
1.  Introduction
Multiphase flow in deformable porous media is a ubiquitous phenomenon with important implications in 
many energy and environmental technologies including geologic CO2 sequestration, soil bioremediation, 
water treatment, enhanced biochemical production, nuclear waste disposal, and battery technology (Bächer 
& Gekle, 2019; Bock et al., 2010; Cunningham et al., 2003; Räss et al., 2018; Towner, 1987). It also underlies 
iconic geophysical features at many scales, from coastal, riparian, and volcanic landforms to fractures in 
subsurface reservoirs, cracks in clay soils, and bubbles in soft sediments. An important and largely unre-
solved challenge in the areas outlined above is the difficulty of describing the inherently multiscale and 
multiphysics nature of situations where a mixture of several fluids interacts with a deformable porous mate-
rial. For example, when modeling flow through biofilms or membranes, it is imperative to understand how 
fluid flow behaves inside the porous medium (in pores with length scales of ∼10−6 m) while simultaneously 
understanding how the deformation of this medium affects the overall flow field (often controlled by much 
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Plain Language Summary  Knowledge of how fluids flow through porous materials has 
significant implications for the design and operation of batteries, manufacturing plants, oil rigs, and 
biomedical devices. Even though scientists have been successful in creating computer models that capture 
fluid flow through rigid porous media, it has been very challenging to create models that can model 
flow through deformable porous media. In this study, we describe a new model that can predict flow of 
immiscible fluids (say water and air, or oil and water) through and around deformable porous media. 
We derived this model by combining separate conventional fluid-flow and solid-deformation models 
into a single simulation framework through a technique called volume averaging. The resulting model 
can capture complex multiscale, multiphysics phenomena such as hydraulic fracturing in the subsurface 
and its impacts on surface deformation. Given the model's generality, successful verification, and open-
source implementation, we are confident that this computational model can be used to study important 
phenomena in the fields of water and energy resources.
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larger flow paths with length scales on the order of ∼10−2 m) (Bottero et al., 2010). Similarly, the propaga-
tion of flow-driven fractures in porous materials and the propagation of waves in coastal barriers involve 
feedbacks between flow and mechanics in porous and solid-free domains. In the present study, we develop 
a framework capable of representing multiphase flow through and around deformable porous systems, as 
required to simulate many of the aforementioned phenomena.

The starting point for our study is based on the present ample understanding of multiphase flow dynamics 
within and around static porous materials, from viscous and capillary fingering (Ferer et al., 2004; Lenor-
mand & Zarcone, 1989; Lenormand et al., 1988) to temperature and surface tension driven flows (Shih & 
Megaridis,  1996), all the way to turbulent multiphase flows (Colombo & Fairweather,  2015; Soulaine & 
Quintard, 2014). This knowledge, in conjunction with numerical techniques such as the Lattice Boltzmann 
Method, the Finite Volume Method, Homogenization Theory, and Averaging Theory, forms the basis of fast 
and accurate models that are routinely applied to help design and improve hydrocarbon production (Burrus 
et al., 1991; Mehmani & Tchelepi, 2019), CO2 sequestration (Hassan & Jiang, 2012), and even nuclear re-
actors (Tentner et al., 2008). However, the study of multiphase flow across different scales remains limited 
as shown by the absence of well-established approaches to describe how bubbles or waves propagate into 
an unsaturated porous medium or how a multiphase fluid mixture is pushed out of a porous medium into 
open space. Improved understanding of such processes would have a direct and immediate impact in the 
design of batteries, coastal barriers, natural gas extraction from shales, biochemical gas production, and 
many other areas.

A similar situation pertains with regard to the coupling between fluid flow and solid mechanics. Theoretical 
and numerical approaches based on Biot's Theory of poroelasticity (Biot, 1941), Terzaghi's effective stress 
principle (Terzaghi, 1943), and Mixture Theory (Siddique et al., 2017) have been successful at modeling 
systems with flow in deformable porous media including arteries, biofilms, boreholes, hydrocarbon res-
ervoirs, seismic systems, membranes, soils, swelling clays, and fractures (Auton & MacMinn, 2017; Barry 
et al., 1997; Jha & Juanes, 2014; Lo et al., 2002, 2005; MacMinn et al., 2016; Mathias et al., 2017; Santillán 
et al., 2017). However, as mentioned above, we still have very little understanding of how flow-induced 
deformation of these solid materials affects the macroscopic flow around them (and thus their boundary 
conditions) or how fluid-fluid interfaces behave when pushed against a soft porous medium and vice versa. 
These type of systems are particularly challenging to model because of the multiscale nature of the govern-
ing physics, where the curvature of a particular interface and the magnitude of the capillary and/or viscous 
forces can differ by several orders of magnitude depending on the presence or absence of a porous solid.

Three major approaches have been proposed to resolve the challenge posed by fluid flow in porous media 
containing both solid-free regions and porous domains (hereafter referred to as multiscale systems). The 
most straightforward of these involves performing direct numerical simulations (DNS) throughout the en-
tire multiscale domain, both within and outside the porous medium (Breugem & Boersma, 2005; Hahn 
et al., 2002; Krafczyk et al., 2015). Although rigorous, this technique is impractical in situations with a large 
difference in length scales between the largest and smallest pores, where it requires exceedingly fine grids 
and tremendous computational resources.

To save time and resources, other studies have relied on hybrid DNS-Darcy approaches, where fluid and 
solid mechanics within a porous medium are modeled as averaged quantities through Darcy's law, pore-net-
work models, or Biot's theory of poroelasticity (Ehrhardt, 2010; Weishaupt et al., 2019). One such approach 
relies on the use of the Beavers-Joseph (BJ) boundary condition to couple fluid flow in solid-free domains 
(simulated using the Navier-Stokes Equations) and in porous domains (simulated using Darcy's law) for sin-
gle phase flow and static porous media (Beavers & Joseph, 1967; Fetzer et al., 2016). Recent studies have ex-
tended this BJ approach to allow multiphase flow in the solid-free domain (Baber et al., 2016) or to include 
the effects of poroelasticity within the porous medium (Lacis et al., 2017; Zampogna et al., 2019). However, 
to the best of our knowledge, no BJ-based technique has yet been developed to couple solid mechanics with 
multiphase flow simultaneously within the solid-free and porous domains.

The Darcy-Brinkman (DB) approach presents a well-known alternative to the BJ interface matching 
technique. The crux of the DB approach is the use of a spatially dependent penalization term within the 
Navier-Stokes fluid momentum equation. This term effectively creates an equation that approximates 
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Navier-Stokes within solid-free domains and Darcy's law within porous 
domains. Although initially implemented as an empirical approach 
(Brinkman,  1947), this technique has since been formalized and rig-
orously derived from first principles through volume averaging theory 
(Soulaine et  al.,  2016; Whitaker,  2013). The resulting so-called “micro-
continuum” approach has been extensively used to solve single phase 
flow through static multiscale porous media, such as flow in biofilms 
(Kapellos et al., 2007) and in rocks containing unresolved porosity (Guo 
et  al.,  2018; Kang et  al.,  2019; Singh,  2019). The approach has proved 
highly flexible as illustrated by its uses to represent embedded solid 
boundaries in low-permeability media (Khadra et al., 2000) and the evo-
lution of solid grain morphologies caused by mineral dissolution (Sou-
laine et al., 2017, 2019).

Recently, a study by Carrillo and Bourg (2019) introduced a Darcy-Brink-
man-Biot (DBB) approach capable of accurately representing single 
phase flow in multiscale deformable media including elastic porous 
membranes and plastic swelling clays. Simultaneously, studies by Sou-
laine et al. (2019) and Carrillo et al. (2020) extensively benchmarked and 
released an open-source extension of the microcontinuum framework 
for multiphase flow in static multiscale porous media. This allowed accu-
rate modeling of complex systems such as multiphase flow in a fractured 
porous medium, methane extraction from tight porous media, and wave 
absorption in coastal barriers. In the present paper, we build upon these 

previous studies to create the first model representing coupled fluid and solid mechanics during multiphase 
flow in multiscale deformable porous media: the multiphase DBB model (Figure 1).

