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ABSTRACT

Unlike standard linear regression, quantile regression captures the relationship between covariates and
the conditional response distribution as a whole, rather than only the relationship between covariates
and the expected value of the conditional response. However, while there are well-established quantile
regression methods for continuous variables and some forms of discrete data, there is no widely
accepted method for ordinal variables, despite their importance in many medical contexts. In this
work, we describe two existing ordinal quantile regression methods and demonstrate their weaknesses.
We then propose a new method, Bayesian ordinal quantile regression with a partially collapsed Gibbs
sampler (BORPS). We show superior results using BORPS versus existing methods on an extensive
set of simulations. We further illustrate the benefits of our method by applying BORPS to the Fragile
Families and Child Wellbeing Study data to tease apart associations with early puberty among both
genders. Software is available at: GitHub.com/igrabski/borps.

1 Introduction

Standard linear regression captures relationships between covariates of interest and the conditional mean of the response,
modeled as a linear function. In particular, the linear regression model is based on the expected value of our response
variable y given the values of the p covariates x ∈ Rp. However, this model is unable to capture relationships between
the covariates and the conditional distribution y|x as a whole, as it is limited instead to a linear model of the expected
value with Gaussian residuals.

Quantile regression [1] allows us to quantify a more complex relationship between the covariates and the distribution of
the response variable by modeling the conditional quantile function of response variable y, Qy(q|x), with 0 < q < 1.
Here, the qth quantile of y given covariates x is defined as inf{y : F (y) ≥ q} for the cumulative distribution function
F (y). As a result, quantile regression estimates both the variable effects of covariates across conditional quantiles
and the shape of response distributions conditional on x. This is useful in any situation where the mean might not
adequately describe the conditional response distribution, such as in the presence of non-Gaussian residuals. Quantile
regression allows us to uncover interesting structure that might be present in the tails of the distribution, including
heavy-tailed or skewed distributions, that would otherwise be masked in standard regression and distort inference.

While there are well-established quantile regression methods for continuous outcomes in both frequentist [2] and
Bayesian [3] frameworks, there are fewer methods for discrete outcomes. In particular, there is no widely accepted
quantile regression method for ordinal variables, i.e., ordered variables without an underlying interval. Ordinal variables
are especially common in medical contexts, where many health outcomes are expressed as ordered categories rather
than as strictly numerical measures, (e.g., stages of cancer, BMI categories, or grades of disease severity). However,
there are also numerous examples of ordinal variables in finance (e.g., corporate credit ratings [4]), ecology (e.g.,
organism maturity [5]), transportation (e.g., transportation quality metrics [6]), and many other disciplines.

The standard approach to regression with ordinal response variables is to use the ordinal probit model. In this model,
each ordinal variable is modeled by an underlying continuous latent variable, and these latent variables are linearly
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related to the covariates with Gaussian residuals. Just as with standard linear regression, fitting this ordinal probit model
only captures the mean of the conditional distribution of the continuous latent variable underlying each response. In
order to study the full conditional distributions of such outcomes, rather than assuming Gaussianity and modeling the
empirical means, quantile regression methods may be used for the analysis of ordinal variables.

Two recent ordinal quantile regression methods have been described in the Bayesian framework [7, 8]; we will show
that both are problematic in their current forms, because of sensitivity to parameter specifications in the former case,
and poor performance on noisy simulations in the latter. To fill this gap, we propose a new method, Bayesian Ordinal
Quantile Regression with a Partially Collapsed Gibbs Sampler (BORPS). We demonstrate superior results to existing
methods on an extensive set of simulations. We further demonstrate the utility of our method by applying BORPS to a
large data set to study the relationship of early puberty to other childhood physiological and demographic factors.

2 Methods

We denote our observed response variables yi, for n samples indexed by i ∈ {1, . . . , n}, with p corresponding covariates
xi =

[
xi,1, . . . , xi,p

]
. We begin by reviewing quantile regression for continuous yi ∈ < in the classical approach and

then in a Bayesian framework. Then, we discuss existing quantile regression approaches for ordinal yi. Finally, we
describe our quantile regression method for ordinal yi and associated inference methods.

2.1 Quantile regression

In quantile regression, we are interested in estimating the coefficients β̂ of the qth quantile of y|x, denoted QY |x(q),
in the model QY |x(q) = βx. Consider the usual definition of quantiles, where the cumulative distribution function
of random variable y is written as FY = P (Y ≤ y). For q ∈ (0, 1), the qth quantile of Y is the real value
QY (q) = F−1Y (q) = inf {y : FY (y) ≥ q}. In the context of regression, we include covariates in this definition, and we
model the cumulative distribution function of this conditional distribution as FY |x(y) = P (Y ≤ y|x). Thus, we are
interested in β̂ at the qth quantile of Y |x, i.e., QY |x(q) = inf{y : FY |x(y) ≥ q}.
In the classical approach, inference in quantile regression is formulated as an optimization problem for a linear model,
analogous to the ordinary least squares (OLS) optimization used for standard linear regression [2]. OLS for linear
regression finds the regression coefficients β̂ that minimize the sum of squared residuals

β̂ = arg min
β∈IRp

n∑
i=1

(yi − x′iβ)2. (1)

This yields the optimal coefficients β to model the conditional mean.

Inference in quantile regression takes a similar approach, but since we are now interested in any qth conditional quantile
the optimization problem depends on q. To do this, we introduce the check function ρq(·), which asymmetrically
weights positive and negative residuals by the quantiles q and 1− q. The associated optimization problem can be written
as

β̂ = arg min
β∈IRp

n∑
i=1

ρq(yi − x′iβ). (2)

Formally, the check function for arbitrary random variable u is defined as ρq(u) = u(q − II(u < 0)), or equivalently,
ρq(u) = q|u|II(u ≥ 0) + (1− q)|u|II(u < 0), where II denotes the indicator function. Hence, the optimization problem
for quantile regression can be written as

β̂ = arg min
β∈IRp

 ∑
i:yi≥x′iβ

q|yi − x′iβ|+
∑

i:yi<x′iβ

(1− q)|yi − x′iβ|

 . (3)

Note that, at q = 0.5, the optimization problem reduces to

β̂ = arg min
β∈IRp

n∑
i=1

0.5|yi − x′iβ| = arg min
β∈IRp

n∑
i=1

|yi − x′iβ|, (4)

which can be recognized as standard median regression.

