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Abstract—The problem of transmitting confidential messages
in M × K wireless X networks is considered, in which each
transmitter intends to send one confidential message to every
receiver. In particular, the secure degrees of freedom (SDOF)
of the considered network are studied based on an artificial
noise alignment (ANA) approach, which integrates interference
alignment and artificial noise transmission. At first, an SDOF
upper bound is derived for the M × K X network with
confidential messages (XNCM) to beK(M−1)

K+M−2
. By proposing an

ANA approach, it is shown that the SDOF upper bound is tight
when K = 2 for the considered XNCM with time/frequency
varying channels. ForK ≥ 3, it is shown that SDOF of K(M−1)

K+M−1
can be achieved, even when an external eavesdropper is present.
The key idea of the proposed scheme is to inject artificial noise
into the network, which can be aligned in the interference
space at receivers for confidentiality. Moreover, for the network
with no channel state information at transmitters, a blind ANA
scheme is proposed to achieve SDOF ofK(M−1)

K+M−1
for K,M ≥ 2,

with reconfigurable antennas at receivers. The proposed method
provides a linear approach to secrecy coding and interference
alignment.

Index Terms—Secure degrees of freedom, artificial noise,
interference alignment, wireless X network

I. I NTRODUCTION

A. Background and Motivation

The notion of secrecy capacity was introduced by Wyner
[1] in the context of the wire-tap channel, in which a legiti-
mate transmitter intends to send a confidential message to a
legitimate receiver by hiding it from a degraded eavesdropper.
Later the non-degraded wire-tap channel [2] and Gaussian
wire-tap channel [3] were studied to generalize Wyner’s work.
In recent years, multiuser secret communications has drawn
substantial research attention. For example, the interference
channel and broadcast channel with secrecy constraints were
studied in [4] and [5], multiple access channels with secrecy
constraints were investigated in [6], [7] and [8], the relay-
eavesdropper channel was studied in [9], and parallel relay
channels were considered in [10] and [11]. Usually the exact
secrecy capacity region is difficult to find for most multiuser
networks. As a consequence, the secure degrees of freedom
(SDOF) which serves as an approximation of the secrecy

Z. Wang, M. Xiao and M. Skoglund are with the Department of Communi-
cation Theory, School of Electrical Engineering, Royal Institute of Technology
(KTH), Stockholm, Sweden (E-mail:{zhaowang, mingx, skoglund}@kth.se).

H. V. Poor is with the Department of Electrical Engineering,Princeton
University, Princeton, NJ (E-mail:poor@princeton.edu).

The research was supported in part by the U.S. National Science Foundation
under Grant CMMI-1435778.

capacity in the high signal-to-noise ratio (SNR) regime has
been widely investigated recently [12]–[17].

The secrecy capacity of the original wire-tap channel [1]
is essentially the mutual information difference between the
legitimate user pair and transmitter-eavesdropper pair, which
renders a vanishing SDOF in the high SNR regime. However,
positive SDOF can be achieved for some other multiuser net-
works, e.g., the multi-antenna compound wiretap channel [18],
the interference channel [12], [17], the broadcast and multiple
access channels with confidential messages [16]et al. These
results reveal the fact that interference can have positiveimpact
on the secrecy capacity of networks, because it naturally serves
as jamming to conceal messages from eavesdroppers. The
assistance of interference in secure communication is well
addressed in [19].

As a novel approach to handle interference in multiuser
networks, interference alignment (IA) [20] provides advan-
tages for limiting the information leakage of confidential
messages. Intuitively speaking, IA can pack the undesired
messages into a reduced dimensional interference subspaceat
receivers, where the signals containing confidential messages
are superimposed. Therefore, it naturally brings difficulty for
the receiver when it tries to decode the information from
the interference subspace. It is first noted in [12] that by
combining IA and random binning [1], SDOF ofK(K−1)

2(K−2) can
be achieved in the time/frequency varyingK-user Gaussian
interference channel. By adopting the Wyner random binning
method to provide a secret codebook, IA has been generalized
to different networks to obtain positive SDOF, e.g., the multi-
antenna compound wiretap channel [18], and the multi-antenna
wiretap channel with block fading channels [21]. The key idea
of random binning is to provide randomness to the codebook,
such that the eavesdropper is not able to tell the exact
codeword from the randomnized codebook. From a different
transmission approach, artificial noise (AN) works in another
efficient way of providing randomness to the codebook, which
aims to mask the confidential signal at the eavesdropper [22].
The AN can be chosen to be a Gaussian process. When the
power of the AN is high enough to be comparable with the
message power, it can provide enough randomness with the
maximum differential entropy to confuse decoding. As studied
in [16], [17], [23] and [24], the transmission of AN and IA
can be integrated to achieve the optimal SDOF of different
multiuser networks. The proposed artificial noise alignment
(ANA) schemes provide a different perspective and an efficient
approach for investigating the SDOF of networks: instead of
random binning, we can inject AN into the confidential mes-
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sage subspace at eavesdroppers. By only considering signal
dimensions, the approach of aligning AN to a certain subspace
can offer a better transmission design than random binning in
terms of SDOF. For instance, the optimal SDOF of theK-
user Gaussian interference channel with confidential messages
(ICCM) is shown to beK(K−1)

2K−1 [17] for constant channel
state, achieved by an ANA scheme. However, by random
binning, only the inferior SDOFK(K−2)

2(K−1) can be achieved
[12]. Likewise, the ANA scheme also achieves the optimal
SDOF for MIMO broadcast channels [23] and two hop inter-
ference channels [24] with delayed channel state information
at transmitters (CSIT), which can be seen as a non-trivial
generalization of the Maddah-Ali & Tse scheme [25] for secret
communications. Moreover, compared with random binning
the ANA approach offers lower system complexity via its
linear operations. Therefore, the ANA approach is interesting
from both theoretical and practical viewpoints.

In this paper, we focus on one of the typical network models
in information theory, namely, the wireless X network. As
it has both the nature of broadcast channels and multiple
access channels, the wireless X network has drawn substantial
research attention for studying the efficient signaling for
transmission. For instance, with perfect CSIT, the wireless
X networks with different antenna settings have been studied
in [26]–[28] based on interference alignment schemes. With
delayed CSIT, several results have been reported to generalize
the Maddah-Ali & Tse scheme to wireless X networks, e.g.,
[29]–[31]. It is also notable that with secrecy constraints,
the 2 × 2 MIMO X channel has been studied in [32] with
output feedback and delayed CSIT, where an ANA scheme is
proposed based on feedback. The contributions of our work
are highlighted in the following section.

B. Contribution

We study the SDOF of the wireless X network with
confidential messages (XNCM). Specifically, the SDOF of
the GaussianM × K XNCM is investigated, in which each
transmitter intends to send one confidential message to each
receiver. The main results can be summarized as follows.

1) A general sum SDOF upper bound for XNCM:We bound
the sum SDOF of theM ×K XNCM to be less than or equal
to K(M−1)

K+M−2 regardless of channel fading variations. Therefore,
the proposed bound holds for time/frequency varying channels,
and/or constant channels. To compare with the interference
channel counterpart, we setK = M to induce the upper bound
K
2 . Consequently, every transmitter can obtainat mosthalf of
the resources.

2) The optimal sum SDOF of the time/frequency varying
XNCM: With perfect CSIT, the optimal sum SDOF of the
M×K XNCM with time/frequency varying channels is shown
to be

d =
K(M − 1)

K +M − 2
, if K = 2,

and

K(M − 1)

K +M − 1
≤ d ≤

K(M − 1)

K +M − 2
, if K ≥ 3.

Therefore, the upper bound is tight for the networks with two
receivers. The sum SDOF lower bound is achieved by an ANA
approach, which combines standard interference alignment
[20], [27] and artificial noise transmission. We note that
the sum SDOFK(M−1)

K+M−1 overlaps with the results in [33].
However, we prove it using a new approach: by proposing an
ANA scheme we show thatK(M−1)

K+M−1 can be achieved for the
M × K XNCM with an external eavesdropper (EE), which
implies the same achieved sum SDOF for the considered
network without the EE. It is also notable that whenK = M

and K,M ≥ 3, our result overlaps with the optimal sum
SDOF of theK-user interference channel with confidential
messages [17]. Even with an EE, treating theX network as
an interference channel can still obtain the best known SDOF
so far [17].

