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The bootstrap is a convenient tool for calculating standard errors of the parame-
ter estimates of complicated econometric models. Unfortunately, the fact that these
models are complicated often makes the bootstrap extremely slow or even practically
infeasible. This paper proposes an alternative to the bootstrap that relies only on the es-
timation of one-dimensional parameters. We introduce the idea in the context of M and
GMM estimators. A modification of the approach can be used to estimate the variance
of two-step estimators.

KEYWORDS: Standard error, bootstrap, inference, structural models, two-step esti-
mation.

1. INTRODUCTION

THE BOOTSTRAP is often used for estimating standard errors in applied work. This is true
even when an analytical expression exists for a consistent estimator of the asymptotic
variance. The bootstrap is convenient from a programming point of view because it relies
on the same estimation procedure that delivers the point estimates. Moreover, for esti-
mators that are based on non-smooth objective functions or on discontinuous moment
conditions, direct estimation of the matrices that enter the asymptotic variance typically
forces the researcher to make choices regarding tuning parameters such as bandwidths
or the number of nearest neighbors. The bootstrap avoids this. Likewise, estimation of
the asymptotic variance of two-step estimators requires calculation of the derivative of
the estimating equation in the second step with respect to the first-step parameters. This
calculation can also be avoided by the bootstrap.

Unfortunately, the bootstrap can be computationally burdensome if the estimator is
complex. For example, in many structural econometric models, it can take hours to get a
single bootstrap draw of the estimator. This is especially problematic because the calcula-
tions in Andrews and Buchinsky (2001) suggest that the number of bootstrap replications
used in many empirical economics papers is too small for accurate inference. This pa-
per will demonstrate that in many cases it is possible to use the bootstrap distribution of
much simpler alternative estimators to back out a bootstrap-like estimator of the asymp-
totic variance of the estimator of interest. The need for faster alternatives to the standard
bootstrap also motivated the papers by, for example, Davidson and MacKinnon (1999),
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Andrews (2002), Heagerty and Lumley (2000), Hong and Scaillet (2006), Kline and San-
tos (2012), and Armstrong, Bertanha, and Hong (2014). Unfortunately, their approaches
assume that one can easily estimate the “Hessian” in the sandwich form of the asymp-
totic variance of the estimator. In practice, this can be difficult for estimators defined by
optimization of non-smooth objective functions or by discontinuous moment conditions.
It can also be cumbersome to derive explicit expressions for the “Hessian” in smooth
problems. The main motivation for this paper is the difficulty of obtaining an estimator
of the “Hessian.” Part of the contribution of Chernozhukov and Hong (2003) was also to
provide an alternative way to do inference without estimating asymptotic variances from
their analytical expressions. However, Kormiltsina and Nekipelov (2012) pointed out that
the method proposed by Chernozhukov and Hong (2003) can be problematic in practice.

In this paper, we propose a method for estimating the asymptotic variance of a
k-dimensional estimator by a bootstrap method that requires estimation of k* one-
dimensional parameters in each bootstrap replication. For estimators that are based on
non-smooth or discontinuous objective functions, this will lead to substantial reductions
in computing times as well as in the probability of locating local extrema of the objective
function. The contribution of the paper is the convenience of the approach. We do not
claim that any of the superior higher order asymptotic properties of the bootstrap or of
the k-step bootstrap carries over to our proposed approach. However, these properties
are not usually the main motivation for the bootstrap in applied economics.

We first introduce our approach in the context of an extremum estimator (Section 2.1).
We consider a set of simple infeasible one-dimensional estimators related to the estimator
of interest, and we show how their asymptotic covariance matrix can be used to back out
the asymptotic variance of the estimator of the parameter of interest. Mimicking Hahn
(1996), we show that the bootstrap can be used to estimate the joint asymptotic distribu-
tion of those one-dimensional estimators. This suggests a computationally simple method
for estimating the variance of the estimator of the parameter vector of interest. We then
demonstrate in Section 2.2 that this insight carries over to GMM estimators.

Section 3 shows that an alternative, and even simpler, approach can be applied to
method of moments estimators. In Section 4, we discuss why, in general, the number of
directional estimators must be of order O(k?), and we discuss how this can be significantly
reduced when the estimation problem has a particular structure.

It turns out that our procedure is not necessarily convenient for two-step estimators.
In Section 5, we therefore propose a modified version specifically tailored for this sce-
nario. While our method can be used to estimate the full joint asymptotic variance of the
estimators in the two steps, we focus on estimation of the correction to the variance of
the second-step estimator which is needed to account for the estimation error in the first
step. We also discuss how our procedure simplifies when the first-step or the second-step
estimator is computationally simple.

We illustrate our approach by Monte Carlo studies in Section 6. The basic ideas intro-
duced in Section 2 are illustrated in a linear regression model estimated by OLS and in a
dynamic Roy model estimated by indirect inference. The motivation for the OLS exam-
ple is that it is well understood and that its simplicity implies that the asymptotics often
provide a good approximation in small samples. This allows us to focus on the marginal
contribution of this paper rather than on issues about whether the asymptotic approxima-
tion is useful in the first place. Of course, the linear regression model does not provide an
example of a case in which one would actually need to use our version of the bootstrap. We
therefore also consider indirect inference estimation of a structural econometric model
(a dynamic Roy model). This provides an example of the kind of model where we think
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the approach will be useful in current empirical research. Finally, we illustrate the exten-
sions discussed in Section 5 by applying our approach to a two-step estimator of a sample
selection model inspired by Helpman, Melitz, and Rubinstein (2008) (see Section 6.3).

We emphasize that the contribution of this paper is the computational convenience of
the approach. We are not advocating the approach in situations in which it is easy to use
the bootstrap. That is why we use the term “poor (wo)man’s bootstrap.” We are also not
implying that higher order refinements are undesirable when they are practical.

2. BASIC IDEA
2.1. M Estimators

We first consider an extremum estimator of a k-dimensional parameter 6 based on a
random sample {z;},

0= argmin Q, (1) = argmin Z q(z;, 7).

i=1
Subject to the usual regularity conditions, this will have asymptotic variance of the form
Avar(@)=H 'WH™,

where V' and H are both symmetric and positive definite. When g is a smooth function of
7, V' is the variance of the derivative of g with respect to = and H is the expected value
of the second derivative of g, but the setup also applies to many non-smooth objective
functions such as in Powell (1984).

While it is in principle possible to estimate V' and H directly, many empirical re-
searchers estimate A var(6) by the bootstrap. That is especially true if the model is com-
phcated but unfortunately, that is also the situation in which the bootstrap can be time-
consuming or even infeasible. The point of this paper is to demonstrate that one can use
the bootstrap variance of much simpler estimators to estimate A var(9).

The basic idea pursued here is to back out the elements of H and /' from the covariance
matrix of a number of infeasible one-dimensional estimators of the type

a(d) =argminQ, (0 + 8a), (1)

where 6 is a fixed k-dimensional vector.
The (nonparametric) bootstrap equivalent of (1) is

argmanq zb 6+6a (2)

where {z?} is the bootstrap sample. This is a one-dimensional minimization problem, so
for complicated objective functions, it will be much easier to solve than the minimization
problem that defines 6 and its bootstrap equivalent. Our approach will therefore be to
estimate the joint asymptotic variance of @(8) for a number of directions, §, and then
use that asymptotic variance estimate to back out estimates of H and V' (except for a
scale normalization). In Appendix A, we mimic the arguments in Hahn (1996) and note
that the joint bootstrap distribution of the estimators @(d) for different directions, , can
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be used to estimate the joint asymptotic distribution of @(8). Although convergence in
distribution does not guarantee convergence of moments, this can be used to estimate the
variance of the asymptotic distribution of @(5) (by using robust covariance estimators).
Since the mapping (discussed below) from this variance to H and V' is continuous, this
implies the consistency of our proposed method.