This approach to quantile regression received a great deal of traction when first introduced and is still widely used
today [9]. There was minimal development of Bayesian approaches to quantile regression until more recently [3].
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Like the classical approach, the Bayesian version of quantile regression adopts the check function. But the Bayesian
approach relies on the observation that the asymmetric Laplace distribution (ALD) contains a check function within its
probability density function (PDF). Indeed, if u ∼ ALD(µ, σ, q) for location µ, scale σ, and skew q, then the ALD
PDF is written as:

f(u|µ, σ, q) =
q(1− q)

σ
exp

(
−ρq

(
u− µ
σ

))
, (5)

for check function ρq(·).

In this framework, when adopting an ALD prior on the residuals εi with µ = 0 and σ = 1, the likelihood function of
our model yi = x′iβ + εi becomes

L(y|β) = qn(1− q)n exp

(
−

n∑
i=1

ρq(εi)

)

= qn(1− q)n exp

(
−

n∑
i=1

ρq(yi − x′iβ)

)
.

The likelihood function when ε ∼ ALD(0, 1, q) can then be seen to contain the objective function for the qth quantile
from the classical approach. By developing an appropriate Markov chain Monte Carlo (MCMC) method, we can
perform Bayesian inference to estimate the full posterior distribution β|0, 1, q,X,y; we can select point estimates β̂ at
any desired quantile by querying the posterior with the skew parameter q set to that quantile.

Previous approaches developed sampling methods for Bayesian quantile regression. Prior work used a random walk
Metropolis-Hastings method [3]. Other methods that are more computationally efficient and require less parameter
tuning, including a Gibbs sampler [10] and a partially collapsed Gibbs sampler [11], have also been developed.
Nonparametric Bayesian quantile regression methods take a completely different approach than the work described here,
by either leveraging the Bayesian exponentially tilted empirical likelihood [12] or by using nonparametric distributions
to model either the error distribution [13] or the joint distribution of the response and covariates [14].

The Bayesian quantile regression methods discussed here have thus far been developed under the assumption that
the response variable y is continuous. There are well-established frequentist quantile regression methods to handle
binary [15] and count [16] response variables. Some of these approaches have Bayesian alternatives [17, 18]. Work on
ordinal variables in the frequentist statistical framework has been more recent [19, 20]. Here, we focus our attention
on Bayesian approaches, which allows us to take a more flexible modeling approach through our choice of prior
distributions.

2.2 Bayesian Quantile Regression for Ordinal Response Variables

Two Bayesian approaches for quantile regression with ordinal response variables have recently emerged, which we will
refer to as Alhamzawi’s Method [8], or AM, and Rahman’s Method [7], or RM, respectively. Both are Bayesian methods
for ordinal quantile regression based on similar frameworks, differing largely in their choice of parameterization and
priors.

AM was originally developed for longitudinal ordinal variables. Here, we consider the model in the simplest case, i.e.,
a single time point. This method is similar to a Bayesian approach for Gaussian quantile regression [3], with a key
difference in the treatment of the response variable y. Since y is continuous in Gaussian quantile regression, its residuals
may be modeled directly as ALD variables; this direct approach is not meaningful for ordinal y. To handle this, AM
introduces continuous latent variables zi corresponding to each yi, as well as a global cutpoint vector δ. Suppose y
can take on C possible ordered values, which we encode as y ∈ {c1, c2, . . . , cC}. Then these parameters are related as
follows:

yi =


c1 if δ0 ≤ zi < δ1
cj if δj−1 ≤ zi < δj ; j = 2, . . . , C − 1

C if δC−1 ≤ zi < δC

. (6)

This formulation allows us to transform the ordinal response into a continuous one. Whereas [3] models y = x′β + ε
for continuous and observed y, AM models z = x′β + ε for continuous but unobserved z, which is related to the
ordinal response variable y as in 6. In both cases, ε is drawn from an ALD. The coefficients have Laplace priors,
and the cutpoint vector’s prior is the order statistics from a uniform distribution. Gibbs sampling can then be used
to perform inference on this model, leveraging the key observation that the ALD can be written as a conditionally
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conjugate normal-exponential mixture. Thus, AM estimates the regression quantiles for z, which are straightforward, in
order to estimate the more challenging regression quantiles for ordinal variables y.

RM uses a similar model to AM but includes a different parameterization of the ALD for Gibbs sampling, as well as
some different prior choices [7]. The biggest difference between the two approaches is that RM does not update the
values of the global cutpoint vector δ during Gibbs sampling. Instead, the cutpoint values are set ahead of time and
remain fixed throughout inference. This model was termed “ORII" in [7] and is intended for ordinal response variables
that have exactly three categories; an alternative model “ORI" uses a Metropolis-Hastings step to update δ and can
accommodate more than three categories for the response variable. However, we were unable to achieve a reasonable
acceptance rate using this model in our simulations, so we only consider ORII in this work.

2.3 Bayesian Ordinal Quantile Regression with a Partially Collapsed Sampler (BORPS)

Our method, Bayesian Ordinal Quantile Regression with a Partially Collapsed Sampler (BORPS), combines elements
of AM [8] and RM [7] with important extensions for robustness. In particular, we use a similar Bayesian formulation of
ordinal quantile regression from RM, but we incorporate the δ sampling step of AM. In addition, while AM and RM
each use a variation of Gibbs sampling [10] for inference, we extend the partially collapsed Gibbs sampler presented
by [11] to ordinal variables. In particular, [11] developed a partially collapsed Gibbs sampler for classical Bayesian
quantile regression by augmenting the data with latent weights and integrating out those weights. The resulting method
has fewer parameters to estimate than the full Gibbs sampler, and appears in practice to mix better by collapsing the
posterior space, motivating this choice for ordinal quantile regression.

Consider ordinal responses yi and corresponding covariates xi, for i = 1, . . . , n. As before, the goal is to estimate the
coefficients β̂ of the qth quantile of y|x, denoted QY |x(q), in the model QY |x(q) = βx.

Following the work of [8] and [7], we model these ordinal variables yi in terms of continuous latent variables zi as
in Equation 6, where C is the number of ordered responses each yi can take on, and δ =

[
δ0, . . . , δC

]
is our global

cutpoint vector. In words, we can think of these elements of the cutpoint vector as thresholding the continuous zi into
the ordinal values of yi. A subject whose latent value zi falls into the cth interval, as defined by successive elements of
the cutpoint vector, will have observed response yi equal to the cth largest possible ordinal value.

