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Abstract

This work proposes a new resource allocation optimization and network management framework

for wireless networks using neighborhood-based optimization rather than fully centralized or fully

decentralized methods. We propose hierarchical clustering with a minimax linkage criterion for the

formation of the virtual cells. Once the virtual cells are formed, we consider two cooperation models: the

interference coordination model and the coordinated multi-point decoding model. In the first model base

stations in a virtual cell decode their signals independently, but allocate the communication resources

cooperatively. In the second model base stations in the same virtual cell allocate the communication

resources and decode their signals cooperatively. We address the resource allocation problem for each of

these cooperation models. For the interference coordination model this problem is an NP-hard mixed-

integer optimization problem whereas for the coordinated multi-point decoding model it is convex. Our

numerical results indicate that proper design of the neighborhood-based optimization leads to significant

gains in sum rate over fully decentralized optimization, yet may also have a significant sum rate

penalty compared to fully centralized optimization. In particular, neighborhood-based optimization has a

significant sum rate penalty compared to fully centralized optimization in the coordinated multi-point

model, but not the interference coordination model.

I. INTRODUCTION

The demand for increased capacity in cellular networks continues to grow, which is driving

the deployment of spectrally-efficient small cells [1]–[4]. While the deployment of small cells

leads to significant capacity gains over macrocell-only systems, the proximity of small cell base

stations (BSs) to one another can cause severe interference between them. This interference must
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be managed carefully to maximize the overall network capacity. Thus, powerful interference

mitigation methods as well as optimal resource allocation schemes that involve multiple cells

must be developed for 5G networks.

In this work we investigate a flexible network structure for cellular systems where, instead

of each BS serving all users within its own cell independently, several BSs act cooperatively

to create a virtual cell with joint resource allocation. In order to design cellular networks that

are composed of virtual cells, we address in this work the following two design challenges: 1)

Creating the virtual cells, i.e., clustering the BSs and users into virtual cells. 2) Allocating the

resources in each virtual cell. In this work we address the uplink resource allocation problem

for joint channel allocation and power allocation for the single user detection scenario. We also

address the resource allocation problem for coordinated multi-point decoding scenarios in which

BSs in a virtual cell jointly decode the signals that they receive.

BS and user clustering as part of a resource allocation strategy is discussed in the Cooperative

Multi-Point (CoMP) literature, see for example [5]–[15]. The work [16] presents an extensive

literature survey of cell clustering for CoMP in wireless networks. The clustering of BSs and

users can be divided into three groups: 1) Static clustering which considers a cellular network

whose cells are clustered statically. Hence, the clustering does not adapt to network changes.

Examples for static clustering algorithms are presented in [5]–[8]. 2) Semi-dynamic clustering,

in which static clusters are formed but the cluster affiliation of users is adapted according to the

networks changes. Examples for such algorithms are presented in [9]–[11]. 3) Dynamic clustering

in which the clustering of both BSs and users adapts to changes in the network. Examples for

dynamic clustering algorithms are presented in [12]–[15].

Resource allocation in virtual cells is closely related to cloud radio access networks [17]–[21]

in which several cells act cooperatively. The coordination between the cells can be divided into

the following categories: 1) Interference coordination in which only channel states are available

at the coordinated BSs. 2) Full cooperation in which BSs share not only channel states but also

the data signals they receive. 3) Rate limited coordination in which the BSs exchange data via

a limited-capacity backhaul. 4) Relay-assisted cooperation in which cooperation is carried out

by dedicated relay nodes that connect users from different cells and BSs. In addition, resource

allocation in virtual cells is also closely related to the interference mitigation paradigm called

Cooperative Multi-Point (CoMP) (see [22]) that encompasses several cooperation models. Two

such models are the Uplink Interference Prediction model in which cooperation is allowed in the
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resource allocation stage only, and the Uplink Joint Detection model that allows BS cooperation

in both the resource allocation and decoding stages.

In this work we investigate a flexible cooperative resource allocation structure for cellular

systems where, instead of each BS serving all users within its own cell independently, several

BSs act cooperatively to create a virtual cell. We consider two BS cooperation models for the

uplink communication in virtual cells. The first model allows for cooperation in the resource

allocation stage only, whereas the second model allows for cooperation in both the resource

allocation and the decoding stages. We refer to the first model as the interference coordination

model and to the second as the coordinated multi-point model. Our work [23] considers the

coordinated multi-point decoding model in which BSs jointly decode their messages assuming

infinite capacity backhaul links between BSs in the same virtual cell. Additionally, in [24] we

propose channel and power allocation schemes for the interference coordination model. This

manuscript presents a unified framework that evaluates both cooperation models analyzed in [23]

and [24]. It extends the analysis of the resource allocation schemes presented in [24], and also

further evaluates and compares the network optimization schemes presented in both [23] and

[24].

Clustering as part of a resource allocation strategy in wireless networks is also investigated

in the ultra-dense networks literature, see for example [14], [25]–[30]. These works can be

categorized into two groups: cell clustering (see [25]–[27]), in which the existing cells of a

cellular networks are merged, and user-centric clustering (see [14], [28], [29]), in which each

user chooses a subset of BSs to communicate with. The work presented in this manuscript

differs from these works in several key aspects. First, our channel state information model differs

from that of the aforementioned works which either assume that the inter-cluster interference

is perfectly known for all the channels in the network [25]–[27], [30], or strictly statistical for

all the channels in the network [14], [28], [29]. In our setup we assume perfect channel state

information inside each virtual cell but no channel information regarding users in different virtual

cells. We note that our resource allocation schemes can be adapted to statistical knowledge

regarding the inter-cluster interference. Second, in addition to proposing a clustering scheme to

create virtual cells, we also address both the channel and power allocation problems. In contrast,

the analysis presented in the aforementioned works are limited to the channel allocation problem

and do not address the power allocation problem within the clusters. Instead it is assumed that

the power allocation is fixed. A fixed power allocation can degrade significantly the performance



4

of cooperative models, such as the coordinated multi-point decoding model, in which BSs jointly

decode the signals that they receive. Additionally, to the best of our knowledge, prior works

optimizing performance based on cell clustering or CoMP did not consider how performance

varied with the number of clusters or with the user affiliation rules.

Our work is also related to the concept of Software Defined Networks (SDN), introduced in

[31]–[35]. The underlying idea behind SDN is the separation of the data plane, which carries the

data in the network, and the control plane, which determines how packets in the network are

forwarded. Theoretically, the concept of SDN can be harnessed in limiting the interference in the

network by allocating the resources in the network centrally [36], [37]. However, the very thing

that makes SDNs centralized control plane attractive also renders its implementation complexity

challenging due to the required flexibility. These complexity issues are more severe in wireless

communication networks employing SDN because of their time-varying nature, which requires

fast updating rules for the control plane. Creating virtual cells that are composed of several cells

can assist in managing wireless network and close the gap between the promising concept of

SDN and the difficulties that arise in its implementation.

