)
= e−iπn

TΦn−i(k1−πG,k2+iπG)·nϑ

(
(k1 − πG, k2 + iπG)

2π

∣∣∣∣Φ) .

(A137)

Remarkably, we find that the ratio of theta functions appearing in the amplitude can be written simply at φ = 2π as

ϑ
(

(k1−πG,k2+iπG)
2π |Φ

)
ϑ
(

(k1,k2)
2π |Φ

) = exp
(
iπnTΦn + i(k1 − πG, k2 + iπG) · n

)
= exp

(π
2
GḠ+ iπG1G2 + i(k1G2 − k2G1)

)
.

(A138)

The most important feature of this calculation is the resulting exponential function in the second line of Eq. (A138).
Hence we have proven that the zero at (π, π) in the denominator of Eq. (A138) has canceled (it is a removable
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singularity), so the amplitude is well-defined everywhere in the BZ despite the wavefunction being defined on patches.
Thus the final expression for the scattering amplitude is

〈k,m|e−2πiG·r|k, n〉 = (2π)2δ(0) exp
(
− iπG1G2 − i(G1k2 −G2k1)

)
H2πG
mn (A139)

and we defined the general Landau level scattering matrix in terms of γq = εijqiz̄j and qi = ai · q

Hq
mn = 〈m| exp

(
i
γqa+ γ̄qa

†
√

2φ

)
|n〉 = e−

γ̄qγq
4φ


√

m!
n!

(
iγq√
2φ

)n−m
L
|n−m|
m

(
γ̄qγq
2φ

)
, n ≥ m√

n!
m!

(
iγ̄q√
2φ

)m−n
L
|m−n|
n

(
γ̄qγq
2φ

)
, m > n

. (A140)

It is useful to think of Hq as a matrix on the Landau levels indices. It is a unitary matrix: Hq †Hq = 1 and

Hq † = H−q. The latter is easily proved from Eq. (A140) by realizing
γqa+γ̄qa

†
√

2φ
is a Hermitian operator which is odd

in q. To prove unitarity, we write

[Hq †Hq]mn =

∞∑
r=0

〈m| exp

(
−iγqa+ γ̄qa

†
√

2φ

)
|r〉 〈r| exp

(
i
γqa+ γ̄qa

†
√

2φ

)
|n〉

= 〈m| exp

(
−iγqa+ γ̄qa

†
√

2φ

)[ ∞∑
r=0

|r〉 〈r|
]

exp

(
i
γqa+ γ̄qa

†
√

2φ

)
|n〉

= 〈m| exp

(
−iγqa+ γ̄qa

†
√

2φ

)[ ∞∑
r=0

∞∑
s=0

b†
s

√
s!
|r〉 〈r| b

s

√
s!

]
exp

(
i
γqa+ γ̄qa

†
√

2φ

)
|n〉

= 〈m| exp

(
−iγqa+ γ̄qa

†
√

2φ

)
exp

(
i
γqa+ γ̄qa

†
√

2φ

)
|n〉

= δmn

(A141)

where we inserted the s sum of the b and b† operators, which commute with the a operators, because bs |n〉 = 0 for
all s 6= 0, and bs = 1 for s = 0. Then we used that the a†, b† operators form a complete set:

|r, s〉 =
(a†)r(b†)s√

r!s!
|0〉 ,

∑
r,s

|r, s〉 〈r, s| = 1. (A142)

The matrix Hq will reappear throughout the paper. We will sometimes use the alternative representation (see Eq. (27)
of the Main Text) where γq = εijqiz̄j is expanded to yield

Hq
mn = 〈m| exp (iεijqiZj) |n〉 = [eiεijqiZ̃j ]mn, Zj =

z̄ja+ zja
†

√
2φ

, [Z̃j ]mn = 〈m|Zj |n〉 (A143)

where Zj is an operator and Z̃j is a matrix on the Landau level indices. To calculate the Wilson loop expressions in

App. A 7, we will need the commutation relations of Z̃ matrices, which are (recall zi = 1√
Ω

(x̂+ iŷ) · ai)

[
[Z̃i, Z̃j ]

]
mn

=
1

2φ
〈m|[zia† + z̄ia, zja

† + z̄ja]|n〉

=
1

2φ
(z̄izj − z̄jzi)δmn

=
1

2φ
δmnΩ−1(x̂− iŷ)T (aia

T
j − aja

T
i )(x̂+ iŷ)

=
1

2φ
δmnεij(x̂− iŷ)× (x̂+ iŷ)

=
i

φ
δmnεij

(A144)
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which we can write in matrix notation as [Z̃i, Z̃j ] = 1 i
φεij where 1 acts on the Landau levels and we use vTu = v · u

as well as the cross product identity

εij [aia
T
j − aja

T
i ]µν = Ωεµν (A145)

which follows from the Levi-Civita identities for matrix determinants.
With minor modifications, we can compute a more general correlator: 〈k′,m|e−iq·r|k, n〉 where q is an arbitrary

momentum in R2 which may connect different momenta k,k′ ∈ BZ. This calculation will be essential for the many-
body form factors in App. C.

We follow the same steps as in Eq. (A129). We first expand out the basis states:

〈k′,m|e−iq·r|k, n〉 =
1√

N (k)N (k′)

∑
R,R′

e−ik·R+ik′·R′ 〈m|T †R′e−iq·rTR |n〉

=
1√

N (k)N (k′)

∑
R,R′

e−ik·R+ik′·R′ 〈m| e[−iR′·Q,−iq·r]e−iq·rT †R′TR |n〉

=
1√

N (k)N (k′)

∑
R,R′

e−ik·R+i(k′+q)·R′ 〈m| e−iq·rT †R′TR |n〉 .

(A146)

The correlator is expanded following the same steps in Eq. (A130), replacing G→ q
2π :

〈m| e−iq·rT †R′TR |n〉 = ei
φ
2R1R2−iφ2R

′
1R
′
2 〈m| e−iq·re−iR′·QeiR·Q |n〉

= ei
φ
2R1R2−iφ2R

′
1R
′
2−i

φ
2 (R1R

′
2−R2R

′
1)e−

φ
4 (R−R′)(R̄−R̄′)ei

q
2 (R̄−R̄′)e−

q̄q
4φ 〈m| ei

γqa+γ̄qa
†

√
2φ |n〉 .

(A147)

The final two factors do not depend on R and factor out of the sum. The sum itself reads∑
R,R′

e−ik·R+i(k′+q)·R′ 〈m| e−iq·rT †R′TR |n〉

=
∑
R,R′

e−ik·R+i(k′+q)·R′ei
φ
2R1R2−iφ2R

′
1R
′
2−i

φ
2 (R1R

′
2−R2R

′
1)e−

φ
4 (R−R′)(R̄−R̄′)ei

q
2 (R̄−R̄′)e−

q̄q
4φ 〈m| ei

γqa+γ̄qa
†

√
2φ |n〉

which is in theta function form. As in Eq. (A130), the additional q dependence can be absorbed into the momentum
dependence: ∑

R,R′

e−ik·R+i(k′+q)·R′ei
φ
2R1R2−iφ2R

′
1R
′
2−i

φ
2 (R1R

′
2−R2R

′
1)e−

φ
4 (R−R′)(R̄−R̄′)+i q2 (R̄−R̄′) (A148)

=
∑
R,R′

e−ik·R+i(k′+q)·R′ei
φ
2R1R2−iφ2R

′
1R
′
2−

φ
4RR̄−

φ
4R
′R̄′+φ

2R
′R̄ei(

q
2 ,−i

q
2 )·(R−R′) (A149)

=
∑
R,R′

e−i(k−( q2 ,−i
q
2 ))·R+i(k′+q−( q2 ,−i

q
2 ))·R′ei

φ
2R1R2−iφ2R

′
1R
′
2−

φ
4RR̄−

φ
4R
′R̄′+φ

2R
′R̄ (A150)

= ϑ

(
(k1 − q/2, k2 + iq/2)

2π

∣∣∣∣Φ) (2π)2δ(k− k′ − q) (A151)

When k = k′ and q = 2πG, this expression must reduce to Eq. (A134), which indeed it does. Note that the delta
function is defined modulo a reciprocal lattice vector 2πG. We arrive at the formula

〈k′,m|e−iq·r|k, n〉 = (2π)2δ(k− k′ − q)
e−

q̄q
4φϑ

(
(k1−q/2,k2+iq/2)

2π

∣∣∣Φ)√
ϑ
(

(k1,k2)
2π

∣∣∣Φ)ϑ( (k1−q1,k2−q2)
2π

∣∣∣Φ) 〈m| e
i
γqa+γ̄qa

†
√

2φ |n〉

≡ (2π)2δ(k− k′ − q)eiξq(k)Hq
mn .

(A152)

Note that the operator e−iq·r is unitary acting on position-space wavefunctions. Its representation on the |k,m〉 basis
is also unitary, as must be the case, which is proved by showing eiξq(k) is a pure phase (see Eq. (A141)) and that Hq

mn

is a unitary matrix on the Landau level indices (see Eq. (A56)).
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7. Berry Connection and the Chern Number of a Lattice Landau level

Our basis of magnetic translation eigenstates is built from continuum Landau levels. These states are known to
carry a Chern number, and it will be important to see how this arises in our formalism. To do this carefully, we need
to compute the continuum Berry connection

(2π)2δ(k− k′)Amn(k) = 〈k′,m|r|k, n〉 . (A153)

We will calculate the expression directly using Eq. (A120). Using the identity

xµ = (eB)−1εµν(Qν − πν), (A154)

the position operator r can be expressed in terms of the oscillator operators via Eq. (A118) which reads

q · r =
1√
2φ

(
i(qb− q̄b†)− (γ̄qa

† + γqa)
)
, q = (a1 + ia2) · q, γq = εijqiz̄j (A155)

where we have introduced the arbitrary vector q as a technical device to aid the calculation. First we will show that
the a, a† terms give a simple term:

〈k′,m| γ̄qa
† + γqa√

2φ
|k, n〉 = (2π)2δ(k− k′)εijqi 〈m|Zj |n〉 = (2π)2δ(k− k′)εijqi[Z̃j ]mn, (A156)

using Eqs. (A140) and (A143). Note that, interestingly, exp
(
iεijqi[Z̃j ]mn

)
= Hq

mn. Note that Eq. (A156) gives a

contribution to A(k) which is independent of k and hence will not contribute to the Berry curvature or any winding
when we consider only a single Landau level. However, it will be important for multi-band effects as we consider
afterwards. Physically, the 1/

√
φ dependence of this term signals a contribution due to the magnetic length. It is a

non-Abelian term because localizing an electron below the magnetic length requires many Landau levels, implying
that many other different bands n 6= m contribute to the Berry curvature of a band m.

Moving onwards, we consider the b, b† oscillators in q · r. Using Eq. (A20), we need to compute

〈k′,m| i(qb− q̄b†) |k, n〉 =
1√

N (k)N (k′)

∑
R,R′

e−ik·R+ik′·R′+iφ2R1R2−iφ2R
′
1R
′
2 〈m| e−iR′·Qi(qb− q̄b†)eiR·Q |n〉 . (A157)

Using the coherent state identities bexb
† |0〉 = xexb

† |0〉, as well as BCH, this correlator can be evaluated as

〈m| e−iR′·Qi(qb− q̄b†)eiR·Q |n〉 = δmne
−φ/4R̄R−φ/4R̄′R′ 〈0|e−i

√
φ/2R̄′b†e−i

√
φ/2R′bi(qb− q̄b†)ei

√
φ/2R̄b†ei

√
φ/2Rb|0〉

= δmne
−φ/4R̄R−φ/4R̄′R′ 〈0|e−i

√
φ/2R′bi(qb− q̄b†)ei

√
φ/2R̄b† |0〉

= −
√
φ/2δmne

−φ/4R̄R−φ/4R̄′R′
(
q̄R′ + qR̄

)
〈0|e−i

√
φ/2R′bei

√
φ/2R̄b† |0〉

= −
√
φ/2δmne

−φ/4R̄R−φ/4R̄′R′
(
q̄R′ + qR̄

)
〈0|eφ2R′R̄[b,b†]ei

√
φ/2R̄b†e−i

√
φ/2R′b|0〉

= −
√
φ/2δmne

−φ/4R̄R−φ/4R̄′R′+φ
2R
′R̄
(
q̄R′ + qR̄

)
.