We then model zi = βTxi + εi for coefficient β =
[
β1, . . . , βk

]
and residual εi ∼ ALD(0, σ, q), where 0 < q < 1 is

our quantile of interest.

We rewrite our model as zi = x′iβ + σθwi + στ
√
wiui, using the normal-exponential mixture of the ALD as in [7].

Here, wi ∼ E(1), ui ∼ N (0, 1), θ = 1−2q
q(1−q) , and τ =

√
2

q(1−q) . This form of the model allows us to develop a Gibbs

sampler, because the conditional distribution of zi can be written in closed form as zi ∼ N (x′iβ + θvi, τ
2σvi) for

vi = σwi. As in prior work [7, 11], we place a gamma prior on σ−1|c0, d0 ∼ Γ(c0, d0) and a multivariate normal
prior on β|b0, B0 ∼MVN (b0, B0). Following [8], we use an order statistic from the uniform distribution for δ, i.e.,
P (δ) = (C − 1)!

(
1

δC−δ0

)
I(δ ∈ T ) when T = {(δ0, . . . , δC)|δ0 < · · · < δC}. In other words, each δj is drawn from

a uniform distribution over the a priori fixed interval (δ0, δC), subject to the condition that δj lies between δj−1 and
δj+1.

We further extend our model by introducing a partially collapsed step in our Gibbs sampler to improve robustness and
mixing. In particular, the collapsed Gibbs sampler integrates out vi from the conditional posterior distribution of σ. We
follow an earlier approach to obtain the collapsed Gibbs sampler in BORPS [11]:

1. Sample σ−1 from Γ(c0 + n, d0 +
∑n
i=1 ρq(zi − x′iβ)).

2. Sample v−1i , for i ranging from 1 to n, from IG
(

1
q(1−q)|zi−x′iβ|

, 1
2σq(1−q)

)
. Note that here IG refers to

inverse Gaussian, not inverse Gamma.

3. Sample β asMVN
(
β̂,
(
q(1−q)

2σ x′V x+B−10

)−1)
, for

β̂ =
(
q(1−q)

2σ x′V x+B−10

)−1 (
q(1−q)

2σ x′V u+B−10 b0

)
, where V is the diagonal matrix with elements v−1i ,

and u is the vector with elements ui = zi − (1−2q)vi
q(1−q) .

4. Sample zi, for i from 1 to n, from T N (δj−1,δj)(x
′
iβ + θvi, τ

2σvi) when zi = j.

5. Sample δj , with j from 1 to C − 1, from a uniform distribution over the interval (min{max(zi|yi =
c), δc+1, δC},max{min(zi|yi = c+ 1), δc−1, δ0}).
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Figure 1: (Left) Shifting the intercept and cutpoint vectors of the model accordingly can result in the same true
coefficient for the covariate. The blue dashed line in each case indicates δ2 (the second value of the cutpoint vector),
and the red dashed line indicates δ1 (the first value of the cutpoint vector). This shows that the model is not identifiable
under location shifts. (Right) Scaling the coefficients and cutpoint vector values by the same factor can change the
magnitude of the true coefficient, but not which observed ordinal responses are associated with which covariates. The
dashed lines indicate the covariates corresponding to each category of observed ordinal response. This shows that the
model is not identifiable under scaling shifts.

We initialize the sampler as follows. For p covariates and n samples, we set (β1, . . . , βp) = (0, . . . , 0), and
(z1, . . . , zn) = (1, . . . , 1), (v1, . . . , vn) = (1, . . . , 1). If R =

∑p
j=1 xj , we further set δ1 = 2 · u1 · R0.33 and

δ2 = 2 · u2 ·R0.67, subject to the condition that δ2 > δ1, where u1, u2 ∼ U(0, 1), and we denote the qth quantile ofR
asRq . As hyperparameters, we set c0 = d0 = 10−3, b0 = 0p, and B0 = 106 · Ip, where I denotes the identity matrix.

The derivations for steps 1 and 2 directly follow from [11]. Steps 3 and 4 are from [7] and step 5 is from [8]. See
Section 1 of the supplement for full derivations.

BORPS is not identifiable in its current form. As is generally true for ordinal models using this type of latent variable
framework, the likelihood can remain the same under both location shifts and re-scaling. Hence, some form of location
and scale restrictions are necessary for identifiable parameter estimation [21]. RM tries to enforce identifiability through
location fixing, which is why the values of δ were fixed a priori. As we will show, fixing δ leads to poor performance.
To allow adaptive cutpoints while still yielding identifiable results, we have two extensions. First, we do not include an
intercept term (effectively setting it to 0), which introduces a location restriction without fixing any of the cutpoints.
This effectively fixes the mean of the response, which is necessary for identifiability. Second, we report β

δC−1
, by taking

the ratio of their posterior means, instead of β. This introduces a scale restriction without having to fix the variance of
the residuals to a pre-determined value. Then, to test statistical significance of the coefficients across quantiles, we use
these values in the test statistic to allow us to test whether each β at a given quantile is significantly different from 0 or
not.

We illustrate these identifiability ideas in a simple scenario (Figure 1). First, we show that shifting both the intercept
and the cutpoint vectors of the model accordingly results in the same true coefficient for the covariate. This motivates
fixing the intercept in order to make the cutpoint vectors identifiable. Second, we show that scaling the coefficients and
cutpoint vector values by the same factor changes the magnitude of the true coefficient of the covariate. However, it
can be seen that the same ordinal responses are associated with the same covariate values. Hence, inference should be
based on the ratios of the coefficients to the cutpoint vector, which are identifiable, rather than on the magnitudes of the
coefficients.

To build confidence intervals for our estimates of β
δC1

, we use bootstrapping. In particular, we repeat 100 times the
following resampling process: We sample the observed sample with replacement, repeat the Gibbs sampling algorithm,
and take the desired quantiles of the resulting bootstrapped estimates of β

δC1
as our confidence interval.

3 Simulations and Results

We evaluated results from frequentist continuous quantile regression, AM, RM, and BORPS on a range of simulations,
assessing the performance in both univariate and multivariate ordinal quantile regression. We also evaluated a version

of AM in which we modified the method to fix the intercept to 0 and report the ratio β
δC−1

, as in BORPS. Our goal is to
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replicate noisy data in our simulations, and to evaluate performance across these methods in cases where one or more
coefficients do not substantially differ from zero.