3) The achieved sum SDOF of the XNCM with reconfig-
urable antennas:Following a similar principle, we generalize
the ANA scheme into a blind approach with the help of
reconfigurable antennas at the receivers. We note that the blind
ANA scheme does not require any CSIT in the network. By
a predefined private antenna switching pattern, we integrate
the AN into a blind IA scheme to achieve the sum SDOF
K(M−1)
K+M−1 for the M × K XNCM. It is worth noting that
the predefined antenna switch pattern not only provides the
channel coherence structure for aligning interference [34], it
also serves as a secret key for different receivers to decode.

The rest of the paper is organized as follows. Section II
introduces the system model for theM × K XNCM. We
provide the proposed SDOF upper bound in Section III. In
Section IV, we study the SDOF of the considered network
with time/frequency varying channels, where the ANA scheme
is proposed to achieve the sum SDOF lower bound. We
generalize the ANA into a blind approach in Section V.
Conclusions are given in Section VI.

Notation: Throughout the paper, we use bold-faced up-
percase letters, plain uppercase letters, and lowercase letters
(X, X, x) to represent matrices, vectors, and scalars, respec-
tively, unless otherwise stated.Xn represents the sequence
{x1, x2, . . . , xn}. We defineK = {1, 2, . . . ,K}, andM =
{1, 2, . . . ,M}, where specifically,K,M are two integers.
K − i denotes the setK after removing the elementi ∈ K.
⊗ denotes theKronecker Product. A ≺ B means that
span(A) ⊂ span(B), where span(·) represents the column
span of the matrix.

II. SYSTEM MODEL

We mainly consider transmitting confidential messages in
the wireless X network. Specifically, we provide the following
definitions on the network.

Definition 1: M ×K wireless X network with confidential
messages (XNCM).

Consider theM×K wireless X network, where each of the
M transmitters intends to deliver confidential messages to all
K receivers. Therefore, there areMK confidential messages
in the considered network, shown in Fig. 1. The received signal
for receiverk, at timet is

yk(t) =
∑

m∈M

hkm(t)xm(t) + nk(t), k ∈ K,
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DEC-1

DEC-2

DEC-K

...

ENC-1

ENC-M

...

(W1,1,W2,1, . . . ,WK,1)

(W1,M ,W2,M , . . . ,WK,M )

h1,1(t)

h1,M (t)

hK,M (t)

(Ŵ1,1, Ŵ1,2, . . . , Ŵ1,M )

(ŴK,1, ŴK,2, . . . , ŴK,M )

(Ŵ2,1, Ŵ2,2, . . . , Ŵ2,M )

∆
[1]
SI ,SJ

, ∀SI ⊆ (K − 1),SJ ⊆ M

∆
[2]
SI ,SJ

, ∀SI ⊆ (K − 2),SJ ⊆ M

∆
[K]
SI ,SJ

, ∀SI ⊆ (K −K),SJ ⊆ M

EE

he,M (t)

he,1(t)

∆
[e]
SI ,SJ

, ∀SI ⊆ K,SJ ⊆ M

Fig. 1. M ×K XNCM with an external eavesdropper.

where the scalarxm(t) represents the transmitted signal of
transmitterm, the scalarhkm(t) represents the channel coeffi-
cient from transmitterm to receiverk. To avoid channel degen-
eration, we assume the absolute value of channel coefficientis
bounded away from zero and above by a finite value. The term
nk(t) ∼ CN (0, 1) is additive white Gaussian noise (AWGN).
We assume the power constraint1

n

∑n

t=1 |xm(t)|2 ≤ P . We
defineWk,m ∈ Wk,m = [1 : 2nRk,m ], k ∈ K andm ∈ M, de-
noting the confidential message from transmitterm to receiver
k with the secrecy rateRk,m. Let W = {Wk,m}k∈K,m∈M. A
secrecy rate tupleR = {Rk,m}k∈K,m∈M is achievable if there
exists a secret codebook(n,R,W) to satisfy the reliability and
confidentiality constraints simultaneously:

• reliability: at receiverk,

lim
n→∞

Pr(Ŵk,m 6= Wk,m) = 0, ∀m ∈ M (1)

where Ŵk,m is the estimation of the codewordWk,m,
and

• confidentiality: at receiverk,

lim
n,P→∞

∆
[k]
SI ,SJ

= 1,

where the equivocation for each subset of messages
WSI ,SJ

at receiverk is defined as

∆
[k]
SI ,SJ

△
=

H(WSI ,SJ
|Y n

k )

H(WSI ,SJ
)

, (2)

where WSI,SJ
= {Wij : i ∈ SI , j ∈ SJ } for all

SI ⊆ K − k, SJ ⊆ M such thatH(WSI ,SJ
) > 0.

Note that the equivocation (2) is only defined on the
non-zero rate message set. For the zero rate message set,
the confidentiality is automatically satisfied because the
information leakage can only be zero.

If for a certain powerP , {Rk,m} are achievable, the sum
SDOFd is said to be achieved with definition

d = lim
P→∞

∑

k∈K,m∈M Rk,m

log(P )
. (3)

We sayd is the optimal sum SDOF if it is the maximum value
of all achievable sum SDOFs. We consider only the sum SDOF
in this paper.

In Section IV, we also consider the network when there
exists an external eavesdropper. Inherited from the above
definition on XNCM, we present that network as follows.

Definition 2: The XNCM with an external eavesdropper
(XNCM-EE).

Consider theM×K XNCM, when an external eavesdropper
e appears in the network. The received signal at the eavesdrop-
per e, at timet is

ye(t) =
∑

m∈M

hem(t)xm(t) + ne(t), k ∈ K.

Following Definition 1, we say a secrecy rate tupleR is
achievable for a transmission powerP if there exists a secret
codebook(n,R,W) to satisfy reliability (1), confidentiality
(2) and also an extra secrecy constraint at the eavesdropper:

lim
n,P→∞

∆
[e]
SI ,SJ

△
= lim

n,P→∞

H(WSI ,SJ
|Y n

e )

H(WSI ,SJ
)

= 1, (4)

for WSI ,SJ
= {Wij : i ∈ SI , j ∈ SJ } andH(WSI,SJ

) >
0, for all SI ⊆ K, SJ ⊆ M.

III. SECURE DEGREES OFFREEDOM UPPERBOUND

In this section, we derive an SDOF upper bound for the
M × K XNCM regardless of channel fading variations. We
first present the following lemma, which will be used as an
important intermediate step for the proof of the SDOF upper
bound.

Lemma 1 (Role of a Helper in X Networks):For any k̂ ∈
K andp ∈ M, we have the following bound for the secrecy
rate:

n
∑

j∈M−p

R
k̂j

+ h(Xn
p + Ñn) ≤ h(Y n

k̂
) + nO(1), (5)

where the lowercase letterh represents the differential entropy,
andÑn is ann× 1 vector with independent Gaussian entries
ñ(t) (t = [1 : n]) with respective variances less than 1

|h
k̂p

(t)|2 .
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Proof: The proof follows the same line as that of theRole
of a HelperLemma in [16], with the details in Appendix A.

Lemma1 states that in order to decode the messagesW
k̂,M−p

at receiver̂k, the differential entropy of transmitted signal of
the transmitterp should be upper bounded by the difference
of the differential entropy at the receiverk̂ and the sum rate
of W

k̂,M−p
. Now we are ready to present the SDOF upper

bound for theM ×K XNCM.
Theorem 1: The optimal sum SDOF of theM×K XNCM

is upper bounded asd ≤ K(M−1)
K+M−2 .

Proof: The detailed proof follows similarly to the SDOF
upper bound proof for the interference channel in [17]. For
brevity, we define the following notation. LetWI,J =
{Wi,j |i ∈ I, j ∈ J }, with two finite setsI = {1, 2, . . . , I}
and J = {1, 2, . . . , J}. Let XJ = {Xn

j |j ∈ J }, YI =
{Y n

i |i ∈ I}, andNI = {Nn
i |i ∈ I} denote the transmitted,

received signal and the noise sequences in the setJ and I,
respectively. Consider all messages in the network that are
confidential for receiver̂k. Starting from Fano’s inequality,
we have

n
∑

i∈K−k̂,j∈M

Rij = H(WK−k̂,M)

= I(WK−k̂,M;YK−k̂
) +H(WK−k̂,M|YK−k̂

)

≤ I(WK−k̂,M;YK−k̂
) + nǫ1

≤ I(WK−k̂,M;YK−k̂
)− I(WK−k̂,M;Y

k̂
)

+ n(ǫ1 + ǫ2) (6)

≤ I(WK−k̂,M;YK)− I(WK−k̂,M;Y
k̂
) + nǫ3

= I(WK−k̂,M;YK−k̂
|Y

k̂
) + nǫ3

= h(YK−k̂
|Y

k̂
)− h(YK−k̂

|Y
k̂
,WK−k̂,M) + nǫ3

≤ h(YK−k̂
|Y

k̂
) + nǫ3 (7)

= h(YK)− h(Y
k̂
) + nǫ3

= h(X̃M,YK)− h(X̃M|YK)− h(Y
k̂
) + nǫ3 (8)

≤ h(X̃M) + h(YK|X̃M)− h(X̃M|YK,XM)− h(Y
k̂
) + nǫ3

≤ h(X̃M)− h(Y
k̂
) + no(log(P )) (9)

for some ǫl > 0 and ǫl = o(log(P )) (l = 1, 2, 3), where
ǫ3 = ǫ1 + ǫ2.