This study is organized as follows. Section 2 introduces the concept of volume averaging and describes the 
derivation of the governing equations for coupled fluid and solid mechanics. Section 3 explains the nu-
merical implementation and algorithm development for the coupled mass and momentum equations and 
introduces the resulting open-source solver “hybridBiotInterFoam.” Section 4 presents five test cases that 
verify the implementation of different coupling terms within the model, with an emphasis on fracturing 
mechanics. Section 5 then presents two alternative applications that illustrate the versatility of the model: 
wave absorption in poroelastic coastal barriers and surface deformation due to fluid injection in poro-vis-
co-plastic geologic formations. Lastly, Section 6 concludes with a summary of the paper and a discussion 
on future work.

2.  Model Derivation
2.1.  Volume Averaging

In this section, we introduce the concept of volume averaging. This technique forms the basis of the micro-
continuum equations, as it allows the classical mass and momentum conservation equations to account for 
the coexistence of solid (s), wetting fluid (w), and nonwetting fluid (n) within a given control volume. It is 
well suited for use in conjunction with the Finite Volume Method (FVM) (Patankar, 1980), as the numerical 
grid elements used in the FVM provide an intuitive and straightforward numerical interpretation of what 
we will define as the averaging volume (V). In keeping with standard volume averaging theory, we start by 
defining the volume averaging operator

1
ii V idVV

  � (1)

where βi is a function defined in each phase's respective volume   , ,iV i w n s , and V = sum(Vi). We also 
define the phase averaging operator
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Figure 1.  Conceptual representation of the multiphase Darcy-Brinkman-
Biot model. The inset represents an exemplary Representative Elementary 
Volume (REV) within the porous domain and ϕf is the porosity. The 
model considers wetting properties, interface mechanics, and irreducible 
saturations when averaging over a REV. Note that the stated relation 
between the averaging volume's length scale LV and the porous length scale 
LP is required for the creation of a REV, and thus, for the application of this 
model.
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  
1i

i V ii
i

dV
V� (2)

The volume and phase-averaged variables associated with the fluids are intrinsically related by the porosity 
(ϕf = (Vw + Vn)/V) and saturation fields (αi = Vi/(Vw + Vn)), such that       ,i

i f i i i w n . For solid var-

iables, the analogous relation involves only the solid fraction ϕs, such that    s
s s s . Note that ϕf + ϕs = 1 

and αw + αn = 1; thus, knowledge of one of the ϕi or αi variables implies knowledge of the other. Volume 
averaging then allows for the definition of several regions within a multiscale, multiphase system such as 
that represented in Figure 1:


   

1, in solid free regions
0;1 , in porous regionsf

‐
� (3)





   



0, in regions saturated with non wetting fluid
0;1 , in unsaturated regions

1, in regions saturated with wetting fluid
w� (4)

The application of an averaging transformation to fluid and solid conservation equations will result in var-
iables and equations that are weighted differently in each region. However, the averaging of differential 
equations is not straightforward, which is why we introduce the following spatial averaging theorems for 
volumes containing three distinct phases (Howes & Whitaker, 1985; Whitaker, 1999)

    
      

  , , , ,, ,
1 1i i

A i i j i j A i i k i ki j i kdA dA
t t V V

v n v n� (5)

         , ,, ,
1 1

i i A i i j A i i ki j i kdA dA
V V

n n� (6)

          , ,, ,
1 1

i i A i i j A i i ki j i kdA dA
V V

β β β n β n� (7)

where Ai,j represents the interfacial area between phase i and j, ni,j is a vector normal to the interface and 
oriented toward phase j, and vi,j is the velocity of the interface. The notation for symbols with subscript pair 
i, k is equivalent. Note that the symbols i, j, k represent any combination of the solid, wetting, and nonwet-
ting phases. These surface integrals are crucial components of the following derivations as they convert the 
interfacial conditions at the fluid-fluid and fluid-solid interfaces into body forces within the averaged partial 
differential equations.

2.2.  Derivation of the Fluid Mechanics Equations

We begin the derivation by stating the microcontinuum equations for two immiscible incompressible fluids, 
which arise from applying the volume averaging operators (Equations 5–7) to the classical Navier-Stokes 
conservation equations for both a wetting and a nonwetting fluid, and, then, adding together each pair of 
averaged mass and momentum equations through the definition of “single-field” variables (i.e., averaged 
variables that depend on the properties of both fluids). This set of equations can also be thought of as a mod-
ified and expanded version of the popular Volume-of-Fluid equations (Hirt & Nichols, 1981). A detailed 
derivation of the following expressions can be found in Carrillo et al. (2020).


   


0f

ft
U� (8)

    
   


      


0f w

w f f w n rt
U U� (9)
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 
  



 
             

     , , , , , ,

f f f
f f f f f

f

w s n s s w s n w n n w

p
t
U

U U g S

D D D D D D
� (10)

where the      , ,,
1

i k A i k i ii k p dA
V

D n I S  vectors represent the momentum exchange from phase i to 

phase  , , ,k i k w n s  as a direct result of volume averaging. Additionally,    ( ( ) )T
f f fS U U  is the 

averaged single-field viscous stress tensor, g is gravity, μf is the volume-weighted average of each fluid's 
viscosity μf = αwμw + αnμn, and ρf is the volume-weighted average of each fluid's density ρf = αwρw + αnρn. 
The single-field expressions for velocity Uf, pressure p, and relative velocity Ur are defined as the weighted 
averages of their respective phase-averaged variables.

     
w n

f f w w n nU U U� (11)

  w n
w w n np p p� (12)

 w n
r w nU U U� (13)

We note that the single-phase velocity as defined above is equal to the sum of the volume-averaged veloc-
ities:  f w nU U U . As described in Carrillo and Bourg (2019) and Carrillo et al. (2020), these terms can 
be recast into the following expression through asymptotic matching to the standard multiphase Darcy 
equations:

 

 
  



   

 
             

   1
,1 ,2

f f f
f f f f f

f

f f s f c f c

p
t

k

U
U U g S

U U F F
� (14)

where μk−1 is the drag coefficient (a function of the fluid viscosities and permeability k), sU  is the averaged 
solid velocity,    1( )f f sk U U  is a solid-fluid momentum exchange term that accounts for a moving porous 
medium in an Eulerian frame of reference, and Fc,i represents the forces emanating from fluid-fluid and 
fluid-solid capillary interactions. As shown in Carrillo et al. (2020),

  





    
 

,
,1

in solid free regions

in porous regions

w n w
fc

c wp

‐n
F� (15)

       






   ,2 1

0 in solid free regions

in porous regionsc
w n n w c w nM M M p

‐
F

g� (16)

where pc is the average capillary pressure within a given averaging volume, γ is the fluid-fluid interfacial 
tension, Mi = k0ki,r/μi is the mobility of each fluid (a function of absolute permeability k0 and relative perme-
ability ki,r), and M = Mw  + Mn is the single-field fluid mobility. Lastly, nw,n is the unit normal direction of the 
fluid-fluid interface as calculated by the Continuum Surface Force (CSF) formulation (Brackbill et al., 1992). 
The equations presented above tend toward the standard Navier-Stokes Volume-of-Fluid approach in sol-
id-free regions (where the drag term becomes negligible) and toward the multiphase Darcy equations in 
porous regions. The latter can be explained by the fact that the viscous stress tensor   S  becomes negligi-
ble under the scale-separation assumption, inertial terms become negligible under the assumption of low 
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Reynold's number flow in the porous medium, and the Fc, terms are set to fit standard multiphase Darcy's 
law (Carrillo et al., 2020; Whitaker, 1986):

 
   


 





           

       


,1

,1 ,2

in solid free regions
Eqn.14

in porous regions

f f
f f f f c

f s f c c

p
t

k p

‐
U

U U S g F

U U g F F
� (17)

2.3.  Derivation of the Solid Mechanics Equations

We proceed with the derivation of the microcontinuum solid mechanics equations by starting from the 
equations presented in Carrillo and Bourg (2019) for solid mass and momentum conservation in systems 
with a single incompressible solid phase.