In all single-covariate simulations, the simulated data consist of 300 ordinal responses yi, each with a scalar covariate
xi generated from a uniform distribution on the interval (0, 4). The generation of the underlying continuous response
zi varied in each case, but we always set δ1 = 5 and δ2 = 8 to threshold each of these zi into one of three ordinal
responses, i.e., zi < 5 yields yi = 1, 5 ≤ zi < 8 yields yi = 2, and zi ≥ 8 yields yi = 3. Thus, the observed data in all
single-covariate simulations consist of the set of (yi, xi) pairs, where i = {1, . . . , 300}.
For the single-covariate simulations with non-null association, we again generated zi as 3xi + ui, but used either
ui ∼ N (µN,q, 1) or ui ∼ L(µL,q, 1), where L denotes the Laplace distribution. For q ∈ {0.25, 0.50, 0.75}, we
selected values of µN,q and µL,q so that the qth quantile of u would be 0. This results in six different simulations,
where we know the ground-truth coefficient at the given quantile for one of two possible error distributions.

For the single-covariate simulations with null association, we generated zi as 12ui, with either ui ∼ N (0, 1) or
ui ∼ L(0, 1). We still use the same covariates xi described above; hence, these two simulations represent the case of
null association because zi is not a function of the covariates. This implies that the ground-truth coefficient at every
quantile should be 0 for both possible distributions of ui.

In all multiple-covariate simulations, the simulated data consist of 300 ordinal responses with two covariates x1i
and x2i generated from a uniform distribution on the interval (0, 4) and from a uniform distribution on the interval
(0, 2) respectively. Again, the underlying continuous response zi was generated differently in each case, but we
thresholded each zi into one of three ordinal responses yi with δ1 = 5, δ2 = 8 as we did for the single-covariate
simulations. Thus, the observed data across these multiple-covariate simulations consist of the set of (yi, x1i, x2i) pairs,
for i = {1, . . . , 300}.
For the multiple-covariate simulations with non-null association, we generated zi as 3x1i + 2x2i + ui, where either
ui ∼ N (µN,q, 1) or ui ∼ L(µL,q, 1). As before, we selected values of µN,q and µL,q so that the qth quantile of u
would be 0, to give us six different simulations where the ground-truth coefficients are known at a given quantile and
error distribution.

For the multiple-covariate simulations with partial null association, we generated zi as 3x1i + ui, where again either
ui ∼ N (µN,q, 1) or ui ∼ L(µL,q, 1), and we selected µN,q and µL,q as appropriate. This gives us six different
simulations where the ground-truth coefficients are known for each quantile and error distribution, and in particular, the
ground-truth coefficient of x2i should be 0 in all cases.

For frequentist continuous quantile regression, we used the quantreg package [22] and treated the ordinal response
as a continuous outcome. We refer to this method as QR. For AM as well as our modified version of AM, we set the
hyperparameters as ν = 0.5, a1 = 2.5, and a2 = 4, following [8]. For RM, we set the hyperparameters as βp0 = 0,
Bp0 = Ip (where Ip denotes the p× p identity matrix), c0 = 5, and d0 = 8, following suggestions of [7]. For BORPS,
we followed the hyperparameter suggestions of [11], and we set c0 = d0 = 10−3, b0 = 0p, and B0 = 106 · Ip,. In all
cases, we used 20,000 iterations with a burn-in of 10,000. This was found to be sufficient for convergence and good

mixing. The estimates β̂ or β̂
δC−1

as appropriate were determined as the average of the posterior means from 15 runs.
For BORPS, to obtain the confidence interval, we used estimates from 100 bootstrapped samples.

In order to compare results across methods, we computed the root mean-squared error (RMSE) between these point
estimates and the ground-truth values. In general, for estimates θ̂i, i = 1, . . . , n, of a parameter θ, the RMSE is

computed as
√

1
n

∑n
i=1(θ̂i − θ)2. Since we ran each Bayesian method on each simulation 15 times, the RMSE here

was always computed with n = 15; for QR, there is only a single point estimate, so n = 1. We used θ = βk or
θ = βk

δC−1
as appropriate for each method.

3.1 Simulation Results

We evaluated frequentist continuous quantile regression (QR), two Bayesian methods (AM and RM), and our modified
version of AM, alongside our method BORPS on the simulated datasets.

Unlike the other methods, RM requires the value of the cutpoint vector δ to be fixed ahead of time, rather than estimated;
we assessed the sensitivity of RM’s results to the preset δ value in our first simulation. To do this, we compared the
simulated models at each quantile to three cases of RM: when δ is set to the simulated value (δ1 = 5, δ2 = 8), when it
is slightly misspecified (δ1 = 4, δ2 = 9), and when it is dramatically misspecified (δ1 = 0, δ2 = 13). The coefficient
estimates are sensitive to this specification of δ (Figure 2). While the RMSE in the well-specified case is less than
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Figure 2: Sensitivity of RM to the given cutpoint values (δ1 and δ2) in simulated data, when the cutpoint values are
correctly specified (right), slightly misspecified (middle), and dramatically misspecified (left).

0.20 for each quantile, it jumps to around one when slightly misspecified, and then to around four when dramatically
misspecified.

The sensitivity of RM to the set values of δ limits its ability to be used in any non-simulated scenario. From the samples
alone, it is not clear how to determine appropriate values of δ, especially in a high-dimensional setting. Treating the
values of δ as hyperparameters and holding out a validation set to select appropriate values would also be challenging:
This further limits the amount of training data available, and a grid search over appropriate grids would be both
computationally challenging and imprecise.

Both AM and BORPS (and by extension, our modified version of AM) avoid the challenge of setting cutpoints by
estimating δ as part of the statistical inference. Because there is no principled way to set δ as hyperparameters for RM,
and because we have demonstrated that the model is sensitive to these values, we focus our attention in the rest of this
section on comparing the performances of AM, our modified version of AM, and BORPS, with QR as a baseline.

A chief distinction of AM is that this method is intended to report the absolute coefficients β, whereas BORPS reports

the ratio β
δC−1

(fixing the intercept to 0), due to their different approaches to enforcing identifiability. Our modified

version of AM mirrors BORPS’s approach by also reporting the ratio β
δC−1

and fixing the intercept to 0. When
comparing AM’s estimates to our modified AM (mAM), it is clear that our modified version of AM performs much
better. The estimates of the posterior means of the coefficients at each quantile from AM deviate substantially from the

simulated coefficients, whereas the estimates of β
δC−1

in our mAM were much closer to the corresponding simulated
ratios (Figure 3).