• (6) follows from the secrecy constraint

I(WK−k̂,M;Y
k̂
) ≤ nǫ2, for someǫ2 = o(log(P )).

• (7) follows from

h(YK−k̂
|Y

k̂
,WK−k̂,M)

≥ h(YK−k̂
|Y

k̂
,WK−k̂,M,W

k̂,M,XM)

= h(NK−k̂
) ≥ 0,

where the last inequality follows from the fact that the
Gaussian distribution with unit variance has non-negative
differential entropy.

• (8) follows by definingX̃n
i = Xn

i +Ñn
i for i ∈ M, where

Ñn
i is ann× 1 vector with independent Gaussian entries

ñi(t) (t = [1 : n]) with respective variances smaller than
1

|h
k̂i
(t)|2 .

• (9) follows from the fact that

|h(YK|X̃M)− h(X̃M|Y
k̂
,XM)|

≤ |h(YK|X̃M)|+|h(X̃M|Y
k̂
,XM)| ≤ nδ,

for some δ = o(log(P )), because only effective noise
contributes to the differential entropy terms by condi-
tioning on the signalsXM and X̃M, and the channel
coefficients have bounded absolute values.

So far, we have bounded the sum rate of all confidential
messages that are not intended for receiverk̂ as (9). In order
to bound the sum rate for the whole message setWK,M, we
would like to applyLemma1 in the proof. We begin with (9)
as follows:

n
∑

i∈K−k̂,j∈M

Rij

≤ h(X̃M)− h(Y
k̂
) + no(log(P ))

≤
∑

p∈M

h(X̃p)− h(Y
k̂
) + no(log(P ))

≤
∑

p∈M



h(Y
k̂
)− n

∑

j∈M−p

R
k̂j



− h(Y
k̂
) + no(log(P )),

(10)

where (10) follows by substituting (5) ofLemma1. Equiva-
lently, we have

n
∑

i∈K−k̂,j∈M

Rij + n
∑

p∈M

∑

j∈M−p

R
k̂j

≤ (M − 1)h(Y
k̂
) + no(log(P )).

Manipulating the indices on the left hand side of the above
inequality, we have

n
∑

i∈K,j∈M

Rij + n(M − 2)
∑

j∈M

R
k̂j

≤ (M − 1)h(Y
k̂
) + no(log(P )).

Considering thath(Y
k̂
) ≤ nlog(P ) + nO(1), we sum up the

above inequality for all̂k ∈ K to obtain:

(K +M − 2)
∑

i∈K,j∈M

Rij ≤ K(M − 1)log(P ) + o(log(P )).

Therefore, we have the SDOF upper bound as follows to
conclude the proof

d =
∑

i∈K,j∈M

dij ≤
K(M − 1)

M +K − 2
.

Remark 1:We note that the derived SDOF upper bound
does not make any assumptions regarding channel fading
variations. Therefore,Theorem1 provides a general SDOF
upper bound for theM ×K XNCM with constant channels,
or with time/frequency varying channels. We also note that
the derived bound naturally serves as an upper bound for the
SDOF of the considered network with no CSIT.

Remark 2 (At most half of the cake):We observe that the
derived SDOF upper bound for theM ×K XNCM equals to
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the sum degrees of freedom (DOF) of the(M − 1) × K X
network without secrecy constraints. Therefore, the impact of
confidentiality is equivalent to removing at least one sender
from the wireless X network, in terms of DOF. It is also
interesting to note that whenK = M , the above upper bound
yields

∑

i,j∈K dij ≤ K(K−1)
2(K−1) = K

2 , which coincides with the
sum DOF for theK-user interference channel without secrecy
constraints. Therefore, for theK×K fully connected wireless
X network, if all the messages existing in the network are
confidential, then every sender can at most obtain half of the
resources.

IV. SECURE DEGREES OFFREEDOM OF THEM ×K

XNCM WITH TIME /FREQUENCY-VARYING CHANNELS

In this section, we study the SDOF of wireless X networks
with time or frequency varying channels. We show that the
proposed SDOF upper bound is tight whenK = 2 by
presenting an artificial noise alignment scheme. The achieved
SDOF of XNCM with an external eavesdropper will also be
studied in this section. We start with the following theorem.

Theorem 2: The optimal sum SDOF of theM×K XNCM
with time/frequency-varying channels is

d =
K(M − 1)

K +M − 2
, if K = 2,

and

K(M − 1)

K +M − 1
≤ d ≤

K(M − 1)

K +M − 2
, if K ≥ 3.

Proof: The converse follows directly fromTheorem1.
For achievability, we start from the caseK = 2. We shall
show that SDOF of2(M−1)

M
can be achieved. In the following,

we propose an ANA approach, which essentially aligns the
artificial noise to the interference space at the receivers.The
details are presented as follows.

Considering anM symbol extension over the original
channel, we will show that a total of2(M − 1) SDOF can be
achieved. The main idea is to treat one transmitter, say trans-
mitter 1, as a special sender, which transmits only artificial
noise. For the rest of the(M−1) transmitters, each sends two
confidential messages intended for two receivers. By aligning
the artificial noise and interference in the same subspace,
the information leakage can be bounded. We illustrate the
alignment design in Fig. 2. Therefore, for messageWk,1,
k ∈ 1, 2, the rateRk1 = 0. For transmitters2 to M , we shall
show that each confidential messageWk,j (j ∈ M− 1), has
one SDOF over the channel extensions. Before presenting the
detailed transmission scheme, let us first provide the channel
input-output relation for theM -symbol extension as follows:

Yk(t) =
∑

m∈M

Hkm(t)Xm(t) +Nk(t), k ∈ K,

whereHkm(t) is anM × M diagonal matrix with diagonal
elementshkm(t(M − 1) + i) for i = [1 : M ]. The terms
Xm(t), Nk(t) andYk(t) are theM×1 input, noise and output
vectors, respectively. In the following, the time slott is omitted
for simplicity.

The transmitted signal of transmitter1 is

X1 = Φ[1]ν,

whereν is an artificial noise symbol chosen fromCN (0, P ),
and Φ[1] is an M × 1 beamforming matrix. Note that we
enforce the artificial noise symbol to be Gaussian, as it can
provide the maximum differential entropy to confuse the
eavesdropper. At the other transmitters, the transmitted signals
can be written as

Xj =
∑

i=1,2

Φ[ij]µij , j ∈ M, j 6= 1,

whereµij is the confidential message symbol originating from
transmitterj to receiveri, and the beamforming matrixΦ[ij]

has dimensionM×1. Then, the received signal at the receiver
k is (l 6= k)

Yk = Hk1Φ
[1]ν +

M∑

j=2

Hkj




∑

i=1,2

Φ[ij]µij



+Nk

=

M∑

j=2

HkjΦ
[kj]µkj +

M∑

j=2

HkjΦ
[lj]µlj +Hk1Φ

[1]ν +Nk,

whereHkj is anM ×M diagonal matrix with each diagonal
element chosen independently from a continuous distribution.
In the achievable scheme, we aim to perfectly align the
interference with artificial noise. Therefore, at receiver1, we
have

H1jΦ
[2j] = H11Φ

[1], j ∈ M− 1, (11)

and similarly, at receiver2, we have

H2jΦ
[1j] = H21Φ

[1], j ∈ M− 1. (12)

Thus, we have

Φ[kj] = H−1
ij Hi1Φ

[1], j ∈ M− 1, k, i ∈ {1, 2}, k 6= i.

As the next step, we have to show the effective channel
matrices at receivers are full rank. LetΛ[k] represent the
effective channel matrix at receiverk, where

Λ[k] =
[

Hk2Φ
[k2] Hk3Φ

[k3] · · · HkMΦ[kM ] Hk1Φ
[1]
]

.