(A158)
We are left with an infinite sum:

〈k′,m| i√
φ/2

(qb− q̄b†) |k, n〉 = − δmn√
N (k)N (k′)

∑
R,R′

(q̄R′ + qR̄)e−ik·R+ik′·R′+iφ2R1R2−iφ2R
′
1R
′
2−

φ
4 R̄R−

φ
4 R̄
′R′+φ

2R
′R̄

= − δmn√
N (k)N (k′)

∑
R,R′

(−2q̄i∂̄′ + 2iq∂)e−ik·R+ik′·R′+iφ2R1R2−iφ2R
′
1R
′
2−

φ
4 R̄R−

φ
4 R̄
′R′+φ

2R
′R̄ .

(A159)
Here we have used the holomorphic variables R̄, R, and momentum derivatives ∂, ∂̄ in Eq. (A97) which we reproduce
for convenience below:

R̄e−ik·R = R̄e−i
kR̄+k̄R

2 = 2i∂e−i
kR̄+k̄R

2 , 2∂ ≡ ∂

∂k1
− i ∂

∂k2
≡ ∂1 − i∂2 (A160)
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and similarly for the anti-holomorphic derivative ∂̄ = ∂∗ which satisfy ∂k = ∂̄k̄ = 1. The primed derivatives act on
the k′ and k̄′. Taking the derivatives out of the sum (which is easily justified because it converges absolutely) leaves
Eq. (A159) in terms of exactly the theta function expression in Eq. (A23):

∑
R,R′

e−ik·R+ik′·R′+iφ2R1R2+iφ2R
′
1R
′
2−

φ
4 R̄R−

φ
4 R̄
′R′+φ

2R
′R̄ = (2π)2δ(k− k′)ϑ

(
(k1 + k′1, k2 + k′2)/2

2π

∣∣∣∣Φ) . (A161)

It is convenient to keep the symmetrized argument (k + k′)/2 as appears in Eq. (A26) because we need to take
derivatives of the Dirac delta function. Explicitly, we must calculate

〈k′,m| i√
2φ

(qb− q̄b†) |k, n〉 =
δmn(2π)2√
N (k)N (k′)

i(q̄∂̄′ − q∂) [δ(k− k′)N (k′/2 + k/2)] , N (k) = ϑ

(
(k1, k2)

2π

∣∣∣∣Φ) .

(A162)
Note the i√

2φ
prefactor in this expression compared to Eq. (A159).

Expanding the derivatives yields

i(q̄∂̄′ − q∂)

[
δ(k− k′)N

(
k′ + k

2

)]
= N

(
k′ + k

2

)
i(q̄∂̄′ − q∂)δ(k− k′) + δ(k− k′)i(q̄∂̄′ − q∂)

[
N
(
k′ + k

2

)]
= N

(
k′ + k

2

)
i(−q̄∂̄ − q∂)δ(k− k′) +

1

2
δ(k− k′)i (q̄∂̄z − q∂z)N (z)

∣∣
z= k′+k

2

= N (k)i(−q̄∂̄ − q∂)δ(k− k′) +
1

2
δ(k− k′)i(q̄∂̄ − q∂)N (k)

(A163)
where we have used the chain rule to rewrite the ∂′ operators in terms of ∂ and then set k = k′ after performing the

derivatives. The manipulation in the second line uses the chain rule to write, e.g. ∂k[f(k+k′

2 )] = f ′(k+k′

2 )∂k
k+k′

2 =
1
2f
′(k+k′

2 ) where as usual f ′(x) = ∂xf(x).
Finally, we have the following identities

q̄∂̄ + q∂ = qi∂i, i(q̄∂̄ − q∂) = −εijqi∂j (A164)

which give the expression

〈k′,m| i√
2φ

(qb− q̄b†) |k, n〉 = δmn(2π)2qi

(
− i∂iδ(k− k′)− 1

2
δ(k− k′)εij∂j logN (k)

)
. (A165)

The two terms in this expression have different physical consequences. The first term appears in the Berry connection
at zero flux:∫

d2r e−i(k
′−G′)·rr ei(k−G)·r = (−i∂k)

∫
d2r e−i(k

′−G′)·rr ei(k−G)·r = −i(2π)2δG,G′∂kδ(k− k′) (A166)

where the functions ei(k−G)·r are a basis of the Bloch states at zero flux. When there are nontrivial Bloch functions,
the −i∂k is responsible for the conventional U†(i∂k)U contribution to the Berry curvature where U(k) are the matrix
eigenvectors. To see this, recall that the Bloch eigenstates in the Mth band are defined

|k,M〉φ=0 =
∑
m

|k,G〉UMG (k), (A167)

so the Berry connection in this basis yields

〈k′,M |r|k, N〉φ=0 =
∑
GG′

[U†(k′)]MG′〈k′,G′|r|k,G〉UNG (k)

=
∑
GG′

[U†(k′)]MG′ [−i(2π)2δG′G∂kδ(k− k′)]UNG (k)

= (2π)2δ(k− k′)
∑
GG′

[U†(k′)]MG′ [δGG′i∂kU
N
G (k)]

= (2π)2δ(k− k′)[U†(k)(i∂k)U(k)]MN .

(A168)
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where we used the delta function identity f(k)∂kδ(k− k′) = −δ(k− k′)∂kf(k). If the basis includes orbital degrees
of freedom carrying Landau levels, such as sublattice or layer as in TBG, then Eq. (A168) should be summed over
the orbital indices as well.

The εij∂j logN (k) term in Eq. (A165) has no zero-flux analogue. It arises entirely from the normalization factor
N (k). This term is responsible for the nonzero Chern number of the basis states as we now show. The Abelian Berry
connection of the mth Landau level is independent of m and is given by

Ammi = bi · Amm = −1

2
εij∂j logN (k) . (A169)

Using Eq. (A88), we have the following fact about the Abelian Berry curvature:

εij∂iAmmj = −1

2
εjkεij∂i∂k logN (k) =

1

2
∂2 logN (k) = − 1

2π
+ 2πδ(k− πb1 − πb2) (A170)

which shows that there are two contributions to the Berry curvature. The first term − 1
2π is the perfectly flat Berry

curvature expected for a Landau level50. Integrating − 1
2π over the BZ of area (2π)2 gives −2π corresponding to a

Chern number C = −1. The second term in Eq. (A170) is a singular delta function contribution to the Berry curvature
which is appears at the singular point k∗ = πb1 + πb2 where N (k∗) = 0 and |k∗, n〉 is undefined. Note that k∗ can
be chosen arbitrarily via a gauge transformation (see Eq. (A36)) and thus the delta function cannot be a physical
contribution to the Berry curvature. We show this in two ways. First we observe that εij∂iAmmj = 1

2∂
2 logN (k) is

a total divergence so if the wavefunction could be continuously defined, then the Berry curvature would integrate to
zero over the BZ. However, a Chern number forbids a globally well-defined gauge, which in our case is manifested
by the undefined states where N (k∗) = 0. To compute the Chern number, we define the wavefunction locally in
patches. Let patch 1 be BZ with a small neighborhood near k∗ removed in the gauge where N (k∗) = 0, and let patch
2 be the small neighborhood around k∗ in a gauge where N (p∗) = 0 for some p∗ outside the neighborhood. The
Berry curvature is non-singular in both patches and integrates to give C = −1. A more physical way to understand
this comes from computing the Wilson loop. Because the Berry connection appears in the exponential, the 2π delta
function is unobservable as we now show. The Abelian Wilson loop of a single Landau level band integrated along
the k2 direction is?

W (k1) = eiθB(k1) = exp

(
i

∮ (k1,2π)

(k1,0)

dk2Amm2 (k)

)
(A171)

where θB(k1) is the Berry phase whose winding determines the Chern number. We will calculate an exact expression
for W (k1). To start, it is easy to show that θB(0) = 0 for the Wilson loop integrated along the k2 direction because
dk2Amm2 (0, k2) = 1

2dk2∂1 logN (0, k2) = 0, which follows from the fact that N (k1, k2) = N (−k1, k2) so ∂1N|k1=0 = 0.
This is easily observed from Eq. (A55) which shows N (k1, k2) is even in both its arguments. We can now calculate
directly

θB(k1) = θB(k1)− θB(0) =

(∮ (k1,2π)

(k1,0)

−
∮ (0,2π)

(0)

)
dkiAmmi (k) mod 2π

=

∫
(0,k1)×(0,2π)

d2k εij∂iAmmj (k) mod 2π

= −2πk1

2π
+ 2πΘ(k1 − π) mod 2π

=

{
−k1, 0 ≤ k1 < π

2π − k1, π < k1 ≤ 2π

(A172)

where the second equality follows from adding paths in opposite direction separated by 2π which cancel, and then
applying Stokes’ theorem (see Fig. 11(a)). Finally Θ(x) is the Heavyside step function: ∂xΘ(x) = δ(x). The winding of
θB(k1) is plotted in Fig. 11(b). We see that the 2π discontinuity from the delta function in Eq. (A170) is unobservable
because θB(k1) is only defined mod 2π.

Having discussed the Abelian terms from the Landau level basis states, we now consider the full non-Abelian
Wilson loop with contributions from the band eigenvectors. We gather the terms from Eq. (A156) and Eq. (A165).
Incorporating the prefactors, we find

〈k′,m|bi · r|k, n〉 = (2π)2δmn(−i∂i)δ(k− k′)

− (2π)2δ(k− k′)εij

(1

2
δmn∂j logN (k) + [Z̃j ]mn

)
.

(A173)
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FIG. 11. Landau Level Wilson Loops. (a) The Berry phase can be calculated using Stokes’s theorem in Eq. (A172). The
red arrows represent Wilson loops integrated along k2, and the blue arrows represent two additional paths (which sum to zero
because k2 = 0 and k2 = 2π are identified) which form a closed loop. There is an additional delta function marked by the X
at (k1, k2) = (π, π) which adds 2π to the Berry phase as k1 crosses π. (b) We plot the Berry phase obtained from the Abelian
Wilson loop in Eq. (A172), from which we see that the winding gives C = −1.

The explicit matrix elements are

[Z̃j ]mn = 〈m|zja
† + z̄ja√

2φ
|n〉 =

1√
2φ

(zj
√
mδm−1,n + z̄j

√
nδm,n−1) . (A174)

Finally, we obtain an explicit expression for the non-Abelian Berry connection AMN (k) in the occupied bands
indexed by M,N defined by

(2π)2δ(k− k′)AMN (k) =
∑
mn

[U†]Mm 〈k′,m|r|k, n〉UNn (k) (A175)

where U(k) is the NLL×Nocc matrix of eigenvectors, Nocc is the number of occupied bands, and NLL is the dimension
of the matrix Hamiltonian after the Landau levels are truncated above some cutoff. Plugging in Eq. (A165), we find
the final expression

AMN
i (k) = bi · AMN (k) = [U†(i∂i − εijZ̃j)U ]MN − δMN

2
εij∂j log ϑ

(
(k1, k2)

2π

∣∣∣∣Φ) (A176)

where we performed an identical manipulation to Eq. (A168) to act the ∂i derivative on U(k).
To compute Wilson loops numerically, we need to be able to write the Wilson loop as a discretized product. To do

so, we need to deal with the Z̃j term using the commutation relations in Eq. (A144). We need the following identity

e−iεjlkjZ̃l∂ie
iεjlkjZ̃l = iεilZ̃l −

1

2
[iεjlkjZ̃l, ∂i(iεj′l′kj′Z̃l′)] + higher commutators

= iεilZ̃l +
1

2
εjlεil′kj [Z̃l, Z̃l′ ]

= iεijZ̃j +
i

2φ
εll′εjlεil′kj

= iεijZ̃j −
i

2φ
εijkj

(A177)

where the first line is the formula for the derivative of the exponential map (see Wikipedia for instance https://
en.wikipedia.org/wiki/Derivative_of_the_exponential_map) and the higher commutator terms vanish because