A. Main Contributions:

This work extends the concept of cellular networks while preserving several of its key desirable

properties, such as simple user association rules and dividing the network into independent cells

that may cooperate to suppress interference. We call this network paradigm a cellular network

with virtual cells.

A cellular network design with virtual cells has the following benefits:

1) improves network performance while balancing the computational complexity of optimal

resource allocation

2) uses both local and global network information

3) ensures that local changes in the network do not cause a “butterfly effect” in which the

allocation of resources across the whole network design must be recalculated due to a local

change.

We create the virtual cells by clustering the BSs, instead of users, in the network, and then

associate users with the clustered BSs. We cluster BSs based on the hierarchical clustering method

with minimax linkage criterion that creates a dendrogram. The dendrogram shows which clusters

are merged when the number of clusters is decreased and which are separated when this number
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is increased. We propose using this clustering approach since it enjoys the unique property that

decreasing or increasing the number of clusters affects only the clusters that are being merged or

separated, while leaving all others unchanged. By contrast, in other clustering methods, such

as K-means or spectral clustering, even a small variation in the number of clusters requires

the reclustering of the whole network, which may cause a global change. This is undesirable

behavior for wireless communication networks since the channel state information between all

users in the new virtual cells and the new virtual BSs must be estimated. Thus, we propose

using hierarchical clustering in which the number of clusters can adapt efficiently to the current

state of the network without requiring an overall update in the network. Additionally, the method

we propose requires only local channel state information that is used in the user association

rule and in computing the resource allocation scheme inside the virtual cells. The BS clustering

which constructs the “backbone” of the network does not require knowledge of the channel state

between all the users and BSs in the network.

To optimize the performance of cellular networks with virtual cells we also develop resource

allocation schemes for virtual cells in the single user detection scenario, and compare them to

previously proposed resource allocation schemes for heterogeneous cells. Interestingly, numerical

results show that the performance of these resource allocation schemes depends on the number

of virtual cells in the network. Additionally, we address resource allocation for the coordinated

multi-point decoding scenario. The resource allocation in both setups uses local channel state

information, that is, we assume that the BSs in a virtual cell acquire the channel state information

between them and all the users in the virtual cells. Finally we note that, while we do not suppress

interference between virtual cells in the resource allocation stage, as we decrease the number of

virtual cells, interference is dominated by interference within the virtual cell so that our resource

allocation scheme mitigates this dominant interference.

B. Outline and Notation

The remainder of this paper is organized as follows. Section II presents the problem formulation

that we analyze in this work. Section III describes the method for forming the virtual cells. Sections

IV and V present several algorithms for allocating resources in the interference coordination

model. In particular, Section IV proposes a joint channel and power allocation scheme. Section

V proposes channel and power allocation algorithms based on an alternating optimization in

which the resource allocation is calculated by alternating between a channel and power allocation
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problem. Section V presents three channel allocation schemes that we evaluate: a user-centric

one that we propose and two existing ones, a BS centric scheme and a sum rate maximization

matching scheme. Section VI presents an optimal resource allocation scheme in virtual cells

for the coordinated multi-point decoding model. Section VII presents numerical results of the

average system sum rate for all of our proposed clustering and resource allocation methods.

Finally, VIII summarizes and concludes this work.

Notation: The following notations are used throughout this paper. Vectors are denoted by

boldface lowercase letters whereas matrices are denoted by boldface uppercase letters. We denote

the transpose of a vector a by a′, and the conjugate transpose of a matrix A by A†. The expected

value of a random variable x is denoted by E(x). Additionally, we denote the covariance matrix

of a random vector x by cov(x). det(A) denotes the determinant of a square matrix A. Finally,

1E denotes the indicator function; it is equal to one if the event E is true and zero otherwise.

Finally the cardinality of a set S is denoted by |S|.

II. PROBLEM FORMULATION

We consider a communication network that comprises a set of BSs (BSs) B, a set of users U

and a set of frequency bands K. The users communicate with their BSs and these transmissions

interfere with one another. Each user u ∈ U has a maximal transmission power of P u dBm. The

BSs and users are clustered into virtual cells that must fulfill the following characteristics.

A. Virtual Cells

Definition 1 (Virtual BS): Let b1, .., bn be n BSs in the set of BSs B, we call the set {b1, .., bn}

a virtual BS.

Definition 2 (Proper clustering): Let B be a set of BSs, U be a set of users. Denote V =

{1, . . . , V }. For every v, define the sets Bv ⊂ B and Uv ⊂ U . We say that the set V is a proper

clustering of the sets B and U if Bv is a partition of the sets B and U . That is,
⋃
v∈V Bv = B,⋃

v∈U Uv = U . Additionally, Bv1 ∩Bv2 = ∅ and Uv1 ∩Uv2 = ∅ for all v1, v2 ∈ V such that v1 6= v2.

Definition 3 (Virtual cell): Let B be a set of BSs, U be a set of users, and V be a proper

clustering of B and U . For every v ∈ V the virtual cell Cv is composed of the virtual BS Bv and

the set of users Uv.
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This condition ensures that every BS and every user belongs to exactly one virtual cell. This

implies that all the transmission power of a user is dedicated to communicating with BSs in the

same virtual cell, thus power allocation can be optimized in a virtual cell.

Let V be a proper clustering of the set of BSs B and the set of users U , and let {Cv}v∈V be

the set of virtual cells that V creates. In each virtual Cv we assume that the BSs that compose

the virtual BS Bv jointly allocate their resources.

B. The Uplink Resource Allocation Problem for the Interference Coordination Model

In each virtual cell we consider the uplink resource allocation problem in which all the BSs

in the virtual cell jointly optimize the channel allocation and the transmission power of the users

within the virtual cell. Further, we consider single user detection in which every BS b decodes

each of its codewords separately. That is, suppose that users u1 and u2 are both served by BS

b, then b decodes the codeword of u1 treating the codeword of u2 as noise, and decodes the

codeword of u2 treating the codeword of u1 as noise. We refer to this model as the interference

coordination model.

While each user can communicate with all the BSs in its virtual cell, it follows by [34] that,

given a power allocation scheme, the maximal communication rate for each user is achieved

when the message is decoded by the BS with the highest SINR for this user. Recall that K is the

set of frequency bands. Denote by hu,b,k the channel coefficient of the channel from user u ∈ U

to BS b over frequency band k, and let Pu,k be the transmit power of user u over frequency band

k. Further, let σ2
b,k denote the noise power at BS b over frequency band k, and let Wk denote the

bandwidth of band k. The uplink resource allocation problem in each virtual cell Cv, ignoring

interference from other virtual cells, is given by:

max
∑
b∈Bv

∑
u∈Uv

∑
k∈K

γu,b,kWk log2

(
1 +
|hu,b,k|2Pu,k
σ2
b,k + Ju,b,k

)

s.t.: 0 ≤ Pu,k,
∑
k∈K

Pu,k ≤ P u, ∀ u ∈ Uv, k ∈ K,

∑
ũ∈Uv ,
ũ6=u

|hũ,b,k|2Pũ,k = Ju,b,k, ∀u ∈ Uv, b ∈ Bv, k ∈ K

γu,b,k ∈ {0, 1},
∑
b∈Bv

γu,b,k ≤ 1, ∀ u ∈ Uv, b ∈ Bv, k ∈ K. (1)

This is a mixed-integer programming problem that is NP-hard. Sections IV and V present two

different approaches to approximate this problem for a given virtual cell. The first approach,
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presented in Section IV, translates this problem from a mixed-integer programming problem to

an equivalent problem with continuous variables. The second approach, presented in Section V,

approximates the optimal solution by solving a user-centric channel allocation problem, and a

power allocation problem, alternately.

