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Abstract

Motivation. Complex genome rearrangements, such as chromothripsis and chromoplexy, are
common in cancer and have also been reported in individuals with various developmental and
neurological disorders. These mutations are proposed to involve simultaneous breakage of the
genome at many loci and rejoining of these breaks that produce highly rearranged genomes. Since
genome sequencing measures only the novel adjacencies present at the time of sequencing, determining
whether a collection of novel adjacencies resulted from a complex rearrangement is a complicated
and ill-posed problem. Current heuristics for this problem often result in the inference of complex
rearrangements that affect many chromosomes.

Results. We introduce a model for complex rearrangements that builds upon the methods developed
for analyzing simple genome rearrangements such as inversions and translocations. While nearly
all of these existing methods use a maximum parsimony assumption of minimizing the number of
rearrangements, we propose an alternative maximum parsimony principle based on minimizing the
number of chromosomes involved in a rearrangement scenario. We show that our model leads to
inference of more plausible sequences of rearrangements that better explain a complex congenital
rearrangement in a human genome and chromothripsis events in 22 cancer genomes.
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1 Introduction

Genome rearrangements transform a genome by breaking two or more genomic loci and
joining the resulting chromosomal segments in a different order. The most common and most
well-studied genome rearrangements are simple rearrangements such as translocations and
inversions (reversals) that break a genome at two locations and join the resulting free ends.
More recently, complex rearrangements [28] that involve simultaneous breaking and joining
at several loci – sometimes up to hundreds of loci – have been reported. These complex
rearrangements include chromothripsis [33] and chromoplexy [5], which were reported in more
than 25% of the cancer patients in recent pan-cancer genome sequencing studies [36, 12, 16].
Complex rearrangements have also been reported in patients harboring congenital and
developmental disorders [31, 40] as well as seemingly healthy individuals [13]. A number of
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putative mechanisms for complex rearrangements have been proposed and experimentally
induced in cell lines [35, 41, 22], but the precise mechanisms that lead to these mutations
occurring in human cells remain largely unknown [27].

Inferring complex rearrangements from genome sequencing data is a difficult problem,
since sequencing data measures only novel adjacencies – pairs of loci that are adjacent in
the sequenced genome but distant in the human reference genome – and determining which
combination of these novel adjacencies constitute a complex rearrangement vs. multiple
simple rearrangements is a complicated and ill-posed problem. Multiple methods have been
developed to predict complex rearrangements from sequencing data [5, 12, 7, 23, 16, 21].
These methods use various heuristics to identify clusters of novel adjacencies whose ends,
or extremities, are close together on the human reference genome. However, the sensitivity
and specificity of these methods in distinguishing one-off complex rearrangements from
progressive sequences of simple rearrangements remains a source of debate [24, 19, 26].

There is an extensive literature studying sequences of genome rearrangements, and finding
the minimum number of genome rearrangements that transform one genome into another.
Most of this work focuses on simple rearrangements and analyses sequences of inversions [18],
sequences of inversions and translocations [17, 29], or sequences of double-cut-and-join
operations [37, 32, 39], also called 2-breaks, that break a genome and two loci and join the
resulting free ends. A complex genome rearrangement can be modeled by a k-break that
breaks a genome at k loci and joins back the resulting chromosomal strands thus introducing
k novel adjacencies [4, 19, 10], a generalization of a double-cut-and-join.

Computing the minimum number of rearrangements that transform one genome into
another follows the principle of maximum parsimony, or finding the simplest explanation for
the data. However, once complex rearrangements are allowed, it is unclear how to define
simplest. For example, it may be possible to transform one genome into another with a
single k-break, but using an extremely large value of k. Indeed complex rearrangements
involving more than a hundred simultaneous breaks in cancer genomes have been proposed
[12, 16]. However, explaining data with a single arbitrary complex rearrangement is in
a sense trivial: this explanation is parsimonious in one criterion (minimizing number of
rearrangements) but not parsimonious under another criterion (minimizing k, or complexity
of allowed operations). It is generally unknown what values of k are reasonable to analyze
complex rearrangements using k-breaks. Thus, there is a gap between the parsimonious
k-break scenarios studied in the genome rearrangement literature – where the values of k are
relatively small and a minimum sequence of rearrangements is computed – and the arbitrary
complex rearrangements described in the cancer genomics literature – where the value of
k is unbounded leading to explanations of the data with a single, arbitrarily complicated
rearrangement. These two approaches are in a sense two extremes and a natural question is
whether there is an intermediate between these extremes.