  
   


0ss

s st
U� (18)

         , ,s s s s w s n
sσ τ g B B� (19)

where σ  is the volume-averaged solid elastic (or plastic) stress tensor and   conf swellp psτ P I I  is the 
Terzaghi effective stress tensor (a function of confining pressure Pconf, fluid pressure p, and swelling or dis-

joining pressure pswell). Here, the     , ,,
1

s i A s is i dA
V

B τ σ n  values represent the momentum exchange be-

tween the solid phase s and fluid phase   ,i i w n . Just as we did for the fluid equations, we will assume that 

the sum of the averaged stresses at the solid-fluid interface can be expressed as the sum of two independent 
terms: a drag force that captures shear-induced momentum exchange  dragB  and a capillary force origi-

nating from capillary pressure jumps across the integrated solid surfaces within the porous media  capB .

  , ,s w s n drag capB B B B� (20)

We now seek closure of these two coupling terms. By conservation of momentum, we know that any 
drag-induced momentum lost by the fluid must be gained by the solid. Therefore, we can use the drag term 
used in Equation 14 to obtain (Carrillo & Bourg, 2019)

    1
drag f f skB U U� (21)

Closure of the capillarity-induced interaction term Bcap is obtained by combining the solid and fluid mo-
mentum equations within the porous medium at low Reynold numbers and low permeability, which yields

                   ,1 ,2s f s s f f f c f c cappsσ τ g F F B� (22)

In multiphase porous systems with incompressible grains and no swelling pressure (i.e.,    psτ ), Biot 
Theory states that        *

c wp pσ g , where      * ( )s s f f  and pc is the capillary pressure 
(Jha & Juanes, 2014; Kim et al., 2013). This expression is satisfied by the previous equation in the absence of 
capillary forces, where Fc,1, Fc,2, Bcap, and pc equal zero (Carrillo & Bourg, 2019). In the presence of capillary 
forces, however, it imposes the following equality

      ,1 ,2( )cap f c f c c wpB F F� (23)

Given that Fc,1 = −pc∇αw in the porous domains (Carrillo et al., 2020), the previous equation can be rear-
ranged to obtain

  ,1 ,2cap s c f cB F F� (24)
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Water Resources Research

Equation 24 gives closure to the last coupling parameter and marks the end of this derivation. The result 
is a solid conservation equation that tends toward Biot Theory in porous regions and toward an infinitely 
deformable solid with no momentum sources in solid-free regions.

2.4.  Interfacial Conditions Between Solid-Free Regions and Porous Regions

One of the most important features within the framework presented above is the existence of an interface 
between solid-free and porous domains. Although the creation of a rigorous unaveraged description of this 
interface is still an open question, we approximate a solution to it by guaranteeing its necessary components 
within our fluid and solid averaged equations.

An accurate description of fluid behavior at the interface requires three components: (1) mass conservation 
across the interface, (2) continuity of stresses across the interface, and (3) an interfacial wettability con-
dition. Components 1 and 2 are intrinsically fulfilled by our solver due to its single-field formulation for 
velocity and pressure within the fluid conservation equations (Equations 8 and 14). As shown in Neale and 
Nader (1974) and Carrillo and Bourg (2019), these two components are necessary and sufficient to model 
single-phase flow within a multiscale system. Furthermore, these conditions have also been used for closure 
when modeling multiphase flow in moving porous media (Carrillo et al., 2020; Lacis et al., 2017; Zampogna 
et al., 2019). The required wettability condition at the porous interface (Component 3) is included in our 
model through the implementation of a penalized contact angle condition (Equation 33) following the steps 
outlined in Horgue et al. (2014) and Carrillo et al. (2020).

The complementary solid conditions at the porous interface are very similar: (1) solid mass conservation 
across the interface, (2) continuity of fluid-induced stresses across the interface, and (3) a discontinuity 
of solid stresses at the interface. Just as before, the first two conditions are intrinsically fulfilled through 
the use of a single set of mass and momentum conservation equations across both domains and have also 
been used as closure conditions in previous studies (Lacis et al., 2017; Zampogna et al., 2019). The third 
condition is enforced by the use of volume-averaged solid rheology models that tend toward infinitely 
deformable materials in solid-free regions, as shown in Carrillo and Bourg (2019). When volume-aver-
aged, the behavior of the solid's stress tensor is domain dependent (i.e., solid fraction dependent). Thus, 
in solid regions, the elasticity and viscosity of the porous medium is determined by standard averaged 
rheological properties (the elastic and viscoplastic moduli). Contrastingly, in solid-free regions, the solid 
fraction tends to zero and, as such, said properties do as well. The result is a stress-free “ghost” solid that 
does not apply resistance to the porous region, creating the required stress discontinuity at the porous 
interface.

Although necessary, these conditions represent but an approximation to the complete description of fluid 
and solid mechanics at the porous interface. However, to the best of our knowledge, there does not exist an 
alternative set of interfacial conditions that can or have been used to model multiphase flow in multiscale 
porous media.

2.5.  Model Summary

The final set of equations in our proposed multiphase DBB framework now follows. The combination of 
these solid and fluid conservation equations leads to a model that tends toward multiphase Navier-Stokes in 
solid-free regions and toward Biot Theory in porous regions, as described in Figure 1.


   


0f

ft
U� (25)

    
   


      


0f w

w f f w n rt
U U� (26)
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Water Resources Research

 
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

   

 
             

   1
,1 ,2

f f f
f f f f f

f

f f s f c f c

p
t

k

U
U U g S

U U F F
� (27)

  
   


0ss

s st
U� (28)

                1
,1 ,2s s s f f s f c s cksσ τ g U U F F� (29)

All that is left is stating the closed-form expressions of the multiscale parameters μk−1, Fc,i, and Ur, which 
are defined differently in each region. A full derivation and discussion of these parameters can be found in 
Carrillo et al. (2020).



 





  

     

11
, ,1

0

0 in solid free regions

in porous regionsr w r n

w n

k k k
k

‐

� (30)

  





    
 

,
,1

in solid free regions

in porous regions

w n w
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c wp

n
F

‐
� (31)

       

     
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‐
� (32)
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g� (34)

where Cα is an interface compression parameter (traditionally set to values between 1 and 4 in the Vol-
ume-of-Fluid method), k0 is the absolute permeability, kr,i and Mi = k0ki,r/μi are the relative permeability and 
mobility of each fluid, and M = Mw + Mn. Lastly, θ is the imposed contact angle at the porous wall, and nwall 
and twall are the normal and tangential directions relative to said wall, respectively.

Finally, closure of the system of equations requires appropriate constitutive models describing the averaged 
behavior of the different phases within the porous regions. For the purpose of validating our multiphase 
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Water Resources Research

DBB approach, in the present study, we use the following well-established constitutive models: absolute 
permeability is modeled as isotropic and porosity-dependent through the well-known Kozeny-Carman 

relation 




 
 
  

3
0

0 0 2(1 )
f

f

k k ; relative permeabilities and average capillary pressures within the porous 

domains are represented using the Van Genutchen (van Genuchten, 1980) and Brooks-Corey (Brooks & 
Corey, 1964) models (Appendix A); plasticity is described through the Herschel-Bulkley model, were the 
solid viscously deforms only after local stresses become higher than the material yield stress (Appendix B1); 
the solid's yield stress and plastic viscosity are modeled as solid fraction-dependent based on the Quemada 
fractal model (Quemada, 1977; Spearman, 2017) (Appendix B2); finally, elastic solids are modeled as aver-
aged linear-elastic materials, such that their averaged elastic coefficients scale linearly with respect to the 
solid fraction (Appendix B3). The last three choices imply that solid rheological properties are modeled as 
isotropic and independent of saturation, a significant simplification that is sufficient for the purpose of 
testing and validating the present framework. For the reader's convenience, a full implementation of this 
framework and its related models are included in the accompanying simulation “toolbox.” If necessary, 
more complex constitutive models, such as the saturation-depended solid rheology models presented in 
Wan et al. (2014), Oldecop and Alonso (2003), Buscarnera and Einav (2012), and Di Donato et al. (2003) can 
be readily implemented into our code by virtue of its open-source implementation.