C. The Uplink Resource Allocation Problem for Coordinated Multi-Point Decoding

In the coordinated multi-point decoding model BSs jointly decode the signals that they receive.

This model can be realized, for example, based on cloud decoding of the signals received by all

BSs under the assumption that the BS communication to the cloud has unconstrained capacity.

This model is equivalent to a multiple access channel (MAC) with a single transmitting antenna

at each user and multiple antennas corresponding to all BS antennas at the receiver. Recalling

that K is the set of frequency bands, denote by xu, k the signal of user u on frequency band

k, and by yb,k the received signal at BS b for band k ∈ K. For the sake of clarity, we label the

BSs in the cluster v by b1, . . . , b|Bv |, and label the users in cluster v by u1, . . . , u|Uv |. Denote

yv,k , (yb1,k, . . . , yb|Bv |,k)
′ and let xv,k , (xu1,k, . . . , xu|Uv |,k)

′. The receiving signal at BS b ∈ Bv,

ignoring the interference from other clusters, in frequency band k is

yb,k =

|Uv |∑
i=1

hui,b,kxui,k + nb,k, (2)

where hui,b,k is the channel coefficient from user ui in v to the BS b in v over frequency band k,

and nb,k is a white Gaussian noise at BS b over frequency band k.

Let hui,k = (hu1,b1,k, . . . , hui,b|Bv |,k)
′ be the channel coefficient vector between user ui in v to

all the BSs in cluster v. Then the receiving signal vectors at the BSs in v are

yv,k =

|Uv |∑
i=1

hui,kxui,k + nv,k, (3)

where nv,k = (nb1,k, . . . , nb|Bv |,k) is a white noise vector at the BSs.

Let Cv,k = cov (xv,k) and N v,k = cov(nv,k); the sum capacity of the uplink in the virtual

cell is then:

max
∑
k∈K

Wk log2 det

(
I +

∑
u∈Uv

pu,khu,kh
†
u,kN

−1
v,k

)

s.t.:
∑
k∈K

pu,k ≤ P u, pu,k ≥ 0. (4)
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We note that while interference between virtual cells is not addressed in this work, as the

number of virtual cells is decreased, each virtual cell becomes larger, and the interference inside

the virtual cells becomes the dominant interference. This interference is mitigated in (1) and

(4) to improve network performance. Additionally, we note that if an approximated inter-cluster

interference is known to be ib,k at BS b at frequency band k, then term σ2
b,k can be replaced with

σ2
b,k + ib,k in the interference coordination model. Similarly, in coordinated multi-point decoding,

the noise covariance matrix N v,k can be replaced with the term N v,k + Iv,k where Iv,k is some

approximation for the covariance matrix of inter-cluster interference in the virtual cell v.

III. FORMING THE VIRTUAL CELLS

This section presents the clustering approach that creates the virtual cells within which the

resource allocation scheme we present in Sections IV-VI operate.

A. Base Station Clustering via Hierarchical Clustering with Minimax Linkage Criterion

A hierarchical clustering algorithm creates a linkage tree, using a linkage criterion, that shows

which clusters are merged when the number of clusters is decreased, and which are separated

when this number is increased. This linkage tree is called a dendrogram. We propose using

the hierarchical clustering algorithm to cluster BSs, since it enjoys the unique property that

decreasing or increasing the number of clusters only affects the clusters that are being merged or

separated. Thus, the number of clusters can adapt efficiently to the current state of the network

without requiring a full clustering update. By contrast, in other clustering methods, such as

K-means or spectral clustering, even a small variation in the number of clusters requires a full

clustering update. This is undesirable in wireless networks since a large setup time and overhead

for each reclustering is needed for information acquisition and other message passing.

Furthermore, we propose using the hierarchical clustering algorithm with the minimax linkage

criterion proposed in [38] and that we depict in Algorithm 1. This algorithm gets a set of points

S and produces the clusterings B1, . . . , Bn, where Bm is the clustering of size m. The algorithm

defines the center of a cluster to be the member of the cluster with the minimal maximal distance

to all other members in the cluster. This minimal maximal distance is the cluster radius. Then,

in every step, the minimax linkage criterion merges the two clusters that will jointly have the

smallest radius out of all merging possibilities. Since interference tends to increase on average

as the distance between interferers is decreased, at each stage the minimax linkage criterion
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merges the two clusters of BSs that maximize the smallest anticipated interference at the center

of the new cluster caused by the cluster BSs. In addition, the minimax linkage criterion benefits

from fulfilling several desirable properties in cluster analysis, as discussed in [38], that other

linkage criteria such as the centroid linkage criteria do not fulfill. Next, we formally depict the

hierarchical clustering algorithm with minimax linkage criterion.

Let d : R2 × R2 → R be the Euclidean distance function, and let S be a set of points in R2.

We then define the following:

Definition 4 (Radius of a set around point): The radius of S around si ∈ S is defined as

r(si, S) = maxsj∈S d(si, sj).

Definition 5 (Minimax radius): The minimax radius of S is defined as r(S) = minsi∈S r(si, S).

Definition 6 (Minimax linkage): The minimax linkage between two sets of points S1 and S2

in R2 is defined as d(S1, S2) = r(S1 ∪ S2).

Let S = {s1, . . . , sn} be the set of locations of the BSs in B. We use Algorithm 1 below

with the input S to create the virtual BSs for each number of clusters m. This produces the

dendrogram which shows what clusters are merged as the number of clusters is decreased.

Algorithm 1
1: Input: A set of point S = {s1, . . . , sn};

2: Set Bn = {{s1}, . . . , {sn}};

3: Set d({si}, {sj}) = d(si, sj), ∀si, sj ∈ S;

4: for m = n− 1, . . . , 1 do

5: Find (S1, S2) = argminG,H∈Bm+1:

G 6=H
d(G,H);

6: Update Bm = Bm+1

⋃
{S1 ∪ S2} \ {S1, S2};

7: Calculate d(S1 ∪ S2, G) for all G ∈ Bm;

8: end for

B. Users’ Affiliation with Clusters

To create the virtual cells, we consider two affiliation rules:

1) Closest BS rule in which each user is affiliated with its closest BS.

2) Best channel rule in which each user is affiliated with the BS to which it has the best

channel (absolute value of the channel coefficient).
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Then each user is associated with the virtual BS that its affiliated BS is part of. This way every

virtual BS and it associated users compose a virtual cell. It is easy to verify that the formation

of the virtual cells we propose fulfills the requirement presented in Section II-A.