In this paper, we propose an alternative maximum parsimony principle for studying
complex rearrangements that involve multiple chromosomes. Specifically, based on biological
knowledge of the mechanisms of complex rearrangements, we propose that a complex
rearrangement might be unlikely to simultaneously break a large number of chromosomes.
Supporting this approach are two non-exclusive cellular mechanisms that have been proposed
to explain a shattering of one or a few chromosomes followed by a random joining of
the resulting chromosomal segments [28]. First, defects in chromosomal segregation or
formation of acentric chromosomes might lead to a physical isolation and rearrangement
of one or a few chromosomes in an aberrant nuclear structure called micronucleus [41].
Second, a dicentric chromosome formed after an end-to-end fusion or a translocation between
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two chromosomes might get shattered during mitosis [35]. Following these observations,
we propose that the chromosome number, the maximum number of chromosomes broken
by a k-break in a sequence of rearrangements, is a useful statistic for studying complex
rearrangements. Further, we propose that minimizing the chromosome number provides an
alternative maximum parsimony criterion for evaluating sequences of simple and complex
rearrangements that transform one genome into another.

We derive two algorithms to compute the minimum chromosome number of rearrangement
scenarios under the infinite sites assumption (ISA) [25, 15, 2], also known as the constraint of
no breakpoint reuse [3], where a genomic locus is involved in at most one genome rearrangement
in a sequence of genome rearrangements transforming one genome into another. The first
algorithm computes the minimum chromosome number for rearrangement scenarios between
two genomes. Unfortunately, current DNA sequencing technologies do not yield complete
genomes, but rather measure a set of novel adjacencies that are present in this genome. This
measured set is often missing novel adjacencies that are present in the sequenced genome [8],
and for sequencing data from bulk tumor this set might be a superposition of novel adjacencies
from multiple cancer clones in the tumor [2]. Thus, the second algorithm computes the
minimum chromosome number between a genome and a set of novel adjacencies.

We apply our first algorithm to five human genomes that were proposed to harbor congen-
ital complex rearrangements [14, 11, 13, 30] and our second algorithm to 252 cancer genomes
that were identified to harbor chromothripsis events [16]. For one of the human genomes
and for 22 of the cancer genomes, we derive alternative sequences of rearrangements with
lower chromosome number demonstrating that multichromosomal complex rearrangements
may be less complicated than previously described.

2 Methods

2.1 Multi-breaks and rearrangement scenarios
Let A be a reference genome and let B be a rearranged genome that is derived from A by
a sequence of simple and complex rearrangements. Here, a genome is defined as a set of
linear and circular DNA molecules called chromosomes, each chromosome is partitioned into
a sequence of unique directed synteny blocks, and pairs of consecutive blocks are separated
by breakpoint regions. The two endpoints of a synteny block are its extremities, and an
adjacency is an unordered pair of extremities separated by a breakpoint region. A telomere
is an extremity incident to an end of a linear chromosome, and two genomes are co-tailed if
their sets of telomeres are equal.

A rearrangement is a k-break for k ≥ 2 that breaks a genome at k breakpoint regions
and joins the resulting chromosomal fragments back thus forming k new breakpoint re-
gions and modifying the order of the synteny blocks [4]. Specifically, let A be a genome,
let α =

{
{u1, u2}, . . . , {u2k−1, u2k}

}
be a subset of its adjacencies, and let β be a set{

{uσ(1), uσ(2)}, . . . , {uσ(2k−1), uσ(2k)}
}

disjoint from α with σ being a permutation of a set
{1, . . . , 2k}. An ordered pair τ = (α, β) is a k-break and we say that it transforms A into a
genome in which adjacencies α are replaced with adjacencies β. A multi-break is a k-break
for k ≥ 2. See Figure 1 for an example of two co-tailed genomes that contain the same
synteny blocks.