Notably, the average percent difference from the posterior mean ratios from the simulated ratios in our mAM was within
5% at each quantile evaluated, whereas the average percent difference for the coefficients in AM could be as high as
over 200%. This finding is what initially motivated our modification of AM, and a similar pattern was seen across the
simulations tested. Hence, our mAM performs much better than AM in its original form.

7
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Figure 3: Percent differences between the posterior means from 15 runs of AM and the simulated values, for the
absolute coefficients β1 (AM) and the ratio β1

δ2
(our modified version of AM) in a single-covariate simulation with

normal errors and non-null association. The average percent difference for each estimated value and quantile is shown
above the corresponding box. A percent difference of 0 corresponds to the simulated value.

We have shown already that the two existing methods, AM and RM, both have shortcomings. If we then compare our
modified version of AM to BORPS on both single-covariate simulations (Figure 4) and multiple-covariate simulations
(Figure 5), in many cases, the two methods achieve similar RMSEs (Tables 1, 2). However, BORPS is superior to
mAM in two important ways. First, mAM sometimes produces especially poor estimates in the case of null association,
particularly at extreme quantiles of the single-covariate simulations. By contrast, BORPS continues to reliably and
accurately estimate parameters in the null and partially null setting. For example, in the single-covariate case of null
association at the 0.75th quantile, our RMSE was less than half the RMSE of mAM for both error distributions. Second,
due to the partially collapsed nature of BORPS’s sampler, BORPS is able to produce estimates more quickly than mAM.
Hence, BORPS is preferable to AM, RM, and mAM.

As a baseline, we also show RMSEs for QR, the frequentist continuous method. QR actually performs well in the null
cases, but unsurprisingly yields high RMSEs in all other situations. This makes sense, because QR is handicapped by
its assumption that responses are continuous rather than ordinal. This should not affect its performance in the null and
partially null cases, which is why it performs well, but it results in incorrect estimates in all other settings. This justifies
our use of methods tailored to ordinal data.

Thus far, we have seen that BORPS produces point estimates that are closer to the ground-truth values. Next, we
evaluated BORPS’s ability to capture these true values in its confidence intervals (CIs) under both the single-covariate
and multiple-covariate settings. We constructed 95% CIs with bootstrapping as described in the previous section, and
found that, in the vast majority of cases, these intervals contained the simulated value (Figure 6).

Although there were a few instances where the CI for the 0.25th quantile came close but did not cover the simulated
value, it is important to note that the confidence intervals correctly contained or did not contain zero as appropriate
across all quantiles and simulated settings. That is, BORPS’s CIs include 0 exactly when the simulation response values

were generated independently of the covariate in question. This means we learn whether or not β̂k

δC−1
= 0 within the
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Figure 4: Posterior means of β
δ2

over 15 runs from our modified version of AM and BORPS for the single-covariate
simulations with two different error distributions (normal, top; Laplace, bottom) and the cases of non-null association
(left) and null association (right). Simulated values are indicated by the black horizontal lines in each figure.

Normal Error,
Non-Null

Laplace Error,
Non-Null

Quantile 0.25 0.50 0.75 0.25 0.50 0.75
Modified AM 0.0183 0.0062 0.0028 0.0170 0.0064 0.0014
BORPS 0.0181 0.0056 0.0026 0.0167 0.0059 0.0006
QR 2.3535 2.3786 2.3716 2.3477 2.3818 2.3716

Normal Error,
Null

Laplace Error,
Null

Quantile 0.25 0.50 0.75 0.25 0.50 0.75
Modified AM 0.0786 0.0724 1.156 0.0313 0.0467 0.3250
BORPS 0.0869 0.0989 0.0490 0.0111 0.0374 0.1508
QR 0 0 0 0 0 0

Table 1: Root mean square errors (RMSE) between the average posterior mean estimate of β
δ2

and the simulated value
β
δ2

for our modified version of AM and BORPS at each quantile of the single-covariate simulations. We also show
RMSE between QR’s estimate of β and the simulated values β; hence, in the case of QR, we simply consider δ2 = 1.
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Figure 5: Posterior means of βδ2 over 15 runs from our modified version of AM and BORPS for the multiple-covariate
simulations with two different error distributions (normal, top; Laplace, bottom) and the cases of non-null association
(left) and partial null association (right). Simulated values are indicated by the black horizontal lines in each figure.

CI, which tells us whether or not β̂k differs significantly from 0, and therefore whether or not we may consider the
association statistically significant.

Taken together, these simulation results suggest that BORPS is capable of producing reliable posterior mean and
uncertainty estimates under a variety of situations across quantiles, including in the presence of multiple covariates,
noisy data, and zero-valued true coefficients. Hence, BORPS’s functionality is two-fold. First, we can compare the
relative associations between the response variable and its covariates across quantiles; we have demonstrated more
accurate estimates than existing methods, especially at more extreme (non-median) quantiles. Second, we can evaluate
whether the association with a given covariate at a given quantile is significant or not; by contrast, the existing methods
we examined do not give any procedure to determine the statistical significance of their associations. In particular, AM
demonstrated poor coefficient estimates in some data simulated under a null association.

4 Application to Early Puberty

As an example application of our method, we use BORPS to study early puberty from the Fragile Families Childhood
Wellbeing Study (FFCWS), a longitudinal study following nearly 5,000 children and their families over fifteen years
with an intentional overrepresentation of low-income and minority children [23]. Families were interviewed at the time
of the focus child’s birth and again when the child was age 1, 3, 5, 9, and 15. The households of FFCWS participants
include heterogeneous family dynamics and conditions, which enables the study of many phenotypes of interest from a
range of complex childhood environments.
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Figure 6: 95% confidence intervals around the posterior means of BORPS estimates, constructed using bootstrapping
for each simulation. The red line in each case shows the true values.
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Normal Error,
Non-Null

Coefficient Beta 1/Delta 2 Beta 2/Delta 2
Quantile 0.25 0.50 0.75 0.25 0.50 0.75
Modified AM 0.0110 0.0134 0.0062 0.0122 0.0080 0.0175
BORPS 0.0111 0.0140 0.0071 0.0140 0.0090 0.0195
QR 2.3983 2.3803 2.3666 1.7981 1.7474 1.7014