The combination of creating virtual cells by using global network information for BS clustering

and local network information to associate users with virtual cells creates an easy-to-manage

network architecture that does not require a global update when local changes in the network

occur.

IV. CHANNEL AND POWER ALLOCATION FOR THE INTERFERENCE COORDINATION MODEL

This section introduces the first resource allocation scheme we propose for the interference

coordination model. This scheme is found by converting the problem (1) to an equivalent

continuous variable problem and then solving the new problem via a convex approximation.

A. An Equivalent Continuous Variable Resource Allocation Problem

We can represent the problem (1) by an equivalent problem with continuous variables. Suppose

that, instead of sending a message to at most one single BS at each frequency band, a user

sends messages to all BSs. The signal of user u ∈ Uv over frequency band k is then given

by xu,k =
∑

b∈Bv xu,b,k where xu,b,k is the part of the signal of user u that is transmitted over

frequency band k and is intended to be decoded by BS b. Let Pu,b,k be the power allocation of

the part of the signal of user u that is transmitted over frequency band k and is intended to be

decoded by BS b.; i.e. Pu,b,k = E
(
x2u,b,k

)
, where E

(
x2u,b,k

)
denotes the expected value of x2u,b,k.

We next prove that (1) can in fact be written in the following equivalent form:

max
∑
b∈Bv

∑
u∈Uv

∑
k∈K

Wk log2

(
1 +
|hu,b,k|2Pu,b,k
σ2
b,k + Ju,b,k

)

s.t.: 0 ≤ Pu,b,k,
∑
b∈Bv

∑
k∈K

Pu,b,k ≤ P u, ∀ u ∈ Uv, b ∈ Bv, k ∈ K,

∑
(ũ,b̃)∈Uv×Bv ,
(ũ,b̃)6=(u,b)

|hũ,b|2Pũ,b̃,k = Ju,b,k, ∀ u ∈ Uv, b ∈ Bv, k ∈ K. (5)

Theorem 1: The mixed-integer programming problem (1) and the continuous variables problem

(5) are equivalent.

Proof: The equivalence of (1) and (5) is argued as follows.
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First, the solution of (1) can be achieved by the solution of (5) by setting xu,b,k = 0 whenever

γu,b,k = 0, and E
(
x2u,b,k

)
= Pu,k whenever γu,b,k = 1. Thus the maximal sum rate that is found

by solving (5) upper bounds the maximal sum rate that is found by solving (1). On the other

hand, suppose that the optimal transmission power of user u using frequency band k, given

the transmission power of all other users, is Pu,k, that is Pu,k =
∑

b∈Bv Pu,b,k. It follows by the

duality between the multiple-access channel and the broadcast channel that is proved in [34]

that the optimal power allocation (Pu,b,k)b∈Bv for user u in frequency band k, given the power

allocation of all other users, is to allocate all its transmission power Pu,k over frequency band k

to the transmission to the BS with the highest SINR. It follows that the maximal sum rate of (5)

cannot be larger than that of (1). Thus, the two problems (1) and (5) are equivalent.

B. Solving an Approximation of the Continuous Variable Resource Allocation Problem Optimally

In the following, we solve problem (5). Denote:

SINRu,b,k(P ) =
|hu,b,k|2Pu,b,k

σ2
b +

∑
(ũ,b̃)∈Uv×Bv ,
(ũ,b̃)6=(u,b)

|hũ,b,k|2Pũ,b̃,k
, (6)

where P = (Pu,b,k)(u,b,k)∈Uv×Bv×K is the matrix of the transmission power.

Using the high SINR approximation [39]

log(1 + z) ≥ α(z0) log z + β(z0), (7)

where

α(z0) =
z0

1 + z0
, β(z0) = log(1 + z0)−

z0
1 + z0

log z0, (8)

we obtain the approximated iterative problem (9) where α(m)
u,b,k = α(SINRu,b,k(P

(m−1))), β(m)
u,b,k =

β(SINRu,b,k(P
(m−1))) and α(0)

u,b,k = 1, β(0)
u,b,k = 0 for all u ∈ Uv, b ∈ Bv and k ∈ K.

P (m) =argmax
P

∑
b∈Bv

∑
u∈Uv

∑
k∈K

Wk

α(m)
u,b,k log2

 |hu,b,k|2Pu,b,k
σ2
b,k +

∑
(ũ,b̃)∈Uv×Bv ,
(ũ,b̃) 6=(u,b)

|hũ,b,k|2Pũ,b̃,k

+ β
(m)
u,b,k


s.t.: 0 ≤ Pu,b,k,

∑
b∈Bv

∑
k∈K

Pu,b,k ≤ P u, ∀ u ∈ Uv, b ∈ Bv, k ∈ K

∑
(ũ,b̃)∈Uv×Bv ,
(ũ,b̃) 6=(u,b)

|hũ,b,k|2Pũ,b̃,k = Ju,b,k, ∀ u ∈ Uv, b ∈ Bv, k ∈ K. (9)
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It is left to solve the problem (9). By transforming the variables of the problem using

Pu,b,k = exp(gu,b,k) and noticing that the terms β(m)
u,b,k do not affect the optimal power allocation,

we get the equivalent convex problem:

ln(P (m)) = argmax
∑
b∈Bv

∑
u∈Uv

∑
k∈K

Wkα
(m)
u,b,k · log2

 |hu,b,k|2 exp(gu,b,k)
σ2
b,k +

∑
(ũ,b̃)∈Uv×Bv ,
(ũ,b̃)6=(u,b)

|hũ,b,k|2 exp(gũ,b̃,k)


s.t.:

∑
b∈Bv

∑
k∈K

exp(gu,b,k) ≤ P u, ∀ u ∈ Uv. (10)

The Lagrangian of (10) is given by

L(g,λ;m) =
∑
b∈Bv

∑
u∈Uv

∑
k∈K

Wkα
(m)
u,b,k · log2

 |hu,b,k|2 exp(gu,b,k)
σ2
b,k +

∑
(ũ,b̃)∈Uv×Bv ,
(ũ,b̃)6=(u,b)

|hũ,b,k|2 exp(gũ,b̃,k)


−
∑
u∈Uv

λu

(∑
b∈Bv

∑
k∈K

exp(gu,b,k)− P u

)
, (11)

where m denotes the mth time (10) is solved.

Furthermore, the dual function of the Lagrangian is given by

q(λ;m) = sup
g
L(g,λ;m). (12)

Thus the dual problem of (10) is

max q(λ;m),

s.t.: λu ≥ 0, ∀u ∈ Uv. (13)

Since the problem (10) is convex with a non-empty interior, its duality gap is zero. Additionally,

since (10) has a compact domain in terms of Pu,b,k, it follows from [40, Proposition 6.1.1] that

we can solve the dual problem (13) using the gradient ascend method, that is:

λ(m,n+1)
u =

[
λ(m,n)u + ελ

(∑
b∈Bv

∑
k∈K

exp(g
(m,n)
u,b,k )− P u

)]+
, (14)

where g(m,n) = (g
(m,n)
u,b,k )u∈Uv ,b∈Bv ,k∈K is the maximizer of L(g,λ(m,n);m).