Given a pair A and B of co-tailed genomes with the same synteny blocks, there is a single
multi-break that transforms A into B, formalized in the following lemma.

WABI 2022
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Figure 1 Two co-tailed genomes, A and B, partitioned into five synteny blocks (blue lines)
and a 3-break τ transforming A into B. Genome A consists of a single linear chromosome with
adjacencies (black lines) {{1h, 2t}, {2h, 3t}, {3h, 4t}, {4h, 5t}}. Genome B consists of a circular and
a linear chromosomes with adjacencies {{1h, 2h}, {2t, 5t}, {3h, 4t}, {4h, 3t}}. A 3-break τ = (α, β)
with α = {{1h, 2t}, {2h, 3t}, {4h, 5t}} and β = {{1h, 2h}, {2t, 5t}, {4h, 3t}} transforms A into B.

▶ Lemma 1. Suppose that A and B are co-tailed genomes that contain the same synteny
blocks, E(A) are the adjacencies of A that are absent from B, and E(B) are the adjacencies
of B that are absent from A. The multi-break τt = (E(A), E(B)) is the unique multi-break
that transforms A into B.

The proof of Lemma 1 along with all the other proofs is to be found in Appendix A. We
call τt = (E(A), E(B)) the trivial multi-break for A and B. For now we assume that genomes
A and B are co-tailed and contain the same synteny blocks, however this assumption will be
relaxed in Section 2.4.

A multi-break scenario T for genomes A and B is a sequence (τ1, . . . , τl) of multi-breaks
transforming A into B. Following previous work [4], we say that T is a k-break scenario if
all the multi-breaks in T break at most k adjacencies; i.e., τi = (αi, βi) where |αi| ≤ k for
i ∈ {1, . . . , l}. Appealing to the principle of parsimony, a common problem studied in the
genome rearrangement literature is to find the most parsimonious rearrangement scenario,
or the rearrangement scenario with the fewest number of mutations. Along these lines, a
dynamic programming algorithm that is polynomial in k was previously proposed for finding
a parsimonious k-break scenario for A and B, and applied to human and mouse genomes
with k = 3 [4, 3]. However, when examining complex rearrangements, it is unclear what
values of k to allow in a k-break scenario. If the number of breaks is unbounded, then, as
shown in Lemma 1, the trivial multi-break τt transforms A into B and comprises the trivial
multi-break scenario Tt = (τt) for A and B. Thus, there is a gap between the parsimonious
k-break scenarios considered in the genome rearrangement literature where the number of
breaks k is supposed to be ≤ 3 for all the practical purposes, and the multi-break scenarios
assumed in the cancer genomics literature, where the number of breaks is unbounded. We are
interested in what biologically motivated constraints might replace the number k of breaks
in the study of complex rearrangements.

We build upon existing work in cancer genomics and genome rearrangement literature
and suppose that evolution by genome rearrangements respects the Infinite Sites Assumption
(ISA) [25, 2], also known as the constraint of no breakpoint reuse [4]. A multi-break scenario
T is said to be a ISA multi-break scenario if an adjacency joined by a multi-break in T is not
broken, or reused, by any of the subsequent rearrangements in that scenario. Let I(A, B) be
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the set of ISA multi-break scenarios transforming A into B. Note that the trivial multi-break
scenario Tt = (τt) is a ISA multi-break scenario for A and B thus ensuring that I(A, B) is
not empty. We say that a multi-break τ is a ISA multi-break for A and B if τ appears in
some ISA multi-break scenario that transforms A into B. Let T (A, B) be the set of ISA
multi-breaks for A and B. The ISA is based on two underlying assumptions. First, that the
probability of a region to be broken by a rearrangement is proportional to the number of
base pairs spanned by this region or its length [9]. And second, that breakpoint regions are
so short that they are unlikely to be reused.