Normal Error,
Partial Null

Coefficient Beta 1/Delta 2 Beta 2/Delta 2
Quantile 0.25 0.50 0.75 0.25 0.50 0.75
Modified AM 0.0064 0.0122 0.0024 0.0168 0.0111 0.0082
BORPS 0.0069 0.0125 0.0021 0.0197 0.0117 0.0076
QR 2.3316 2.3609 2.3611 0.0281 0.0547 0.0606

Laplace Error,
Non-Null

Coefficient Beta 1/Delta 2 Beta 2/Delta2
Quantile 0.25 0.50 0.75 0.25 0.50 0.75
Modified AM 0.0354 0.0023 0.0450 0.0312 0.0062 0.0276
BORPS 0.0360 0.0023 0.0436 0.0332 0.0093 0.0244
QR 2.4330 2.3825 2.3664 1.7726 1.7620 1.7447

Laplace Error,
Partial Null

Coefficient Beta 1/Delta 2 Beta 2/Delta 2
Quantile 0.25 0.50 0.75 0.25 0.50 0.75
Modified AM 0.0278 0.0190 0.0160 0.0219 0.0364 0.0236
BORPS 0.0279 0.0186 0.0171 0.0221 0.0372 0.0275
QR 2.3613 2.3765 2.3893 0.0220 0.0716 0.0484

Table 2: Root mean square errors (RMSE) between the average posterior mean estimates of β1

δ2
and β2

δ2
and the

corresponding simulated values for AM and BORPS at each quantile of the multiple-covariate simulations. We also
show RMSE between QR’s estimate of β1, β2 and the simulated values β1, β2; hence, in the case of QR, we simply
consider δ2 = 1.

The average age of female puberty onset in the United States is trending downwards, particularly in low-income and
African-American populations [24], but the underlying reasons are not well understood. Previous research has identified
links between early puberty and socioeconomic factors [25, 26], harsh family environments [27], nutrition [28, 29], and
childhood obesity [30, 31], but there are many contradicting studies, and no clear consensus in the literature.

These links are important to understand because early puberty is associated with increased health risks later in life,
including for cardiovascular disease, breast cancer, and type 2 diabetes [32]. In fact, the relative risk of all-cause
mortality increases with earlier pubertal onset [33]. The mechanisms linking early puberty and these increased health
risks later in life are no better understood than the causes of early puberty itself, so identifying childhood factors
associated with early puberty is essential to hypothesize causal models that lead to developing effective intervention
strategies.

Much of the research on early puberty has focused on girls, with less investigation on the associations and consequences
of early puberty in boys. Hence, it is also of interest as well to see if any childhood factors are related to early puberty
in boys.

Quantile regression offers a new perspective for this problem, by allowing the conditional quantiles—not only the
conditional mean—to be modeled. Two features of these data make quantile regression a compelling modeling approach.
First, the relationships among the various potential factors are complicated, change based on quantile, and are highly
non-Gaussian. Second, the survey data, like many large-scale surveys, contain errors, incorrect reporting, and sample
outliers. Thus, quantile regression is useful as a way to both explore changing associations across quantiles and to
mediate the effects of the prevalent misclassification and measurement error in the data. Like many health outcomes,
the puberty measures in these data are ordinal variables, motivating the use of BORPS.
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Figure 7: BMI and household income for FFCWS participants at each of the three possible early puberty statuses,
corresponding to “no development”, “somewhat developed”, and “definitely developed”. The top figures (in red) refer
to breast development in girls, and the bottom figures (in blue) refer to underarm/pubic hair in boys.

We examine year 9 of the FFCWS data and use the breast development variable to represent early puberty in girls, and
the growth of underarm/pubic hair variable to represent early puberty in boys. Breast development onset is considered
one way to determine the beginning of puberty in girls [34], and such onset at age 9 is typically considered early [35].
Although the beginning signs of puberty tend to be less overt in boys than in girls, the onset of pubic hair at age 9 would
be considered early in boys [36], motivating our use of this variable.

In the FFCWS data, breast development and growth of underarm/pubic hair are both coded ordinally from 1 to 4, where
the lowest value of 1 indicates “no development,” a value of 2 indicates “barely developed,” a value of 3 indicates
“definitely developed,” and the highest value of 4 indicates “that development is already completed.” In both cases, there
were so few responses with a value of 4 that we only included responses ranging from 1 to 3 inclusive.

We choose two covariates to consider as potentially associated with breast development (in girls) and growth of
underarm/pubic hair (boys) at age 9, based on the conflicting evidence from previous research described above: age-
adjusted BMI and household income (Figure 7). Because of the differing scale of the covariates, we choose to normalize
them for our analysis here as z-scores; this is standard in regular (non-quantile) ordinal regression and is recommended,
for example, by the popular package MASS [37].

As a baseline, we applied two conventional methods to study this data: the ordinal probit model with the R package
MASS [37], and frequentist quantile regression (QR) with the R package quantreg [22]. The ordinal probit model
uses a similar latent variable framework as BORPS to model the ordinal responses, but assumes a standard normal
distribution for the residuals and estimates coefficients only at the mean of the conditional response distribution. QR
has been discussed in earlier sections; unlike the ordinal probit model, it carries out inference at any quantile of interest
in the conditional response distribution, but can only treat responses as continuous values. We applied it with its default
settings.

When the ordinal probit model was applied to breast development in girls, this model yielded a coefficient of approxi-
mately 0.48 for BMI and −0.07 for household income, with significant associations in both cases (p < 0.05 for both
covariates). The sign of both effects are consistent with our understanding of these relationships: higher BMI appears to
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Figure 8: Coefficients found by BORPS across quantiles for BMI (left) and income (right) for breast development
in girls, using z-scored covariates. The x-axis represents five quantiles, and the y-axis represents the ratio β

δ2
for the

appropriate coefficient, with the points representing posterior mean estimates and whiskers representing 95% confidence
intervals. The red dashed line represents the 0 line.

be associated with more substantial breast development (positive effects), and lower income appears to be associated
with more substantial breast development (negative effects).

For underarm/pubic hair development in boys, the ordinal probit model yielded a coefficient of approximately 0.17 for
BMI and −0.12 for household income, with significant associations again in both cases (p < 0.05). The signs of these
effects are the same as for breast development in girls, albeit with a smaller effect size for BMI.