Recall that Pu,b,k = exp(gu,b,k). It is left to solve the subproblem (12). Since its objective

function is a strictly concave and differentiable function of g, a solution is attained at the point:

Pu,b,k =
Wkα

(m)
u,b,k

λu ln 2 +Wk

∑
(ũ,b̃)∈Uv×Bv ,
(ũ,b̃)6=(u,b)

α
(m)

ũ,b̃,k

SINRũ,b̃,k(P
(m))

P
(m)

ũ,b̃,k
|hũ,b̃,k|2

|hu,b̃,k|2
. (15)
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By [39] and [41] we can solve the fixed point (15) problem iteratively:

P
(m,n,s+1)
u,b,k =

Wkα
(m)
u,b,k

λ
(n)
u ln 2 +Wk

∑
(ũ,b̃)∈Uv×Bv ,
(ũ,b̃)6=(u,b)

α
(m)

ũ,b̃,k

SINRũ,b̃,k(P
(m,n,s))

P
(m,n,s)

ũ,b̃,k
|hũ,b̃,k|2

|hu,b̃,k|2
(16)

to achieve the optimal power allocation of the subproblem (12) where m denotes the iteration

number of the high SINR approximation, n denotes the iteration number of the gradient ascent

algorithm used to solve the dual problem, and s denotes the iteration of the iterative fixed point

solution. The existence of the solution is guaranteed because of the strong concavity of (12).

C. Solving an Approximation of the Continuous Variable Resource Allocation Problem Efficiently

Since the problem (10) is convex with a non empty interior, its duality gap is zero, and the

KarushKuhnTucker (KKT) conditions are sufficient for the points to be primal and dual optimal.

The KKT conditions for (10), after substituting Pu,b,k = exp(gu,b,k), are

Pu,b,k =
Wkα

(m)
u,b,k

λu ln 2 +Wk

∑
(ũ,b̃)∈Uv×Bv ,
(ũ,b̃)6=(u,b)

α
(m)

ũ,b̃,k

SINRũ,b̃,k(P
(m))

P
(m)

ũ,b̃,k
|hũ,b̃,k|2

|hu,b̃,k|2
, ∀u ∈ Uv, (17)

0 = λu

(∑
b∈Bv

∑
k∈K

Pu,b,k − P u

)
, ∀u ∈ Uv, (18)

∑
b∈Bv

∑
k∈K

Pu,b,k ≤ P u, λu ≥ 0, ∀u ∈ Uv. (19)

Define the following iterative update rule

P
(m,s+1)
u,b,k =

Wkα
(m)
u,b,k

λ
(s+1)
u ln 2 +Wk

∑
(ũ,b̃)∈Uv×Bv ,
(ũ,b̃)6=(u,b)

α
(m)

ũ,b̃,k

SINRũ,b̃,k(P
(m,s))

P
(m,s)

ũ,b̃,k
|hũ,b̃,k|2

|hu,b̃,k|2
, (20)

where λ(s+1)
u = 0 if∑

b∈Bv

∑
k∈K

α
(m)
u,b,k∑

(ũ,b̃)∈Uv×Bv ,
(ũ,b̃) 6=(u,b)

α
(m)

ũ,b̃,k

SINRũ,b̃,k(P
(m,s))

P
(m,s)

ũ,b̃,k
|hũ,b̃,k|2

|hu,b̃,k|2
≤ P u. (21)

Otherwise λ(s+1)
u is chosen such that

∑
b∈Bv

∑
k∈K P

(m,s+1)
u,b,k = P u.

We have that if this update rule converges, it must converge to a KKT point, which in turn

is globally optimal. While there is no known proof that guarantees convergence, in practice

convergence is observed in simulations.
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V. SOLVING THE RESOURCE ALLOCATION PROBLEM VIA ALTERNATING OPTIMIZATION

A more traditional approach to solving the resource allocation problem (1) separates it into

two subproblems: a channel allocation problem that sets the value of γu,b,k to be either zero or

one, and a power allocation problem that optimizes the transmission power. Then we iteratively

solve these two problems until a stopping criterion is fulfilled. A resource allocation scheme of

this type is depicted by Algorithm 2.

Algorithm 2
1: Notations: P (n) = (P

(n)
u,b,k)(u,b,k)∈Uv×Bv×K, γ(n) = (γ

(n)
u,b,k)(u,b,k)∈Uv×Bv×K;

2: Input: δ > 0, Nmax ∈ N;

3: Set n = 0, δ0 = 2δ;

4: Set P (0)
u,b,k = P u/(|Bv||K|) and γ(0)u,b,k = 0 for all u ∈ Uv, b ∈ Bv and k ∈ K;

5: while δn > δ and n < Nmax do

6: n = n+ 1;

7: Channel allocation: Given the power allocation P (n−1), set γ(n)u,b,k to be either zero or

one for every u ∈ Uv, b ∈ Bv and k ∈ K.

8: Power allocation: Given γ(n), calculate P (n) by solving the iterative problem (10)

starting with some initial values α(0)
u,b,k, (u, b, k) ∈ Uv × Bv ×K.

9: Calculate the sum rate

R(P (n),γ(n))=
∑
b∈Bv

∑
u∈Uv

∑
k∈K

γ
(n)
u,b,kWk log2

(
1 +
|hu,b,k|2P (n)

u,b,k

σ2
b,k + J

(n)
u,b,k

)
;

10: Calculate δn = R(P (n),γ(n))−R(P (n−1),γ(n−1));

11: end while

For the sake of depicting the channel allocation schemes and the initial values of α(0)
u,b,k we

use the notation

SINRu,b,k(P ) =
|hu,b,k|2

∑
b∈Bv Pu,b,k

σ2
b,k +

∑
ũ∈Uv ,ũ6=u,
b̃∈Bv

|hũ,b,k|2Pũ,b̃,k
. (22)

The interference term in the denominator of (22) incorporates the constraint that each user

communicates with at most one BS at each frequency band. This constraint does not appear

in the interference term of the SINR expression (6). This follows since the channel allocation

is a by-product of the power allocation scheme presented in Section IV. That is, a user is
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allocated a channel only when the power allocation scheme allocates strictly positive power to

the transmission of the user over that channel.

Next we present three channel allocation schemes. The first of these channel allocation schemes

is a user-centric (UC) one in which, at each frequency band, every user chooses its receiving

BS to be the one with the maximal SINR for this user given an initial power allocation. The

second and third channel allocation schemes are existing approaches that we also consider for

comparison. In particular, the second scheme is BS-centric (BSC) used, for example, in [42],

[43]. In this scheme, in each frequency band every BS chooses its transmitting user to be the one

with the maximal SINR. The third and final channel allocation scheme we consider is presented

in [44]. In this scheme, given a power allocation, channels are allocated to maximize the sum

rate for that given power allocation using the Hungarian methods. We refer to this approach as

the maximum sum rate matching (MSRM) approach. Interestingly, numerical results show that,

as the number of virtual cells decreases and their size increases, both the UC channel allocation

and the equivalent continuous problem approach outperform both the BSC approach and the

MSRM approach. We remark that this work only considers a single power allocation scheme

in Algorithm 2. That is due to the results presented in [42], where different power allocation

schemes coupled with channel allocation yielded virtually the same average throughput. Hence

we believe that different power allocation schemes will yield little difference in the system sum

rate from that obtained with the power allocation algorithm used in Algorithm 2.