2.2 The chromosome number of a multi-break scenario
We propose to evaluate multi-break scenarios according to the number of chromosomes broken
by the multi-breaks. More specifically, given a genome A and a multi-break τ = (α, β) that
transforms A, we say that a chromosome of a genome A is broken by τ = (α, β) if α includes
an adjacency from that chromosome. Let c(A, τ) be the number of chromosomes broken by
τ in A. Let T = (τ1, . . . , τl) be a multi-break scenario transforming genome A = A1 into
genome B = Al+1, where the multi-break τi transforms genome Ai into genome Ai+1 for
i = 1, . . . , l. Let c(T, τi) = c(Ai, τi) be the number of chromosomes broken by τi in T. We
define c∗(T), the chromosome number of T, to be the maximum number of chromosomes
broken by any multi-break in T; i.e., c∗(T) = max1≤i≤l c(T, τi). Let I(A, B) be the set of
ISA multi-break scenarios that transform A into B. We aim to find the minimum chromosome
number c(A, B) = minT∈I(A,B) c∗(T) of a ISA multi-break scenario transforming A into B,
described formally in the following problem.
▶ Problem 1 (The Minimum Chromosome Number or MCN problem). Given genomes A

and B find the minimum chromosome number c(A, B) = minT∈I(A,B) c∗(T), over all ISA
multi-break scenarios that transform A into B.

We say that the MCN problem is trivial for genomes A and B if c(A, B) = c(Tt), where
Tt is the trivial ISA multi-break scenario containing a single multi-break. The simplest
non-trivial examples of the MCN problem are for genomes A and B that admit exactly
three ISA multi-break scenarios: Tt, T = (τ, τ ′) and T′ = (τ ′, τ) (See Section 2.3). In this
case it can happen that both T and T′ but not Tt have the minimum chromosome number
c(A, B) (Figure 2, top), it can also happen that only T but not T′ and Tt has the minimum
chromosome number c(A, B) (Figure 2, bottom).

To solve the MCN problem we first partition the chromosomes of A and B into subsets
{A1, . . . , Am} and {B1, . . . , Bm} such that c(A, B) = maxi≤m c(Ai, Bi). We perform this
partition with a help of the chromosome graph C(A, B) whose vertices are the block extrem-
ities, and edges are the adjacencies of A, the adjacencies of B and the synteny blocks. Note
that for a chromosome h of A or B all the synteny blocks and adjacencies of h belong to the
same connected component H of the chromosome graph C(A, B) (Figure 3). We say that
chromosome h is included in component H.
▶ Theorem 1. Let {H1, . . . , Hm} be the connected components of the chromosomes graph
C(A, B). Let Ai (resp. Bi) be the genome consisting of the chromosomes of A (resp. B)
that are in Hi. Then Ai and Bi are co-tailed and contain the same synteny blocks. Further,
the minimum chromosome number c(A, B) = maxi≤m c(Ai, Bi).

We find the minimum chromosome number c(Ai, Bi) = minT∈I(Ai,Bi) c∗(T) by applying
to Ai one by one all the ISA multi-break scenarios for Ai and Bi. We iterate over these
scenarios with a help of a bijection introduced in Section 2.3 between I(Ai, Bi) and a set
that we can enumerate.

WABI 2022
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Figure 2 Two examples of genomes A and B for which the Minimum Chromosome Number
problem is non-trivial. In both cases there exist three ISA multi-break scenarios Tt = (τt),
T = (τ, τ ′) and T′ = (τ ′, τ). Solid arrows indicate scenarios with the minimum chromosome number
c(A, B), while dashed arrows indicate scenarios with chromosome number greater than c(A, B).
(Top) Genomes A and B for which both T and T′ have the minimum chromosome number; i.e.,
c∗(T) = c∗(T′) = c(A, B) = 2, while c∗(Tt) = 3. (Bottom) Genomes A and B for which only T
has the chromosome number equal to the minimum chromosome number; i.e., c∗(T) = c(A, B) = 2,
while c∗(Tt) = c∗(T′) = 3. Note that in this case τ ′ breaks two chromosomes in T but three in T′.
Thus, the number of chromosomes broken by a multi-break can vary across the ISA multi-break
scenarios.
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Figure 3 (Left) The chromosome graph C(A, B) has two connected components H1 and H2

that respectively include subsets of chromosomes A1 = {c1, c2} and A2 = {c3} of genome A, and
B1 = {c′

1, c′
2} and B2 = {c′

3} of genome B. (Right) The adjacencies of a chromosome c′
1 in genome

B are dashed in order to distinguish them from the adjacencies of a chromosome c′
2. Note that

genomes A1 and B1 are co-tailed and contain the same synteny blocks, and similarly for A2 and B2.