Let Φ[1] = [φ1 φ2 · · · φM ]T , where each elementφm (m ∈
M) is chosen independently from a continuous distribution.
With the relations (11) and (12), the effective channel matrices
at receivers are presented in the bottom of the next page. In
order to show thatΛ[k] has full rank almost surely, we will
equivalently show that|Λ[k]| 6= 0 with probability one. We
adopt the method given in the proof of Lemma1 in [27]. Let
λ
[k]
ij represent the element in thei-th row andj-th column of

Λ[k]. We observe that everyλ[k]
ij can be written in the following

form: λ[k]
ij =

∏Q
q=1

(

β
[q]
i

)α
[q]
ij

, whereβ[q]
i is a random variable

and all exponents are integers,α
[q]
ij ∈ Z. Furthermore,

• β
[q]
i |{β

[q
′
]

i
′ , ∀(i, q) 6= (i

′

, q
′

)} has a continuous cumulative
probability distribution, and
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Fig. 2. Artificial noise alignment (ANA) forM × 2 XNCM.

• ∀i, j, j
′

∈ M andj 6= j
′

(

α
[1]
ij , α

[2]
ij , . . . , α

[Q]
ij

)

6=
(

α
[1]

ij
′ , α

[2]

ij
′ , . . . , α

[Q]

ij
′

)

.

Let C [k]
ij represent the cofactor corresponding toλ

[k]
ij . Then

|Λ[k]| = λ
[k]
11C

[k]
11 + λ

[k]
12C

[k]
12 + · · ·+ λ

[k]
1MC

[k]
1M .

|Λ[k]| = 0 with nonzero probability only if at least one of the
following two conditions is satisfied:

• β
[q]
i , q = 1, 2, . . . , Q are roots of the polynomial formed

by setting|Λ[k]| = 0.
• The polynomial is the zero polynomial.

Note thatβ[q]
i has a continuous cumulative joint distribution

conditioned onC1l, l ∈ M. Therefore, the probability ofβ[q]
i

taking values from a finite root set goes to zero. Thus, the first
condition collapses almost surely. For the second condition,
since eachβ[q]

i has a unique set of exponents, the argument
of the zero polynomial holds with positive probability only
if Pr(C [k]

1l = 0) > 0, for l ∈ M. BecauseC [k]
1l is also the

determinant of a submatrix ofΛ[k], the same argument can be
iteratively performed, until reaching to a single element matrix
containingλMl. Therefore,

Pr(|Λ[k]| = 0) > 0 ⇒ Pr(|λ[k]
Ml| = 0) > 0.

Since λ
[k]
Ml has the form of products of continuous random

variables, we can conclude that Pr(|λ
[k]
Ml| = 0) = 0. Therefore

|Λ[k]| 6= 0 almost surely, andΛ[k] is of full rank almost surely.
Because the desired signal occupiesM − 1 dimensions of

the M -symbol extension inΛ[k], we can write the sum rate
of confidential messagesWkj as follows:

M∑

j=2

Rkj =
M − 1

M
log(P ) + o(log(P )), k = 1, 2.

In the following, we compute the rate equivocation after col-
lecting the whole codeword. By choosingSI = 2, SJ = M,
the equivocation at receiver1 is

∆
[1]
SI ,SJ

= ∆2,M = 1−
I(W2,M;Y n

1 )

n
∑

j∈M R2j

≥ 1−
n
M
I(µ2,M;Y1)

n
∑

j∈M R2j

= 1−
n
M

(I(µ2,M,ν;Y1)− I(ν;Y1|µ2,M))

n
∑

j∈M R2j
,

by the data processing inequality and the fact that channelsare
memoryless, whereµk,M = {µk,j , j ∈ M}, with µk,1 ∈ ∅.
We next bound the mutual information terms

I(µ2,M,ν;Y1) ≤ I(µ2,M,ν;Y1,µ1,M)

= I(µ2,M,ν;Y1|µ1,M)

= h(Y1|µ1,M)− h(Y1|µ1,M,µ2,M,ν) = log(P )−O(1).

Similarly, I(ν;Y1|µ2,M) = log(P ) + o(log(P )). Therefore,
we can show the equivocation

lim
n,P→∞

∆
[1]
2,M = 1.

A similar argument can also be applied to receiver2. Overall,
the sum SDOF2(M−1)

M
can be achieved for theM×2 XNCM.

ForK ≥ 3, the SDOF lower bound overlaps with the results
in [33], where random binning is used to provide secrecy. As
we will show in the proof ofLemma2, this lower bound can
also be achieved by an ANA scheme. It is worth noting that
the proposed scheme collapses if we try to apply it directly
for K ≥ 3, in particular to useK − 1 dimensions of AN
from the helper. The problem is that the independence of the
signal and interference space will be violated. A further study
needs to be carried out for closing the SDOF gap between the

Λ[1] =
[

H12H
−1
22 H21Φ

[1] H13H
−1
23 H21Φ

[1] · · · H1MH−1
2MH21Φ

[1] H11Φ
[1]
]

Λ[2] =
[

H22H
−1
12 H11Φ

[1] H23H
−1
13 H11Φ

[1] · · · H2MH−1
1MH11Φ

[1] H21Φ
[1]
]
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upper and lower bound. In [35], a toy example is presented to
discuss the limitation of the current scheme for achieving the
derived upper bound.

Remark 3 (Time sharing of transmitters):We note that in
the above proof, the optimal sum SDOF is essentially achieved
by treating one transmitter as a helper. In order to achieve a
symmetric secrecy rate for each transmitter, a time sharing
protocol can be applied, in which each transmitter take turns
to be the helper in a block-fashion transmission. By this means,
e.g., whenK = 2, each transmitter can obtain SDOF of
2(M−1)

M2 .
Remark 4 (Relation to broadcast channels):As shown in

the proof, forM = 2, the optimal sum SDOF of the2 × 2
XNCM is shown to be1, which coincides with the optimal
SDOF of the single-input single-output (SISO) broadcast chan-
nel with confidential messages if there exists an additional
helper in the network, as shown in [16].

Remark 5 (Relation to the X channel with feedback):It
has been shown in [32] that whenM = K = 2 if the
considered network has output feedback and delayed CSIT,
the optimal sum SDOF is also1, which ties with our result
here. Therefore, for a2 × 2 X network, the output feedback
and delayed CSIT can be as good as providing perfect CSIT
in terms of degrees of freedom.

In the following, we investigate the SDOF of theM × K

XNCM with an external eavesdropper (XNCM-EE). The
achieved SDOF of the considered network also implies the
lower bound inTheorem2 whenK ≥ 3, because removing
the eavesdropper will not decrease the secrecy rate. We present
the results in the following lemma.

Lemma 2:For theM ×K XNCM-EE with time/frequency
varying channels, the optimal sum SDOF can be bounded as
K(M−1)
K+M−1 ≤ d ≤ K(M−1)

K+M−2+ 1
M

.
Proof: For the converse, let us first remove the secrecy

constraints at allK receivers, which certainly will not harm
the secrecy capacity region. Then the considered network can
be seen as anM × K X network with only an external
eavesdropper, the sum SDOF of which can be bounded above
by K(M−1)

K+M−2+ 1
M

based on Appendix B. Therefore it also serves
as an SDOF upper bound for that of the consideredM ×K

XNCM-EE.
The detailed proof for the lower bound is presented as

follows. Let Γ = K(M − 1). We will show that the SDOF
d = K(M−1)nΓ

K(n+1)Γ+(M−1)nΓ can be achieved for anyn ∈ N, which

yieldsd = K(M−1)
K+M−1 when taking the supremum for alln. Let

µn = K(n + 1)Γ + (M − 1)nΓ. We consider aµn symbol
extension over the time-varying channel. Then, the channel
input-output relationship is

Yk =
∑

i∈M

HkiXi +Nk, ∀k ∈ {K, e},

whereHki is aµn×µn diagonal matrix, andXi is theµn×1
signal vector from transmitteri.