[Z̃i, Z̃j ] ∝ 1 is central. The additional − i
2φεijkj term has nonzero constant curl and so cannot be absorbed into the

https://en.wikipedia.org/wiki/Derivative_of_the_exponential_map
https://en.wikipedia.org/wiki/Derivative_of_the_exponential_map
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exponential. However, − i
2φεijkj is proportional to the identity so it can be factored out. Using Eq. (A177), we have

U†(k)e−iεjlkjZ̃li∂i

(
eiεjlkjZ̃lU(k)

)
= U†(k)

(
e−iεjlkjZ̃li∂ie

iεjlkjZ̃l
)
U(k) + U†(k)i∂iU(k)

= U†(k)i∂iU(k) + U†(k)

(
−εijZ̃j +

1

2φ
εijkj

)
U(k)

= U†(k)
(
i∂i − εijZ̃j

)
U(k) +

1

2φ
εijkjU

†(k)U(k)

(A178)

and because U†(k)U(k) = 1 due to the orthonormality of the eigenvectors, we arrive at

AMN
i (k) = [Ũ†i∂iŨ ]MN − δMN

2φ
εijkj −

δMN

2
εij∂j log ϑ

(
(k1, k2)

2π

∣∣∣∣Φ) , Ũ(k) ≡ eiεijkiZ̃jU(k) = HkU(k)

(A179)

and we used eiεijkiZ̃j = Hk which is a unitary matrix. As such, note that Ũ†(k)Ũ(k) = U†(k)Hk†HkU(k) =

U†(k)U(k) = 1. The exponential factor eiεijkiZ̃j has nontrivial commutation relations and cannot be absorbed into
the definition of U(k) via a gauge transformation; we will keep this term throughout our calculations. The first term
in Eq. (A179) is in the canonical Berry connection form. The second term is the extraneous Abelian term (which we
will show is canceled at the end of the calculation), and the third term of Eq. (A179) is the winding of the Chern
basis. As with the standard zero-flux Wilson loop, we want to express the Wilson loop as a product of projectors.

In constructing the projector product, we will find that a term appears to exactly cancel the − δMN2φ εijkj extraneous

term. The end result will be a simple product formula in terms of U(k). We define the path-ordered non-Abelian
Wilson loop along the path C to be?

[WC ]
MN =

[
exp

(
i

∮
C
dk · A(k)

)]MN

(A180)

We now plug in Eq. (A179) and factor out the Abelian contributions:

WC = e
−i
∮
C dk×

1
2∇∇∇ log ϑ

(
(k1,k2)

2π

∣∣∣Φ) [
e−

i
2φ

∫
C dkiεijkj exp

(
i

∮
C
dki Ũ

†i∂iŨ

)]
. (A181)

Note that we have grouped the extraneous Abelian term with the Ũ term inside the brackets. Our goal is now to
produce a discretized expression for the bracketed term. To do so, we break the path C into L increments labeled by
dkn, n = 1, . . . L where dkn = kn − kn−1. Because C is a closed path, k0 ≡ kL. Taking L→∞, we find

exp

(
i

∮
C
dki Ũ

†i∂iŨ

)
= exp

(
i

L∑
n=1

Ũ†(kn)i(Ũ(kn)− Ũ(kn−1))

)

= exp

(
i

L∑
n=1

i(1− Ũ†(kn)Ũ(kn−1))

) (A182)

and now using BCH (neglecting terms of O(dk2) which vanish as L→∞), we have

exp

(
i

∮
C
dki Ũ

†i∂iŨ

)
→

L←1∏
n

exp
(

(−1 + Ũ†(kn)Ũ(kn−1))
)

=

L←1∏
n

(
1 + (−1 + Ũ†(kn)Ũ(kn−1)) + . . .

)
=

L←1∏
n

Ũ†(kn)Ũ(kn−1)

(A183)

where in the second to last line, we expanded eM = 1 +M + . . . where M = Ũ†(kn)Ũ(kn−1)− 1 is a matrix of order
O(dk). Terms of higher order vanish in the L → ∞ limit. So far, this argument is identical to the standard Wilson
loop. Regrouping terms in the product gives the standard Wilson loop form

exp

(
i

∮
C
dki Ũ

†i∂iŨ

)
= Ũ†(kL)

(
L−1←1∏

n

Ũ(kn)Ũ†(kn)

)
Ũ(k0) . (A184)
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The factors in parentheses are a product of Ũ projectors. By plugging in Ũ(k) = HkU(k), we will arrive at an
expression written only in terms of the matrix eigenvectors U(k):

L−1←1∏
n

Ũ(kn)Ũ†(kn) = HkL−1P (kL−1)H−kL−1 . . .Hk2P (k2)H−k2Hk1P (k1)H−k1 , P (k) ≡ U(k)U†(k) . (A185)

To simplify the Wilson loop further, we focus on factors in the form H−kn+1Hkn . To do so, recall that Hk = eiεijkiZ̃j

and use the Baker-Campbell-Hausdorff identity eX+Y = e−
1
2 [X,Y ]eXeY for [X,Y ] a c-number to show

H−kn+1Hkn = H−dkn+1−knHkn = exp

(
−1

2
[−iεijdkn+1

i Z̃j ,−iεi′j′kni′Z̃j′ ]
)
H−dkn+1H−knHkn (A186)

where we raised the n indices on dk and k to avoid confusion with the vector indices i, j. The commutator is direct
to evaluate with Eq. (A144):

[−iεijdkn+1
i Z̃j ,−iεi′j′kni′Z̃j′ ] = −εijεi′j′dkn+1

i kni′ [Z̃j , Z̃j′ ]

= −εijεi′j′dkn+1
i kni′

i

φ
εjj′

= − i
φ
εijdk

n+1
i knj

= − i
φ
dkn+1 × kn .

(A187)

Returning to Eq. (A186), we now have the simple relation

H−kn+1Hkn = e
i

2φdkn+1×knH−dkn+1 (A188)

using H−knHkn = 1 by unitarity. With this result, Eq. (A185) reads

L−1←1∏
n

Ũ(kn)Ũ†(kn) = e
i

2φ

∑L−2
n=1 dkn+1×knHkL−1P (kL−1) . . .H−dk3P (k2)H−dk2P (k1)H−k1

Ũ†(kL)

(
L−1←1∏

n

Ũ(kn)Ũ†(kn)

)
Ũ(kn) = e

i
2φ

∑L−1
n=0 dkn+1×knU†(kL)H−dkLP (kL−1) . . .H−dk3P (k2)H−dk2P (k1)H−dk1U(k0)

(A189)
where we grouped the Abelian − i

φdkn+1 × kn terms into an overall prefactor. Now we have a simple expression for

the Ũ Wilson loop in Eq. (A184) which reads

exp

(
i

∮
C
dki Ũ

†i∂iŨ

)
= e

i
2φ

∑L−1
n=0 dkn+1×knU†(kL)H−dkL

(
L−1←1∏

n

P (kn)H−dkn
)
U(k0) . (A190)

Because we have taken L→∞, the Abelian overall phase becomes

lim
L→∞

i

2φ

L−1∑
n=0

dkn+1 × kn =
i

2φ

∮
C
dkiεijkj . (A191)

This prefactor exactly cancels the extraneous Abelian term in Eq. (A181), which now reads

WC = e−i
∮
C dk×

1
2∇∇∇ log ϑ(

(k1,k2)
2π |Φ)U†(kL)H−dkLP (kL−1) . . . P (k2)H−dk2P (k1)H−dk1U(k0) (A192)

showing that the Wilson loop at φ = 2π factors into an Abelian winding factor that gives each Landau level a nonzero
Chern number, and a non-Abelian product of projectors with insertions of H−dk. To understand the effect of the
insertions, we consider the Berry connection (Eq. (A176)) when all bands are occupied, so U(k) = 1. Because U(k)
is independent of k in this case, the k derivative term disappears and

AMN
i (k) = [(−εijZ̃j)]MN − δMN

2
εij∂j log ϑ

(
(k1, k2)

2π

∣∣∣∣Φ) . (A193)
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In a crystal at zero flux, the Berry connection of fully occupied bands is identically zero, but we see from the above
expression that two contributions survive at φ = 2π. Using Eq. (A174) to show that Z̃j is traceless, we see that only the
Abelian term (the second term in Eq. (A193)) contributes to the Berry curvature and therefore the winding. However,
the non-Abelian term is nontrivial. We compute the Wilson loop along a straight contour C = (k1, 0) → (k1, 2π),
finding:

WC = exp

(
i

∮
C
dkiAi(k)

)
= ei

∮
C dki(−εijZ̃j)e

−i
∮
C dk×

1
2∇∇∇ log ϑ

(
(k1,k2)

2π

∣∣∣Φ)

= e−i(2πb2)iεijZ̃je
−i
∮
C dk×

1
2∇∇∇ log ϑ

(
(k1,k2)

2π

∣∣∣Φ)

= H−2πb2e
−i
∮
C dk×

1
2∇∇∇ log ϑ

(
(k1,k2)

2π

∣∣∣Φ)
(A194)

showing that H−2πb2 can be interpreted as the non-Abelian factor of the Wilson loop in the fully occupied limit (note
that it does not depend on k1 so does not contribute to the winding). Importantly, this result agrees with Eq. (A192)
which in the U(k) = 1 limit reads

WC = e
−i
∮
C dk×

1
2∇∇∇ log ϑ

(
(k1,k2)

2π

∣∣∣Φ)H−dkL
(
L−1←1∏

n

H−dkn
)

= e
−i
∮
C dk×

1
2∇∇∇ log ϑ

(
(k1,k2)

2π

∣∣∣Φ) L←1∏
n

H− 2π
L b2

= e
−i
∮
C dk×

1
2∇∇∇ log ϑ

(
(k1,k2)

2π

∣∣∣Φ)H−2πb2

(A195)

using Eq. (A143) in the last line. The physical picture of Eq. (A194) and Eq. (A195) is that, unlike the atomic
limits of zero-flux crystals, the fully occupied Landau level state has a nontrivial Wilson loop where every band winds
identically due to the εij∂j log ϑ term. The k1-independent H−2πb2 term can be diagonalized to obtain the Wannier
centers which are the Wilson loop eigenvalues45? .

Appendix B: Square Lattice Calculations

This section is brief, pedagogically oriented review of how Bloch’s theorem is used to produce a matrix Hamiltonian
on a plane wave basis at zero flux (App. B 1) and how our magnetic Bloch theorem is used to produce a matrix
Hamiltonian on a Landau level basis at 2π flux (App. B 2). We use a simple p2/(2m) kinetic Hamiltonian in a cosine
potential on the square lattice.

1. Zero Flux

The zero-flux Hamiltonian is chosen to be

Hφ=0(r) = −1

2
∇∇∇2 +

w

2
(e−2πib1·r + e−2πib2·r +H.c.) (B1)

If w = 0, the solution to the Hamiltonian is simple – the eigenstates are plane waves of the form

ψ̃k̃(r) = eik̃·r, (B2)

where k̃ runs over the entire plane R2. When the lattice potential is added, the continuous translation symmetry is
broken down to a discrete symmetry indexed by k, where k is defined in first Brillouin zone k = k1b1 + k2b2, k1,2 ∈
(−π, π] . States at k + 2πG where G = 2πG1b1 + 2πG2b2, G1,2 ∈ Z can be scattered to states at k by the periodic
potential. The states

ψk,G(r) = ψ̃k−G(r). (B3)

form a basis of the Hilbert space on which we can find a representation of the Hamiltonian, which will necessarily be
diagonal in k. This selection rule arises because ψk,G(r) is an eigenstate of the translation operator: ψk,G(r + ai) =
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ei(k+2πG)·aiψk,G(r) = eik·aiψk,G(r) using the fact that G · ai ∈ Z. For each crystal momentum k in the first BZ, the
plane wave index G labels different states with the same crystal momentum.