A. User-Centric (UC) Channel Allocation

This section presents the first channel allocation scheme, depicted in Algorithm 3, for the

interference coordination model. This scheme is a UC one in that every user chooses the receiving

BS to be the one with the maximal SINR for this user.

Algorithm 3
1: Input: Power allocation P = (Pu,b,k)u∈Uv ,b∈Bv ,k∈K;

2: For every u ∈ Uv, b ∈ Bv and k ∈ K calculate SINRu,b,k(P );

3: For every u ∈ Uv and k ∈ K, calculate: bu,k = argmaxb∈Bv SINRu,b,k(P );

4: For every (u, b, k) ∈ Uv × Bv ×K set γu,b,k = 1{b=bu,k};

The motivation behind this approach is allowing the power allocation stage more flexibility to

choose the users who transmit to a given BS. More specifically, in previously proposed channel
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allocation schemes discussed in Sections V-B and V-C, at most one user is allocated to a BS in

each frequency band. However, in the UC approach, in each frequency band each BS has a list

of users that chose it as their receiving BS, then the power allocation stage chooses the identity

of the user in that list who actually transmits to the BS by allocating to that user a positive

transmission power. Interestingly, numerical results show that as the number of virtual cells

decreases and their size increases, both the UC channel allocation and the equivalent continuous

problem approach outperform both of the previously-proposed channel allocation methods that

we next discuss.

B. Base Station (BS) Centric Resource Allocation

This section presents the second channel allocation scheme for the interference coordination

model. This scheme is a BS-centric one in that every BS chooses its transmitting user to be the

one with the maximal SINR for this BS. This scheme is inspired by the works [42] and [43],

however, we remark that we do not restrict users in this work to transmit to the same BS over

all frequency bands but allow them to communicate with different BSs in the virtual cell across

different frequency bands. We depict the BS-centric channel allocation scheme in Algorithm 4.

Algorithm 4
1: Input: Power allocation P = (Pu,b,k)u∈Uv ,b∈Bv ,k∈K;

2: For every u ∈ Uv, b ∈ Bv and k ∈ K calculate SINRu,b,k(P );

3: For every b ∈ Bv and k ∈ K, calculate: ub,k = argmaxu∈Uv SINRu,b,k(P );

4: For every u ∈ Uv, b ∈ Bv and k ∈ K set γu,b,k = 1{u=ub,k};

The motivation behind this approach is interference reduction, that is, if the SINR at two or

more BSs is maximized by the same user, then a transmission of this user intended for one of

these BSs strongly interferes with the communication of the other BS. To reduce interference,

the same user is chosen as the transmitting user by all of these BSs, then the power allocation

scheme will chose the identity of the receiving BSs among them in accordance with the global

objective function of the power allocation stage.

We remark that even though in this approach several BSs can choose the same user, it can

be proved, following the argument presented in the proof of Theorem 1, that an optimal power

allocation scheme will allocate power only to the transmission of no more than one BS. In
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practice, this behavior is observed using the high SINR approximation. If a power allocation

scheme that does not display this behavior is used, that is, after the power allocation stage there

is a user that has a positive transmission power over the same frequency band to two or more

BSs, one can improve the sum rate by using all the allocated transmit power of that user over that

frequency band to the communication with the BS that has the highest SINR for that frequency

band.

C. Maximum Sum Rate Matching (MSRM) Channel Allocation

This section presents the third and final channel allocation scheme for the interference

coordination model. This scheme allocates the channels in a virtual cell optimally for a given power

allocation by solving the maximum sum rate matching problem; this approach is presented in [44].

Next we depict the channel allocation problem as a matching problem. Let Bk = (Uv,Bv, E,P , k)

denote the bipartite graph that connects the set of users Uv to the set of BSs Bv where the set

E is the set of all pairs {u, b} such that u ∈ Uv and b ∈ Bv. Each edge {u, b} is assigned a

weight that is equal to the transmission rate from u to v using frequency band k, given the

power allocation P . We allocate the channels at each frequency band k by solving the sum

rate maximization matching problem of Bk optimally. This optimal matching can be found for

example by using the Hungarian method [45] for every Bk. This channel allocation scheme is

depicted in Algorithm 5.

Algorithm 5
1: Input: Power allocation P = (Pu,b,k)u∈Uv ,b∈Bv ,k∈K;

2: For every u ∈ Uv, b ∈ Bv and k ∈ K calculate SINRu,b,k(P ) and

Ru,b,k = Wk log2 (1 + SINRu,b,k(P )) ;

3: For every k ∈ K find the optimal matching of Bk = (Uv,Bv, E,P , k), then set γu,b,k = 1 if

user u was matched with BS b in frequency band k and γu,b,k = 0 otherwise;

We note that, as stated in [44], given a power allocation P , Algorithm 5 finds the optimal

channel allocation that maximizes the sum rate for that power allocation. However, since the

power allocation may not be optimal, the overall solution is not necessarily optimal. Interestingly,

as we previously wrote, numerical results show that as the number of virtual cells decreases
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and their size increases both the user-centric channel allocation and the equivalent continuous

problem approach outperforms this scheme.

D. Convergence of Algorithm 2

The convergence of Algorithm 2 depends on the channel allocation scheme used and the

initial values α(0)
u,b,k. Since the system sum rate is bounded, convergence must occur whenever

there is an N0 ∈ N such that R(P (n),γ(n)) ≥ R(P (n−1),γ(n−1)) for all n ≥ N0. This, in turn

must occur if R(P (n−1),γ(n)) ≥ R(P (n−1),γ(n−1)) and R(P (n),γ(n)) ≥ R(P (n−1),γ(n)) for

every n ≥ N0. This condition holds when allocating channels using Algorithm 3 or Algorithm 5

and choosing the initial values α(0)
u,b,k at time n to be γ(n)u,b,kSINRu,b,k(P

(n−1)), since Algorithm

3 and Algorithm 5 cannot decrease the sum rate of a virtual cell, and since the high SINR

approximation (7) is achieved with equality for z = z0. In practice, convergence was observed in

simulations for all channel allocation algorithms presented in this work for the choices α(0)
u,b,k =

γ
(n)
u,b,kSINRu,b,k(P

(n−1)) and α(0)
u,b,k = γ

(n)
u,b,k. The latter choice provided a small improvement over

the first and was used in our simulations.

VI. RESOURCE ALLOCATION FOR COORDINATED MULTI-POINT DECODING IN VIRTUAL

CELLS

This section is dedicated to solving the problem (4) that is presented in Section II-C in which

BSs use cloud decoding with backhaul links of infinite capacity. Note that this setup is equivalent

to a multiple access channel (MAC) with a single transmitting antenna at each user and multiple

antennas at the receiver.