It is easiest to illustrate why our approach works by considering a case where 0 is two-
dimensional. We first note that the estimation problem remains unchanged if g is scaled
by a positive constant ¢, but in that case H would be scaled by ¢ and V' by ¢*. There is
therefore no loss of generality in assuming v;; = 1. In other words, the symmetric matrices
H and V' depend on five unknown quantities. Now consider two vectors &; and 6, and
the associated estimators a(d,) andA?i(Sz). Under the conditions that yield asymptotic
normality of the original estimator 6, the infeasible estimators a(8;) and @(5,) will be
jointly asymptotically normal with variance

{25, 5, = Avar ((Z\Egg))

_ (S;Hal):jsgVal(agHal)j (S;Hal)jagVaz((s;Haz)j .
(8,H8,) '8,V 8:(8,H8,) " (8,H8,) 8,V 8,(8,H )

©)

It will be useful to explicitly write the (j, ¢)th elements of H and V' as hj, and vj,
respectively. In the following, we use e; to denote a vector that has 1 in its jth element
and zeros elsewhere. With 8, = ¢; and 6, = e,, we have

.Qel,ez = ( hflz hfll v12h221) .

-1 -1 2
hiyvichy, hyy v

The matrix (2, ., is clearly informative about some of the elements of (A1, A1z, hy,
V12, Up), but since it is a symmetric 2-by-2 matrix, it cannot provide enough information
to identify all five elements. On the other hand, it turns out that the joint covariance that
considers the estimators in two additional directions does identify all five elements. This
is a special case of the following theorem:

THEOREM 1: Let &1, 8,, 83, and 8, be nonproportional 2-by-1 vectors, and let H and V' be
symmetric 2-by-2 matrices. Assume that H is positive definite, and that vy, = 1. Then knowl-
edge of (8,H8;)'8;V 8,(8,H8,)~" for all combinations of 8; and 8, identifies H and V.

PROOF: See Appendix B. Q.E.D.

Theorem 1 leaves many degrees of freedom with regard to the choice of directions, 6. In
order to treat all coordinates symmetrically, we focus on directions of the form ¢}, e; + ¢,
and e; — ¢,. We then have the following:

COROLLARY 2: Let H and V' be symmetric k-by-k matrices. Assume that H is positive
definite, that vy, = 1 and that vj; > 0 for j > 1. Then knowledge of (8;H8;)~' 8V 8,(8,H8,)™"
for all combinations of 6; and &, of the form e;, e; +e, (I < j),or e; — e, (l < J) identifies
HandV.

ng

PROOF: For each j and ¢, Theorem 1 identifies ';ﬂ, -, and all the elements of H scaled
J

J7

by /2. These can then be linked together by the fact that vy, is normalized to 1. Q.E.D.
1l

v
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One can characterize the information about V' and H contained in the covariance ma-
trix of the estimators (a(8;), ..., a(8,,)) as a solution to a set of nonlinear equations.
Specifically, define

D=(51 82 5,”) and C= . . . . . (4)
0 0 - b,

The covariance matrix for the m one-dimensional estimators is then
Q= (CU®H)C) (DVD)(CU®H)C),
which implies that
(CUeH)C)N(C'(I®H)C)=(DVD).

These need to be solved for the symmetric and positive definite matrices JV and H. Corol-
lary 2 above shows that this has a unique solution (except for scale) as long as D contains
all vectors of the form e}, e; + ¢,, and ¢; — ¢,.

In practice, one would first estimate the parameter 6. Using B bootstrap samples,
{zP}%,, one would then obtain B draws of the vectors (a(8,), ..., d(5,)). Let £ denote
n times a robust estimate of their variance matrix. There are then many ways to turn the
identification strategy above into estimation of H and V. One is to pick a set of 5-vectors
and estimate the covariance matrix of the associated estimators. Denote this estimator
by (2. The matrices I and H can then be estimated by solving the nonlinear least squares

problem

. !/ Y !/ 4 2
min ;({(C (I ® H)O)(C'U®H)C) - (DVD)},)", 5)
J
where D and C are defined in (4), v;; =1, and V' and H are positive definite matrices.

2.2. GMM

We now consider variance estimation for GMM estimators. The starting point is a set
of moment conditions

E[f(zi’ 0)] = Oa

where z; is “data for observation i” and it is assumed that this defines a unique 6. The
GMM estimator for 6 is

. 1L 1L
6= argmfln(; ;f(zl', T)) I/Vn(; ;f(zl', T)>,

where W, is a symmetric, positive definite matrix. Subject to weak regularity conditions
(see Hansen (1982) or Newey and McFadden (1994)), the asymptotic variance of the
GMM estimator has the form

S=(r'wn) ' r'wswr({r'wr)™, (6)
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where W is the probability limit of W,, S = V[f(z;, 6)], and I" = %E[f(zi, 0)]. Hahn
(1996) showed that the limiting distribution of the GMM estimator can be estimated by
the bootstrap.

Now let 6 be some fixed vector and consider the problem of estimating a scalar param-

eter, a, from
E[f(zi,0+ad)]=0
by

as) = argm;n(% > fz 0+ a6>) W, (% gﬂzh 0+ a6>>.

i=1

The asymptotic variance of two such estimators corresponding to different 6 would be

as
s, 5, = Avar ((%83))
_ (& T'Wrs) s T WSWIs, ("W Is)" )

(8, WT8,) & T"WSWI8,(8,'WI's,)~

(8,T'WIs,) & T'WSWIs,(8,'WIs,)"
3 all Y al 2 all -1/

2

(8,I'WI8,)  8,I'"WSWT'8,(8,'WTIs))

Of course, (7) has exactly the same structure as (3) and we can therefore back out the
matrices ["W 1T and I"'WSW 1T (up to scale) in exactly the same way that we backed out
H and V' above.

The validity of the bootstrap as a way to approximate the distribution of @(d) in this
GMM setting is discussed in Appendix A. The result stated there is a minor modification
of the result in Hahn (1996).

3. METHOD OF MOMENTS

A key advantage of the approach developed in Section 2 is that the proposed bootstrap
procedure is based on a minimization problem that uses the same objective function as
the original estimator. In this section, we discuss modifications of the proposed bootstrap
procedure to just identified method of moments estimators. It is, of course, possible to
think of this case as a special case of generalized method of moments. Since the GMM
weighting matrix plays no role for the asymptotic distribution in the just identified case,
(6) becomes X = (I"I")"'I"SI'(I"T")~" and the approach in Section 2 can be used to
recover I"I" and I"'ST". Here we will introduce an alternative bootstrap approach which
can be used to estimate I' and S directly. In doing this, we implicitly assume that all
elements of I" are nonzero.

The just identified method of moments estimator is defined by!

1 < P
=Y f(z,0)~0
n i=1

!The “~” notation is used as a reminder that the sample moments can be discontinuous and that it can
therefore be impossible to make them exactly zero.
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and, using the notation from Section 2.2, the asymptotic variance is 3 = (I'"1)S(I"!)'.
This is very similar to the expression for the asymptotic variance of the extremum esti-
mator in Section 2.1. The difference is that the I matrix is typically only symmetric if the
moment condition corresponds to the first-order condition for an optimization problem.