We calculate the matrix elements of the Hamiltonian in the |k,G〉 basis, where 〈r|k,G〉 = ψk,G(r). Working in the
k,G basis, the Hamiltonian reads

〈k,G|Hφ=0 |k′,G′〉 =

∫
d2rd2r′ 〈k,G|r〉 〈r|Hφ=0 |r′〉 〈r′|k′,G′〉

=

∫
d2rd2r′ ψ∗k,G(r)Hφ=0(r)δ(r− r′)ψk′,G′(r

′)

=

∫
d2r e−i(k−G)·rHφ=0(r)ei(k

′−G′)·r

=

∫
d2r e−i(k−G)·r

[
1

2
(k′ −G′)2 +

w

2
(e−2πib1·r + e−2πib2·r +H.c.)

]
ei(k

′−G′)·r

(B4)

The kinetic term has no position dependence, so∫
d2r e−i(k−G)·r

[
1

2
(k′ −G′)2

]
ei(k

′−G′)·r = (2π)2δ(k− k′)

[
1

2
(k′ −G′)2δG,G′

]
(B5)

which is diagonal in k and G. The potential term does have position dependence and will not be diagonal in G:

w

2

∫
d2r e−i(k−G)·r [e−2πib1·r + e−2πib2·r +H.c.

]
ei(k

′−G′)·r

=
w

2

∫
d2r

[
e−i(k−G−k

′+G′−2πb1)·r + e−i(k−G−k
′+G′−2πb2)·r +H.c.

]
= (2π)2δ(k− k′)

w

2
[δG+2πb1,G′ + δG′+2πb1,G + δG+2πb2,G + δG′+2πb2,G] .

(B6)

This term is still diagonal in k as ensures by the translation symmetry. We derive the Bloch Hamiltonian

〈k,G|Hφ=0 |k′,G′〉 = (2π)δ(k− k′)Hφ=0
G,G′(k),

Hφ=0
G,G′(k) =

1

2
(k′ −G′)2δG,G′ +

w

2
(δG+2πb1,G′ + δG′+2πb1,G + δG+2πb2,G + δG′+2πb2,G) .

(B7)

The Bloch Hamiltonian can be thought of as an infinite matrix on the G basis as a function of k. By imposing a
cutoff on the G plane wave states, this matrix can be diagonalized and the spectrum obtained.

2. 2π-flux

The Hamiltonian at 2π flux is created via canonical substitution, sending −i∇∇∇ → πππ:

Hφ=2π(r) =
1

2
πππ2 +

w

2
(e−2πib1·r + e−2πib2·r +H.c.). (B8)

At 2π flux, the magnetic translation operators commute with Hφ=2π(r) and allow us to represent Hφ=2π(r) as a
matrix acting on the |k, n〉 eigenstates of the magnetic translation operators. We see that the Landau levels play the
role of the plane waves at zero flux. The substantial difference is that, instead of simple Bloch states, the magnetic
translation eigenstates are given in Eq. (A18).

The matrix elements in the magnetic translation basis read

〈k,m|Hφ=2π(r) |k′, n〉 = 〈k,m|φ(a†a+
1

2
) +

w

2
(e−2πib1·r + e−2πib2·r +H.c.) |k′, n〉

= (2π)2δ(k− k′)

[
φ(m+

1

2
)δmn +

w

2
(e−ik2H2πb1

mn + eik1H2πb2
mn +H.c.)

]
(B9)

where we used 1
2πππ

2 = φ(a†a + 1
2 ) which acts diagonal on the m,n Landau level indices because a†a |n〉 = n |n〉. The

matrix elements of the potential term were computed in App. A 6, and an expression for H2πG may be found in
Eq. (A140). Thus the magnetic Bloch Hamiltonian Hφ=2π

mn (k) is defined

〈k,m|Hφ=2π(r) |k′, n〉 = (2π)δ(k− k′)Hφ=2π
mn (k) . (B10)
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FIG. 12. Density of states computed from the band structure (blue) versus the open momentum space method (orange)
developed in Ref. 28. The small discrepancies can be improved by sampling more points in both methods.

In analogy to the zero flux case, Hφ=2π
mn (k) is a matrix on the mn Landau level indices as a function of k, and can

be diagonalized by imposing a Landau level cutoff. See Fig. 12 for a comparison for the density of states obtained by
our band structures versus the open momentum space method in Ref. 28.

Appendix C: Coulomb Interaction in a Gauge-Invariant Formalism

In this Appendix, we show how to write the Coulomb interaction

Hint =
1

2

∫
d2rd2r′ n(r)V (r− r′)n(r′) =

1

2

∫
d2q

(2π)2
V (q)ρ−qρq, (C1)

in the terms of the magnetic translation group eigenstates in a gauge-invariant manner. We keep V (q) general but
require the Fourier transform is even, V (q) = V (−q), and is non-negative real, V (q) ≥ 0, to preserve the positive
semi-definite structure. We require a formula for the Fourier components of the density

ρq =

∫
d2r e−iq·rn(r) (C2)

written in terms of the magnetic translation group eigenstates. The single-particle magnetic translation group eigen-
states are

ψk,n =
1√
N (k)

∑
R

e−ik·RTR·b1
a1

TR·b2
a2

a†n√
n!
ψ0, aψ0 = bψ0 = 0 . (C3)

The single-particle eigenstates arises from diagonalizing the single-particle Hamiltonian on this basis, yielding matrix
eigenvectors UNn (k) where N is the band index and n is the Landau level orbital index. The continuum electron
operators obey {c†(r), c(r′)} = δ(r − r′), and the creation operators for the magnetic translation group basis states

are denoted γ†k,N =
∑
n U

N
n (k)ψ†k,n. The magnetic translation group eigenstates obey

〈r|ψ†k,n|0〉 = 〈0|c(r)ψ†k,n|0〉 = ψk,n(r) . (C4)
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Our goal now is to express the density operator n(r) = c†(r)c(r) in terms of the single-particle eigenstates. If there
are any internal indices of c, like spin or valley in TBG, they are implicitly summed over: n(r) =

∑
α c
†
α(r)cα(r).

Because ρ(q) is bilinear in fermion operators, we only need to calculate its single-particle matrix elements. Inserting
resolutions of the identity and using 〈r′|n(r)|r′′〉 = δ(r− r′′), we find

〈0|ψk′,mρqψ
†
k,n|0〉 =

∫
d2r e−iq·r 〈0|ψk′,mc

†(r)c(r)ψ†k,n|0〉

=

∫
d2r e−iq·r 〈0|ψk′,mc

†(r)|0〉 〈0|c(r)ψ†k,n|0〉

=

∫
d2r e−iq·rψ∗k′,m(r)ψk,n(r)

= 〈k′,m|e−iq·r|k, n〉 .

(C5)

where in the second line we have inserted a resolution of identity, but because of fermion conservation only the vacuum
survives. Hence we obtain an explicit expression for

ρq =
∑
mn

∫
d2kd2k′

(2π)4
〈k′,m|e−iq·r|k, n〉ψ†k′,mψk,n (C6)

where the matrix element 〈k′,m|e−iq·r|k, n〉 was computed in Eq. (A152). This is essentially the density operator ρq
in the Landau level basis. Thus we have determined the coefficients in the expansion of ρq:

ρq =
∑
mn

∫
d2kd2k′

(2π)4
〈k′,m|e−iq·r|k, n〉ψ†k′,mψk,n =

∑
mn

∫
d2k

(2π)2
eiξq(k)ψ†k−q,mHq

mnψk,n . (C7)

For convenience, we recall that

eiξq(k) =
e−

q̄q
4φϑ

(
(k1−q/2,k2+iq/2)

2π

∣∣∣Φ)√
ϑ
(

(k1,k2)
2π

∣∣∣Φ)ϑ( (k1−q1,k2−q2)
2π

∣∣∣Φ)
Hq
mn = 〈m| exp

(
i
γqa+ γ̄qa

†
√

2φ

)
|n〉 = e−

γ̄qγq
4φ


√

m!
n!

(
iγq√
2φ

)n−m
L
|n−m|
m

(
γ̄qγq
2φ

)
, n > m√

n!
m!

(
iγ̄q√
2φ

)m−n
L
|m−n|
n

(
γ̄qγq
2φ

)
, m > n

(C8)

which are both unitary. It is simple now to write ρq in terms of the single-particle eigenstate basis by recalling that
in the Nth band

γ†k,N =
∑
m

UNm (k)ψ†k,m . (C9)

The creation operator γ†k,N has no relation to the momentum factor γq = εijqiz̄j . If our Landau levels carried
additional indices α, the unitary U would also be a matrix in α, β.

Orthogonality of the eigenvectors at a given k gives
∑
N U

N∗
n (k)γ†k,N = ψ†k,n and hence

ρq =

∫
d2k

(2π)2
eiξq(k)

∑
MN

γ†k−q,M [U†(k− q)HqU(k)]MNγk,N . (C10)

To project the Hamiltonian into a set of low energy bands, one merely restricts the sum over MN . Our final step is
to define the form factor

MMN (k,q) ≡ eiξq(k)[U†(k− q)HqU(k)]MN . (C11)

A few comments about M(k,q) are in order. For all q, the eigenvalues of M(k,q) have magnitudes less than or
equal to 1 because eiξq(k)Hq is unitary and U(k) is composed from normalized eigenvectors. At generic q, M(k,q)
does not have a gauge-invariant spectrum because U(k) and U(k − q) are eigenvector matrices and each come with
arbitrary phases. At q = 2πG, U(k) and U(k + 2πG) are identical because k is periodic on the BZ. This is because
the states ψk,n(r) are explicitly periodic in k, so Hamiltonian is explicitly translation-invariant. Thus M(k, 2πG) has
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a gauge-invariant spectrum. This eigenvector gauge-invariance is important because later expressions will depend on
the spectrum of M(k, 2πG). Using H−q = Hq †, we find

M(k,q)† = e−iξq(k)U†(k)H−qU(k− q) = e−iξq(k)−iξ−q(k−q)M(k− q,−q) = M(k− q,−q) (C12)

where we used the theta function identity e−iξq(k)−iξ−q(k−q) = 1. This is proved by observing

eiξq(k)+iξ−q(k−q) =
e−

q̄q
4φϑ

(
(k1−q/2,k2+iq/2)

2π

∣∣∣Φ)√
ϑ
(

(k1,k2)
2π

∣∣∣Φ)ϑ( (k1−q1,k2−q2)
2π

∣∣∣Φ)
e−

q̄q
4φϑ

(
(k1−q1+q/2,k2−q2−iq/2)

2π

∣∣∣Φ)√
ϑ
(

(k1−q1,k2−q2)
2π

∣∣∣Φ)ϑ( (k1,k2)
2π

∣∣∣Φ)
= e−

q̄q
2φ

ϑ
(

(k1−q/2,k2+iq/2)
2π

∣∣∣Φ)ϑ( (k1−q̄/2,k2−iq̄/2)
2π

∣∣∣Φ)
ϑ
(

(k1,k2)
2π

∣∣∣Φ)ϑ( (k1−q1,k2−q2)
2π

∣∣∣Φ)
= e−

q̄q
2φ

∣∣∣ϑ( (k1−q/2,k2+iq/2)
2π

∣∣∣Φ)∣∣∣2
ϑ
(

(k1,k2)
2π

∣∣∣Φ)ϑ( (k1−q1,k2−q2)
2π

∣∣∣Φ) > 0

(C13)

where we have used Eq. (A34) which states θ(z∗|Φ) = θ(z|Φ)∗ and that θ(z|Φ) is real and positive for z ∈ R2. Because
|eiξq(k)+iξ−q(k−q)| = 1 and eiξq(k)+iξ−q(k−q) is real and positive, we find eiξq(k)+iξ−q(k−q) = 1. Eq. (C12) is the
Hermiticity of form factor, as described in Ref. 86 in zero flux where it is also true that M†(k,q) = M(k− q,−q).

Finally, we remark that M(k+2πG,q) = M(k,q) because U(k+2πG) = U(k) and eiξq(k+2πG) = eiξq(k) as follows
from the periodicity of the Siegel theta functions in k. However, M(k,q) is not periodic in q, which is expected
because q ∈ R2 is a continuum momentum. As a function of q at fixed mn, Hq

mn is the product of a decaying
exponential factor in γqγ̄q ∼ |q|2 and a polynomial factor in γq. Thus for large q, this term will decay exponentially
but with subleading power law growth.