Our essential idea is to let one specific transmitter, say1,
send artificial noise only, while the other transmitter sends
confidential messages to the intended receiver. Meanwhile
we propose an interference alignment scheme to align the

confidential messages with artificial noise at every unintended
receiver and also the external eavesdropper, to avoid infor-
mation leakage. For transmitters2 to M , we can design the
transmitted signal as follows:

Xi =

K∑

j=1

Φ[ji]
µji, ∀i ∈ M− 1,

where µji is the nΓ × 1 symbol vector coded from the
confidential messageWji, and Φ[ji] is the corresponding
µn × nΓ beamforming matrix. At transmitterM , the signal
can be specifically designed as

X1 =

K∑

j=1

Φ[j1]
νj1,

whereνj1 is the (n + 1)Γ × 1 artificial noise symbol vector
chosen from Gaussian distributionCN (0, P

(n+1)Γ I(n+1)Γ), and

Φ[ji] is the correspondingµn× (n+1)Γ beamforming matrix.
Thus, the received signal at thek-th receiver can be written
as

Yk =

M∑

i=2

Hki





K∑

j=1

Φ[ji]
µji



+Hk1

K∑

j=1

Φ[j1]
νj1 +Nk.

In the following, we will introduce the details of the alignment.
At receiverk, k ∈ K, we would like to have the following
alignment conditions,∀j ∈ K − k:

IA Block j :







Hk2Φ
[j2] ≺ Hk1Φ

[j1]

Hk3Φ
[j3] ≺ Hk1Φ

[j1]

...

HkMΦ[jM ] ≺ Hk1Φ
[j1].

Generally speaking, there areK − 1 alignment blocks at
receiverk, and within each block we wish to align all the
confidential messages intended for receiverj to the subspace
spanned by artificial noiseνj1. Similarly, at the eavesdropper,
we would like to haveK alignment blocks as follows,∀j ∈ K:

IA Block j :







He2Φ
[j2] ≺ He1Φ

[j1]

He3Φ
[j3] ≺ He1Φ

[j1]

...

HeMΦ[jM ] ≺ He1Φ
[j1].

Therefore, every confidential message intended for receiver
j ∈ K is aimed to be aligned to the subspace of artificial
noiseΦ[j1] within the alignment blockj. Let us collect the
alignment blockj at every receiver, including the eavesdrop-
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per. All the relations can be written as






Receiverk 6= j :







Hk2Φ
[j2] ≺ Hk1Φ

[j1]

Hk3Φ
[j3] ≺ Hk1Φ

[j1]

...

HkMΦ[jM ] ≺ Hk1Φ
[j1]

Eavesdroper:







He2Φ
[j2] ≺ He1Φ

[j1]

He3Φ
[j3] ≺ He1Φ

[j1]

...

HeMΦ[jM ] ≺ He1Φ
[j1].

Thus, there areΓ = K(M−1) relations for alignment blockj.
To find the proper solution for all the beamforming matrices,
we first let

Φ[j2] = Φ[j3] = · · · = Φ[jM ].

Then all theΓ relations can be written as

T[km]Φ[j2] ≺ Φ[j1], ∀k ∈ {K − j, e}, m ∈ M− 1,

where

T[km] = (Hk1)
−1

Hkm.

Reordering all theT[km] by the index from1 to Γ, and
following the method given in [27],Φ[j1] andΦ[jM ] can be
designed as

Φ[j2] =










∏

i=1,2,...,Γ

(

T[i]
)αi



w[j] : αi ∈ {1, 2, . . . , n}







Φ[j1] =










∏

i=1,2,...,Γ

(

T[i]
)αi



w[j] : αi ∈ {1, 2, . . . , n+ 1}






,

wherew[j] is the µn × 1 vector, with each element chosen
independently from a continuous distribution with bounded
absolute value. The same method can be applied for allj ∈ K
alignment blocks. Therefore, the effective channel matrixat
receiverk can be written as

Ck =
[

Hk1Φ
[k1] Hk2Φ

[k2] · · · HkMΦ[kM ] Ik

]

=
[

Hk1Φ
[k1] Hk2Φ

[k2] · · · HkMΦ[k2] Ik

]

,

with Ik defined on the top of next page.
Following Lemma1 and Lemma2 in [27], we can prove

thatCk is of full rank almost surely, where the signal occupies
(M − 1)nΓ independent dimensions. Therefore, we have

∑

m∈M

Rkm =
K(M − 1)nΓ

µn

log(P ) + o(log(P )).

In the following, we would like to show that the information
leakage can be bounded such that the secrecy constraints at the
receivers and eavesdropper are satisfied. At the eavesdropper,

we can write the received signal as follows:

Ye = [He1Φ
[11] He1Φ

[21] · · · He1Φ
[K1]]








ν11

ν21

...
νK1








+

M∑

i=2

[HeiΦ
[1i]

µ1i HeiΦ
[2i]

µ2i · · · HeiΦ
[Ki]

µKi] +Ne.

With SI = K andSJ = M − 1, the information leakage at
the eavesdropper is

I(WSI ,SJ
;Y n

e ) ≤
n

µn

I(µSI ,SJ
;Ye)

=
n

µn

(I(µSI ,SJ
,νSI ,1;Ye)− I(νSI ,1;Ye|µSI ,SJ

)) .

Let A = [He1Φ
[11] He1Φ

[21] · · · He1Φ
[K1]] and Bi =

[HeiΦ
[1i]

µ1i HeiΦ
[2i]

µ2i · · · HeiΦ
[Ki]

µKi]. Because of
the alignment blocks, it is readily shown that span(Bi) ⊆
span(A). By Lemma 4 in Appendix C, we can ob-
serve that the artificial noise dominates every dimension
of the received-signal’s subspace. It can be shown that
I(µSI ,SJ

,νSI ,1;Ye) = K(n + 1)Γlog(P ) + o(log(P )). Like-
wise, I(νSI ,1;Ye|µSI ,SJ

) = K(n + 1)Γlog(P ) + o(log(P )).
Therefore, the information leakage is shown to be bounded by
o(log(P )). It is readily shown that

lim
n,P→∞

∆
[e]
SI ,SJ

= 1−
I(WK,M;Y n

e )

nRK,M
= 1.

The equivocation at the other receivers can be shown to have
limit 1 following the same method. Overall we have the
sum SDOF ofd = K(M−1)nΓ

µn
= K(M−1)nΓ

K(n+1)Γ+(M−1)nΓ , which

approachesK(M−1)
K+M−1 for largen.

Remark 6 (Relation to interference channels):For the case
K = M ≥ 3, the derived SDOF lower bound agrees with
the optimal SDOF of theK-user interference channel with
confidential messages, even when an EE appears in the net-
work. Therefore, treating theX network as the corresponding
interference channel yields the best known SDOF lower bound
[17].

Remark 7 (Only one external eavesdropper):As we see
from the SDOF upper bound proof, theM × K wireless X
network with only an external eavesdropper is considered, for
which the sum SDOF can be bounded above byK(M−1)

K+M−2+ 1
M

.
By adopting the same transmission scheme as used in the
proof of Lemma 2, SDOF ofK(M−1)

K+M−1 can also be achieved
in this network. However, we conjuncture that there might
exist another transmission scheme to inject AN only into the
subspace of the eavesdropper to obtain higher SDOF. This
problem is interesting for our future work.

Remark 8 (Comments for perfect secrecy):In order to
study the SDOF, we have shown in the achievability proof
that the information leakage at the eavesdropper can be
bounded byo(log(P )), i.e., 1

n
I(WK−k,M;Y n

k ) = o(log(P ))
at the receiverk, which satisfies the secrecy constraint
defined in (2). In order to achieve perfect secrecy such that
limn→∞

1
n
I(WK−k,M;Y n

k ) = 0, we can place a random
binning encoder in advance of the ANA operation with a
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Ik =
[

Hk1Φ
[11] Hk1Φ

[21] · · · Hk1Φ
[(k−1),1] Hk1Φ

[(k+1),1] · · · Hk1Φ
[K1]

]

.

rate penaltymaxj∈{K,e}−k
1
M
I(µk,m;Yj |µK,M − µk,m,H)

for the messageWk,m, k ∈ K and m ∈ M, whereµk,m

represents the codeword after binning,µK,M − µk,m

represents the set formed fromµK,M after removingµk,m,
andH represents the channel state over the alignment block.
Note that the argument follows a standard analysis as shown
in [17], [23] and [24], because the ANA operation creates
an equivalent memoryless channel. It is observed that the
rate penalty will not affect the SDOF as shown in the above
proof. The detailed proof for achieving perfect secrecy can
be found in [35].