2.3 Enumeration of ISA multi-break scenarios
In this section we describe a bijection involving ISA multi-break scenarios and the breakpoint
graph [6, 4], a data structure that is routinely used for a pairwise comparison of genomes,
and is defined as follows. The breakpoint graph G(A, B) is a 2-edge-colored graph whose
vertices are the block extremities, and black and gray edges are respectively the adjacencies
of the genomes A and B. Every vertex in G(A, B) is incident to either one black and one
gray edge, or to no edges at all. This means that all the non-empty connected components
of G(A, B) are alternating cycles whose edges alternate between black and gray. In what
follows we say that a cycle of G(A, B) is an alternating cycle with at least four edges. It
turns out that the ISA multi-break scenarios are related to the set C(A, B) of the subsets of
the cycles of the breakpoint graph G(A, B). Let P be an element of C(A, B), and let α and
β be respectively the black and the gray edges in P . In the proof of Lemma 2 we show that
τ(P ) = (α, β) is a multi-break. Similarly, let P(A, B) be the set of the ordered partitions of
the cycles of the breakpoint graph, and let P = (P1, . . . , Pl) be an element in P(A, B). In
Lemma 2 we establish that a sequence of multi-breaks T(P) = (τ(P1), . . . , τ(Pl)) is a ISA
multi-break scenario for A and B (Figure 4).

▶ Lemma 2. For genomes A and B, the function T : P(A, B) → I(A, B) between the set
P(A, B) of the ordered partitions of the cycles of the breakpoint graph G(A, B) and the set
I(A, B) of the ISA multi-break scenarios for A and B is a bijection.

Due to Lemma 2, all the ISA multi-break scenarios for A and B perform the same total
number of breaks and contain at most m multi-breaks, where m is the number of the cycles of
the breakpoint graph. Given these observations one might expect that there always exists a
ISA multi-break scenario for A and B with the minimum chromosome number that contains
exactly m multi-breaks, however note that this is not the case for the genomes presented in
Figure 4.

2.4 The chromosome number of a complex rearrangement
Current high-throughput DNA sequencing technologies do not measure the rearranged
genome B, but rather measure only a set B of novel adjacencies derived from a sequencing
sample. This set B of novel adjacencies may not correspond to a set of novel adjacencies of a
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Figure 4 (Left) The breakpoint graph G(A, B) has two cycles c (solid lines) and c′ (dashed
lines) that admit three ordered partitions P = ({c}, {c′}) P′ = ({c′}, {c}) and Pt = ({c, c′}).
(Middle) ISA multi-break scenarios T(P) = (τ({c}), τ({c′})), T(P′) = (τ({c′}), τ({c})) and Tt =
T(Pt) = (τ({c, c′})) for A and B. The minimum chromosome number is c(A, B) = 1 = c∗(Tt),
while c∗(T(P)) = c∗(T(P′)) = 2.

unique genome B; for example, B might be missing some adjacencies or include erroneous
adjacencies [1]. The set B might also include adjacencies from multiple different genomes
present in the sample; for example, DNA sequencing data from a bulk tumor is often a mixture
of the genomes of different subclones [2]. What is more, a complex rearrangement might not be
a multi-break; for example, chromothripsis can delete synteny blocks and chromoanasynthesis
can amplify synteny blocks [28]. Finally, even if we were to obtain a rearranged genome B,
it might not be co-tailed with the reference genome A. These observations above limit the
scope of the Minimum Chromosome Number (MCN) problem.