We start by noting that there is no loss of generality in normalizing the diagonal ele-
ments of I', y,,, to 1 since the scale of f does not matter (at least asymptotically). Now
consider the infeasible one-dimensional estimator, @, that solves the pth moment with
respect to the ¢th element of the parameter, holding the other elements of 6 fixed at the
true value:

1< -
=Y folzi, 60+ Tpe) 20
n i=1
It is straightforward to show that the asymptotic covariance between two such estimators
is
Spj
ypl ’)’jm

where s,; and y;, denote the elements in S and I, respectively. In particular, Avar(a,,) =
Spp/Vap = Spp- Hence s,, is identified. Since A cov(@,,, @;) = 5,/ (VppYj) = Spj» 55 18 iden-
tified as well. In other words, S is identified. Having already identified s,; and v, the
remaining elements of I" are identified from A cov(@,,, @jm) = Spi/VppYim = Spi/ Yim-

In practice one would first generate B bootstrap samples, {z°}"_,. For each sample, the
estimators, @, are calculated from

Acov(@pye, Gjm) =

pls
1 ¢ b
E pr(zi 5 0+ Clpgez) ~ 0.
i=1
The matrix S can then be estimated by cov(ay;, ax, . . ’dkk) The elements of I', y;,, can
be estimated by ="—— for arbitrary p or by Z[ | w W where the weights add up

(”pp
to1, Y5, w,=1.The welghts could be chosen on the basis of an estimate of the variance
( /S\[)l ";pk
cov(@yy,ajy)’ " V@, djm) "

The elements for I" and § can also be estimated by minimizing

2
s .
E (cov(apg,ajm)— _ >

potj.m YotYim

with the normalizations, y; =1, s,; = s;,, and s; > 0 for all j. Alternatively, it is also
possible to minimize

o~ o~ 2
Z (COV(LZP@, ajm)’)’pé’)’jm - SPI) °
pstjsm

To impose the restriction that § is positive semidefinite, it is convenient to normalize
the diagonal of I" to be 1 and parameterize S as 77", where T is a lower triangular matrix.

4. REDUCING THE NUMBER OF DIRECTIONAL ESTIMATORS

Needless to say, choosing D to contain all vectors of the form ¢;, ¢; + e,, and ¢; — ¢,
will lead to a system that is wildly overidentified. Specifically, if the dimension of the
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parameter vector is k, then we will be calculating k> one-dimensional estimators. This
will lead to a covariance matrix with (k* + k?)/2 unique elements. On the other hand,
H and V are both symmetric k-by-k matrices. In that sense, we have k* + k? equations
with k2 + k — 1 unknowns.?

Unfortunately, it turns out that the bulk of this overidentification is in V. To see this,
suppose that I is known and that one has bootstrapped the joint distribution of m — 1 one-
dimensional estimators in directions 6, (¢ =1, ..., m — 1). The variance of each of those
one-dimensional estimators is (8,H8,)~'8,V 8,(8,H5,)~". As a result, we can consider
(6,H8,) known.

Now imagine that we add one more one-dimensional estimator in the direction 8,,. The
additional information from this will be the variance of the estimator, (8, H35,,)~'8, V',
(8,,H5,)7", and its covariance with each of the first m — 1 one-dimensional estimators,
(8,H8,)'8,V5,,(8, HS,,)". Since V is known, and we already know (8,H §,), the only
new information from the mth estimator is (6/, H 8,,). In other words, each estimator gives
one scalar piece of information about H. Since H has k(k + 1)/2 elements, we need at
least that many one-directional estimators.

Of course, the analysis in the previous section requires one to consider k* directions,
while the discussion above suggests that with known V/, calculation of H requires only
k(k+1)/2 one-dimensional estimators. In this sense, the approach in the previous section
is wasteful, because it calculates approximately twice as many one-dimensional estimators
as necessary (if V' is known). We now demonstrate one way to reduce the number of
one-dimensional estimators by (essentially) a factor of 2 without sacrificing identification
(including identification of }'). In the previous section, we considered estimators in the
directions e; (j=1,...,k), e; + e, (£ <), and e¢; — e, (£ < j). Here we consider only
estimators in the directions e; (j=1,...,k),e;+e; (j>1)ande; — e, (j > 1).

We start by considering the one-dimensional estimators in the directions e; (j =
1,....,k),e;+e (j=2,....,k),and e; — e; (j=2,..., k). There are 3k — 2 such esti-
mators. By the argument above, their asymptotic variance identifies all elements of the H
and V' matrices of the form Ay, hyj, hj;, vi1, v1;, and vj; (after we have normalized vy; = 1).
This gives the diagonal elements of H and V" as well as their first rows (and columns). The
asymptotic correlation between a(e;) and a(e,) is vj,/ /VUjiVe. This gives the remaining el-
ements of V. There are (k — 1)(k —2)/2 remaining elements of H, h;, with j > £ > 1. To
recover h;,, consider the asymptotic covariance between a(e;) and a(e; + e,):

hl_ll(vlj + i) (hj+ hee + Zhﬂ)_l,

which yields 4.

It is therefore possible to identify all of IV and all of H with a total of (3k — 2) +
(k—1)(k—2)/2 = (k*+ 3k —2)/2 one-dimensional estimators. One disadvantage of this
approach is that it treats the first element of the parameter vector differently from the
others. We will therefore not pursue it further.

As mentioned above, the bulk of the overidentification is in V. This implies that we can
recover V' with much less information if H is known (or easily estimated). Specifically,
the k one-dimensional estimators in the directions e; (j =1, ..., k) will have covariance

matrix diag((hy}, ..., h;))V diag((hy), ..., hi;)) from which V' can be recovered.?

2H and V both have (k? + k)/2 unique elements and we impose one normalization.
3This insight can potentially be used to reduce the computational burden in (5).
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4.1. Simplification When Information Equality Holds

Efficient generalized method of moments estimation in Section 2.2 implies that
(I"'wWT'y=T"WSWI and maximum likelihood estimation in Section 2.1 implies that
H = V. Either way, the asymptotic variance of the estimator reduces to* H~!, while
the asymptotic variance of the k one-dimensional estimators in the directions ey, ..., e,
aey),...,d(ey), s

diag(H) 'H diag(H)™"

(see equations (3) and (7)). The asymptotic variance of a(e;) is therefore h;l. In other
words, diag(H)~! = diag(}'(a(e,), ..., a(e;))) and hence

H =diag(V (a(e)), ..., a(en)) V(ace), ..., ale)) diag(V (@cey), ..., ace)) ™

Therefore, it is possible to estimate the variance of the parameter of interest by boot-
strapping only k one-dimensional estimators.

4.2. Exploiting Specific Model Structures

It is sometimes possible to reduce the computational burden by exploiting specific prop-
erties of the estimator of interest. For example, consider the case where a subvector can
be easily estimated if one holds the remaining parts of the parameter vector fixed. Re-
gression models of the type y; = By + x}| B1 + xj; B2 + &; are a textbook example of this;
for fixed @; and «,, the B’s can be estimated by OLS. The same applies to regression
models with Box—Cox transformations. The model estimated in Section 6.3 is yet another
example where some parameters are easy to estimate for given values of the remaining
parameters.

To explore the benefits of this situation, write 6 = («/, B’)’, where B can be easily esti-
mated for fixed «. In the following, we split H and V' as

H,, H Ve V.
H=|7“ “B) and V=( o “B>.
(H,ga Hgg Vaa Vg

Furthermore, we denote the jth columns of H,s and Vs by Hag, and Vg, respectively.
Similarly, Hg g, and Vg, will denote the (j, £) elements of Hgg and Vg.

Let 5j = («, B;)". The approach from Section 2.1 can be used to back out V,,, Vag;s Haas
and H,g;. In other words, we know all of H and V" except for the off-diagonals of Hgpg
and Vjg. If the dimension of « is 1, this will require 3k — 2 one-dimensional estimators: k
in the directions e; (j=1, ..., k), kK — 1 in the directions e; + e, (j > 1), and k — 1 in the
directions e; — e;.

In the process of applying the identification approach from Section 2.1, one also
recovers the correlation of S (8 ) and ﬁ(&g) As noted above, this correlatlon is

Viip./\/Ve8;Ve.s.- As a result, we can also recover all of V.