V. SECURE DEGREES OFFREEDOM OF THEM ×K

XNCM WITH RECONFIGURABLE ANTENNAS: A BLIND

ARTIFICIAL NOISE ALIGNMENT APPROACH

In this section, we study the achieved SDOF of the XNCM
with reconfigurable antennas, where the each receiver is
equipped with one antenna that can switch amongM prede-
fined modes. When an antenna switches its mode according to
a predefined pattern, it offers a chance to artificially manipulate
the channel coherence structure [34]. The received signal for
receiverk, at timet with antenna modêmk(t), is

yk(t) =
∑

m∈M

hkm(m̂k(t))xm(t) + nk(t), k ∈ K, (13)

where hkm(m̂k(t)) represents the channel coefficient from
transmitterm to receiverk.

In the following, we propose a blind ANA that combines
blind interference alignment and artificial noise transmission.
The transmission follows a similar principle as presented in
Section IV, where we aim to inject artificial noise into the
interference space. However, CSIT is not required in this case.
IA is based on the channel coherence structure by switching
antenna modes. It is worth noting that we assume that the
predefined antenna switching modêmk(t) is known at the
transmitter side; however, it is hidden from all other receivers.
Intuitively, the predefined antenna switching functions can
be used as thekey to provide confidentiality. In order to
present the achievable scheme in the XNCM, we first introduce
the broadcast channel with confidential messages (BCC). We
propose a blind ANA scheme in the BCC such that no antenna
cooperation is involved, which implies the same achievable
SDOF of the corresponding XNCM.

Definition 3: K-userM × 1 BCC with reconfigurable an-
tennas.

Consider theK-user broadcast channel, where the transmit-
ter hasM antennas and each receiver is equipped with one
reconfigurable antenna which can switch amongM predefined
modes. The received signal at receiverk is

yk(t) = Hk(m̂k(t))X(t) + nk(t), k ∈ K,

whereHk(m̂k(t))=[hk1(m̂k(t)) hk2(m̂k(t)) . . .hkM (m̂k(t))]
represents the1×M channel vector with the modêm(t) ∈ M.

X(t) ∈ CM×1 is the transmitted signal andnk(t) ∼ CN (0, 1).
We assume each channel coefficient is drawn independently
from a continuous distribution with finite support. The channel
coherence time is assumed to be long enough such that the
channels stay constant across a supersymbol, which will be
defined in the sequel, and we impose the power constraint
∑n

t=1 X
H(t)X(t) ≤ nP . We further assume the transmitter

sends an independent confidential messageWk ∈ Wk =
[1 : 2nRk ] with secrecy rateRk, which has to be hidden
from the other receivers. WithW = {Wi}Ki=1, a secrecy
rate tupleR = {Ri}Ki=1 is achieved if there exists a secret
codebook(n,R,W) to satisfy the following constraints si-
multaneously: 1) reliability:lim supn→∞ Pr(Ŵk 6= Wk) = 0

for receiver k, and 2) confidentiality:limn,P→∞ ∆
[k]
S

△
=

limn,P→∞
H(WS |Y n

k ,Hn)
H(WS) = 1 whereHn represents the chan-

nel state sequence andWS = {Wi : i ∈ S} for all S ⊆ K−k

such thatH(WS) > 0.
Lemma 3:For theK-userM × 1 BCC in Definition3, the

SDOF K(M−1)
M+K−1 can be achieved.

Proof: The detailed proof can be found in Appendix D.
We briefly provide the main idea of achievability as follows:
We intend to transmitM independent streams to each receiver,
which containM − 1 streams of independent confidential
messages and1 stream of artificial noise. Using interference
alignment based on the channel coherence structure due to an-
tenna switching, theseM streams cast exactlyM dimensions
(M -D) at the intended receiver, while they overlap in a1-D
subspace at all the otherK − 1 receivers, which is filled with
the artificial noise. Because the artificial noise has the same
scaled power compared with the messages in the interference
space, the equivocation can be bounded to zero asymptotically.
Compared with the achievable DOF of the same network
without secrecy constraint, M

M+K−1 , the price to pay for the
confidential message is 1

M+K−1 for every receiver. As we
shall highlight below, in the proposed transmission scheme,
the DOF loss 1

M+K−1 is exactly the dimension occupied by
the artificial noise in the transmitted signal. The key idea is
illustrated in Fig. 3.

In order to interpret our main idea, we provide the details
of the achievable scheme in the two userM × 1 BCC for
M = 2 and M = 3. Throughout the transmission scheme,
we adopt the antenna switching pattern proposed in [34], such
that the channel coherence structure can be manipulated in a
systematic way.

A. K = 2, M = 2

In this case, each receiver has two modes to switch between.
Our goal is to achieve SDOF of23 in total, which can be
obtained by sending one data stream of confidential messages
to each receiver in three time slots. To guarantee secrecy, one
stream of artificial noise is also sent to protect the confidential
messages at the unintended receiver. By antenna switching,we
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Fig. 3. Blind artificial noise alignment for theK-userM × 1 BCC.

have the following channel coherence structure in three time
slots:H1 = diag{1, 2, 1} andH2 = diag{1, 1, 2} 1. H1 and
H2 are both3 × 6 matrices. These three time slots can be
seen as a supersymbol for transmission. We design the6× 2
beamforming matrix for each receiver constructed using only
the 2× 2 identity matrix and zero matrix. In other words, the
beamforming matrices do not rely on the value of channel
states. LetΦ[k] denote the beamforming matrix for receiver
k, k ∈ {1, 2}. The transmitted signal can be represented as

X = vec([X(1) X(2) X(3)])

=





I

I

0





︸ ︷︷ ︸

Φ[1]

[
µ1

ν1

]

+





I

0

I





︸ ︷︷ ︸

Φ[2]

[
µ2

ν2

]

,

whereµ1 andµ2 are two independent coded confidential data
streams intended for receiver1 and2, respectively, andν1 and
ν2 are two independent Gaussian artificial noise streams. We
assume the powers of the streams scale equally withP . The
received signal at receiver1 is

Y1 =





y1(1)
y1(2)
y1(3)



 = H1X +N1 =





H1(1)
H1(2)
0





︸ ︷︷ ︸

rank=2

[
µ1

ν1

]

+





H1(1)
0

H1(1)





︸ ︷︷ ︸

rank=1

[
µ2

ν2

]

+





n1(1)
n1(2)
n1(3)



 .

We can see thatµ1 and ν1 appear through a rank2 matrix,
while interferenceµ2 andν2 are aligned within a the subspace
with rank1. It is clear that the signal space and the interference
space are orthogonal to each other. Therefore, the confidential

1The abbreviation Hk = diag{m1,m2, . . . ,mt, . . . mT } denotes
a block diagonal matrix with the diagonal elementmt replaced
by 1 × M vectors Hk(mt), mt ∈ M. Specifically, H1 =
diag{1, 2, 1}

.
= diag{H1(1), H1(2), H1(1)} and H2 = diag{1, 1, 2}

.
=

diag{H2(1), H2(1), H2(2)} whereHk(m) is a 1 × 2 vector for k,m ∈
{1, 2}.

data streamµ1 can be resolved from the received signal to
obtain 1 DOF. Moreover, because in the1-D interference
subspace,µ2 andν2 are coupled with the same power level, the
artificial noiseν2 can protect the confidential data at receiver1.
Similarly, at receiver2, µ2 can achieve1 DOF. Therefore, by
normalizing the transmission time slots, each receiver achieve
DOF of 1

3 . After collecting the whole codeword, we have the
equivocation at receiver1 as follows, forS = {2},

∆
[1]
S = 1−

I(W2;Y
n
1 |Hn)

nR2

≥ 1−
n
3 (I(µ2, ν2;Y1|HK)− I(ν2;Y1|µ2, HK))

nR2

= 1−
o(log(P ))

log(P ) + o(log(P ))

where µ2 and ν2 represent the sequences ofµ2 and ν2,
respectively, over the codeword lengthn; HK is the channel
matrix for the supersymbol. It is clear that we can show
limn,P→∞ ∆

[1]
S = 1, to guarantee the confidentiality in the

limit of large n, andP . A similar analysis can be adopted at
receiver2. Finally, we show that SDOF of23 is achieved.

Remark 9:The main idea of keeping the confidentiality
at eavesdroppers is to let the artificial noise fill the in-
terference subspace. WhenM > 2, we will carry out
dimension-extension in transmission schemes, which leadsto
the dimension-expansion on the interference space. Conse-
quently, the key step is to maintain the presence of artificial
noise in every dimension of the aligned interference space.

B. K = 2, M = 3

We aim to show that SDOF of2×(3−1)
3+2−1 = 1 can be achieved.