We end this section with the explicit form of the Coulomb interaction Hamiltonian. The density operator is written
in terms of the form factor via

ρq =

∫
BZ

d2k

(2π)2

∑
MN

MMN (k,q)γ†k−q,Mγk,N (C14)

which leads to the expression

Hint =
1

2

∫
d2q

(2π)2
V (q)ρ−qρq =

1

2

∫
d2q

(2π)2
O−qOq, Oq =

√
V (q)

∫
BZ

d2k

(2π)2

∑
MN

MMN (k,q)γ†k−q,Mγk,N

(C15)
which is positive semi-definite becauseO−q = O†q as follows from Eq. (C12). For numerical calculations, it is convenient

to discretize the momentum integrals into a sum over L2 terms according to∫
BZ

d2k

(2π)2
f(k)→ 1

Ωtot

∑
k∈BZ

f(k),

∫
R2

d2q

(2π)2
f(q)→ 1

Ωtot

∑
G

∑
k∈BZ

f(k + 2πG) (C16)

where Ωtot = L2Ω is the total area of an La1 × La2 sample, and there are L2 terms in the BZ sums, and the sum G
is over the reciprocal lattice vectors G = Zb1 + Zb2. Notice that in Eq. (C16), the k sum goes over the BZ. The q
integral is over all of R2. It is useful to write q = k + 2πG where k is integrated over the BZ and G is summed over
the reciprocal lattice. Eq. (C16) follows by approximating the BZ integral as a sum.

Appendix D: Bistritzer-MacDonald Hamiltonian at 2π Flux

In this Appendix, we discuss the Bistritzer-MacDonald (BM) model of TBG which is the central physical motivation
for this work. In App. D 1, we lay out our conventions for the moiré unit cell, the Bistritzer-MacDonald (BM)
Hamiltonian, and the explicit form of the single-particle Hamiltonian at 2π flux. We then discuss the symmetries of
the full two-valley system which are relevant for the many-body calculations in App. D 2. A discussion of the strong
coupling expansion used to treat the Coulomb interaction is given in App. D 3. App. D 4 contains a derivation of the
exact eigenstates at even integer fillings.
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1. Moiré Lattice Conventions and Single-particle Hamiltonian

Let us set our conventions for the geometry of the moiré twist unit cell. First, the graphene unit cell has a lattice

vector of length ag = .246nm and an area Ωg = a2
g

√
3

2 . The gaphene K point is Kg = 2π
ag

(0, 2/3). The moiré vectors

are defined by the difference in momentum space of the rotated layers’ K points:

2πq1 = (Rθ/2 −R−θ/2)Kg, qj = C3qj−1, 2π|qj | = kθ = 2 sin
θ

2
|Kg| =

8π sin θ
2

3ag
. (D1)

Note that in this convention, we keep a factor of 2π explicit. The moiré reciprocal lattice vectors are defined

bj = qj − q3, b1 × b2 =
(2 sin θ

2 )2

Ωg
, k = k1b1 + k2b2, ki ∈ (−π, π) . (D2)

Note that the moiré BZ has area (2π)2b1 × b2 which is smaller than the graphene BZ by a factor of (2 sin θ
2 )2 ∼ θ2.

This is because the lattice constant of the moiré unit cell is larger by a factor of θ. The moire lattice is defined by
ai · bj = δij which yields in cartesian coordinates

a1 =
ag

2 sin θ
2

(
−
√

3

2
,−1

2

)
a2 =

ag

2 sin θ
2

(√
3

2
,−1

2

)
, Ω = a1 × a2 =

Ωg

(2 sin θ
2 )2

. (D3)

In the range of the magic angle at θ = 1.05◦, the moiré unit cell is 3000 times larger than the graphene unit cell.
The magnetic translation group is commutative when φ = eBΩ

~ = 2π where we temporarily restore ~ = h/(2π). In
physical units, the corresponding magnetic field is in the range

B =
h

eΩ
=

h

eΩg
θ2 ∈ (25, 32)T for θ ∈ (1.03◦, 1.15◦) . (D4)

The BM Hamiltonian at φ = 2π can be written (with σi and Tj acting on the sublattice indices)

Hφ
BM (r) =

(
vFπππ · σσσ T (r)†

T (r) vFπππ · σσσ

)
, T (r) =

3∑
j=1

Tje
i2πqj ·r, Tj+1 =

(
w0 w1e

− 2πi
3 j

w1e
2πi
3 j w0

)
. (D5)

In this gauge, Hamiltonian is not in Bloch form because the off-diagonals are do not have the lattice periodicity. This
is because of the offset of the layer BZs. To remedy this, we perform a unitary transformation with the momentum
shift matrix diag(eiπq1·r, e−iπq1·r) which puts the Hamiltonian in Bloch form

Hφ(r) =

(
vFπππ · σσσ − πvFq1 · σσσ T1 + T2e

−i2πb1·r + T3e
−i2πb2·r

T1 + T2e
i2πb1·r + T3e

i2πb2·r vFπππ · σσσ + πvFq1 · σσσ

)
, bj = qj+1 − q1 . (D6)

We now need to compute the overlaps of this matrix with the magnetic Bloch irrep states. A suitable basis is
|k, l, α, n〉 ≡ |l〉 ⊗ |α〉 ⊗ |k, n〉 where l = 0, 1 is the layer index and α = 0, 1 is the sublattice index. The Hamiltonian
in this basis reads

Hφ=2π(k) =

 vF kθ(
√

φ
2πh(πππ)− 1

2σ2) T1 + T2e
−ik2H2πb1 + T3e

ik1H2πb2

T1 + T2e
ik2H−2πb1 + T3e

−ik1H−2πb2 vF kθ(
√

φ
2πh(πππ) + 1

2σ2)

 , h(πππ) =

(
3
√

3

2π

)1/2(
0 a†

a 0

)
(D7)

where a, a†,H2πb1 are all matrices in the Landau level basis. We compute the band structure of this matrix by
truncating the Landau levels from n = 0, . . . , nLL. Because of the truncation, the highest Landau level will be
annihilated by the kinetic term, and introduces a two spurious states at each k (one per layer). These bands are easily
removed.

2. Symmetries

In this section, we discuss the single-particle BM Hamiltonians in the K and K ′ valleys and demonstrate the U(1)
valley symmetry, C2z, and P symmetries which survive at all flux and are essential for the Coulomb Hamiltonian in
App. D 3. We also discuss the chiral symmetry C.
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The BM Hamiltonian at zero flux reads

Hφ=0
K =

(
−ivF∇∇∇ · σσσ T (r)†

T (r) −ivF∇∇∇ · σσσ

)
, (D8)

where the T (r) moiré potentials are given in Eq. (D5). In particular, T1 = w0σ0 + w1σ1 and Tj =

e
2πi(j−1)

3 σ3T1e
− 2πi(j−1)

3 σ3 . The matrices σi are Pauli matrices acting on the graphene sublattice index. The layer
index is often in matrix notation, as in Eq. (D8), and we will use τi Pauli matrices to denote the layer index as well.
For many-body calculations, we must also study the Hamiltonian in the K ′ valley, which is related to the K valley
Hamiltonian at φ = 0 by spinless time reversal T which acts as complex conjugation:

Hφ=0
K′ =

(
ivF∇∇∇ · σσσ∗ T ∗(r)†

T ∗(r) ivF∇∇∇ · σσσ∗

)
. (D9)

The two Hamiltonians in Eq. (D8) and Eq. (D9) can be written as

Hφ=0
K = −ivF τ0(σ1∂x + σ2∂y) +

3∑
j=1

τ1 cos(2πqj · r)Tj + τ2 sin(2πqj · r)Tj

Hφ=0
K′ = ivF τ0(σ1∂x − σ2∂y) +

3∑
j=1

τ1 cos(2πqj · r)T ∗j − τ2 sin(2πqj · r)T ∗j .

(D10)

We will use µi as the Pauli matrices acting on the graphene valley degree of freedom while τi are the Pauli matrices
acting on the layer. In this notation, Eq. (D10) can be written as one equation:

Hφ=0(r) = −ivF τ0(µ3σ1∂x + µ0σ2∂y) +

3∑
j=1

(µ0τ1 cos 2πqj · r + µ3τ2 sin 2πqj · r)e
2πi
3 (j−1)µ3σ3T1e

− 2πi
3 (j−1)µ3σ3

(D11)
which is the full two-valley Hamiltonian. It is direct to check that time reversal is a symmetry of Hφ=0 (which it
must be because Hφ=0 is simply the K valley with its time-reversed partner) by using the form T = µ1K, T 2 = +1
on the two-valley model:

T Hφ=0(r)T −1 = µ1

ivF τ0(µ3σ1∂x − µ0σ2∂y) +

3∑
j=1

(µ0τ1 cos 2πqj · r− µ3τ2 sin 2πqj · r)e−
2πi
3 (j−1)µ3σ3T1e

2πi
3 (j−1)µ3σ3

µ1

= ivF τ0(−µ3σ1∂x − µ0σ2∂y) +

3∑
j=1

(µ0τ1 cos 2πqj · r + µ3τ2 sin 2πqj · r)e(−1)2 2πi
3 (j−1)µ3σ3T1e

− 2πi
3 (j−1)µ3σ3

= Hφ=0(r) .
(D12)

It is now a simple matter to obtain the real space Hamiltonian at nonzero flux with the canonical substitution −i∇∇∇ → πππ
yielding

Hφ(r) = vF τ0(µ3σ1πx + µ0σ2πy) +

3∑
j=1

(µ0τ1 cos 2πqj · r + µ3τ2 sin 2πqj · r)e
2πi
3 (j−1)µ3σ3T1e

− 2πi
3 (j−1)µ3σ3 (D13)

Eq. D13 is the central result of this section, making it a simple matter to determine the symmetries of the model at
all flux, and then transform them into a momentum or Landau level basis. It is direct to check that

T Hφ(r)T −1 = H−φ(r) (D14)

because T (−i∇∇∇+ eA(r))T −1 = i∇∇∇+ eA(r), so −i∇∇∇ and A do not transform the same way unless the magnetic field
is flipped. This is expected because a magnetic field is known to break time reversal.

The first and most important symmetry is U(1) valley? which is a continuous symmetry generated by µ3 (note that
µ1 and µ2 do not appear in Eq. (D13) because the valleys are decoupled) which remains at all flux. There are three
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discrete symmetries of interest to us: inversion C2z, unitary particle-hole P , and chiral symmetry C when w0 = 0.
All three survive in nonzero flux. The actions of these symmetries on the full two-valley Hamiltonian are

C2zH
φ(r)C†2z = Hφ(r), C2

2z = +1

PHφ(r)P † = −Hφ(r), P 2 = −1

CHφ(r)C = −Hφ(r), C2 = +1, when w0 = 0 .

(D15)

We now derive the forms of these symmetries in real space for all flux, momentum space at zero flux, and on the
Landau level basis of the magnetic Bloch Hamiltonian at 2π flux.

a. Real Space, all flux

We begin by proving the real-space form of the symmetries which can be derived from first principles in the
continuum model. The results of this section alone are sufficient to check the physical symmetries of the BM model
in flux. In App. D 2 b, we check that the same symmetries can also be written in momentum space, matching the
expressions derived in Ref.60.