3.  Numerical Implementation
3.1.  Numerical Platform

The implementation of the multiphase DBB model was done in OpenFOAM®, a free, open-source, paral-
lelizable, and widely used computational fluid mechanics platform. This C++ code uses the Finite Vol-
ume Method to discretize and solve partial differential equations in complex 3-D grids. Its object-oriented 
structure and multitude of supporting libraries allows the user to easily customize each simulation's setup 
with different numerical discretization schemes, time-stepping procedures, matrix-solution algorithms, 
and supporting physical models. The implementation described below represents the natural extension of 
the multiphase microcontinuum toolkit “hybridInterFoam” (Carrillo et al., 2020) to systems with deform-
able solids. In particular, its solution algorithm stems directly from that used by “hybridInterFoam” and its 
precursor “interFoam.”

3.2.  Solution Algorithm

The solution of the governing equations is done in a sequential manner, starting with the fluid mechanics 
equations and following with the solid mechanics equations for every time step. Of particular importance 
is the handling and modification of the velocity-pressure coupling required for modeling incompressible 
fluids in conjunction with a moving solid matrix. For this step, we based our solution algorithm on the Pres-
sure Implicit Splitting-Operator (Issa, 1986). First, we explicitly solve the fluid saturation equation (Equa-
tion 9) for  1t

w  through the Multidimensional Universal Limiter of Explicit Solution algorithm (Márquez 
& Fich, 2013). This allows for stable numerical advection of the saturation field by the application of Flux 
Corrected Transport Theory (Rudman, 1997). Then, we update the boundary values of Uf and Ur in addition 
to the cell-centered values of the permeability kt+1, density  1t

f , and viscosity  1t
f  based on the newly cal-

culated saturation field  1t
w . The capillary forces 1

,
t

c iF  are also updated accordingly. After that, a preliminary 
value of the fluid velocity *

fU  is calculated by implicitly solving the algebraically discretized form of the fluid 
momentum equation used in the Finite Volume Method.

        * * 1 1
,

t t t
p f f f c ia pU H U g F� (35)

where  *
fH U  contains inertial, convective, viscous, and drag source terms originating from neighboring 

cells and ap represents these same terms but at the volume of interest. Note that the *
fU  field does not follow 
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Water Resources Research

mass conservation. To account for this, we use the fluid continuity equation (Equation  25) in conjunc-
tion with the previous equation (Equation 35) to update the velocity field **

fU  and calculate a preliminary 
mass-conservative pressure field p*. In other words, these fields must satisfy,

        ** * 1 1 *
,

1 t t
f f f c i

p
p

a
U H U g F� (36)


   


** f
f t

U� (37)

These equations can be recast into a single coupled equation which is then used to implicitly solve for pres-
sure. This step can be done through several generalized matrix solvers that are standard in OpenFOAM®.

   
  

    
                   

* 1 1 *
,

1 1 ft t
f f c i

p p
p

a a t
H U g F� (38)

After solving for pressure p*, velocity can be recalculated from Equation 36. This semi-implicit pressure-ve-
locity correction step is repeated until the desired convergence is reached. It has been shown that at least 
two pressure-velocity correction loops are required to ensure mass conservation (Issa, 1986).

At this point, 1t
fU  and pt+1 are set and used as input values for updating the drag and pressure source 

terms present in the solid mechanics momentum equation (Equation 29). Then, in the case of visco-po-
ro-plasticity, said equation is discretized in a similar way as the fluid momentum equation (Equation 27) 
and used to implicitly solve for 1t

sU . In the case of poroelasticity, the solid mechanics equation is solved 
through the algorithm presented in Jasak and Weller  (2000). Here, the solid's elastic equation (Equa-
tion 29) is discretized and segregated into implicit and explicit components, after which it is iteratively 
solved until convergence is reached. This segregated method not only guarantees fast convergence but 
also memory efficiency. Finally, the updated solid velocity is used to “advect” the solid fraction field ϕs 
by solving the mass conservation equation (Equation 28). At this point, the algorithm advances in time 
according to the imposed Courant-Friedrichs-Lewy number. A flow-chart of the complete algorithm can 
be found in the Supporting Information (SI), and further discussion regarding the discretization tech-
niques and matrix-solution procedures can be found in Carrillo et al. (2020), Jasak (1996), and Jasak and 
Weller (2000).

3.3.  Open-Source Implementation

The complete set of governing equations and solution algorithms, along with the necessary rheology, rel-
ative permeability, and capillary pressure models (Appendices A and B) were implemented into a single 
solver: “hybridBiotInterFoam.” This solver, along with its representative tutorial cases, automated compi-
lation and running procedures, and all the simulated cases presented in this paper were incorporated into 
an open-source CFD package of the same name. OpenFOAM® and our code are free to use under the GNU 
general public license and can be found at https://openfoam.org/ and https://github.com/Franjcf (Carrillo 
& Bourg, 2020), respectively.

4.  Model Validation
Most of the underlying components of the approach described above have been previously tested and veri-
fied. Carrillo and Bourg (2019) validated the momentum exchange terms as an effective coupling mechanism 
between a single fluid phase and a deformable plastic or elastic porous medium. The effects of confining and 
swelling pressures on porous media were also examined in said study. Then, Carrillo et al. (2020) extensive-
ly validated the extension of the Darcy-Brinkman equation into multiphase flow within and around static 
porous media by comparison with reference test cases in a wide range of flow, permeability, capillarity, and 
wettability conditions. Therefore, the only thing left to validate is the ability of the multiphase DBB model 
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Water Resources Research

to accurately predict the behavior of multiscale systems that exhibit coupling effects between multiple fluids 
and a deformable porous matrix.

To that point, we begin with two validation cases relating to multiphase poroelasticity and the coupling 
between solid deformation and fluid pressure. Then, we proceed with two poro-visco-plastic cases that 
validate this framework for multiscale plastic systems. Finally, we conclude with two additional cases that 
verify the implementation of the capillary force interaction terms. All of these can be found in the accom-
panying CFD simulation package. We note that all validation cases presented below were tested for grid-in-
dependence. A sample of these tests pertaining to Figures 4–7 can be found in the SI.

4.1.  Terzaghi Consolidation Problem

The Terzaghi uniaxial compaction test has been extensively used as a benchmark for the validation of nu-
merical codes relating to poroelasticity (Terzaghi et al., 1996). Its main utility is to test the accuracy of the 
solid-fluid couplings that relate fluid pressure to solid deformation and vice versa. The problem consists of 
a constrained saturated elastic porous medium that is abruptly compressed from its upper boundary by a 
constant uniaxial load (Figure 2). This creates a sudden increase in pore pressure, which is then dissipated 
by flow through the upper boundary (all other boundaries have impermeable boundary conditions). In the 
case of a one-dimensional porous medium, the resulting temporal and spatial evolution in fluid pressure 
can be described by the following simplified analytical solution (Verruijt, 2013).

  
 
 

2erf for 1
2

v

max v

p h z c t
p hc t

� (39)

where cv = (k0E (ν − 1))/(ρf g (2ν2 + ν − 1)) is the consolidation coefficient, k0 is permeability, E is Young's 
modulus, ν is Poisson's ratio, h is the column height, and z is the vertical coordinate. Our equivalent nu-
merical setup is shown in Figure 2. The values of the relevant parameters in our simulations are h = 10 m, 
k0 = 5 × 10−11 m2, E = 2 MPa, and ν = 0.25. To show the accuracy of our model across different conditions, 
the loading pressure was varied from 10 to 200 kPa (Figure 2b) and the porosity from 0.25 to 0.75 (Fig-
ure 2c). Lastly, the column was partially saturated (αw = 0.5) with fluids with equal densities (ρf = 1,000 kg/
m3), viscosities (μf = 1 cp), and negligible capillary effects. This last point allowed for testing the validity 
of the fluid-solid couplings irrespective of the simulated phases without violating any of the assumptions 
present in the analytical solution. Our numerical results show excellent agreement with Equation 39 for 
all tested conditions. Further verification of these terms for an oscillating linear-elastic solid with pressure 
boundary conditions (as opposed to stress boundary conditions) can be found in the SI.