We consider an8-slot transmission as a supersymbol, during
which four streams of confidential messages can be deliv-
ered to each receiver and two streams of artificial noise are
used for each receiver. We shall introduce additional unitary
beamforming matricesV[k] in the transmitted signals, with
the purpose of maintaining the existence of artificial noisein
the interference space. We will show in the sequel that the
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elements inV[k] are either1 or 0. Thus they are independent
of the value of the channel coefficients. The transmitted signal
in a supersymbol for each receiver is designed as follows,
respectively:

X1 =















I 0

I 0

I 0

0 I

0 I

0 I

0 0

0 0















︸ ︷︷ ︸

Φ[1]

[

V
[1]
µ V

[1]
ν

]

︸ ︷︷ ︸

V[1]

[
µ1

ν1

]

,

X2 =















I 0

0 I

0 0

I 0

0 I

0 0

I 0

0 I















︸ ︷︷ ︸

Φ[2]

[

V
[2]
µ V

[2]
ν

]

︸ ︷︷ ︸

V[2]

[
µ2

ν2

]

,

whereµk and νk are 4 × 1 and 2 × 1 vectors, respectively,
denoting the confidential data streams and artificial noise.
The block matricesV[k]

µ and V
[k]
µ have dimensions6 × 4

and 6 × 2, respectively.I and 0 are 3 × 3 identity and
zero matrices, respectively. By antenna switching, we are
able to have the corresponding channel matrices asH1 =
diag{1, 2, 3, 1, 2, 3, 1, 2} and H2 = diag{1, 1, 1, 2, 2, 2, 3, 3},
each representing an8× 24 matrix. Let the transmitted signal
X = X1+X2. The received signals over all8 slots at receiver
1 are

Y1 = H1X +N1 = H1(X1 +X2) +N1

=















H1(1) 0
H1(2) 0
H1(3) 0

0 H1(1)
0 H1(2)
0 H1(3)
0 0
0 0















︸ ︷︷ ︸

rank=6

[

V
[1]
µ V

[1]
ν

] [
µ1

ν1

]

+















H1(1) 0
0 H1(2)
0 0

H1(1) 0
0 H1(2)
0 0

H1(1) 0
0 H1(2)















︸ ︷︷ ︸

rank=2

[

V
[2]
µ V

[2]
ν

] [
µ2

ν2

]

+N1

whereHk(m) and0 are1 × 3 vectors. We observe from the
signal space that6 streams including four data streams in
µ1 and two artificial noise streams inν1 can be resolved

almost surely in the6-D space. After the alignment, the
dimension of the interference space has been reduced to two
almost surely. As mentioned, for protecting the confidential
messages, we aim to fill the whole interference space with
artificial noise, which means the following statement should
hold almost surely (a.s.):

rank

{[
H1(1) 0

0 H1(2)

]

V[2]
ν

}

= 2.

One solution forV[2]
ν can be

[
1 0 0 0 0 0
0 0 0 1 0 0

]T

, which

yields

rank

{[
h1(1, 1) 0

0 h1(2, 1)

]}

= 2, (14)

whereh1(1, 1) andh1(2, 1) represent the first elements in the
channel vectorsH1(1) andH1(2), respectively. It is clear that
(14) holds almost surely. Therefore,V[2] can be chosen as the
elementary matrix,

V[2] =
[

V
[2]
µ V

[2]
ν

]

=











0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 1

1 0
0 0
0 0
0 1
0 0
0 0











. (15)

By this means, we guarantee the artificial noise can fill the
whole interference space. The equivocation∆S,1 can be shown
to have the limit1 whenn, P → ∞. A similar argument can be
made at receiver2, with V[1] chosen as the same elementary
matrix (15) to keep the presence of artificial noise. Therefore,
after the alignment, four streams of confidential messages are
delivered for each receiver over8 slots to achieve SDOF of1.

Remark 10:We note that the channel coherence structure
provides the secret key for receivers to decode. In other words,
if the private antenna switching function were known by an
eavesdropper, then the eavesdropper could switch its antenna
accordingly to mimic the channel coherence structure of the
receiver. In this way, the messages could be decoded by the
eavesdropper.

Theorem 3: For theM×K XNCM with reconfigurable an-
tennas, the optimal sum SDOF can be bounded asK(M−1)

K+M−1 ≤

d ≤ K(M−1)
K+M−2 .
Proof: The converse follows directly fromTheorem1.

The achievability follows from the proof ofLemma3, where
no antenna cooperation is carried out at transmitters. There-
fore, by rearranging the message set, we can obtain the same
SDOF.

VI. CONCLUSIONS

In this paper, we have studied the achievable and optimal
SDOF of wireless X networks with confidential messages. In
particular, we have proposed an SDOF upper bound for the
M × K XNCM. This upper bound has been shown to be
tight for K = 2, with time/frequency varying channels. The
achievability of this bound was shown by an ANA scheme, in
which artificial noise has been injected into the interference
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space at receivers. The proposed scheme can be generalized
to theM ×K XNCM with time/frequency varying channels
for K ≥ 3, even when an external eavesdropper exists. The
achieved SDOF lower bound approaches the upper bound
asymptotically with largeM and/or K. Finally, we have
generalized the ANA scheme to the blind case, in which
CSIT is not necessarily needed but the channel coherence
structure is known to the transmitters. It is interesting tonote
that by switching antenna modes artificially, we can not only
obtain the intended channel coherence structure for IA but
also the secret key for decoding. The achieved SDOF is also
asymptotically optimal as the number of nodes in the network
approaches infinity. By restricting to linear operations, we have
offered a different approach to secrecy coding and interference
alignment instead of random binning.

APPENDIX A
PROOF OFLEMMA 1

We start from Fano’s inequality

n
∑

j∈M−p

R
k̂,j

= H(W
k̂,M−p

)

≤ I(XM−p;Yk̂
) + nǫ1

= h(Y
k̂
)− h(Y

k̂
|XM−p) + nǫ1

= h(Y
k̂
)− h(H

k̂p
Xn

p +Nn

k̂
|XM−p) + nǫ1

= h(Y
k̂
)− h(H

k̂p
Xn

p +H
k̂p
Ñn + ˜̃

Nn) + nǫ1

≤ h(Y
k̂
)− h(H

k̂p
Xn

p +H
k̂p
Ñn + ˜̃

Nn| ˜̃Nn) + nǫ1

= h(Y
k̂
)− h(Xn

p + Ñn) + nO(1),

for some ǫ1 > 0 and ǫ1 tends to zero asn → ∞.
H

k̂p
= diag{h

k̂p
(1), h

k̂p
(2), . . . , h

k̂p
(n)} denotes the channel

matrix over n time slots,Xn
p denotes then × 1 channel

input at transmitterp, andNn

k̂
is the n × 1 noise vector at

receiverk̂. We note that the third equality follows by defining
Nn

k̂
= H

k̂p
Ñn + ˜̃

Nn according to the infinite divisibility of

the Gaussian distribution, wherẽNn and ˜̃
Nn are independent

Gaussian processes (n × 1 vectors). It is observed that the
variance of the entrỹn(t) (t = [1 : n]) in Ñn is smaller than

1
|h

k̂p
(t)|2 .

APPENDIX B
THE CONVERSEPROOF OFLEMMA 2

In this part we aim to show that the sum SDOF of the
M×K wireless X network with only an external eavesdropper
is bounded above by K(M−1)

K+M−2+ 1
M

. Therefore, this upperbound
also serves as a upper bound for that of theM×K XNCM-EE.
We note that the detailed proof follows a similar approach as
the converse proof for theK-user interference channel with an
external eavesdropper in [16]. Starting from Fano’s inequality,

we have

n
∑

i∈K,j∈M

Ri,j = H(WK,M)

≤ I(WK,M;YK)− I(WK,M;Ye) + nǫ1

≤ I(WK,M;YK,Ye)− I(WK,M;Ye) + nǫ1

= I(WK,M;YK|Ye) + nǫ1 ≤ I(XM;YK|Ye) + nǫ1

= h(YK|Ye)− h(YK|Ye,XM) + nǫ1

= h(YK|Ye) + no(log(P ))

= h(YK,Ye)− h(Ye) + no(log(P ))

= h(X̃M,YK,Ye)− h(X̃M|YK,Ye)− h(Ye) + no(log(P ))

≤ h(X̃M,YK,Ye)−h(X̃M|YK,Ye,XM)

−h(Ye)+no(log(P ))

= h(X̃M) + h(YK,Ye|X̃M)− h(Ye) + no(log(P ))

≤ h(X̃M)− h(Ye) + no(log(P )) (16)

≤ h(X̃M−1) + no(log(P )) (17)

≤
∑

p∈M−1

h(X̃p) + no(log(P ))

≤
∑

p∈M−1



h(Y
k̂
)− n

∑

j∈M−p

R
k̂,j



 + no(log(P )),

for ǫ1 = o(log(P )), whereX̃M = {Xn
i + Ñn

i }i∈M, and the
entry ñi(t) of Ñn

i has variance smaller than 1
|h

k̂i
(t)|2 (t =

[1 : n]). (16) follows from the fact that by conditioning on
the noisy input, only effective noise contributes at the outputs
which have differential entropy bounded byno(log(P )). (17)
follows from the following inequalities:

h(Ye) = h(

M∑

i=1

HeiX
n
i +Nn

e )

≥ h(He1X
n
1 +Nn

e ) = h(X̃n
1 ) + no(log(P )),

whereHei is then× n channel matrix andXn
i is then× 1

transmitted signal vector.
Manipulating both sides, we have

(K +M − 1)H(WK,M)−H(WK,M−1)

≤ (M − 1)
∑

k̂∈K

h(Y
k̂
).