Using the identity det(AB) = det(A) det(B) we have that problem (4), which depicts the

capacity of the virtual cell, can be written as follows:

max
∑
k∈K

Wk

[
log2 det

(
N v,k +

∑
u∈Uv

pu,khu,kh
†
u,k

)
− log2 det (N v,k)

]
,

s.t.:
∑
k∈K

pu,k ≤ P u,k, pu,k ≥ 0. (23)

Since the terms log2 det (N v,k) are constants, hereafter we omit them from the objective function.

Denote pu = (pu,1, . . . , pu,K) and let:

f
(
pu1 , . . . ,pu|U|

)
= log2 det

(
N v,k +

∑
u∈Uv

pu,khu,kh
†
u,k

)
. (24)
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In order to optimally solve the problem (23) iteratively using the cyclic coordinate ascend

algorithm [40, Chapter 2.7], the following three conditions must hold:

1) The function f
(
pu1 , . . . ,pu|Uv |

)
is concave.

2) Define

P ,

{(
pu1 , . . . ,pu|Uv |

)
:
∑
k∈K

pu,k ≤ P u,
∑
k∈K

pu,k ≥ 0 ∀ u ∈ Uv

}
,

Pu ,

{
pu :

∑
k∈K

pu,k ≤ P u, pu,k ≥ 0

}
, (25)

then P = Pu1 × . . .× Pu|U| .

3) The problem

max
p̃ui

f
(
pu1 , . . . ,pui−1

, p̃ui ,pui+1
,pu|U|

)
s.t.: p̃ui ∈ Pui , (26)

has a unique maximizing solution.

Next we solve problem (26) and show that the optimal solution is uniquely attained.

Denote Σi,k =N v,k +
∑

j 6=i puj ,khuj ,kh
†
uj ,k

. Problem (26) is then

max
∑
k∈K

Wk log2 det
(
Σi,k + pui,khui,kh

†
ui,k

)
s.t.:

∑
k∈K

pui,k ≤ P ui , pui,k ≥ 0. (27)

The Lagrangian of (27) is:

L(pui , λ,µ) =
∑
k∈K

Wk log2 det
(
Σi(k) + pui,khui,kh

†
ui,k

)
− λui(

∑
k∈K

pui,k − P ui) +
∑
k∈K

µui,kpui,k.

Next, we calculate the derivative of the Lagrangian with respect to pui,k:
∂L(pui , λ,µ)

∂pui,k
= Wkh

†
ui,k

(
Σi,k + pui,khui,kh

†
ui,k

)−1
hui,k − λui + µui,k

= Wk

h†ui,kΣ
−1
i,khui,k

1 + h†ui,kΣ
−1
i,khui,kpui,k

− λui + µui,k. (28)

The KKT conditions for (27) are

Wk

h†ui,kΣ
−1
i,khui,k

1 + h†ui,kΣ
−1
i,khui,kpui,k

− λui + µui,k = 0,

λui

(∑
k∈K

pui,k − P ui

)
= 0, µui,kpui,k = 0,

µui,k ≥ 0, λui ≥ 0. (29)
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Since µui,k is nonnegative for all k, and the matrix Σ−1i,k is positive definite for all k, in order

to fulfill the first KKT condition, λui must be strictly positive.

Now, if pui,k > 0, then µui,k = 0 and by the first KKT condition we have

pui,k =
Wk

λui
− 1

h†ui,kΣ
−1
i,khui,k

. (30)

Also, if pui,k = 0, then by the first KKT condition we have

Wkh
†
ui,k

Σ−1i,khui,k + µui,k = λui . (31)

It follows that

pui,k =

(
Wk

λui
− 1

h†ui,kΣ
−1
i,khui,k

)+

(32)

where λui is chosen such that
∑

k∈K pui,k = P ui .

VII. NUMERICAL RESULTS

This section presents Monte Carlo simulation results for the resource allocation and user

affiliation schemes presented in this paper. In these simulations there are 8 frequency bands,

each of bandwidth 20 KHz, and the carrier frequency is set to 1800 MHz. The noise power

received by each BS is −174 dBm/Hz, and the maximal power constraint for each user is 23

dBm. Finally, in each frequency band the channel exhibits Rayleigh fading, log-normal shadowing

with standard deviation 8 dB, and a path loss of PL(d) = 35 log10(d) + 34, where d denotes the

distance between the transmitter and the receiver in meters (see [46]). The network comprises 15

BSs and 100 users which are uniformly located in a square of side 2000 meters. The results are

averaged over 1000 system realizations. The numerical results depict the average system sum

rate achieved by the BS clustering, resource allocation methods, and user affiliation scheme we

propose in this paper. To evaluate the performance of our BS clustering we compare the average

system-sum rate achieved by using the hierarchical clustering with minimax linkage criterion

to that of other popular clustering algorithms, namely, the K-means clustering algorithm and

the spectral clustering algorithm [47] for the choices σ =
√
2000 and σ = 2000. The simulation

results for the system setup stated above are shown in Figures 1-5. An additional figure, Fig. 6,

presents numerical results that evaluate the clustering choice for a system setup with 10 BSs

and 80 users that are uniformly located in a square of side 1000 meters; all the other system

parameter remain the same.
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The line descriptions of the figures are of the structure F1− F2− F3 where

• The F1 field describes the BS clustering method used. This field can take one of following

options: Hierarchical, which stands for the hierarchical clustering with minimax linkage

criterion; K-means, which stands for the K-means clustering algorithm, and Spectral clustering

σ = x, which stands for spectral clustering where σ takes the value x.

• The F2 field describes the resource allocation scheme. This field can take one of the

following options:

– JD, which stands for Joint Decoding, refers to the resource allocation schemes for the

coordinated multi-point model which is presented in Section VI.

– Continuous, which refers to the resource allocation presented in Section IV.

– UC, which refers to the resource allocation presented in Section V-A.

– BSC, which refers to the resource allocation presented in Section V-B.

– MSRM, which refers to the resource allocation presented in Section V-C.

– Max SUD which refers to the maximal average sum rate produced by each of the above

resource allocation schemes for the interference coordination model.

• The F3 field describes the user affiliation criterion. This field can either be “best channel”

or “closest BS”.

A. Average System Sum Rate

Figures 1-3 depict the average system sum rate as a function of the number of virtual cells.

We clustered the BSs in the network according to the hierarchical clustering algorithm with

the minimax linkage criterion that is depicted in Algorithm 1. We considered both of the user

affiliation rules we propose in Section III-B, i.e., the “closest BS” criterion and the “best channel”

criterion. We examined the average system sum rate of both cooperation models discussed in

this paper: the interference coordination model whose resource allocation schemes are discussed

in Sections IV-V, and the coordinated multi-point decoding model whose resource allocation

scheme is discussed in Section VI. Fig. 1 depicts the average system sum rate of the interference

coordination model for each of the resource allocation schemes and each of the user affiliation

schemes we propose in this paper. Fig. 2 depicts the average system sum rate of the coordinated

multi-point decoding for each of the user affiliation schemes we propose. Finally, Fig. 3 depicts

the average system sum rate achieved by each of the cooperation models we consider.
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Fig. 1. Comparison of the average system sum rate of the interference coordination model as a function of the number of

virtual using hierarchical BS clustering with minimax linkage criterion.