To start, we analyze the C2z which acts as a π rotation around the center of the graphene honeycomb unit cell.
Hence, it takes r → −r (switching the sublattice index) and hence inverts the momentum (switching the graphene
valley). C2z performs a rotation around the vector normal to the plane, and thus it does not act on the layer index.
From this geometry, we arrive at

C2z = σ1µ1e
iπLz (D16)

where Lz is the angular momentum operator given by

Lz =
πππ2 −Q2

2eB
= −iεµνxµ∂ν (D17)

where in the second equality we used the symmetric gauge. By working in the symmetric gauge, one can see explicitly
that the Lz operator is the same as at zero flux. However, we prefer to use the gauge-invariant Lz operator for the sake
of generality. In this case it is easy to show in any gauge that the gauge-invariant inversion operator eiπLz reverses
the canonical momentum

eiπLzπππe−iπLz = −πππ . (D18)

We check directly that D[C2z] is a symmetry by computing

C2zH
φ(r)C†2z = σ1µ1

−vF τ0(µ3σ1πx + µ0σ2πy) +

3∑
j=1

(µ0τ1 cos 2πqj · r− µ3τ2 sin 2πqj · r)e
2πi
3 (j−1)µ3σ3T1e

− 2πi
3 (j−1)µ3σ3

σ1µ1

= −vF τ0(−µ3σ1∂x − µ0σ2∂y) +

3∑
j=1

(µ0τ1 cos 2πqj · r + µ3τ2 sin 2πqj · r)e(−1)2 2πi
3 (j−1)µ3σ3T1e

−(−1)2 2πi
3 (j−1)µ3σ3

= Hφ(r)
(D19)

which is the correct behavior for the two-valley Hamiltonian. We now discuss the unitary particle-hole symmetry P
which acts as inversion in real space and also interchanges the layers, so it takes the form

P = iτ2µ3e
iπLz . (D20)

The factor of i ensures P is real and commutes with T . We check the action of P directly:

PHφ(r)P † = τ2µ3

−vF τ0(µ3σ1πx + µ0σ2πy) +

3∑
j=1

(µ0τ1 cos 2πqj · r− µ3τ2 sin 2πqj · r)e
2πi
3 (j−1)µ3σ3T1e

− 2πi
3 (j−1)µ3σ3

 τ2µ3

= −vF τ0(µ3σ1πx + µ0σ2πy) +

3∑
j=1

(−µ0τ1 cos 2πqj · r− µ3τ2 sin 2πqj · r)e
2πi
3 (j−1)µ3σ3T1e

− 2πi
3 (j−1)µ3σ3

= −Hφ(r) .
(D21)
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An identical calculation shows that P ′ = iτ2µ0e
iπLz (and thus any diagonal µ matrix) also anti-commutes with

Hφ(r), which shows that P is not only an anti-commuting symmetry of the two-valley model, but also of each valley
individually. This is due to the U(1) valley symmetry. Lastly, it is trivial to show that the chiral symmetry

C = τ0σ3µ0 (D22)

anti-commutes with Hφ(r) when w0 = 0 (the first chiral limit) because

σ3e
2πi
3 (j−1)µ3σ3T1e

− 2πi
3 (j−1)µ3σ3σ3 = w1e

2πi
3 (j−1)µ3σ3σ3σ1σ3e

− 2πi
3 (j−1)µ3σ3

= −w1e
2πi
3 (j−1)µ3σ3σ1e

− 2πi
3 (j−1)µ3σ3

(D23)

and σ3 trivially anti-commutes with the kinetic term because it only contains σ1 and σ2 matrices. Note that τ0σ3µ3

also anti-commutes with Hφ(r), so C is an anti-commuting symmetry of both valleys individually.
Our calculations establish that C2z, P , and the chiral symmetry C at w0 = 0 are unbroken by flux. Because

T reverses the flux, C2zT is not a symmetry at φ 6= 0, which has a significant effect on the topology. Finally, it
is direct to check that {P,C2z} = 0 arising from the anti-commutation of the valley factors µ1 and µ3 and hence
(C2zP )2 = −P 2C2

2z = +1. The most important observation is that C2zP = µ2τ2σ1 which is local in real space: the
eiπLz operators have canceled.

b. Zero flux, Momentum space

Although it is not required for this work, we now connect the real space symmetry operators we have derived in
App. D 2 a to the momentum space symmetries familiar in zero flux. We will follow heavily Ref. 86.

First, let us ignore interlayer coupling in the BM model. The two sheets of graphene have four Dirac cones (two

for layer and two for spin.) If the standard sheet of graphene has Dirac cones at k̃ = Kg,−Kg, then in twisted
bilayer graphene they occur at K+ = Mθ/2Kg,−K+ = −Mθ/2Kg, for the top layer, and K− = M−θ/2Kg,−K− =
−M−θ/2Kg for the bottom. Here M±θ/2 is a rotation matrix. Adding interlayer coupling reduces the graphene
translation symmetry to the (approximate) moiré translation symmetry; momenta separated by reciprocal lattice
vectors Q = 2πmb1 + 2πnb2 become identified. In the folded moiré BZ, the four Dirac cones are located at the moiré
K points KM = πq1,−KM = −πq1 which each host 2 Dirac cones (one per valley). Define the two Q sublattices to
be

Q+ = {πq1 + 2πmb1 + 2πnb2|m,n ∈ Z} (D24)

Q− = {−πq1 + 2πmb1 + 2πnb2|m,n ∈ Z}. (D25)

The two Dirac points K+,−K− ∈ Q+, while K−,−K+ ∈ Q−. Thus, if we define

ζQ =

{
+1, Q ∈ Q+

−1, Q ∈ Q−,
(D26)

then ζQ = ηl, with η as the valley and l the layer. We are now in a position to define the Fourier-transformed states.

c†k,Q,η,α,s =
1√
N

∑
R̃ in layer l

ei(k+ηKl−Q)·(R̃+tttα)c†
R̃,l,α,s

, with Q, η, and l obeying l = ζQη, (D27)

where tttα is the graphene sublattice vector, α is the sublattice index, l = ± is the layer, R̃ is the graphene Bravais
lattice, and s is the spin. The decoupled valleys are indexed by η = ±.

We now study the matrix form of the symmetry operators. Define the unitary component of the symmetry g as
D(g), where

gc†k,Q,η,α,sg
−1 = c†gk,Q′,η′,α′,s′ [D(g)]Q,η,α,s,Q′,η′,α′,s′ . (D28)

Applying T to Eq. (D27) gives

T c†k,Q,η,α,sT −1 =
1√
N

∑
R̃ in layer l

e−i(k+ηKl−Q)·(R̃+tttα)T c†
R̃,l,α,s

T −1 (D29)

= c†−k,−Q,−η,α,s (D30)
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so D[T ] = δQ,−Q′µ1 and T takes k→ −k. Because both ζQ and η change, the layer remains the same. This matches
the real-space picture because T is local.

A similar calculation holds for C2z and C. For C, which only acts as ±1 on the sublattice, define ξα = +1 for
sublattice A and −1 for sublattice B. Then

Cc†k,Q,η,α,sC
−1 =

1√
N

∑
R̃ in layer l

e−i(k+ηKl−Q)·(R̃+tttα)Cc†
R̃,l,α,s

C−1 (D31)

=
1√
N

∑
R̃ in layer l

e−i(k+ηKl−Q)·(R̃+tttα)c†
R̃,l,α,s

ξα (D32)

(D33)

so D[C] = σ3 and C takes k→ k. For C2z, we use tα = −tβ when α 6= β:

C2zc
†
k,Q,η,α,sC2z

−1 =
1√
N

∑
R̃ in layer l

e−i(k+ηKl−Q)·(R̃+tttα)C2zc
†
R̃,l,α,s

C2z
−1 (D34)

=
1√
N

∑
R̃ in layer l

e−i(k+ηKl−Q)·(R̃+tttα)c†−̃R,l,β,s[σ1]βα (D35)

=
1√
N

∑
R̃ in layer l

e−i(k+ηKl−Q)·(−R̃−tttβ)c†
R̃,l,β,s

[σ1]βα (D36)

= c†−k,−Q,−η,β,s[σ1]βα (D37)

(D38)

so D[C2z] = δQ,−Q′µ1σ1 and takes k→ −k. It is important to note that, like T , C2z switches the sign of valley and
Q, the layer remains the same. This matches the real-space picture because C2z is a rotation in the plane, and does
not reverse the layer.

The particle-hole symmetry P differs from T and C2z because P (which takes R→ −R and l→ −l as in Eq. (D20))
is not a true symmetry of moiré superlattice60, and only emerges when θ → 0 in the continuum BM model. As such,
P does not have a well-defined action on the cR̃,l,α,s because taking R→ −R and l → −l is not an exact symmetry

of the moiré lattice. We will simply give the momentum-space form of P in a single valley from Ref.60, which is

D[P ] = ζQδQ,−Q′µ3, k→ −k . (D39)

The crucial observation is that D[P ] acts on the layer index l (determined by Q ∈ ηQl) as iτ2 because ζQ takes
opposite values for opposite l and taking Q→ −Q reverses the layer. This exactly matches the real space symmetry
derived in Eq. (D20).

c. 2π-flux, Magnetic Bloch Hamiltonian

We now consider the magnetic Bloch Hamiltonian at 2π flux, which is written as a matrix with layer, sublattice,
and Landau level indices in a given valley. We derive the forms of the particle-hole P and inversion symmetries C2z

whose product C2zP is a local symmetry of the two-valley Bistrizter-MacDonald (BM) Hamiltonian. Recall that at
φ = 2π, the matrix Hamiltonian in the K graphene valley is

Hφ=2π
K (r) =

(
vFπππ · σσσ − πvFq1 · σσσ T1 + T2e

−2πib1·r + T3e
−2πib2·r

T1 + T2e
2πib1·r + T3e

2πib2·r vFπππ · σσσ + πvFq1 · σσσ

)
. (D40)

which in the Landau level basis reads

Hφ=2π
K (k) =

 vF kθ(
√

φ
2πh(πππ)− 1

2σ2) T1 + T2e
−ik2H2πb1 + T3e

ik1H2πb2

T1 + T2e
ik2H−2πb1 + T3e

−ik1H−2πb2 vF kθ(
√

φ
2πh(πππ) + 1

2σ2)

 , h(πππ) =

(
3
√

3

2π

)1/2(
0 a†

a 0

)
.

(D41)
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We will also need an explicit expression for the magnetic Bloch Hamiltonian in the K ′ valley which we obtained from
Eq. (D10), which in Bloch form reads

Hφ=2π
K′ (r) =

(
−vFπππ · σσσ∗ + πvFq1 · σσσ T1 + T ∗2 e

2πib1·r + T ∗3 e
2πib2·r

T1 + T ′2e
−2πib1·r + T ′3e

−2πib2·r −vFπππ · σσσ∗ − πvFq1 · σσσ

)
. (D42)

As explained in Eq. (D6), we have performed a momentum shift between the two layers to account for the −2πq1

displacement between the Dirac cones in the K ′ valley (compared to a +2πq1 displacement in the K valley).
Now following the same steps as in Eq. (D41), we obtain the magnetic Bloch Hamiltonian:

Hφ=2π
K′ (k) =

 vF kθ(
√

φ
2πh
′(πππ) + 1

2σ2) T1 + T ∗2 e
ik2H−2πb1 + T ∗3 e

−ik1H−2πb2

T1 + T ∗2 e
−ik2H2πb1 + T ∗3 e

ik1H2πb2 vF kθ(
√

φ
2πh
′(πππ)− 1

2σ2)

 , h′(πππ) = −
(

3
√

3

2π

)1/2(
0 a

a† 0

)
.

(D43)
In particular, the kinetic term is obtained via

h′(πππ) = −πxσx + πyσy

= −(πxσx − πyσy)

= −
(

3
√

3

2π

)1/2(
0 a

a† 0

)
= −σ1h(πππ)σ1

(D44)

and the potential term is merely complex conjugated (it does not have explicit flux dependence). The identities
T ∗2 = T3, T

∗
3 = T2 and T ∗1 = T1 will be used throughout the section. We now derive the action of the continuum

symmetry operators in Eq. (D 2 a) on the magnetic translation group irreps. The only nontrivial action is that of the
rotation operator eiπLz which obeys

eiπLzπππe−iπLz = −πππ,
eiπLzQe−iπLz = −Q,

(D45)

and thus {eiπLz , a†} = 0 because a† = (πx + iπy)/
√

2eB. Acting on Eq. (A20), we derive

eiπLz |k, n〉 =
1√
N (k)

∑
R

e−ik·R+iφ2 (R·b1)(R·b2)eiπLzeiR·Qe−iπLzeiπLz |n〉

=
1√
N (k)

∑
R

e−ik·R+iφ2 (R·b1)(R·b2)eiR·(−Q)eiπLz
a†n√
n!
|0〉

=
1√
N (k)

∑
R

e−ik·R+iφ2 (R·b1)(R·b2)eiR·(−Q)(−1)n |n〉

= (−1)n
1√
N (k)

∑
R

e−ik·(−R)+iφ2 (−R·b1)(−R·b2)eiR·Q |n〉

= (−1)n |−k, n〉

(D46)

which is expected because the Landau level state |n〉 has angular momentum n. With this result, we can determine

the action of the C2z and P symmetries on the |k, n〉 basis. It will be useful to note (−1)a
†a |−k, n〉 = (−1)n |−k, n〉.