Henceforth, we have the sum SDOFd ≤ K(M−1)

K+M−2+ 1
M

<

K(M−1)
K+M−2 .

APPENDIX C
A PRELIMINARY LEMMA FROM L INEAR ALGEBRA

Lemma 4:For matricesA ∈ CM×N , Bi ∈ CM×Ti , with
M ≥ N ≥ Ti and i ∈ {1, 2, . . . , I}, if span(Bi) ⊆ span(A),
then we have

rank(AAH +

I∑

i=1

λiBiB
H
i ) = rank(AAH), for λi ≥ 0.

Proof: Let us assume thatA has rankd, whered ≤ N .
Apply the compact singular value decomposition (SVD) on
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A and Bi. Let U = [U1, U2, . . . , Ud] ∈ CM×d and Γi =
[Γ1,Γ2, . . . ,Γdi

] ∈ CM×di be the left singular vector matrices
of A andBi, respectively, corresponding to the nonzero singu-
lar values. We havedi ≤ d because of span(Bi) ⊆ span(A).
Our goal is to show that the matrixAAH +

∑I
i=1 λiBiB

H
i

has at mostd linearly independent column vectors. Because
Uj are the eigenvectors of matrixAAH , any column vector
of AAH can be written as the linear combination ofUj, for
j ∈ [1 : d]. We also note that theUj form an basis for the
column space ofA. We then show that any column vector
of BiB

H
i can also be written as a linear combination of the

Uj . Choose an arbitrary column vector inBiB
H
i , denoted as

Q. We haveQ =
∑di

k=1 αkΓk. Because span(Bi) ⊆ span(A),
Γk =

∑d

j=1 βjUj which shows that any left singular vector of
Bi can be written as a linear combination ofUj (the basis of
span(A)). Thus,Q =

∑di

k=1 αk(
∑d

j=1 βjUj). This shows that

any column vector ofAAH +
∑I

i=1 λiBiB
H
i can be written

as a linear combination ofd independent vectors, and thus the
rank of ofAAH +

∑I

i=1 BiB
H
i is at mostd.

On the other hand, becauseAAH and λiBiB
H
i are Her-

mitian matrices, it is clear

rank(AAH +
I∑

i=1

λiBiB
H
i ) ≥ rank(AAH) = d.

Therefore, we conclude the rank of matrixAAH +
∑I

i=1 λiBiB
H
i is d to complete the proof.

Lemma 4 provides the fundamentals to analyze the dimen-
sion of the aligned subspace in our achievable schemes. For
instance, if the interference space span(Bi) is aligned into the
subspace span(A), then by Lemma 4, we know the aligned
subspace is dominated byA.

APPENDIX D
PROOF OFLEMMA 3

For the K-user BCC withM reconfigurable modes for
the antenna at each receiver, we aim to show that SDOF of
K(M−1)
M+K−1 can be achieved almost surely. Letα = (M −1)K−1

andβ = (K+M−1)α. Consider anα symbol extension over
the original channel, and construct the supersymbol inβ time
slots. Then, it is equivalent to show that(M−1)α confidential
streams can be delivered to each receiver inβ time slots,
which yieldsd = (M−1)α

β
= (M−1)K

(K+M−1)(M−1)K−1 = M−1
M+K−1

achieved for each receiver. The transmitted signal for the
receiverk ∈ K can be designed as

Xk = vec[Xk(1) Xk(2) . . .Xk(β)]

= Φ[k]
[

V[k]
µ

V[k]
ν

]

︸ ︷︷ ︸

V[k]

[
µk

νk

]

,

whereµk is the (M − 1)α × 1 confidential symbol vector
intended for receiverk, and νk is the α × 1 artificial noise
stream. Thus the total dimension of the signal vector isMα.
Φ[k] is theMβ×Mα beamforming matrix,V[k] is a unitary
matrix with dimensionsMα×Mα, in which the block matrix
V

[k]
ν ∈ C

Mα×α is designed to make sure that the artificial
noise can fill the whole interference space almost surely. We

adopt the same antenna switching mode as proposed in [34],
which gives the specific pattern for eachHk with dimensions
β ×Mβ. For simplicity, we omit the details ofHk andΦ[k]

(please refer to [34]), and instead the emphasis is placed on
the submatrixV[k]

ν for transmitting artificial noise.
Consider the received signal at receiverk, which is

Yk = Hk

∑

j∈K

Xk +Nk = HkΦ
[k]V[k]

[
µk

νk

]

+
∑

j∈K−k

HkΦ
[j]V[j]

[
µj

νj

]

+Nk.

We first set allV[k] to be the same choice, such thatV[k] = V

for all k ∈ K. Let Gk = HkΦ
[k]V, andQj = HkΦ

[j]V for
j ∈ K − k. We have

Yk = Gk

[
µk

νk

]

+
∑

j∈K−k

Qj

[
µj

νj

]

+Nk. (18)

By choosingHk andΦ[k] (k ∈ K) as in [34], it is shown that
HkΦ

[k] andHkΦ
[j] (j ∈ K − k) are all orthogonal. Because

the isometry of the unitary matrixV, which preserves the
orthogonality and matrix rank, it is clear thatGk and Qj

(j ∈ K − k) are all orthogonal. Moreover,Gk is shown to
have rankMα, which implies thatµk andνk can be resolved
almost surely. Therefore,µk has rateRk = (M−1)α

β
log(P ) +

o(log(P )). For the interference subspace,Qj is shown to
have rankα. To guarantee that the artificial noise can fill the
interference space, it suffices to show that

rank{HkΦ
[j]Vν} = α, a.s.

which yields

rank














H ′
j(1)

H ′
j(2)

. . .
H ′

j(α)







Vν







= α, a.s.

(19)

where fort = [1 : α]

H ′
j(t) =

{
Hj(M) if t modM = 0
Hj(t modM) otherwise.

(20)

We chooseVν = I⊗Θ, with Θ = [1 0 . . . 0]T denoting the
M × 1 elementary vector, andI denoting the identity matrix
with dimensionα× α. We have

rank
{

diag{h′
j(1, 1), h

′
j(2, 1), . . . , h

′
j(α, 1)}

}
= α, a.s. (21)

where h′
j(i, 1) represents the first element of the channel

vectorH ′
j(i). It is clear that the above statement holds. Thus,

V can be chosen as an elementary matrix with the block
V

[k]
ν = I ⊗ Θ. Let Q̄j = HkΦ

[j]Vν and S = K − k. We
consider the information leakage at receiverk after the whole
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codeword lengthn,

1

n
I(WS ;Y

n
k , Hn) ≤

1

β
I(µS ;Yk|HK)

=
1

β
(I(νS ,µS ;Yk|HK)− I(νS ;Yk|µS , HK))

≤
1

β
logdet



P
∑

j∈S

QjQ
H
j + I





−
1

β
logdet



P
∑

j∈S

Q̄jQ̄
H
j + I



+ o(log(P ))

= o(log(P )),

where the last equality follows from the fact thatQjQ
H
j and

Q̄jQ̄
H
j have the same rank almost surely. Then,

∆
[k]
S = 1−

I(WS ;Y
n
k |HK)

nRS
≥ 1−

o(log(P ))

dS log(P ) + o(log(P ))
(22)

with dS = (K−1)(M−1)α
β

, which yieldslimn,P→∞ ∆
[k]
S = 1.

This concludes the proof.
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