4.2.  Capillary Pressure Effects in a Poroelastic Column

Having verified the two-way coupling between solid deformation and fluid pressure, we now verify the im-
plementation of the capillary pressure terms within the solid mechanics equation. To do so, we simulate a 
poroelastic column (1 m tall, 1,500 Cells, ϕf = 0.5) bounded by two nonwetting fluid reservoirs at its upper 
and lower boundaries. The column is initialized with a linear saturation profile spanning from αw = 0 to 1 
(see Figure 3). Fluid saturation is kept fixed by not solving Equation 26, and the mobilities of both fluids are 
set to very high values (Mi = 1 × 1010 m3/kg.s) to minimize drag-related effects. Under these conditions, the 
solid's effective vertical stress is exclusively controlled by capillary effects and is described by the following 
analytical solution:

 vertical s w cpσ� (40)

We used the Van Genutchen capillary pressure model with m = 0.6 or 0.8 and pc,0 = 50–2,000 Pa to calculate 
the solutions to said problem. The resulting agreement between the numerical and analytical solutions, 
shown in Figure 3, confirms the accuracy of the fluid-solid capillary pressure coupling implemented in our 
model. Furthermore, the transitional behavior of the effective stress at the macroscopic solid-fluid interface 
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Water Resources Research

confirms the applicability of the interfacial condition described in Section 2.4: as expected, solid stresses 
are dictated by standard elasticity theory in the porous region and become negligible in solid-free regions.

Given that the fluid-solid couplings in a poroelastic solid are now verified, we proceed to verify said terms 
for poro-visco-plastic materials.

4.3.  Fluid Invasion and Fracturing in a Hele-Shaw Cell

The third verification case (and the first poro-visco-plastic case) consists in the qualitative replication of 
a set of fracturing experiments that examined the injection of aqueous glycerin into dry sand within a 30 
by 30 by 2.5 cm Hele-Shaw cell (Huang et al., 2012a, 2012b). These experiments are inherently multiscale, 
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Figure 2.  One-dimensional Terzaghi consolidation problem. (a) Simulation setup. (b) Analytical (solid lines) and numerical (symbols) pressure profiles at 
t = 100 s for different loading pressure values. (c) Time-dependent pressure profiles for different column porosity values (from left to right: ϕs = 0.25, 0.5, 0.75).

Figure 3.  Capillary effects in a poroelastic column. (a) Simulation setup. (b and c) Analytical (solid lines) and numerical (symbols) effective stress profiles for 
different capillary pressure values (pc,0 = 50–2,000 Pa) and Van Genuchten coefficients (m = 0.6 and 0.8).
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Water Resources Research

in that the characteristic length scale of fractures in this system (∼cm) is orders of magnitude larger than 
that of pores within the porous matrix (∼100 μm). They are also multiphysics, as they clearly exemplify 
the drag-controlled transition from Darcy flow within the porous medium to Stokes flow in the open frac-
tures and the coupling between the hydrodynamics of fluid flow and the mechanics of fracture propagation 
(Figure 4).

The experimental setup involved the injection of aqueous glycerin at various flow rates, q, between 5 and 
50  ml/min while also varying the fluid's viscosity, μgly, between 5 and 176 cp for different experiments. 
Our numerical simulations were parameterized using measured values of the glycerin-air surface tension 
(γ = 0.063 kg/s2), the density of pure glycerin (ρgly = 1,250 kg/m3), the density of air (ρair = 1 kg/m3), the 
viscosity of air (μair = 0.017 cp), and the average radius and density of sand grains (100 μm and 2,650 kg/m3, 
respectively). To mimic the sand's experimental configuration and permeability, the simulated solid fraction 
field was set to a random initial normal distribution such that ϕs = 0.64 ± 0.05 and the permeability was 
modeled as a function of the solid fraction through the Kozeny-Carman relation with k0 = 6.7 × 10−12 m2. 
Relative permeabilities were calculated through the Van Genutchen model with the Van Genuchten coeffi-
cient m set to 0.99 (see Appendix A), while capillary pressures were deemed negligible (as 2γr−1 ≪ μk−1UfL). 
Finally, the porous medium was modeled as a continuous Hershel-Bulkley-Quemada plastic (Appendix B) 
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Figure 4.  Comparison of experimental (a, b, c, g, h, i) and simulated (d, e, f, j, k, l) fracturing in a Hele-Shaw cell. The 
color bar represents the solid fraction within the simulations (where red implies a pure solid and blue pure fluids) 
and the black lines represent the advancing glycerin saturation front (defined as the contour where αw = 0.99). The 
experiments shown here are part of the results presented in Huang et al. (2012a).

 19447973, 2021, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020W

R
028734 by Princeton U

niversity L
ibrary A

cquisitions Services, W
iley O

nline L
ibrary on [02/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

with yield stress τ0 = 16.02 m2/s2 (Quemada, 1977). Plasticity was used as the preferred mode of solid rheol-
ogy due to its ability to account for the compressive and irreversible effects caused by fracturing within these 
experiments (Ahmed et al., 2007; van Dam et al., 2002).

Numerically speaking, the simulations were carried out in a 30 by 30 cm 2-D grid (500 by 500 cells) with 
constant velocity and zero-gradient pressure boundary conditions at the inlet, zero-gradient velocity and 
zero pressure boundary conditions at the boundary walls, and a solid velocity tangential slip condition at all 
boundaries (i.e., the solid cannot flow across the boundaries, but the fluids can). Each simulation was run 
in parallel for approximately 2.5 hours on a single 28-core node or until the injected glycerin reached the 
outer boundary. Lastly, to enable a closer comparison between our 2-D simulation and the 3-D experiment 
we added an additional drag term to the fluid momentum equation equal to 12μa−2Uf, which accounts for 
viscous dissipation through friction with the walls in a Hele-Shaw cell with aperture a (Ferrari et al., 2015).

As shown in Figure 4, a dramatic transition in the mode of fluid invasion is observed with increasing fluid 
injection velocity and viscosity. At low flow rates and low viscosity (q = 5 ml/min, μ = 5 cp), there is no 
discernible solid deformation and the main mode of fluid flow is through uniform invasion of the porous 
medium (Figure 4a). At intermediate flow rates and low viscosity (q = 25 ml/min to 30 ml/min, μ = 5 cp), 
we still observe a uniform invasion front, but small fractures begin to appear (Figures 4b and 4c). At high 
viscosity (μ = 176 cp), we see clear fracturing patterns preceded by a nonuniform fluid invasion front (Fig-
ures 4h and 4i).

Figure 4 shows that our simulation predictions are qualitatively consistent with the experiments presented 
in Huang et al. (2012a) with regard to both the stability of the capillary displacement front and the observed 
fracturing transition behavior. As suggested above, accurate prediction of this transition requires not only 
proper handling of fluid-fluid interactions (surface tension and relative permeability effects), but also ac-
curate descriptions of their relationship with solid mechanics (drag) and the proper implementation of a 
solid rheological model that can replicate irreversible and unstable fracturing processes. We note that in our 
simulations, fracture initialization and propagation are predicted based on continuum-scale equations for 
the rheology and mechanics of the bulk porous solid, with no specific treatment of grain-scale mechanics. 
Grid-level instabilities are brought about by the normally distributed porosity and permeability fields, as 
shown in Appendix C. The microstructural differences between the experiments and our simulations (most 
clear in Figures 4c, 4f, 4h, and 4k) likely arise at least in part from the fact that the solid is modeled as a 
continuum rather than a granular material.

This section demonstrates that the multiphase DBB model can be used to replicate and predict the main 
mode of fluid flow and solid deformation within fracturing systems. A comprehensive study of the con-
trolling parameters for multiphase fracturing in the presence of both viscous and capillary stresses will be 
the focus of an adjacent study.