Now let Ebe the estimator of B that fixes «. Its variance is H gﬁl Vg H gg. So to identify
H g, we need to solve an equation of the form A = XV X. Equations of this form (when
A and Vg are known) are called Riccati equations; see also Honoré and Hu (2015).
When A and Vjs are symmetric, positive definite matrices, they have a unique symmetric

“In the case of a GMM estimator, define H to equal (I"WT').
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positive definite solution for X. In other words, one can back out all of H e Of course,

when B is easy to calculate for fixed value of a, it is also often easy to estimate Hs and
Vg directly without using the bootstrap. This would further reduce the computational
burden.

5. TWO-STEP ESTIMATORS

Many empirical applications involve a multi-step estimation procedure where each step
is computationally simple and uses the estimates from the previous steps. Heckman’s two-
step estimator is a textbook example of this. Let

d = 1{Z;a—|—1/i ZO},
yi=d;- (x;ﬁ + 81‘),

where (v;, ¢;) has a bivariate normal distribution. The parameter, «, can be estimated by
the probit maximum likelihood estimator, @y g, in a model with d; as the outcome and z;
as the explanatory variables. In a second step, B is then estimated by the coefficients on

. . (2@
x; in the regression of y; on x; and A; = $(ziauLE)

See Heckman (1979).

Finite-dimensional multi-step estimators can be thought of as GMM or method of mo-
ments estimators. As such, their asymptotic variances have a sandwich structure and the
poor (wo)man’s bootstrap approach discussed in Sections 2.2 or 3 can therefore in prin-
ciple be applied. However, the one-dimensional estimation used there does not preserve
the simplicity of the multi-step structure. For example, Heckman’s two-step estimator is
based on two simple optimization problems (probit and OLS) which deliver @ and B sep-
arately, whereas the procedure in Section 2.2 uses a more complicated estimation prob-
lem that involves minimization with respect to linear combinations of elements of both
a and B. Likewise, the approach in Section 3 would involve solving the OLS moment
equations with respect to elements of «. The simplicity of the multi-step procedure is
lost either way. In this section, we therefore propose a version of the poor (wo)man’s
bootstrap that is suitable for multi-step estimation procedures.

To simplify the exposition, we consider a two-step estimation procedure where the esti-
mator in each step is defined by minimization problems

using only the sample for which d; =1.

—~ 1
0 = in — is ’
1 argrrl}nnZQ(Z 1)
: ®)
6, = argngn; ZR(Zi, 01, 72),

with limiting first-order conditions
E[q(Zh 01)] == 07
E[r(zi’ 017 02)] = 07

where 0 and 0, are k- and k,-dimensional parameters of interest and g(-, -) and r(-, -, -)
are smooth functions. Although our exposition requires this, the results also apply when
one or both steps involve an extremum estimator with possibly non-smooth objective func-
tion or GMM with possibly discontinuous moment function.
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Under random sampling, 6 = (8}, 6,)" will have a limiting normal distribution with

asymptotic variance
-1 -1\’
o 0\ (Vu Va\((Q O ©)
Ry R, Vo Vo Ry R, ’

where (/1 )2) = V[(,275%) )], O = E[*4500], R, = E[#E0:0)], and R, = E[ZCL0L2)],
Getting R, and V}, is usually the difficult part It is often easy to estimate V7, V22, 0,
and R, directly, and when that is not possible, they can be estimated using the poor
(wo)man’s bootstrap procedure above. It follows from (9) that the asymptotic variance

of 0, is
Ry'RiOT'ViOr'RIRy — Ry OT'RIR; — Ry'RiQT'VR Ry + Ry 'WpR;Y,  (10)

where the first three terms represent the correction for the fact that 9, is based on an
estimator of ;.

The matrix in (9) has the usual sandwich structure, and the poor (wo)man’s bootstrap
can therefore be used to back out all the elements of the two matrices involved. How-
ever, this is not necessarily convenient because the poor (wo)man’s bootstrap would use
the bootstrap sample to estimate scalar @ where 6 = (6, 6,) has been parameterized as
9+ ad. When & places weight on elements from both 6, and 0,, the estimation of a no
longer benefits from the simplicity of the two-step setup.

As noted above, the elements of Q; and V}; can often be estimated directly and, if
not, they can be estimated by applying the poor (wo)man’s bootstrap to the first step in
the estimation procedure alone. The matrices R, and V/, are also often easily obtained
or can be estimated by applying the poor (wo)man’s bootstrap to the second step of the
estimation procedure holding 6, fixed. For example, for Heckman’s two-step estimator,
0O; and V}; can be estimated by the scaled Hessian and score-variance for probit max-
imum likelihood estimation; R, and V5, can be estimated by the (scaled) “X’'X” and
“X'e¢’'eX” where X is the design matrix in the regression and e is the vector of residu-
als.

To estimate the elements of R; and V,, consider the three infeasible scalar estimators

1
a o1) = in — iae o >
a1(01) argn}l}nnZQ(z 1+ a16;)
1
(6, 6,) = in — R(z;, 0, +a,6,, 0 0,),
a>(01, 67) argngnnz (zi, 01 +a161, 0, + a,0,)

- 't
a3(063) = argmin — E R(z;, 01, 6, + a36;),
a3 n

for fixed 6,, 6,, and &;. In Section S-1 of the Supplemental Material (Honoré and
Hu (2017)), we show that choosing 6, = e¢; and 6, = 6; =¢,, (for j=1,...,k; and
m=1,...,k,) identifies all the elements of 1/, and R;. This requires calculation of
ki + ki1k, + k, one-dimensional estimators.

While this identification argument relies on three infeasible estimators, the strategy
can be used to estimate V, and R; via the bootstrap. In practice, one would first estimate
the parameters 6,and 6,. Using B bootstrap samples, {z’}?_;, one would then obtain B
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draws of the vector (a@;(e;), ax(e;, e,), as(en)) for j=1,...,kyand m=1,..., k,, ob-
tained from

~ .1 ~
@\(ej) =argmin~ 3 " 0(2], b + are;),
—_~ . 1 —_ o~ -
ar(ej, ) = argmin - ZR(Z,'?, 01 +ayje;, 0, + aze,),

~ 1 ~
az(e,) = argn{gn p ZR(zf?, 01, 0, + a3em).

These B draws can be used to estimate the variance-covariance matrix of (a(e;),
ay(ej, en), as(e,)) and one can then mimic the logic in Section 2.1 to estimate V;, and R;.

Many two-step estimation problems have the feature that one of the steps is relatively
easier than the other. For example, the second step in Heckman’s (1979) two-step estima-
tor is a linear regression, while the first is maximum likelihood. Similarly, the second step
in Powell’s (1987) estimator of the same model also involves a linear regression, while
the first-step estimator is an estimator of a semiparametric discrete choice model such
as Klein and Spady (1993). On the other hand, the first step in the estimation procedure
used in Helpman, Melitz, and Rubinstein (2008) is probit maximum likelihood estima-
tion, which is computationally easy relative to the nonlinear least squares used in the
second step. In these situations, it may be natural to apply the one-dimensional bootstrap
procedure proposed here to the more challenging step in the estimation procedure, while
re-estimating the entire parameter vector in the easier step in each bootstrap sample. We
next develop this idea for the case where the first-step estimation is easy. In Section S-2
of the Supplemental Material, we consider the case where the second step is relatively
easy. In both cases, it turns out that the correction to the variance for 6, (the first three
terms in (10)) can be calculated from the covariances between a first-step estimator and
two second-step estimators: one that uses the estimated first-step parameter and one that
uses the true value of the first parameter.