First we prove that particle-hole symmetry in the K valley is implemented by the operator

PK =

(
0 1

−1 0

)
(−1)a

†a = iτ2σ0(−1)a
†a, [(−1)a

†a]mn = (−1)mδmn (D47)

which is determined from Eq. (D20) in real space using Eq. (D46) to derive the Landau level parity operator (−1)a
†a,

which obeys {(−1)a
†a, a} = {(−1)a

†a, a†} = 0 because [a†a, a] = −1. We abuse notation and refer to (−1)a
†a as the

matrix representation of the Landau level operators on the Landau level basis. Thus (−1)a
†a anti-commutes with
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h(πππ) which is linear in a, a†. We also need (−1)a
†aHq(−1)a

†a = H−q as is apparent from Eq. (A140). Using these
results, we have

PKH
φ=2π
K (k)P †K =

(
0 1

−1 0

) vF kθ(−
√

φ
2πh(πππ)− 1

2σ2) T1 + T2e
−ik2H−2πb1 + T3e

ik1H−2πb2

T1 + T2e
ik2H2πb1 + T3e

−ik1H2πb2 vF kθ(−
√

φ
2πh(πππ) + 1

2σ2)

(0 −1

1 0

)

=

 vF kθ(−
√

φ
2πh(πππ) + 1

2σ2) −(T1 + T2e
ik2H2πb1 + T3e

−ik1H2πb2)

−(T1 + T2e
−ik2H−2πb1 + T3e

ik1H−2πb2) vF kθ(−
√

φ
2πh(πππ)− 1

2σ2)


= −

 vF kθ(
√

φ
2πh(πππ)− 1

2σ2) T1 + T2e
ik2H2πb1 + T3e

−ik1H2πb2

T1 + T2e
−ik2H−2πb1 + T3e

ik1H−2πb2 vF kθ(
√

φ
2πh(πππ) + 1

2σ2)


= −Hφ=2π

K (−k) .
(D48)

We now study the K ′ valley where particle-hole is implemented by the operator

PK′ = −
(

0 1

−1 0

)
(−1)a

†a = −iτ2σ0(−1)a
†a (D49)

which differs from Eq. (D47) only by an overall minus. We are free to choose the sign of P independently in each
valley because of the U(1) valley symmetry. We check Eq. (D47) directly following the same steps in Eq. (D48):

PK′H
φ=2π
K′ (k)P †K′ =

(
0 1

−1 0

) vF kθ(−
√

φ
2πh
′(πππ) + 1

2σ2) T1 + T ∗2 e
ik2H+2πb1 + T ∗3 e

−ik1H+2πb2

T1 + T ∗2 e
−ik2H−2πb1 + T ∗3 e

ik1H−2πb2 vF kθ(−
√

φ
2πh
′(πππ)− 1

2σ2)

(0 −1

1 0

)

= −

 vF kθ(
√

φ
2πh
′(πππ) + 1

2σ2) T1 + T ∗2 e
−ik2H−2πb1 + T ∗3 e

ik1H−2πb2

T1 + T ∗2 e
ik2H2πb1 + T ∗3 e

−ik1H2πb2 vF kθ(
√

φ
2πh
′(πππ)− 1

2σ2)


= −Hφ=2π

K′ (−k) .
(D50)

Thus we have checked the particle-hole operator in both valleys, yielding the final expression

P = µ3

(
0 1

−1 0

)
(−1)a

†a = iµ3τ2σ0(−1)a
†a (D51)

where µ3 is a Pauli matrix on the valley index. The fact that we can choose the ± sign freely in different valleys is a
feature of the U(1) valley quantum number. The same is true in real space as in Eq. (D20).

We now study C2z which is not a symmetry of the one-valley BM model because it reverses the valley. Using
Eq. (D46), the expression for C2z on the Landau level basis is

C2z = µ1τ0σ1(−1)a
†a (D52)

which acts trivially on the layer indices. We now compute the action of C2z on Hφ=2π
K directly:

C2zH
φ=2π
K (k)C†2z = σ1

 vF kθ(−
√

φ
2πh(πππ)− 1

2σ2) T1 + T2e
−ik2H−2πb1 + T3e

ik1H−2πb2

T1 + T2e
ik2H2πb1 + T3e

−ik1H2πb2 vF kθ(−
√

φ
2πh(πππ) + 1

2σ2)

σ1

=

 vF kθ(−
√

φ
2πσ1h(πππ)σ1 + 1

2σ2) T1 + T3e
−ik2H−2πb1 + T2e

ik1H−2πb2

T1 + T3e
ik2H2πb1 + T2e

−ik1H2πb2 vF kθ(−
√

φ
2πσ1h(πππ)σ1 − 1

2σ2)

 (D53)

where we used that σ1T2σ1 = T3, σ1T3σ1 = T2. Comparing Eq. (D53) with Eq. (D43) and using h′(πππ) = −σ1h(πππ)σ1,

we find that C2zHK(k)C†2z = HK′(−k) and thus

C2z = µ1τ0σ1(−1)a
†a (D54)
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which anti-commutes with P due to the valley matrices.
Lastly, we study the chiral symmetry on the |k, n〉 basis. Chiral symmetry is very simple because it acts trivially

on r (see Eq. (D22)). It is direct to see that when w0 = 0, the chiral symmetry

CK = CK′ = τ0σ31 (D55)

(where 1 acts on the Landau levels) obeys

{CK , Hφ=2π
K (k)} = {CK′ , Hφ=2π

K′ (k)} = 0, (D56)

because Eqs. (D41) and (D42) have only σ1 and σ2 matrices when w0 = 0. Thus we can choose

C = µ0τ0σ31 (D57)

to be the chiral symmetry on the two-valley model. Again, we emphasize that any diagonal µ matrix is allowed, and
the choice of µ0 carries no physical significance. This is because of the U(1) valley symmetry.

The most important symmetry for the many-body properties of TBG is C2zP which acts as

(µ1τ0σ1(−1)a
†a)(iµ3τ2σ0(−1)a

†a) = µ2τ2σ11 on the magnetic translation group eigenbasis (see Eq. (D52) and
Eq. (D51)) and takes k→ k.

3. Coulomb Interaction at φ = 2π

We now study interaction effects within the flat bands. We will neglect the Zeeman splitting which is ≤ 2meV.
Although this is comparable to the flat band kinetic energy, the gap to the passive bands is ≥ 40meV which justifies a
strong coupling expansion where the single-particle flat bands are taken to be exactly flat at zero energy. In this case,
there is an SU(2) spin symmetry, and and an obvious U(1) charge symmetry. Together, the U(1) charge symmetry,
U(1) valley symmetry, the SU(2) spin symmetry, and the product C2zP symmetry are all preserved at nonzero flux.
These symmetries are essential in the many-body physics of TBG as we now discuss.

First, we set up the many-body notation. Explicitly, the Hilbert space is spanned by the operators γ†k,M,s,η where
M = ±1 refers to the two flat bands, s to the spin, and η to the valley. The wavefunction of the Mth band is

〈r, s, η|γ†k,M,s,η|0〉 =
∑
lαn

UM,η
lαn (k)ψk,l,α,n, ψk,l,α,n =

1√
N (k)

∑
R

e−ik·RTR
a†n√
n!
ψ0,l,α(r) (D58)

where UM,η
lαn (k) are the matrix eigenvectors of the single-particle Hamiltonian in the η valley and ψ0,l,α is the zeroth

Landau level state in the l = ±1 layer and α = A,B sublattice. Note that the single-particle Hamiltonian is explicitly

periodic: Hφ=2π(k+2πG) = Hφ=2π(k) and the states ψk,l,α,n are also explicitly periodic, so γ†k+2πG,M,s,η = γ†k,M,s,η.

The two valleys are related by C2zP = µ2τ2σ11 (see App. D 2 c), where 1 acts on the Landau level indices and obeys

−Hφ=2π
−η (k) = (iτ2σ11)†Hφ=2π

η (k)(iτ2σ11) . (D59)

which relates the Hamiltonians between the two valleys. Note that C2zP acts trivially on the Landau level indices.
We will now use C2zP to relate the eigenvectors of the two valleys. We focus on the two flat bands which we index

by M = ±. We denote by Uη(k) the matrix of occupied eigenvectors where each column UηN (k) is one of the flat
band eigenvectors in the η valley. Because C2zP anti-commutes with the single-particle Hamiltonian at each k, C2zP
switches the energies of the flat bands and we have

iτ2σ11Uη=K
N (k) =

∑
M

Uη=−K
M (k)[ν1]MN (D60)

where ν1 is a Pauli matrix which exchanges the two bands. Ref.86 used ξi to represent these Pauli matrices, but we
reserve ξ for ξq(k) the phase fact. One can think of Eq. (D60) as a C2zP gauge-fixing procedure for the eigenstates
equivalent to the sewing matrices of Ref.86. We point out that the sewing matrices were vital to constructing the
Chern basis at zero flux in Refs.56,86 which is protected by C2zT . In the gauge fixing of Ref.86, it was convenient to
set the sewing matrix of C2zT to be the identity. However at 2π flux, we will not need to make use of the sewing
matrices because C2zT is broken by the flux and there is no Chern basis.

Note that the Hamiltonian is independent of the spin, so the eigenstates at different spin are identical. Hence we
adapt the form factor from Eq. (C11) to TBG in the η valley via

M̄η
MN (k,q) ≡ eiξq(k)[U†η(k− q)(τ0σ0Hq)Uη(k)]MN . (D61)
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As explained in Eq. (47), M̄η
MN (k,q) is not gauge-invariant because the eigenvectors in the columns of Uη(k) and

Uη(k− q) are only defined up to an overall phase (or arbitrary unitary transformations at band touchings), meaning
Uη(k) → Uη(k)V and Uη(k − q) → Uη(k − q)W where V and W are arbitrary 2 × 2 unitary matrices at each k.
Hence M̄η

MN (k,q) is only defined up to the eigenvector gauge transformations M̄η(k,q)→W †M̄η(k,q)V . Under this
transformation, only the singular values of M̄η(k,q) are gauge-invariant. The singular values of M are the eigenvalues
of M†M , which are invariant because M†M → V †M†WW †MV = V †M†MV has the same spectrum as M†M . There
is notable simplification at q = 2πG where

M̄η
MN (k, 2πG) ≡ eiξ2πG(k)[U†η(k)(τ0σ0Hq)Uη(k)]MN (D62)

using the fact that Uη(k) = Uη(k + 2πG) because the magnetic Bloch Hamiltonian Hφ=2π(k) is explicitly 2πG
periodic. In this case M̄η

MN (k, 2πG) is defined up to the eigenvector gauge transformation M̄η(k,q)→ V †M̄η(k,q)V ,
and hence its eigenvalues are gauge-invariant.

For brevity, we will not write the identity factors τ0σ0 going forward. Because the valleys are related by C2zP
symmetry, Eq. (D60) shows (writing η as a subscript for convenience)

M̄−η(k,q) = eiξq(k)U†−η(k− q)HqU−η(k)

= ν1e
iξq(k)U†η(k− q)τ2σ1Hqτ2σ1Uη(k)ν1

= ν1e
iξq(k)U†η(k− q)HqUη(k)ν1

= ν1M̄
η(k,q)ν1

(D63)

so we see that M̄−η(k,q) is related to M̄η(k,q) by a unitary transformation.
The symmetries of Hint are essential to understanding its groundstates. The U(1) charge conversation and SU(2)

spin rotation in each valley give a U(2) × U(2) symmetry group that commutes with Oq. The two copies of U(2)
in separate valleys form U(4) when the C2zP symmetry (which is not broken by magnetic field) is added to the
symmetry group because C2zP interchanges the valleys. We refer the reader to Ref.86 for a comprehensive treatment
of the U(4) algebra and irreps. Note that C2zP takes k to (−1)2k and so it commutes with Fourier modes of the
density operator at all momenta. (The anti-unitary symmetries C2zT and T which broken in flux are not part of the
U(4) algebra.) The U(4) symmetry of Hint is a symmetry of the full Hamiltonian as well if we set the single particle
Hamiltonian H0 to zero —otherwise C2zP anti-commutes with H0. In general, incorporating kinetic energy will split
the U(4) irreps into U(2)× U(2) irreps which an energy difference on the order of the bandwidth ∼ 1meV.