We applied QR at five quantiles (0.05, 0.25, 0.50, 0.75, and 0.95). For breast development in girls, at the 0.50th quantile,
the estimates were similar to the findings of the ordinal probit model, with a coefficient of approximately 0.45 for BMI
and −0.04 for household income (both p < 0.05). The coefficients were similar at the 0.25th and 0.75th quantile,
without a clear trend across these middle three quantiles, except for the one notable difference that household income
was no longer significant at the 0.25th quantile. Interestingly, at the two extreme quantiles (0.05 and 0.95), the estimated
coefficients were reported as exactly 0 for both BMI and income, and standard errors could not be computed. Hence, at
these extremes, QR was unable to carry out meaningful inference.

For underarm/pubic hair development in boys, QR found a general trend of the coefficients for both BMI and income
to become more negative with increasing quantile. At the 0.50th quantile, the coefficient for BMI was approximately
−0.027, and the coefficient for income was approximately −0.034. This is different from what was found by the
ordinal probit model, most notably because BMI had a negative association. The effect of income was significant at
each quantile evaluated greater than the 0.50th quantile, and BMI only had a significant effect at the 0.95th quantile.
Unlike for breast development in girls, there were no issues with inference at the extremes.

Next, we applied BORPS to see if there was information to be gained from estimating the conditional quantiles under
our approach (Figure 10). For breast development in girls, the values found by BORPS at the median were similar to
what QR had found at the median, as well as to the coefficients estimated by the ordinal probit model. Namely, the
posterior mean estimates for BORPS was approximately 0.48 for BMI and −0.08 for household income, as compared
to 0.45 and −0.04 respectively from QR, and 0.48 and −0.07 respectively from the ordinal probit model. Further,
like these two models, BORPS found both of these associations to be significant (with neither confidence interval
overlapping 0).

In contrast to what was observed with QR, BORPS’s estimated effect sizes follow a trend over the quantiles for both
covariates (Figure 10). As the quantile increases, the estimate of effect size for BMI grows up the 0.75th quantile, at
which point it changes sign. This suggests that at higher quantiles of the conditional breast development distribution,
BMI has a greater positive effect on breast development, until the most extreme quantiles (i.e., the 0.95th quantile), at
which point BMI has a significant negative effect. This result might lead us to speculate about a biological mechanism in
which BMI plays an increasingly important role as premature breast development becomes more pronounced. However,
as indicated by our result at the 0.95th quantile, an entirely different biological mechanism might apply to the extreme
cases of premature breast development, in which BMI instead negatively affects development.

A similar pattern but in reverse is seen for income. The association between income and early puberty becomes
increasingly negative as the quantile increases until the 0.75th quantile, at which point it becomes a slight positive
association. This has an analogous interpretation as above, suggesting that household income has a negative effect
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Figure 9: Coefficients found by BORPS across quantiles for BMI (left) and income (right) for underarm/pubic hair
in boys, using z-scored covariates. The x-axis represents five quantiles, and the y-axis represents the ratio β

δ2
for the

appropriate coefficient, with the points representing posterior mean estimates and whiskers representing 95% confidence
intervals. The red dashed line represents the 0 line.

on early breast development, except at the most extreme quantile (0.95th) considered. This finding is consistent with
our speculation of a distinct mechanism governing extreme cases of early breast development. For all but the most
extreme cases, a mechanism may be at play that causes more breast development as BMI increases and household
income decreases, but then the opposite might hold true at the upper quantiles.

For underarm/pubic hair in boys, the coefficients at the median were again similar to the coefficients found by ordinal
probit model, at β1

δ2
= 0.10 for BMI (compared to 0.17 from the ordinal probit model) and β2

δ2
= −0.08 for household

income (compared to −0.12 from the ordinal probit model). The fact that there is still some difference between
BORPS’s values and the ordinal probit model suggests that the conditional response distribution is not symmetric,
which is why our estimate at the median would differ from an estimate at the mean. Nevertheless, there was much closer
agreement between our results and the ordinal probit model than there was between QR and the ordinal probit model.
This again supports the idea that treating these outcomes as ordinal, rather than continuous, is important for inference.

Over the rest of the quantiles, the values for BMI increased with increasing quantile, whereas the values of household
income remained roughly the same (Figure 11). This suggests that, at higher quantiles of the conditional underarm/pubic
hair distribution, BMI has an increasing effect, whereas household income has a steady, negative effect. The exception
is at the 0.95th quantile, which is the only quantile for both covariates where there is a non-significant effect (i.e., the
confidence interval overlaps 0). It may be possible, then, that the most extreme cases of early underarm/pubic hair
development may be attributed to some other biological mechanism that is not associated with BMI and household
income.

We also performed this analysis with unnormalized covariates (see Section 2 of the supplement), even though this is
not recommended in ordinal regression. In this setting, we achieved a similar trend of results, except, in all cases, the
coefficient changed sign at the 0.95th quantile from what was observed when we used normalized covariates. This may
suggest that BORPS has some sensitivity to scale at very extreme quantiles, or this may also simply be reflective of the
very little information available at such extremes. QR, for instance, was entirely unable to perform inference at this
extreme quantile for breast development in girls, since standard errors could not even be computed.

Overall, BORPS has given us a wider range of insight into this problem than the narrow slice of information from
the ordinal probit model. Moreover, results from BORPS agree, when applicable, with results from the ordinal probit
model, but this is not always the case for QR, which supports the need for modeling ordinal outcomes appropriately.
BORPS allows us to capture meaningful but complex relationships among covariates in the tails of these conditional
distributions, overcoming the limitations of models that only examine the conditional mean or that treat these outcomes
as continuous.

Discussion

Motivated by the study of associations of specific covariates with early puberty as an ordinal response in the Fragile
Families Study, we developed a method for Bayesian ordinal quantile regression using a partially collapsed Gibbs
sampler (BORPS). BORPS improves on existing methods by both robustly estimating quantile regression parameters
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and allowing full Bayesian inference using a fast collapsed Gibbs sampler. The resulting methods leads to statistical
tests of association with the ordinal response and the model covariates.