Consider again three estimators of the form

1
= in — is 0 H
argmin > 0(zi, 01+ ar)
- 1 _
@(3) =argmin — 3 R(zi, 0, +1, 0, + 4:9),

1
a. 8 == in — R ,«,6,0 8,
@3(3) = argmin — 3 | R(zi, 01, 0, + asd)

but now note that @; is a vector of the same dimension as 6,. The asymptotic variance of
(@1,a>(8),a3(8)) is
-1 , -1
o 0 0 Vi Vid Vo 01 &R 0
&R, &R,5 0 8V, &Vnd 8Vnd 0 &R0 0 . (11
0 0 6'R,0 8V, 8Vnd o8Vnd 0 0 0'R,0

Multiplying (11) yields a matrix with nine blocks. The upper-middle block is
—(8R,8)7'Q;'Vi O 'R 8 + O;'V126(8'R,8)7!, while the upper-right block is OV, x
S(8'R,8)7'. With R, V;;, and O, known and § = e;, the latter identifies 1,6 which is the
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jth column of V,. The difference between the upper-middle block and the upper-right
block is —(§'R,8)7'Q; 'V, 07 ' R, 8. This identifies R’ 8 which is the jth column of R;.

This approach requires calculation of only 2k, one-dimensional estimators using the
more difficult second-step objective function. Moreover, the approach gives closed-form
estimates of 1}, and R;.

6. ILLUSTRATIONS
6.1. Linear Regression

There are no reasons to apply our approach to the estimation of standard errors in a
linear regression model. However, its familiarity makes it natural to use this model to
illustrate the numerical properties of the approach.

We consider a linear regression model,

yi=x.B+ &,

with 10 explanatory variables generated as follows. For each observation, we first gener-
ate a nine-dimensional normal, X;, with means equal to 0, variances equal to 1, and all
covariances equal to % Xito x are then x; = 1{x; >0} for j=1,...,3, x; =%; + 1 for
j=4106, x;7 =X7, x5 = X;3/2, and x,9 = 10X,9. Finally, x;;o = 1. &; is normally distributed
conditional on x; and with variance (14 x;;)?. We pick 8= (3, %, £, £,1,0,0,0, 0, 0). This
yields an R? of approximately 0.58. The scaling of x;3 and x, is meant to make the design
a little more challenging for our approach.

We perform 400 Monte Carlo replications, and in each replication, we calculate the
OLS estimator, the Eicker—Huber—White variance estimator (E), the bootstrap variance
estimator (B), and the variance estimator based on estimating }” and H from (5) by non-
linear least squares (N). The bootstraps are based on 400 bootstrap replications. Based
on these, we calculate ¢-statistics for testing whether the coefficients are equal to the true
values for each of the parameters. Tables I and II report the mean absolute differences in
these test statistics for sample sizes of 200 and 2000, respectively.

Tables I and II suggest that our approach works very well when the distribution of the
estimator of interest is well approximated by its limiting distribution. Specifically, the dif-
ference between the ¢-statistics based on our approach and on the regular bootstrap (col-
umn 3) is smaller than the difference between the ¢-statistics based on the bootstrap and
the Eicker—-Huber—White variance estimator (column 1).

TABLE I
ORDINARY LEAST SQUARES, n = 200. MEAN ABSOLUTE DIFFERENCE IN ¢-STATISTICS

ITg — Tl ITg — TN| ITp —TN|
B 0.031 0.029 0.013
B2 0.029 0.022 0.022
B3 0.031 0.026 0.022
Bs 0.032 0.026 0.024
Bs 0.033 0.024 0.023
Bs 0.032 0.027 0.026
B7 0.031 0.024 0.025
Bs 0.033 0.026 0.023
Bo 0.034 0.025 0.023

Bio 0.033 0.027 0.021
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TABLE 11
ORDINARY LEAST SQUARES, 1 = 2000. MEAN ABSOLUTE DIFFERENCE IN ¢-STATISTICS

|Tg =Tl ITg = TN ITp —TNI
B 0.025 0.025 0.004
B2 0.021 0.021 0.003
B3 0.024 0.024 0.004
By 0.023 0.022 0.004
Bs 0.025 0.025 0.004
Bs 0.025 0.025 0.004
B2 0.026 0.025 0.004
Bs 0.024 0.023 0.004
By 0.022 0.023 0.003
Bio 0.023 0.023 0.006

6.2. Structural Model

The method proposed here should be especially useful when estimating nonlinear struc-
tural models such as those of Lee and Wolpin (2006), Altonji, Smith, and Vidangos (2013),
and Dix-Carneiro (2014). To illustrate the usefulness of the poor (wo)man’s bootstrap in
such a situation, we consider a very simple two-period Roy model. There are two sectors,
labeled 1 and 2. A worker is endowed with a vector of sector-specific human capital, x;,
and sector-specific income in period 1 is log(wy;) = x,;8; + &1, and sector-specific in-
come in period 2 is log(w,n) = x/, 8, + 1{dy = s}y, + &, where d;; is the sector chosen
in period 1. We parameterize (&y;, &,;,) to be bivariate normally distributed and i.i.d. over
time.

Workers maximize discounted income. First consider time period 2. Here d;; = 1 and
Wj = W1jp if Wijp > W2, that iS, if

xy;B1+ Hdiy =1 yi + 10 > X5,8 + Hdiy =2}y, + &2
and d;; =2 and wy, = w,;,; otherwise. In time period 1, workers choose sector 1 (d;; = 1) if
Wy + PE[m'dX{wuz, Wain} [ X1is X2i, diy = 1] > Wy + PE[maX{wliz, Wain} | X1is X2, diy = 2]

and sector 2 otherwise. In Section S-3 of the Supplemental Material, we demonstrate that
the expected value of the maximum of two dependent lognormally distributed random
variables is

M2 — My — (0'12 - 7'0'10'2)>>
\/0'22 — 21010, + o}
= po = (05 — 70'10'2)>)

\/0'22 — 27010, + o}

exp(u1 + 07/2) (1 - @(

+ exp(u + 05 /2) (1 — (15<

where the underlying normal random variables have means w,and u,, variances o7 and
o3, and correlation 7. This gives closed-form solutions for wy;; + pE[max{w;, wa}|X1;,
Xai, diy = 1] and wy; + pE[max{w;,, wyin}|X1i, X2, dip = 1].

We will now imagine a setting in which the econometrician has a data set with n observa-
tions from this model. x;; is composed of a constant and a normally distributed component
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that is independent across sectors and across individuals. In the data-generating process,
Bi=(11),B=G,1,7=0,v=10=2,0;=3,7=0,and p=0.95. In the es-
timation, we treat p and 7 as known, and we estimate the remaining parameters. Fixing
the discount rate parameter is standard and we assume independent errors for computa-
tional convenience. The sample size is n = 2000 and the results presented here are based
on 400 Monte Carlo replications, each using 1000 bootstrap samples to calculate the poor
(wo)man’s bootstrap standard errors.

The model is estimated by indirect inference matching the following parameters in the
regressions (all estimated by OLS, with the additional notation that d;y = 0): (i) the re-
gression coefficients and residual variance in a regression of w;, on x;;, x;, and 1{d;,_; = 1}
using the subsample of observations in sector 1; (ii) the regression coefficients and resid-
ual variance in a regression of w;, on x;;, x», and 1{d;_; = 1} using the subsample of
observations in sector 2; and (iii) the regression coefficients in a regression 1{d;, = 1} on
Xil and Xi and 1{dl‘[,1 = 1} .

Let @ be the vector of those parameters based on the data and let I'[a] be the associ-
ated estimated variance. For a candidate vector of structural parameters, 6, the researcher
simulates the model two times (holding the draws of the errors constant across different
values of ), calculates the associated a(#), and estimates the model parameters by mini-
mizing

@-ao) Viar'(@-a)
over 6. Note that a(6) is discontinuous in the parameter because there will be some values
of 0 for which the individual is indifferent between the sectors.