We now define the Coulomb interaction in terms of the charge density n̄(r) where the bar indicates that the density
is measured with respect to charge neutrality. This is equivalent to choosing the chemical potential of the system at
half-filling. Discretizing k for numerical convenience, the density modes are

ρ̄q =

∫
d2r e−iq·rn̄(r) =

∑
k∈BZ

∑
MN,η,s

M̄η
MN (k,q)

(
γ†k−q,M,η,sγk,N,η,s −

1

2
δMNδq,0

)
. (D64)

Note that k is summed over the moiré BZ ki ∈ (−π, π) and q is an arbitrary momentum in R2. The 1
2δMNδq,0 term

shifts the eigenvalues of the density operator from {0, 1} to {− 1
2 ,

1
2}. From Ref.86, the Hamiltonian is

Hint =
1

2

∫
d2rd2r′ n̄(r)V (r− r′)n̄(r′) =

1

2

∫
d2q

(2π)2
V (q)ρ̄−qρ̄q, V (q) = πξ2Uξ

tanh ξ|q|/2
ξ|q|/2 (D65)

where the parameters of the screened Coulomb interaction are ξ = 10nm, Uξ = e2/(εξ) = 24meV where ε is the
dielectric constant. Because Kg � 1/ξ, intervalley scattering is strongly suppressed which justifies our decoupling of
the valleys.

To understand the phase of TBG at fillings ν ∈ (−4, 4) where Hint describes the leading order electronic behavior,
one must solve a strongly interacting problem. Our strategy to do so is to project Hint into the flat bands. This is
straightforwardly done by keeping only the terms with M = ±1 in Eq. (D64).

Finally, we give the expression for the full Coulomb Hamiltonian:

Hint =
1

2Ωtot

∑
q

V (q)ρ̄−qρ̄q =
1

2Ωtot

∑
G

∑
q∈BZ

O−q,−GOq,G,

Oq,G =
√
V (q + 2πG)

∑
k∈BZ

∑
η,s

∑
MN

M̄η
MN (k,q + 2πG)(γ†k−q,M,η,sγk,N,η,s −

1

2
δMNδq,0) .

(D66)
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It is now a simple matter to project Hint into the flat bands by restricting the sum to M,N = ±1, the two approxi-
mately zero energy flat bands. To good approximation, the single particle Hamiltonian vanishes when projected to the
flat bands because the bandwidth is < 2meV in comparison to the 26meV scale of the screened Coulomb interaction.
Thus, the low energy Hamiltonian consists entirely of the projected Hint operator.

4. Exact Insulator Groundstates

To derive eigenstates of the interacting Hamiltonian as in Ref.56, we rewrite Hint by introducing a parameter λG:

Hint =
1

2Ωtot

∑
G

∑
q∈BZ

O−q,−GOq,G

=
1

2Ωtot

∑
G

λ−GO0,G + λGO0,−G − λ−GλG +
∑

q∈BZ
(O−q,−G − λ−Gδq,0)(Oq,G − λGδq,0)

 (D67)

for any λG which satisfies the Hermiticity condition λG = λ∗−G. The purpose of introducing λG is to make use of the

flat metric condition58 which is the approximation

flat metric condition: M̄η
MN (k, 2πG) = mGδMN , (D68)

in other words that M̄η(k, 2πG) is proportional to the 2× 2 identity at each G. (Importantly, Eq. (D62) shows that
the flat metric condition is “gauge-invariant” under unitary rescalings of the eigenvectors.) If the flat metric condition
is satisfied, we will be able to analytically construct groundstates of Hint as in Ref.56. To explain this, let us study
O0,G which acts diagonally on k:

O0,G =
√
V (2πG)

∑
k∈BZ

∑
η,s

∑
MN

M̄η
MN (k, 2πG)(γ†k,M,η,sγk,N,η,s −

1

2
δMN ) . (D69)

Because O−q,−G = O†q,G, the term λ−GO0,G + λGO0,−G in Eq. (D67) is Hermitian and acts diagonally on k. If the

flat metric condition in Eq. (D68) is satisfied, then

O0,G =
√
V (2πG)

∑
k∈BZ

∑
η,s

∑
MN

mGδMN (γ†k,M,η,sγk,N,η,s −
1

2
δMN )

=
√
V (2πG)

∑
k∈BZ

∑
η,s

mG(
∑
M

γ†k,M,η,sγk,M,η,s − 1)

=
√
V (2πG)

∑
k∈BZ

∑
η,s

mG(
∑
M

γ†k,M,η,sγk,M,η,s − 1)

(D70)

which is proportional to the total particle number N =
∑

k∈BZ
∑
η,s,M γ†k,M,η,sγk,M,η,s. This will be important for

computing the chemical potential in Eq. (D80). In this case, the only nontrivial part of Hint is the final q sum in
Eq. (D67), which is also positive semi-definite. Because it is positive semi-definite, any state |Ψ〉 satisfying

(Oq,G − λGδq,0) |Ψ〉 = 0 (D71)

for some λG is a groundstate. Note that states |Ψ〉 satisfying Eq. (D71) are still eigenstates of Oq,G and hence Hint

without the flat metric condition, but we cannot prove they are groundstates because λ−GO0,G + λGO0,−G is not in
general proportional to the identity.? As shown in Fig. 10, that the flat metric condition holds to excellent accuracy
for all G except the first shell G = ±b1,±b2,±(b1−b2). On these momenta, the flat metric condition is only weakly
violated. Hence the flat metric condition is a reliable approximation, and we can justify that the exact eigenstates in
Eq. (D71) are in fact groundstates at fixed filling.

We now construct states satisfying Eq. (D71) at integer even density ν = −4,−2, 0, 2, 4 around the charge neutrality
point. Our trial state with ν + 4 occupied flat bands takes the form

|Ψν〉 =
∏
k

(ν+4)/2∏
j

γ†k,+,sj ,ηjγ
†
k,−,sj ,ηj |0〉 (D72)
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where the spin and valley indices are arbitrary and is implicit in the state. The operator Oq,G has a simple action on
|Ψν〉 because

γ†k−q,M,η,sγk,N,η,s |Ψν〉 = 0 if q 6= 0 (D73)

because both M = ±1 bands are fully occupied or unoccupied at every k. We also use the fact∑
MN

M̄η
MN (k, 2πG)γ†k,M,η,sγk,N,η,sγ

†
k,+,η,sγ

†
k,−,η,s |0〉 =

∑
MN

M̄η
MN (k, 2πG)γ†k,M,η,s(δN,+γ

†
k,−,η,s − δN,−γ

†
k,+,η,s) |0〉

=
∑
M

(M̄η
M+(k, 2πG)γ†k,M,η,sγ

†
k,−,η,s − M̄

η
M−(k, 2πG)γ†k,M,η,sγ

†
k,+,η,s) |0〉

= (M̄η
++(k, 2πG)γ†k,+,η,sγ

†
k,−,η,s − M̄

η
−−(k, 2πG)γ†k,−,η,sγ

†
k,+,η,s) |0〉

= Tr [M̄η(k, 2πG)]γ†k,+,η,sγ
†
k,−,η,s |0〉

(D74)
which we use to calculate (with q ∈ BZ and recalling that |Ψν〉 contains flavors sj and ηj)

Oq,G |Ψν〉 = δq,0
√
V (2πG)

∑
k∈BZ

∑
η,s

∑
MN

M̄η
MN (k, 2πG)(γ†k,M,η,sγk,N,η,s −

1

2
δMN ) |Ψν〉

= δq,0
√
V (2πG)

∑
k∈BZ

∑
η,s

(
∑
j

δs,sjδη,ηjTr [M̄η(k, 2πG)]− 1

2
Tr [M̄η(k, 2πG)]) |Ψν〉

= δq,0
√
V (2πG)

∑
k∈BZ

(
ν + 4

2
Tr [M̄η(k, 2πG)]− 4

2
Tr [M̄η(k, 2πG)]) |Ψν〉

= νδq,0
√
V (2πG)

∑
k∈BZ

1

2
Tr M̄η(k, 2πG) |Ψν〉

(D75)

where we used that Tr M̄−η(k, 2πG) = Tr ν1M̄
η(k, 2πG)ν1 = Tr M̄η(k, 2πG). We use the abbreviation

Tr M̄(k, 2πG) = Tr M̄−η(k, 2πG) = Tr M̄η(k, 2πG) (D76)

to emphasize that the trace is independent of the valley. Consulting Eq. (D71), we find that |Ψν〉 is an exact eigenstate
provided we choose56

λG = ν
√
V (2πG)

∑
k∈BZ

1

2
Tr M̄(k, 2πG) . (D77)

Using Eq. (C12), we find λG = λ∗−G. Returning to Eq. (D67) and acting on the state |Ψν〉, we find

Hint |Ψν〉 =
1

2Ωtot

∑
G

λ−GO0,G |Ψν〉+ λGO0,−G |Ψν〉 − λ−GλG |Ψν〉

=
1

2Ωtot

(∑
G

λ−GλG + λGλ−G − λ−GλG
)
|Ψν〉

=

(
1

2Ωtot

∑
G

λ−GλG

)
|Ψν〉

(D78)

which gives the exact energy of the state (not including the chemical potential):

Eint
Ωtot

=
ν2

2

∑
G

V (2πG)

∣∣∣∣∣ 1

Ωtot

∑
k∈BZ

1

2
Tr M̄(k, 2πG)

∣∣∣∣∣
2

. (D79)

The dominant contribution is from the G = 0 term where Tr M̄η(k, 0) = Tr U†η(k)Uη(k) = 2. Numerically calculating
the sums at G 6= 0, we find that only the first shell of G consisting of ±b1,±b2,±(b1 − b2) contributes significantly
to the sum due to the exponential fall-off of M(k,q) with q. In general, we cannot guarantee that |Ψν〉 is the
groundstate without the flat metric condition. This assumption can be tested using exact diagonalization studies for
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small systems? , which we leave for future work. However, Eint = 0 at ν = 0 so it must be a groundstate because
Hint is positive semi-definite.

If the FMC holds such that M(k, 2πG) = mG1, we can obtain an exact expression for the chemical potential µ at
even fillings. Using Eq. (D70), we compute

1

2Ωtot

∑
G

(λ−GO0,G + λGO0,−G) =
1

2Ωtot

(∑
G

√
V (2πG)λ−GmG

)
N + h.c.+ const = µN + const, (D80)

where the chemical potential µ is given by

µ =
1

Ωtot

∑
G

√
V (2πG)(λ−GmG + λGm−G)/2

= ν
∑
G

Ω−1V (2πG)(m−GmG +mGm−G)/2

= ν
∑
G

Ω−1V (2πG)|mG|2

(D81)

and we used Eq. (D77) and the fact that 1
2Tr M(k, 2πG) = mG. Note that µ = 0 at ν = 0 with or without the

FMC because λG ∝ ν. Because Hint − µN is positive definite (see Eq. (D67)), we can guarantee |Ψν〉 are many-
body groundstates at chemical potential µ in the FMC. If we do not make the FMC approximation, then we cannot
determine an exact expression for the chemical potential. The approximation we make is to compute an average value
of mG over the BZ:

µ ≈ ν
∑
G

Ω−1V (2πG)

∣∣∣∣∣ 1

NM

∑
k∈BZ

1

2
Tr M(k, 2πG)

∣∣∣∣∣
2

(D82)

which reduces to Eq. (D81) if the FMC holds.
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