We validated BORPS against two state-of-the-art quantile regression methods on simulated data to show precise and
robust modeling of the data relative to the other methods. Next, we used BORPS to model early puberty associations
in the Fragile Families cohort. We found that BMI and income are both associated with early puberty, with different
directionality at the extreme upper tail as from the remaining quantiles. This suggests a distinct biological mechanism
governing extreme early breast development as from the rest of the population. We have released BORPS as open
source software for use in ordinal quantile regression.
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5 Supplementary: Gibbs Sampler Derivations for BORPS

As described in the Methods section, we denote our observed response variables yi, for n samples indexed by
i ∈ {1, . . . , n}, with p corresponding covariates xi. Each yi is related to a continuous latent zi via the cutpoint vector
δ, and we model zi = βTxi + εi for coefficient β =

[
β1, . . . , βk

]
and residual εi ∼ ALD(0, σ, q), where 0 < q < 1

is our quantile of interest.

Our model can be rewritten as zi = x′iβ + σθwi + στ
√
wiui, using the normal-exponential mixture of the ALD [7].

Here, wi ∼ E(1), ui ∼ N (0, 1), θ = 1−2q
q(1−q) , and τ =

√
2

q(1−q) . This means zi ∼ N (x′iβ + θvi, τ
2σvi) for vi = σwi.

As in prior work [7, 11], we place a Gamma prior on σ−1|c0, d0 ∼ Γ(c0, d0), a Gamma prior on νi|σ ∼ Γ(1, σ−1), and
a multivariate normal prior on β|b0, B0 ∼MVN (b0, B0). We also use an order statistic from the uniform distribution
for δ [8], i.e., P (δ) = (C − 1)!

(
1

δC−δ0

)
I(δ ∈ T ) when T = {(δ0, . . . , δC)|δ0 < · · · < δC}.

To construct the sampler, we nearly directly follow the derivations for the continuous counterpart [11]; we walk through
their derivations below, but with our notation. First, we define ui = zi − θvi, and V has diagonal elements v−1i . Then
the full likelihood is

l(z|β, σ,V ) ∝ σ−n
2

(
n∏
i=1

v
− 1

2
i

)
exp

(
− (u−Xβ)TV (u−Xβ)

2τ2σ

)
,

so the posterior distribution is

π(β, σ,V |z) ∝ l(z|β, σ,V )π(V |β, σ)π(β|σ)π(σ)

∝ σ−n
2

(
n∏
i=1

v
− 1

2
i

)
exp

(
− (u−Xβ)TV (u−Xβ)

2τ2σ

)

×

(
n∏
i=1

v2i

)
σ−n exp

(
− 1

σ

n∑
i=1

vi

)

× exp

(
−1

2
(β − b0)TB0(β − b0)

)
× σ1−c0 exp

(
−d0
σ

)
.

To make this a partially collapsed sampler, we integrate out V to reduce the conditional posterior for σ−1. This is done
by multiplying our prior for σ−1 by the reduced likelihood

l(z|β, σ) ∝ σ−n exp

(
−
∑n
i=1 ρq(zi − xTi β

σ

)
,

which comes from directly using the ALD likelihood instead of the normal-exponential mixture. This yields

π(σ−1|β, z) ∝ σ−n exp

(
−
∑n
i=1 ρq(zi − xTi β

σ

)
× σ1−c0 exp

(
−d0
σ

)
.

We can then say that

σ−1|β, z ∼ Γ

(
c0 + n, d0 +

n∑
i=1

ρq(zi − xTi β)

)
.

For β, we can complete the square to find

β|σ−1,V , z ∼ N

(
β̂,

(
1

τ2σ
XTV X +B−10

)−1)
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for

β̂ =

(
1

τ2σ
XTV X +B−10

)−1(
1

τ2σ
XTV u+B−10 b0

)
.

For V , we can find the conditional posterior for each v−1i as

π(v−1i |β, σ, z) ∝ v
3
2
i exp

(
− 1

2τ2σvi

(
zi − xTi β − θvi

)2
+
vi
σ

)
∝ v

3
2
i exp

(
− (zi − xTi β)2

2τ2σvi
− vi

(
θ2

2τ2σ
+

1

σ

))
= v
− 3

2
i exp

(
− (zi − xTi β)2

2τ2σvi
− viτ

2

8σ

)
,

which means that each

v−1i |β, σ, z ∼ IG
(

1

q(1− q)|zi − xTi β|
,
τ2

4σ

)
,

where IG denotes the inverse Gaussian distribution.

For z, we follow the work on AM and RM [8, 7] to write

π(zi|β, δ, vi, σ) ∝ l(yi|zi, δ)π(zi|β, σ, vi)
∝ I(δc−1 < zi ≤ δc)N (xi

Tβ + θvi, τ
2σvi).

This means that
zi ∼ T N (δc−1, δc)(xi

Tβ + θvi, τ
2σvi),

where T N denotes a truncated normal distribution.

For δ, we again follow the work on AM [8] to say that each

π(δc|y, z) ∝
n∏
i=1

C∑
c=1

I(yi = c)I(δc−1 < zi < δc)I(δ ∈ T ),

where T is is the set of δ satisfying δ1 < . . . < δC . Then, as in AM, it follows from previous work [38, 39] that

π(δc|y, z) ∝ 1

min(zi|yi = c+ 1)−max(zi|yi = c)
I(δ ∈ T ),

which leads to

δc|y, z ∼ U(min{max(zi|yi = c), δc+1, δC},max{min(zi|yi = c+ 1), δc−1, δ0}).

6 Supplementary: Analysis for Early Puberty Application with Unnormalized Covariates

Above are the results of the early puberty application using unnormalized, rather than z-scored, covariates. The overall
trend is the same as was observed with the z-scored covariates, except for the sign change at the most extreme (0.95th)
quantile.

19



A PREPRINT - NOVEMBER 19, 2019

Figure 10: Coefficients found by BORPS across quantiles for BMI (left) and income (right) for breast development in
girls. The x-axis represents five quantiles, and the y-axis represents the ratio β

δ2
for the appropriate coefficient, with the

points representing posterior mean estimates and whiskers representing 95% confidence intervals. The red dashed line
represents the 0 line.

Figure 11: Coefficients found by BORPS across quantiles for BMI (left) and income (right) for underarm/pubic hair in
boys. The x-axis represents five quantiles, and the y-axis represents the ratio β

δ2
for the appropriate coefficient, with the

points representing posterior mean estimates and whiskers representing 95% confidence intervals. The red dashed line
represents the 0 line.
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