4.4.  Modeling Fracturing Wellbore Pressure

Having shown that our model can qualitatively predict fracturing behav-
ior, we now aim to determine whether it can do so in a quantitative mat-
ter. As depicted in Figure 5, fluid-induced fracturing of low-permeability 
rocks proceeds through the following well-established series of events: 
First, fluid pressure increases linearly as fracturing fluid is injected into 
the wellbore. Second, as wellbore pressure increases and approaches 
the leak-off pressure, a small amount of pressure is propagated by fluid 
leakage into the rock. Third, fluid pressure continues to increase until 
it reaches the breakdown pressure, at which point it is high enough to 
fracture the rock. Fourth, a fracture is initiated and propagates; the well-
bore pressure slowly decreases. Fifth, injection stops, fracture propaga-
tion stops, and wellbore pressure rapidly dissipates (Abass et al., 2007; 
Ahmed et al., 2007; Huang et al., 2012a; Papanastasiou, 2000; Santillán 
et al., 2017).
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Figure 5.  Conceptual representation of wellbore pressure evolution 
during fluid-induced fracturing of low-permeability rocks. In this section, 
we are interested in modeling the behavior between tfrac and tstop.
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Water Resources Research

In this section, we aim to numerically replicate the time-dependent fracturing wellbore pressure during 
fracture propagation (i.e., the fourth stage outlined above) as described by an analytical solution presented 
in Barros-Galvis et al. (2017).

 
  

  
    

    

0 0
0 2

0
ln 0.81

4well
f well

q tkp p
k h r

� (41)

where t is the time elapsed since fracture initialization, q is the fluid injection rate, pwell is the wellbore 
pressure, p0 is the minimum pressure required for starting a fracture (a function of the solid's yield stress 
τ0), h is the formation thickness, and rwell is the wellbore radius. The remaining variables follow the 
same definitions described earlier. The general numerical setup is almost identical to the one presented 
in the previous section. The key difference is that we now inject aqueous glycerin into a strongly non 
wetting (and thus almost impermeable) porous material. This is done to ensure an accurate replication 
of the analytical solution and its related assumptions, where fracturing is the main mode of fluid flow 
and there is virtually no fluid invasion into the porous matrix. The exact simulation parameters are 
q = 46–110 ml/min, τ0 = 0.2 or 2 m2/s2, k0 = 6.7 × 10−11 or 6.7 × 10−12 m2, μgly = 5 cp, and m = 0.05. 
Note that low values of m indicate that the porous formation is strongly nonwetting to the injected fluid 
(see Figure S4 in the SI for the resulting relative permeability curve). All other parameters are as in the 
previous section.
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Figure 6.  Wellbore pressure as a function of injection rate and time. (a) The initial simulation setup showing the initial wellbore radius rwell = 1.3 cm, as well 
as the normally distributed solid fraction field. (b) The fractured system, where the thin black line represents the position of the advancing glycerin saturation 
front. (c and d) show the wellbore pressure as a function of time for different flow rates and different combinations of solid yield stress and permeability. Solid 
curves represent analytical solutions, while symbols represent simulation predictions. The color scheme in (a and b) is the same as in Figure 4, and pmax is the 
maximum analytically predicted pressure in each simulation.
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Water Resources Research

Lastly, as hinted at before, a notable characteristic of our model is that different normally-distributed solid 
fraction field initializations give different fracturing results (Appendix C). For this reason, we performed 
four simulations for each parameter set. In Figure 6, we present the average predicted wellbore pressure 
evolution with errors bar representing the 95% confidence interval.

Figure 6 shows that our model can accurately and reliably predict the pressure and deformation behavior 
of a variety of fracturing systems, as all curves exhibit excellent agreement with their respective analytical 
solution. Note that the length of each curve relates inversely to the injection speed. This is because fractures 
at higher injection rates consistently reach the system's boundary faster than their counterparts, at which 
point there is a sharp decrease in pressure and the analytical solution no longer applies. Therefore, each 
curve's cutoff point represents the time at which the fracture effectively becomes an open channel between 
the wellbore and the outer boundary, normalized to the average value of that time for the slowest-moving 
fracture (i.e., t = tmax).

The successful replication of the analytical pressure profiles in this section verifies the model components 
pertaining to the pressure-velocity-deformation coupling and the two-way momentum transfer between the 
fluid and solid phases (drag). Therefore, the only model component left to verify is the implementation of 
the capillary force terms during fracturing of a plastic solid.
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Figure 7.  Effect of capillary entry pressure on fracturing wellbore pressure. (a and b) Wellbore pressure as a function of time and entry pressure for 
low and high permeability systems, respectively. In (b), curves at increasingly high pressures were cut off for illustrative purposes and the solid line 
represents a fitted reference logarithmic pressure descent curve. (c–h) Time evolution of fractured system with a 1 kPa capillary entry pressure and high 
permeability. (c) Initial fluid invasion (t/tmax < 0): At early times, the wellbore pressure rises rapidly and becomes larger than the entry capillary pressure. 
The fluid invades the porous formation symmetrically. (d) Fracture initiation (t/tmax = 0): The wellbore pressure continues to rise until it is larger than 
the breakdown pressure, at which point small fractures start to form. Fluid invasion continues. (e and f) Fracture propagation (t/tmax > 0|pwell > pc,0): 
The wellbore pressure drops as fractures propagate. Fluid invasion continues asymmetrically around said fractures. (g) Fluid invasion stops (t/
tmax > 0|pwell∼pc,0): As the wellbore pressure keeps dropping, the entry capillary pressure condition at the porous interface ensures that that wellbore 
pressure never goes below pc,0, at which point fluid invasion stops. (h) Fracture reaches the simulation boundary (t/tmax = 1). The color convention in 
Figures (c–h) is the same as in Figure 4.
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Water Resources Research

4.5.  Capillary Effects on Fracturing Wellbore Pressure

Our fifth verification systematically varies the capillary entry pressure within nonwetting fracturing sys-
tems to quantify its effects on wellbore pressure. For this, we consider two different complementary cases: 
one where capillary forces are comparable to their viscous counterparts, and another where they are signif-
icantly larger than them. All parameters are the same as in the previous experiments (Section 4.4) unless 
otherwise specified.

The first set of experiments expands the previous analysis (Section 4.4) into strongly nonwetting systems 
with the addition of a constant capillary pressure jump at the fracture interface imposed by a flat capil-
lary pressure curve (pc = pc,0 = 0–2 kPa, τ0 = 2 m2/s2, k0 = 6.7 × 10−12 m2, m = 0.05, and q = 78 ml/min). 
In this case, all the assumptions present in the fracturing analytical solution (Equation 41) are satisfied. 
However, said solution still does not account for capillarity. For constant flow in nonwetting systems, the 
addition of a constant capillary entry pressure jump at the fluid-solid interface would increase the calcu-
lated propagation pressure in Equation 41 by said value such that  new

well well cp p p . This effect is exem-
plified in Figure 7a, where we present the updated analytical results in conjunction with our equivalent 
numerical results, demonstrating excellent agreement between them. Note that the predicted linear rela-
tionship between wellbore pressure and capillary entry pressure is not explicitly imposed in the numerical 
model. On the contrary, it arises naturally from the balance of viscous, capillary, and structural forces in 
Equations 25–29.

The second set of experiments modifies the previous experiments by making the porous medium signifi-
cantly more permeable, while still maintaining a constant capillary pressure jump at the fracture interface 
(pc = pc,0 = 1–3 kPa, τ0 = 0.2 m2/s2, k0 = 6.7 × 10−11 m2, m = 0.99, and q = 78 ml/min). This results in a set 
of cases where the wellbore pressure is increasingly controlled by the capillary pressure drop rather than by 
the viscous pressure drop across the fracture and porous formation.

Figure  7 demonstrates precisely this effect. Our simulations show that the wellbore pressure always 
decays toward the capillary entry pressure once viscous effects are dissipated by fracture growth, 
that is, we observe a transition between viscous- and capillary-dominated regimes. At low values of 

 ,0 2500 Pacp  the entry pressure is not high enough to prevent fluid flow into the surrounding po-
rous matrix during fracturing (Figures 7b–7h). The resulting pressure drop cannot be modeled by the 
previously presented analytical solution (as it violates the no leak-off assumption), but still follows a 
logarithm-type curve that is characteristic of flow in fracturing systems. With increasing fracture propa-
gation, the viscous pressure drop decreases until the wellbore pressure equals the entry pressure, which 
is, by definition, the minimum pressure drop required for fluid flow in highly permeable nonwetting 
systems. Finally, we note that in cases where capillary entry pressure is high relative to the pressure 
required to fracture the solid (i.e., at (pc,0 > 2.250 Pa in the conditions simulated in Figure 7b), fracturing 
begins before the wellbore pressure can exceed pc,0. This prevents essentially all flow into the porous 
formation, and the wellbore pressure is immediately stabilized at ∼pc,0. For all cases, fractures continue 
to propagate until they reach the system boundary, at which point the pressure drops rapidly as noted 
in Section 4.4.