Below, we introduce the Minimum Chromosome Number of a Complex Rearrange-
ment (MCNR) problem that overcomes the limitations of the Minimum Chromosome
Number (MCN) problem. In the MCNR problem our input no longer consists of co-tailed
genomes A and B with the same synteny blocks, but of a reference genome A, a set B of
novel adjacencies and a subset β ⊆ B of novel adjacencies that are proposed to result from a
complex rearrangement. This input is motivated by the cancer genomics literature which
which identifies such subsets β ⊆ B [5, 23, 12, 21, 16]. We propose to evaluate (A, B, β)
according to the number of chromosomes broken in an intermediate genome by the complex
rearrangement that introduced novel adjacencies β.
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A widely reported measure of the “complexity” of a complex rearrangement is the number
of reference chromosomes that are affected by or involved in the adjacencies β introduced
by this rearrangement [33, 5, 36, 12, 7]. A chromosome is said to be affected by β if that
chromosome includes a block extremity incident to an adjacency in β. Unlike in Section 2.1,
in the cancer genomics literature the complex rearrangement is not supposed to be a multi-
break; however, note that if there exists a subset α of the adjacencies of the reference genome
A such that τ = (α, β) is a multi-break, then the number of chromosomes broken by τ in the
reference genome A is equal to the number of chromosomes affected by α in A, and by β

in A. In the previous work only the number of chromosomes affected by β in the reference
genome was analyzed, however, as it was briefly mentioned by Cortés-Ciriano et al. [12], the
complex rearrangement could have rearranged an intermediate genome. Here, we aim to
find c(A, B, β), the chromosome number of β, that is the minimum number of chromosomes
affected by β in an intermediate genome under the infinite sites assumption.

First, we formally define the notion of a ISA intermediate genome. As above, the breakpoint
graph G(A, B) is the 2-edge-colored graph whose black and gray edges are respectively the
adjacencies of A and B.

▶ Definition 1 (ISA intermediate genome). A multi-break τ = (α, β) is a ISA multi-break for
a genome A and a set of adjacencies B, if α and β are respectively black and gray edges of
a subset of the cycles of the breakpoint graph G(A, B). A genome A′ is a ISA intermediate
genome for A, B and a subset β ⊆ B, if A = A′ or if it can be obtained from A by a ISA
multi-break τ = (α′, β′) for A and B that satisfies β ∩ β′ = ∅.

Using this definition, we define the following problem.

▶ Problem 2 (The Minimum Chromosome Number of a Complex Rearrangement
or MCNR problem). Given a genome A, a set of adjacencies B, and a subset β ⊆ B, find
the chromosome number c(A, B, β) defined as the minimum number of chromosomes affected
by β over all ISA intermediate genomes for A, B and β.

We say that the MCNR problem is trivial if c(A, B, β) is equal to the number of
chromosomes affected by β in the reference genome A. The simplest non-trivial example of
the MCNR problem is for a triplet (A, B, β) that admits two ISA intermediate genomes A

and A′ where β affects fewer chromosomes in A′ than in A (Figure 5).
To solve the MCNR problem we first partition the chromosomes of A and the adjacencies

in B into subsets {A1, . . . , Am} and {B1, . . . , Bm} such that c(A, B, β) = Σm
i=1c(Ai, Bi, Bi ∩β).

We perform this partition with a help of the chromosome graph C(A, B) whose vertices
are the block extremities, and edges are the adjacencies of A, the adjacencies in B and the
synteny blocks.

▶ Theorem 2. Let {H1, . . . , Hm} be the connected components of the chromosomes graph
C(A, B). Let Ai be the genome consisting of the chromosomes of A that are in Hi, and let
Bi be the adjacencies in B that are in Hi. Then the chromosome number c(A, B, β) is equal
to Σm

i=1c(Ai, Bi, Bi ∩ β).

We find the chromosome number c(Ai, Bi, Bi∩β) by iterating over all the ISA intermediate
genomes for (Ai, Bi, Bi ∩ β). We perform this step via a bijection that, by definition, exists
between the ISA intermediate genomes for (Ai, Bi, Bi ∩ β) and the subsets of the cycles of
the breakpoint graph G(Ai, Bi) that do not contain gray edges from Bi ∩ β.
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Figure 5 A triplet (A, B, β) for which the Minimum Chromosome Number of a Complex
Rearrangement problem is non-trivial. (Left) The breakpoint graph G(A, B) with a subset β ⊂ B
of novel adjacencies (dashed lines) that affects both reference chromosomes. Note that multiple
novel adjacencies sharing the same block extremity (3t) and self-loops (4h) might occur in both
B and β. (Right) A ISA intermediate genome A′ in which β affects a single chromosome. Note
that the breakpoint graph G(A, B) contains a single cycle, and A together with A′ are the only ISA
intermediate genomes for A and B.