This example is deliberately chosen in such a way that we can calculate the asymptotic
standard errors. See Gourieroux and Monfort (2007). We use these as a benchmark when
evaluating our approach. Tables III and IV present the results. With the possible excep-
tion of the intercept in sector 1, both the standard errors suggested by the asymptotic dis-
tribution and the standard errors suggested by the poor (wo)man’s bootstrap approximate
the standard deviation of the estimator well (Table III). The computation times make it
infeasible to perform a Monte Carlo study that includes the usual bootstrap method. For
example, estimating the model with 2000 observations once took approximately 900 sec-
onds. By comparison, calculating all the one-dimensional parameters (once) took less
than 5 seconds on the same computer. In addition, the computing cost of minimizing
equation (5) was approximately 90 seconds. With 1000 bootstrap replications, this sug-
gests that it would take more than 10 days to do the regular bootstrap in one sample,
while our approach would take approximately one and a half hours. Table IV illuminates

TABLE 111
STRUCTURAL MODEL. ASYMPTOTIC AND ESTIMATED STANDARD ERRORS

Actual Asymptotic Mean BS Median BS
B 0.044 0.049 0.053 0.052
Biz 0.040 0.041 0.042 0.042
B 0.050 0.051 0.052 0.052
Bn 0.039 0.040 0.041 0.041
Vi 0.027 0.029 0.031 0.031
V2 0.064 0.068 0.068 0.068
log(ay) 0.023 0.026 0.026 0.026

log(o») 0.018 0.019 0.018 0.018
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TABLE IV
STRUCTURAL MODEL. REJECTION PROBABILITIES (20% LEVEL OF SIGNIFICANCE)

Asymptotic s.e. Poor (Wo)man’s BS s.e.
Bu 16% 13%
B2 16% 16%
Bor 2% 19%
B2 19% 18%
- 19% 16%
v 17% 17%
log(o1) 16% 15%
log(o») 18% 19%

the performance of the proposed bootstrap procedure for doing inference by compar-
ing the rejection probabilities based on our standard errors to the rejection probabilities
based on the true asymptotic standard errors.

6.3. Two-Step Estimation

In this section, we illustrate the use of the poor (wo)man’s bootstrap applied to two-
step estimators using a modification of the empirical model in Helpman, Melitz, and Ru-
binstein (2008). We first estimate the model and then use the estimated model and the
explanatory variables as the basis for a Monte Carlo study.

The econometric model has the feature that the first step can be estimated by a stan-
dard probit. We therefore use it to illustrate the situation where the first estimation step
is easy as discussed in Section 5. The model also has the feature that in the second step,
some of the parameters can be estimated by ordinary least squares for fixed values of the
remaining parameters. The example will therefore also illustrate simplification described
in Section 4.2. Section S-4 of the Supplemental Material gives the mathematics for com-
bining the insights in Sections 5 and 4.2. Finally, we have deliberately chosen the example
to be simple enough that we can compare our approach to the regular bootstrap in the
Monte Carlo study.

6.3.1. Model Specification

In one of their specifications, Helpman, Melitz, and Rubinstein (2008) used a para-
metric two-step sample selection estimation procedure that assumes joint normality to
estimate a model for trade flows from an exporting country to an importing country. The
estimation involves a probit model for positive trade flow from one country to another in
the first step, followed by nonlinear least squares in the second step using only observa-
tions that have the dependent variable equal to 1 in the probit. It is a two-step estimation
problem, because some of the explanatory variables in the second step are based on the
index estimated in the first step. In this specification, the expected value of the logarithm
of trade flows in the second equation is of the form

X1+ M—2'7) B2 + log(exp(Bs(A(=27) + 27)) — 1), (12)

where 7 is the first-step probit estimator and A(-) = 1%%. Since probit maximum likeli-
hood estimation is based on maximizing a concave objective function, it this is an exam-

ple whether the first-step estimation of y is computationally relatively easy. Moreover,
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the second step has the feature discussed in Section 4.2, namely, that it is easy to esti-
mate some parameters (here 8, and ;) conditional on the rest (here ;). One of the key
explanatory variables in x and in z is logarithm of the distance between countries.

As pointed out in Santos Silva and Tenreyro (2015), this econometrics specification is
problematic, both because of the presence of the sample selection correction term inside
a nonlinear function and because it is difficult to separately identify 8, and B;. To illus-
trate our approach, we therefore consider a modified reduced-form specification that has
some of the same features as the model estimated in Helpman, Melitz, and Rubinstein
(2008). Specifically, we estimate a sample selection model for trade in which the selection
equation (i.e., the model for positive trade flows) is the same as in Helpman, Melitz, and
Rubinstein (2008), but in which the outcome (i.e., the logarithm of trade flows) is linear
using the same explanatory variables as Helpman, Melitz, and Rubinstein (2008) except
that we allow distance to enter through a Box—Cox transformation rather than through
its logarithm. Following Helpman, Melitz, and Rubinstein (2008), we estimate this model
by a two-step procedure, but in our case the second step involves nonlinear least squares
estimation of the equation

xy—1
A

Yi=PBo +x\B1 + )\(—2/3’\),32 + error;,
where x is the distance between the exporting country and the importing country. When
X, contains a constant or a saturated set of dummies, this model can be written as

i = Boxh + % B1 + A(—2'%) B, + error;. (13)

Like (12), equation (13) has one parameter that enters nonlinearly. As a result, the second
step again has the feature discussed in Section 4.2.

Helpman, Melitz, and Rubinstein (2008) used a panel from 1980 to 1989 of the trade
flows (exports) from each of 158 countries to the remaining 157 countries.’ In the specifi-
cation that we mimic, the explanatory variables in the selection equation are (1) DISTANCE
(the logarithm of the geographical distance between the capitals), (2) BORDER (a binary
variable indicating if both countries share a common border), (3) ISLAND (a binary vari-
able indicating if both countries in the pair are islands), (4) LANDLOCK (indicating if both
countries in the pair are landlocked), (5) COLONY (indicating if one of the countries in
the pair colonialized the other one), (6) LEGAL (indicating if both countries in the pair
have the same legal system), (7) LANGUAGE (indicating if both countries in the pair speak
the same language), (8) RELIGION (a variable measuring the similarity in the shares of
Protestants, Catholics, and Muslims in the countries in the pair; a higher number indi-
cates a bigger similarity), (9) CU (indicating whether two countries have the same cur-
rency or have a 1:1 exchange rate), (10) FTA (indicating if both countries are part of a
free trade agreement), (11) WTONONE and (12) WTOBOTH (binary variables indicating
if neither or both countries are members of the WTO, respectively). They also include a
full set of year dummies as well as import country and export country fixed effects (which
are estimated as parameters). The explanatory variables in the second equation are the
same variables except for RELIGION.

In our Monte Carlo study, we use the same explanatory variables as Helpman, Melitz,
and Rubinstein (2008) except that we replace the country fixed effects by continent fixed

3See http://scholar.harvard.edu/melitz/publications.
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effects. The reason is that when we simulated from the estimated model, we frequently
generated data from which it was impossible to estimate all the probit parameters.®

To illustrate that our method can be used in “less than ideal” situations, we generate
data from the full model, but estimate the selection equation (the probit) using only data
from 1980. This is because some papers estimate the first step and the second step using
different samples. Using only data from one year in the selection necessitates replacing
the year dummies in the selection equation with a constant. In the second estimation step,
we use data from all the years and include a full set of year dummies.

6.3.2. Monte Carlo Results

We first estimate the model using the actual data. This gives the values of v, A, EU, El,
and B, to be used in the data-generating process. We then set the correlation between
the errors in the selection and the outcome equations to 0.5 and we calibrate the vari-
ance of the error in the second equation to 3. This roughly matches the variance of the
residuals in the second equation in the data-generating process to the same variance in
the data.