Fig. 2. Comparison of the average system sum rate of the coordinated multi-point decoding as a function of the number of

virtual cells using hierarchical BS clustering with minimax linkage criterion.

Figures 1-3 lead to several interesting insights and conclusions. First, they confirm the

expectation that, as the number of virtual cells decreases, the average sum rate increases. Second,

they show that the best channel affiliation rule outperforms the closest BS one when the number

of virtual cells is large. However, as Fig. 1 shows, this changes in the interference coordination

model when the number of virtual cells decreases. In this case the closest BS affiliation rule

either outperforms or is on par with the best channel one, depending on the resource allocation
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Fig. 3. Comparison between the average sum rate of the interference coordination model and the coordinated multi-point

decoding as a function of the number of virtual cells using hierarchical BS clustering with minimax linkage criterion.

scheme.

Additionally, Fig. 1 shows that it is best to use the BSC or MSRM channel allocation methods,

which yielded similar performance, for allocating channels and power in virtual cells except when

there is a single virtual cell (fully centralized optimization). In this case the two new resource

allocation techniques that we propose outperform these other methods. This can be explained by

the fact that our new schemes provide more freedom in the power allocation stage to choose

which users have a positive transmission power compared with existing methods. However, since

the power allocation problem is solved approximately, its solution may not be optimal. When the

size of the virtual cells is small (i.e. there are many virtual cells), the channel allocation choice

of the existing methods is good whereas the new methods suffer loss in performance due to the

suboptimality of the power allocation stage. However, as the size of the virtual cells grows (as

their number is decreased), the ability of the new methods to consider in the power allocation

stage more channel allocation combinations improves the resource allocation performance, even

though the solution of the power allocation problem is only approximately optimal. Overall the

average sum rate increase of the resource allocation schemes of the fully centralized scenario,

i.e., a single virtual cell compared to the fully distributed scenario, is approximately 20% when

considering the best achieved average sum rate at each point.

Fig. 2 depicts the average system sum rate of the coordinated multi-point decoding as a

function of the number of virtual cells comprising the network. It shows the monotonic and
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significant improvement in average system sum rate as the number of virtual cells decreases; the

overall improvement in average system sum rate is 330%.

Fig. 3 compares the average system sum rate achieved by the coordinated multi-point decoding

and the one achieved by the interference coordination model. Fig. 3 shows that coordinated

multi-point decoding can achieve significantly higher average system sum rate compared with

single user decoding. However, single user decoding may yield a higher sum rate when the

number of virtual cells is large. For a large number of virtual cells, where the limited coordination

between BSs is similar to having no coordination between BSs, ignoring out of cell interference

affects the joint decoding scheme more severely, since it depends on the exact second order

statistics of the interference. Thus ignoring the interference outside virtual cells affects the

coordinated multi-point scheme more severely than the interference coordination model with a

large number of virtual cells. In this case the loss in performance caused by using an inexact

interference covariance matrix is not compensated by the gain in performance of using joint

decoding in the virtual cell.

B. Comparison with Other Clustering Algorithms

We also compared the average system sum rate using the hierarchical clustering algorithm

with minimax linkage criterion with that of two other popular clustering algorithms, namely, the

K-means clustering algorithm and that of the spectral clustering algorithm [47] for the choices

σ =
√
2000 and σ = 2000. Fig. 4 depicts the maximal average system sum rate achieved by

each of the clustering algorithms where the maximization is taken over the resource allocation

schemes for the interference coordination model presented in this work. Additionally, Fig. 5

depicts the average system sum rate achieved by coordinated multi-point decoding. Fig. 4-5

show that the hierarchical algorithm consistently outperforms both the K-means and the spectral

clustering algorithms for both user affiliation rules and both cooperation models.

We considered an additional network setup which was comprised of 10 BSs and 80 users that

were uniformly located in a square of side 1000 meters. Fig. 6 presents the average system sum

rate as a function of the number of virtual cells for the interference coordinated model. The

results were averaged over 1000 system realizations. Fig. 6 shows that a proper choice of the

clustering algorithm is crucial for improving network performance. This is evident in the plot of

the spectral clustering algorithm in which the network performance monotonically decreases as

the number of virtual cells is decreased from 10 to 5.
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Fig. 4. Comparison of the maximal average sum rate of several BSs clustering algorithms as a function of the number of virtual

cells for the interference coordination model.

Fig. 5. Comparison of the maximal average sum rate of several BSs clustering algorithms as a function of the number of virtual

cells for coordinated multi-point decoding.

VIII. CONCLUSION

This work addressed the role of virtual cells in resource allocation and network management for

future wireless networks. It proposed methods for two design aspects of this network optimization;

namely, forming the virtual cells and allocating the communication resources in each virtual cell

to maximize total system sum rate. We considered two cooperation models in virtual cells. The

first model used interference coordination, where the resource allocation in each virtual cell is
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Fig. 6. Comparison of the maximal average sum rate of several BSs clustering algorithms as a function of the number of virtual

cells for the interference coordination model.

performed jointly for all users and BSs in the virtual cell but there is no decoding cooperation.

The second cooperation model we considered was the coordinated multi-point decoding model,

whereby BSs in a virtual cell allocate the communication resources jointly and also decode their

signal cooperatively. We presented two types of resource allocation schemes for the interference

coordination model. The first scheme converted the NP-hard mixed-integer resource allocation

problem into a continuous resource allocation problem and then found an approximate solution.

The second scheme alternated between the power allocation and channel allocation problems.

We proposed a new channel allocation that was carried out in a user-centric manner, and also

considered a BS centric approach. We additionally considered a maximum sum rate matching

approach where an optimal channel assignment is found for a given power allocation. Since this

power allocation may not be optimal, the overall solution may be sub-optimal as well. We also

solved the joint decoding resource allocation problem for the coordinated multi-point decoding

model in each virtual cell optimally. All of these schemes assume the BSs have been assigned to

virtual cells via clustering. For this clustering we proposed the use of hierarchical clustering in

the clustering of the BSs to form the virtual cells, since changing the number of virtual cells

only causes local changes and does not force a reclustering of all the virtual BSs in the network.

We presented numerical results for all of the aforementioned models. Our numerical results

demonstrate the increase in system sum rate that our neighborhood-based optimization yields.

This increase is monotonic as the neighborhood-based optimization reverts from distributed to

centralized optimization. Additionally, our numerical results indicate that coordinated multi-point
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communication systems show greater increase in system sum rate as the number of virtual cells

decreases, in comparison with interference coordination communication systems. Finally, they

show that the hierarchical clustering with the minimax linkage criterion yields higher system

sum rate than both K-means and spectral clustering.
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