In this section, we reduced the inherent complexity of the model's capillary force terms Fc,i (Equations 31 
and 32) into a simple set of intuitive verifications. The quantitative agreement between these two analytical 
cases and their corresponding numerical simulations validate the implementation of the impact of capillary 
pressure effects on the mechanics of a ductile porous solid within our model.

5.  Illustrative Applications
Having verified and tested the model, we now proceed with two illustrations that demonstrate how hybrid-
BiotInterFoam enables the simulation of relatively complex coupled multiphase multiscale systems. The 
following cases serve as illustrative examples of our model's features and capabilities as well as tutorial cases 
within the accompanying toolbox.

CARRILLO AND BOURG

10.1029/2020WR028734

17 of 27

 19447973, 2021, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020W

R
028734 by Princeton U

niversity L
ibrary A

cquisitions Services, W
iley O

nline L
ibrary on [02/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

5.1.  Elastic Failure in Coastal Barriers

Coastal barriers are ubiquitous features in coastal infrastructure development. When designed appropri-
ately, these structures can be very effective in regulating water levels and protecting against inclement 
weather (Morton,  2002). However, accurate prediction of the coupled fluid-solid mechanics of these 
structures (which can lead to barrier failure) is inherently challenging as it requires modeling large-
scale features (waves) while also considering small-scale viscous and capillary interactions within the 
barrier.

The following case represents the continuation of the three-dimensional coastal barrier illustration present-
ed in Carrillo et al. (2020) with the addition of linear-elastic poromechanics. As such, the simulation was 
created by initializing a heterogeneous porosity field (with k0 = 2 × 10−8 m2 and ϕf = 0.5) in the shape of a 
barrier within a 8.3 by 2.7 by 0.25 m rectangular grid with over 43 million cells (1600 by 540 by 50 cells). The 
relevant solid mechanics parameters were E = 5 MPa, ν = 0.45, and ρs = 2350 kg/m3. Relative permeabilities 
and capillary pressures were evaluated through the Van Genuchten model with m = 0.8 and pc,0 = 1 kPa. 
Before the start of the simulation, the water level was set to partially cover the barrier and then allowed 
to equilibrate. A single wave was then initialized at t = 0. This results in a simulation that exhibits a clear 
wave absorption cycle that gradually dissipates in time, as seen in Figure 8. Detailed discussion on the fluid 
mechanics of this problem can be found in Carrillo et al. (2020). In total, this 3-D simulation lasted for 15 
simulated seconds, which took approximately 30 hours to run on 16 computational nodes with 28-Broad-
well Xeon cores each.

Here, however, we are interested in evaluating the barrier's propensity to failure. We do this by applying 
the Von Mises yield criterion, which is commonly used to predict material failure in elastic systems. It 
states that if the second invariant of the solid's deviatoric stress (the Von Mises stress) is greater than 
a critical value (the yield strength) the material will begin to deform nonelastically (Von Mises,  1913). 
Although we do not specify said critical value within our simulations, we can map the time-evolution of 
Von Misses stresses within the coastal barrier as a result of a wave absorption cycle (Figure 8). Our results 
illustrate the potential utility of our simulation framework in predicting the location and time-of-forma-
tion of stress induced defects within coastal barrier as a function of wave characteristics, permeability, and 
barrier geometry.
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Figure 8.  Waves crashing against a poroelastic coastal barrier. Here, the thin black line represents the water-air 
interface    0.5w  within the barrier and red-blue colors represent water and air outside the barrier. Colored contours 
within the barrier are the calculated Von Mises stresses and are shown in 5 kPa increments in the general downwards 
direction. Note that the largest stresses are seen during the initial wave crash and increase toward the base of the barrier 
due to gravitational effects.
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Water Resources Research

5.2.  Flow-Induced Surface Deformation

Surface deformation due to subsurface fluid flow is a common geological phenomenon occurring in strong-
ly coupled systems and has clear implications in studies related to induced seismicity (Shapiro & Din-
ske, 2009), CO2 injection in the subsurface (Morris et al., 2011), land subsidence (Booker & Carter, 1986), 
and the formation of dikes and volcanoes (Abdelmalak et al., 2012; Mathieu et al., 2008). In order to prop-
erly model these systems, it is necessary to be able to capture the time-evolution of surface uplift, cracks, 
and hydraulic fractures, as well as the effects that these features have on the overall flow field. Here, we 
use the terms hydraulic fracture versus crack to refer to solid failure at versus away from the injected fluid, 
respectively.

This illustrative case was inspired by the experiments reported by Abdelmalak et al. (2012), where the au-
thors injected a highly viscous fluid into a dry silica powder in a Hele-Shaw cell in order to study the impact 
of hydraulic fractures on surface deformation, for example, during the creation of volcanic structures. The 
system also bears some analogy to situations involving the injection of fluids into subsurface reservoirs, 
for example, during geologic CO2 sequestration (Rutqvist, 2012). The base case of our simulations consists 
of an impermeable rectangular container (50 by 30 cm, 500 by 300 cells) that is open to the atmosphere, is 
partially filled with a dry porous medium (ϕs = 0.6 ± 0.05, ρs = 2650 kg/m3, k0 = 5 × 10−11 m2), and has an 
injection well at its lower boundary that injects water at q = 6.5 ml/s (Figure 9). To account for irreversible 
solid deformation, the porous medium is modeled as a plastic with yield stress τ0 = 0.22 m2/s2. The solid 
is represented as impermeable to the invading fluid through the use of the Van Genuchten model with 
m = 0.05 and pc = 0. Then, using this base case as a standard, we individually varied each of the main pa-
rameters (q, k0, τ0, m, ϕs, μwater) over several simulations in order to model the resulting solid deformation 
processes: fracturing, cracking, surface uplift, and subsidence (Figure 9).

The resulting cases demonstrate that cracking (solid failure away from the injected fluid) is strictly depend-
ent on the number and orientation of existing hydraulic fractures, as it only occurs when there is more 
than one fracture branching off from the main injection point (Figures 9b–9d, 9h, and 9I). This is likely 
because in cases presenting a single vertical fracture solid displacement is almost exclusively perpendicular 
to the fracturing direction, leading to virtually no surface deformation or cracking (Figures 9a, 9e, and 9m). 
Contrastingly, the creation of inclined fractures exerts vertical forces on the solid, resulting in surface uplift 
and crack formation. The above diagram strongly suggests that deformation is controlled by the balance 
between viscous and structural forces: larger fractures occur within softer solids with higher momentum 
transfer, and smaller fractures occur in tougher solids with lower momentum transfer. As stated above, a 
comprehensive examination of the parameters that control solid fracturing will be the focus of an adjacent 
paper.

In addition to the surface uplift presented above, subsurface subsidence is observed in the simulated system 
in conditions where the porous solid is rendered permeable to the invading fluid (i.e., m ≫ 0.05). This phe-
nomenon is not primarily controlled by momentum transfer, but rather by a gravitational effect whereby the 
displacement of air by water within the porous medium around the advancing hydraulic fracture renders 
the solid-fluid mixture heavier. Once it is heavy enough to overcome the plastic yield stress, the solid sub-
sides and compresses around the fluid source (Figure 9m).

With these last two illustrative examples, we have shown that our modeling framework is flexible and read-
ily applicable to a large variety of cases within elastic and plastic systems. We invite the interested reader to 
tune, adapt, and expand the present illustrative simulations, which are included in the accompanying CFD 
toolbox.

6.  Conclusions
We derived, implemented, benchmarked, and applied a novel CFD package for simulation of multiphase 
flow within and around deformable porous media. This microcontinuum modeling framework is based 
on elementary physics and was rigorously derived through the method of volume averaging and asymp-
totic matching to the multiphase Volume-of-Fluid equations in solid-free regions and multiphase Biot 
Theory in porous regions. The result is a single set of partial differential equations that is valid in every 
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Water Resources Research

simulated grid cell, regardless of content, which obviates the need to define different meshes, domains, or 
complex interfacial conditions within the simulation. The solver's numeric and algorithmic development 
were discussed and implemented into hybridBiotInterFoam, an open-source package accessible to any 
interested party.