The Monte Carlo study uses 400 replications. These replications use the same explana-
tory variables as in the actual data, and they only differ in the draws of the errors. In each
replication, we estimate the parameters and calculate the standard errors using (1) the
asymptotic variance that corrects for the two-step estimation, (2) the poor (wo)man’s
bootstrap, and (3) the regular bootstrap.” In each Monte Carlo replication, we use the
same 1000 samples to calculate the two versions of the bootstraps’ standard errors. The
results are reported Tables V-VII.

Table V reports the standard deviations of the parameter estimates across the 400
Monte Carlo replications in column 1. Column 2 reports the means of the estimated

TABLE V
SELECTION MODEL. MEANS OF ESTIMATED STANDARD ERRORS

Actual With Correction Poor (Wo)man’s BS Regular BS
Bo 0.290 0.278 0.280 0.283
BORDER 0.077 0.072 0.080 0.080
ISLAND 0.052 0.054 0.059 0.059
LANDLOCKED 0.098 0.093 0.100 0.100
LEGAL 0.024 0.023 0.025 0.025
LANGUAGE 0.026 0.025 0.027 0.027
COLONIAL 0.074 0.068 0.074 0.074
CU 0.127 0.119 0.129 0.128
FTA 0.106 0.094 0.104 0.105
WTONONE 0.045 0.040 0.044 0.043
WTOBOTH 0.025 0.023 0.026 0.026
MILLS 0.052 0.047 0.051 0.051
A 0.060 0.054 0.057 0.058

SEven when we replaced the country dummies with continent dummies, we sometimes generated data sets
from which we could not estimate the probit parameters. When that happened, we re-drew the data.

"By concentrating out the coefficients that enter linearly in the second step, it is trivial to do a full bootstrap
in this example. We deliberately set it up like this in order to compare the results of our approach to the results
from a regular bootstrap.
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TABLE VI
SELECTION MODEL. MEDIANS OF ESTIMATED STANDARD ERRORS

Actual With Correction Poor (Wo)man’s BS Regular BS
Bo 0.290 0.277 0.278 0.280
BORDER 0.077 0.072 0.080 0.079
ISLAND 0.052 0.054 0.059 0.059
LANDLOCKED 0.098 0.093 0.100 0.100
LEGAL 0.024 0.023 0.025 0.025
LANGUAGE 0.026 0.025 0.027 0.027
COLONIAL 0.074 0.068 0.074 0.073
CuU 0.127 0.119 0.129 0.128
FTA 0.106 0.094 0.103 0.105
WTONONE 0.045 0.040 0.043 0.043
WTOBOTH 0.025 0.023 0.026 0.026
MILLS 0.052 0.046 0.050 0.051
A 0.060 0.054 0.057 0.058

standard errors using the asymptotic expressions with correction for the two-step es-
timation. Columns 3 and 4 report the means of the standard errors estimated using
the poor (wo)man’s bootstrap and the regular bootstrap, respectively. The results for
the year dummies and continent fixed effects are omitted. The bootstrap and the poor
(wo)man’s bootstrap are almost identical in all cases. Moreover, in almost all cases, they
are closer to the actual than the standard errors based on the asymptotic distribution.
Table VI reports almost identical results for the medians of the estimated standard er-
Tofrs.

Table VII presents the size of the ¢-statistics that test that the parameters equal their
true values using different estimates of the standard errors. The results based on the
bootstrap and the poor (wo)man’s bootstrap are again almost identical in all cases. They
are also close to those based on the asymptotic distribution with correction for the two-
step estimation.

TABLE VII
SELECTION MODEL. REJECTION PROBABILITIES (20% LEVEL OF SIGNIFICANCE)

With Correction Poor (Wo)man’s BS Regular BS
Bo 24% 23% 23%
BORDER 26% 20% 20%
ISLAND 20% 16% 16%
LANDLOCKED 20% 17% 18%
LEGAL 25% 20% 20%
LANGUAGE 21% 18% 18%
COLONIAL 25% 21% 22%
Cu 21% 19% 19%
FTA 24% 20% 20%
WTONONE 25% 22% 22%
WTOBOTH 25% 19% 19%
MILLS 27% 24% 23%

A 25% 23% 21%
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7. CONCLUSION

This paper has demonstrated that it is possible to estimate the asymptotic variance for
broad classes of estimators using a version of the bootstrap that only relies on the estima-
tion of one-dimensional parameters. We believe that this method can be useful for applied
researchers who are estimating complicated models in which it is difficult to derive or esti-
mate the asymptotic variance of the estimator of the parameters of interest. The contribu-
tion relative to the bootstrap is to provide an approach that can be used when researchers
find it time-consuming to reliably recalculate the estimator of the whole parameter vec-
tor in each bootstrap replication. This will often be the case when the estimator requires
solving an optimization problem to which one cannot apply gradient-based optimization
techniques. In those cases, one-dimensional search will be not only faster, but also more
reliable.

We have discussed the method in the context of the regular (nonparametric) boot-
strap applied to extremum estimators, generalized method of moments estimators, and
two-step estimators. However, the same idea can be used without modification for other
bootstrap methods such as the weighted bootstrap or the block bootstrap.

APPENDIX A: VALIDITY OF BOOTSTRAP

Hahn (1996) established that under random sampling, the bootstrap distribution of the
standard GMM estimator converges weakly to the limiting distribution of the estimator
in probability. Here, we state the same result under the same regularity conditions for
estimators that treat part of the parameter vector as known. Whenever possible, we use
the same notation and the same wording as Hahn (1996). In particular, 05(), O;’;(-),
03(+), and Op(+) are defined on page 190 of that paper. A number of papers have proved
the validity of the bootstrap in different situations. We choose to tailor our derivation
after Hahn (1996) because it so closely mimics the classic proof of asymptotic normality
of GMM estimators presented in Pakes and Pollard (1989).

We first review Hahn’s (1996) setup. The parameter of interest 6 is the unique solution
to G(t) =0where G(¢) = E[g(Z;, )], Z; is the vector of data for observation i, and g is a
known function. The parameter space is ©.

Let G,(1)=1%"  g(Z;,1). The GMM estimator is defined by

b

7, = argmin| A4, G, (1)
t

where A, is a sequence of random matrices (constructed from {Z;}) that converges to a
nonrandom and nonsingular matrix 4.

The bootstrap estimator is the GMM estimator defined in the same way as 7, but from
a bootstrap sample {Z,4, ..., Z,,}. Specifically,

T, =arg min|;l\,1’G\n(t)
t

b

where a,,(t) = ﬁ Yo g(zni, 1). ;4\,1 is constructed from {Z,,-}j’;, in the same way that A,
was constructed from {Z,},.

Our result is based on the same GMM setting as in Hahn (1996). The difference is that
we are primarily interested in an infeasible estimator that assumes that one part of the
parameter vector is known. We will denote the true parameter vector by 6,, which we
partition as 6, = (6;, 67).



POOR (WO)MAN’S BOOTSTRAP 1297

The infeasible estimator of 6,, which assumes that 67 is known, is

Aﬁ”((@%)ﬂ o
n=aeminG, () 44 ()

Let the dimensions of 6) and 6] be k; and k,, respectively. It is convenient to define
Ey = I,k 2 Ok xiy)" and Ey = (0, wk, : i, k,)'. Post-multiplying a matrix by E; or E, will
extract the first k; or the last k, columns of the matrix, respectively.