Throughout this study and its of predecessors (Carrillo & Bourg, 2019; Carrillo et al., 2020), we show that 
the Multiphase DBB model can be readily used to model a large variety of systems, from single-phase flow 
in static porous media, to elastic systems under compression, to viscosity- or capillarity-dominated fractur-
ing systems, to multiscale wave propagation in poroelastic coastal barriers.

We note, however, that the solver presented here cannot be liberally applied to any porous system, as it 
comes with the following inherent limitations. First, closure of the system of equations requires appropri-
ate constitutive and parametric relations that describe fluid pressure, permeability, capillarity, and rheol-
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Figure 9.  Study of the impact of subsurface fluid injection on hydraulic fracturing, cracking, and surface deformation. (a–i) Representative cases showing the 
effects of changing permeability k0 (purple), solid yield stress τ0 (green), injection rate q (brown), and injected fluid viscosity μ (red) on surface deformation. 
The blue and yellow subsections contain the results of increasing or decreasing the controlling parameters, respectively. (j–l) Time evolution of the fracturing 
base case. (m) Surface subsidence example. The difference between the base case (e) and all other simulations is shown in each case's legend. Dotted white lines 
represent the surface height of the initial solid fraction configuration. Note that the color scheme in all simulations is the same as in Figure 4.
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Water Resources Research

ogy within volume-averaged porous regions. Therefore, the assumptions present in each of these models 
should be carefully considered. Second, volume averaging imposes important length scale restrictions in 
order to fulfill the scale-separation hypothesis, where the pore sizes within the averaging volume must be 
substantially smaller than the chosen REV, and the REV must be substantially smaller than the macro-
scopic length scale. Third, as currently implemented, the multiphase DBB framework only represents con-
tinuum-level elastic or plastic solid mechanics that can be described from an Eulerian frame of reference. 
As such, it cannot be used to model large elastic deformations or phenomena originating from sub-REV 
heterogeneities such as fluidization or granular mechanics (Meng et al., 2020), except insofar as they are 
captured in an averaged manner at the REV scale. Fourth, the use of the CSF as a representation of capillary 
forces within solid-free regions enforces mass conservation, but it creates a diffuse fluid-fluid interface that 
may generate spurious and parasitic currents.

Finally, although the modeling framework developed here opens up significant new possibilities in the 
simulation of coupled fluid-solid mechanics, it also creates a need for the development of constitutive 
relations describing the coupling between multiphase flow and poromechanics. Of particular importance 
is the formulation of saturation and deformation-dependent solid rheological models (both plastic and 
elastic), as well as the rigorous derivation of the interfacial condition between solid-free and deformable 
porous regions. In this study, we proposed a suitable approximation for said condition based on our sin-
gle-field formulation, the implementation of a wettability interfacial condition, and the previous work 
done by Neale and Nader (1974) and Zampogna et al. (2019). However, the accuracy and validity of such 
an approximation is still an open question, one that is at the frontier of our modeling and characteriza-
tion capabilities (Qin et al., 2020). The derivation and implementation of said interfacial condition, along 
with the addition of erosion and chemical reactions into this modeling framework, will be the focus of 
subsequent papers.

Appendix A:  Relative Permeability and Capillary Pressure Models

A1  Relative Permeability Models

The two relative permeability models used in this paper and implemented in the accompanying code de-
pend on defining an effective saturation in order to account for the presence of irreducible saturations 
within a porous medium

 


 



 

,
,

, ,1
w w irr

w eff
w irr w irr

�

here, αw,eff is the wetting fluid's effective saturation, which is the wetting fluid's saturation normalized by 
each fluid's irreducible saturation αi,irr. The Brooks and Corey (1964) model relates each phase's relative 
permeability to saturation through the following expressions

  , ,1
m

r n w effk�

 , ,
m

r w w effk�

where m is a nondimensional coefficient that controls how sensitive the relative permeability is with 
respect to saturation. The van Genuchten (1980) model calculates relative permeabilities in the following 
way
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    
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2
1 1
2, , ,1 1

m

mr w w eff w effk�

In this case, m controls how wetting (or nonwetting) the porous medium is to a given wetting (or nonwet-
ting) fluid. High values of m indicate high relative permeabilities for the nonwetting fluid, while low values 
of m indicate very low relative permeabilities for the same fluid.

A2  Capillary Pressure Models 

The implemented capillary pressure models also depend on an effective wetting-fluid saturation αw,pc,

 


 





,
,

, ,

w pc irr
w pc

pc max pc irr
�

here, αpc,max is the maximum saturation of the wetting fluid and αpc,irr is its irreducible saturation. The 
Brooks and Corey (1964) model uses the following expression to calculate the capillary pressures within a 
porous medium

  



 ,0 ,c c w pcp p�

where pc,0 is the entry capillary pressure, and β is a parameter depending on the pore size distribu-
tion. Conversely, the van Genuchten (1980) model calculates the capillary pressure with the following 
relation
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Appendix B:  Solid Rheology Models

B1  Hershel-Bulkley Plasticity

A Bingham plastic is a material that deforms only once it is under a sufficiently high stress. After this 
yield stress is reached, it will deform viscously and irreversibly. The Herschel-Bulkley rheological model 
combines the properties of a Bingham plastic with a power-law viscosity model, such that said plastic can 
be shear thinning or shear thickening during deformation. In OpenFOAM®, this model is implemented as 
follows:

   
 

       
 

2
3

Teff
s s s sσ U U U I�

where eff
s  is the effective solid plastic viscosity, which is then modeled through a power-law expression:

   


 
  

 
0 1min ,eff n

s s s�

where 0
s  is the limiting viscosity (set to a large value), τ is the yield stress, μs is the viscosity of the solid 

once the yield stress is overcome, n is the flow index (n = 1 for constant viscosity), and η is the shear 
rate.

B2  Quemada Rheology Model

The Quemada rheology model (Quemada, 1977; Spearman, 2017) is a simple model that accounts for the 
fact that the average yield stress and effective viscosity of a plastic are functions of the solid fraction. These 
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two quantities are large at high solid fractions and small at low solid fractions, as described by the following 
relations
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2

1

s

s
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s

�

here, max
s  is the maximum solid fraction possible (perfect incompressible packing), τ0 is the yield stress at 

  / 2max
s s , μ0 is the viscosity of the fluid where the solid would be suspended at low solid fractions (high 

fluid fractions), and D is a scaling parameter based on the solid's fractal dimension.

B3 Linear Elasticity 

A linear elastic solid model assumes that a solid exhibits very small reversible deformations under stress. 
Linear elasticity is described by the following relation:

          
T

s s str Is s sσ u u u�

where us is the solid displacement vector 
 

  
not to be confused with solid velocity s

s
uU
t , and μs and λs 

are the Lamé coefficients. The implementation of linear elasticity in OpenFOAM® follows the proceduce 
outlined in Jasak and Weller (2000).

Appendix C:  Fracturing Instabilities
The following figures demonstrate how different fracturing patterns can result from different solid fraction 
initializations. Here we carried out two sets of four identical experiments. In the first set, the only difference 
between cases is the value of the standard deviation of their respective normally distributed solid fraction 
field (all centered at ϕs = 0.64). These experiments follow the same simulation setup used for the fracturing 
case shown in Figure 4k.

In the second set of experiments we simulated the base case presented in Figure 9 with different solid frac-
tion profiles picked from the same normal distribution ϕs = 0.6 ± 0.05.

Figures  A and B clearly show that the created fractures are dependent on the initial solid fraction 
distribution.
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Figure A.  Effects of the solid fraction field's standard deviation on fracturing. (a-d) Final porosity profiles for 
simulations with different inital solid fraction profiles, where the numbers on top of each sample indicated the inital 
standard deviation of each profile.
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Data Availability Statement
A full compilation of the data and code used in this manuscript is archived at https://doi.org/10.5281/zeno-
do.4013969 (Carrillo & Bourg, 2020) and can also be found at https://github.com/Franjcf.
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