Let
(/él /0\2)/ = arg min G tl /A/ A G tl
’ ) n t2 n‘inn t2

be the usual GMM estimator of 6,. We consider the bootstrap estimator

~~ [t
i.(3)
where an(t) = % h g(Zm-, 1). }In is constructed from {Zﬂ-};;1 in the same way that A4,
was constructed from {Z;}_,. Below, we adapt the derivations in Hahn (1996) to show
that the distribution of ¥y, can be used to approximate the distribution of y,. We use ex-
actly the same regularity conditions as Hahn (1996). The only exception is that we need
an additional assumption to guarantee the consistency of ¥,,. For this, it is sufficient that
the moment function, G, is continuously differentiable and that the parameter space is
compact. This additional stronger assumption would make it possible to state the condi-
tions in Proposition 1 more elegantly. We do not restate those conditions because that
would make it more difficult to make the connection to Hahn’s (1996) result.

v, = argmin
t

or

; (15)

¥, = argmin
t

PROPOSITION 1—Adaption of Hahn’s (1996) Proposition 1: Suppose that the conditions
in Proposition 1 of Hahn (1996) are satisfied. In addition, suppose that G is continuously
differentiable and that the parameter space is compact. Then v, = 6, + 0,(1) and ¥, =
0(1) + 03(1).

THEOREM 3—Adaption of Hahn’s (1996) Theorem 1: Assume that the conditions in
Proposition 1 and Theorem 1 of Hahn (1996) are satisfied. Then

n'*(y, — 65) = N(0, 02)

and
2Ty —y,) == N(0, 2),
where
Q= (E\I" AATE,) E,I'" A ASA'ATE,(E,I" A ATE,)"'
and

V =E[g(Z:, 60)8(Z;, 60)'].
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The proofs of Proposition 1 and Theorem 3 are provided in Section S-5 of the Supple-
mental Material.

Theorem 3 is stated for GMM estimators. This covers extremum estimators and the
two-step estimators as special cases. Theorem 3 also covers the case where one is inter-
ested in different infeasible lower-dimensional estimators as in Section 4.2. To see this,
consider two estimators of the form

’

R . 1 n 1 n
as,) zargmaln(; > fx, 00+a61)> W;(E ;f(xi, 9o+a81))

i=1
and

R ' 1 n ! 1 n
a(8y) = argmaln(ﬁ D f(xi, 60+ a82)> W, (Z ;f(xi, 0y + aSz)),

i=1

and let A4, denote the matrix-square root of W,. We can then write

A, 0\ 1 (f(xi, 80+ ad)
0 4, ;Z f(xi, 60+ ady)

i=1

(a(81),a(5,)) = argmin

b

which has the form of (14).

APPENDIX B: PROOF OF THEOREM 1
Let w55, = (8,H8,)"'8,V8;(8,H8;)~", let hj, denote the elements of H, and write
V= (plv ?}) with v > 0. We use e, to denote a vector that has 1 in its jth element and zeros
elsewhere.
First, note that we can always rotate the coordinate system so that two of the directions
are e; and e,. Let (a1, a,)’ and (b4, b,)’ be the other two directions (after the rotation).
Second, note that

1

welvel

= h117

1 -1
Wey,ey _ hiy pvhs, _

- b
Perer erer V 3, h3,0?
v
N Weye, = h_22 =k,

_ -1
wel,(al,az), = hnl(a] —+ azpv)(afh“ + 261](12]112 —+ a%/’lzz) = kz,

wel,(bl,bz)/ = h;ll(bl + bzp'U) (b%hll + 2b1b2h12 + b;hzz)_l = k3.

So p and A4, are identified. Using the third equation, the last two equations can be written
as

kzhn(a%hu +2ayaxh, + aghzz) = (a1 + arpkihy),
kshy, (b%hn +2b1byhis + bghzz) = (b1 + bypkihy),
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or
2k2h11611612 kzhna% — azpkl h12 _ a; — a%kzh%l (16)
2k3h]|b1b2 k3h|]b§ - bzpkl h22 - b] — b%ksh%l )
Below, we show that the determinant of the matrix on the left cannot be zero. As a
result, (16) has a unique solution for 4, and h,,. Once we have hy, we then get the

remaining unknown, v, from v = kh,,. This will complete the proof.
The determinant of the matrix on the left of (16) is

(2k2h11a1a2)(k3h11b§ - bzpk1) - (kzhna; - azpkl)(2k3h11b1b2)

= (2h7}' (a1 + axpv) (aihyy + 2a,a:h,, + aghzz)_lhnalaz)

_ v
X <h111(b1 + bypv) (bfhn +2b,byhy, + bghzz) 1hnbg - bzph—)
2

_ v
— (hl_ll(al + a,pv) (a%hn +2a,a,h, + aghzz) 1h1la% - azph—)
2

X (2h1_11(b1 + bypv) (b%hn +2b,bhy; + bghzz)_lhnblbz)
(2(611 + azpv)alaz)
(a%hn +2a,a,h, + aghzz)
< (b1 + bypv)b3hy, _ bzPU(b%hn +2b1byhy; + b§h22)>
(b%hu +2b1byh; + bghzz)hgz (b%hn +2b1byhy; + bghzz)hzz
2(b1 + bzpv)blbz
(b?hn +2b,byhy, + bghzz)

< (a) + azpv)azhy B azpv(afhn +2a,a,hy, + aihzz)>
(afhn +2a1a3h + a%hzz) hy (ﬂ%hu +2aya3h, + aghzz) hy

. (2(611 + azpv)alaz) (b]b%hzz — bzpv(bfhn + 2b1b2h12)>
(a%hu +2ayaxh, + aghzz) (b%hn +2b1byhys + béhzz) hay

B 2(by + bypv)b,b, (alaihzz - azpv(afhn + 201ﬂ2h12)>
(b%hn +2b1byhi + bghzz) (a%hn +2aia2h + aghzz)hzz .

Multiplying out and canceling terms, we get
2a1a;b1by(arby — axby) (hv°p® — 2hpvp + ha)
(b%hll +2b1byh + bghzz) (a%h“ +2ayaxh + aghzz)/’lzz

[(_pv7 1)H(_pv7 1)/]
[(bb by)H (b, bz)/] [(du ax)H(ay, ﬂz)/] [e/zHez] .

= Zalazblbz(albz - a2b1)

Each of the four terms in brackets is positive because H is positive definite. Moreover,
since none of four directions is proportional to another a,a,b,b,(a,b, — a,b,) cannot be
zZero.
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APPENDIX C: EXPLOITING THE STRUCTURE IN HELPMAN ET AL.

In the specification used by Helpman, Melitz, and Rubinstein (2008) and in the modifi-
cation in Section 6.3.1, it is relatively easy to re-estimate the first-step parameter in each
bootstrap replication. In the second step, it is easy to estimate B8; and 3, for given value
of B3, since this is a linear regression. We therefore consider estimators of the form

1
a = in — i70 )
@, = argmin _ ZQ(Z 1+ ay)
~ 1 .
a,(A) = argmin — ZR(zi, 0, +a;, 6, + Aa,),
@ n
~ 1
az(A) = argmin — ZR(ZD 01, 0, + Aas),
a n

where @,(A) and a;(A) are now the vectors of dimension / < k, and A is k,-by-/. A either
picks out the vector (B, 8,)" or the scalar ;.
Using the notation from Section 5, the asymptotic variance of (a;, @,(4), a3(4)) is

1 -1

O 0 0\ (Va VoA VA 01 R/A 0
AR, ARA 0 AV, AVnA AVuA|[ 0 ARA 0
0 0  ARA) \AV], AVpA AVuA)\ O 0 ARA

Using the expression for partitioned inverse and multiplying out gives a matrix with
nine blocks. The second and third blocks in the first row of blocks are —Q,‘lVHQl‘1 X
RIA(AR,A) ' + Q7 Wi A(A'R,A)~! and Q7 'V, A(A'R,A) 7Y, respectively. With R, and O,
known and A = (1}, : 0jxx,)’, the block Ql_lVle(A/RzA)’l identifies AV, which is the first
! row of V}, (and hence the first / columns of V/},). The difference between the last two
blocks in the top row of blocks is —Q;'V;,0; ' RjA(A'R,A)~!. This identifies R| A, which
is the first / columns of R;.
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