3 Results

3.1 The minimum chromosome number of a congenital complex
rearrangement

We solved the Minimum Chromosome Number problem for five human genomes harboring
congenital complex rearrangements that affect at least three chromosomes [14, 11, 13, 30].
All five genomes are co-tailed with the reference genome. For one of these genomes, the
human genome labeled Case 1 in Eisfeldt et al. [14], we identified a ISA multi-break scenario
with a lower chromosome number than previously suggested. Specifically, the published
analysis suggested that this genome resulted from a single complex rearrangement that broke
chromosomes 2, 8 and 15. In contrast, we derived a ISA multi-break scenario consisting of a
multi-break breaking chromosomes 2 and 8 followed by a multi-break breaking chromosome 15
and one of the previously rearranged chromosomes (Figure 6).

For the other four genomes – specifically Case TL010 and Case UTR22 from Collins et
al. [11], the genome in Eisfeldt et al. [13] and the genome in Plesser et al. [30] – we computed
the minimum chromosome number of a ISA multi-break scenario to be equal to 4, which is
the same as in the published analysis. Note that to analyze the genome described in Eisfeldt
et al. [13], we enumerate 75 ISA multi-break scenarios, the most of the five genomes analyzed.

3.2 The minimum chromosome number of a chromothripsis in cancer
Chromothripsis, is one the most studied types of complex rearrangements in cancer genomes,
and is defined as a shattering of one or a few chromosomes followed by a random joining of the
resulting chromosomal fragments [33, 28]. Some analyses have reported chromothripsis events
that include novel adjacencies containing extremities from as many as eighteen reference
chromosomes [16, 12, 36]. This seems like an extremely large number of chromosomes to be
involved in a simultaneous event, and the current understanding of the molecular mechanisms
of genome rearrangements do not indicate simultaneous rearrangements involving more than
three chromosomes [41, 35].

To evaluate this discrepancy, we analyzed 252 cancer genomes identified by Hadi et
al. [16] as harboring a chromothripsis event that affects at least two reference chromosomes.
These genomes form a subset of the 2778 cancer genomes from multiple cancer types with
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Figure 6 Congenital complex rearrangement in human genome Case 1 from Eisfeldt et al. [14].
(Top left) Reference chromosomes 2 (purple), 8 (green), and 15 (orange) are partitioned into eleven
synteny blocks A to K in accordance with notation published by Eisfeldt et al. [14]. (Top right)
Rearranged chromosomes lack synteny blocks B, E and J, and the direction of the block C is inverted
as indicated by the minus sign. The published analysis suggested that reference chromosomes 2, 8
and 15 were transformed into the rearranged ones by a single complex rearrangement. (Bottom)
Genome A is obtained from the reference chromosomes by removing the blocks B, E and J, while
genome B corresponds to the rearranged chromosomes. A ISA multi-break scenario (τ, τ ′) for A

and B has the chromosome number equal to two, which contrasts with the published complex
rearrangement that simultaneously breaks three chromosomes.

whole-genome sequencing data that are available through gGnome.js portal [16]. In particular,
we analyzed a total of 288 triplets (A, B, β) generated from a data structure called the JaBbA
graph described in [16] (see Section 3.2.3 for further details). These triplets consist of a
reference genome A, a set B of novel adjacencies derived from a cancer sample, and a subset
β ⊆ B identified as introduced by a chromothripsis event by Hadi et al. [16]. Since some
cancer genomes were identified to harbor multiple chromothripsis events, the number of
triplets, 288, is larger than the number 252 of genomes.

3.2.1 Chromothripsis event breaks less chromosomes than it affects

We solved the Minimum Chromosome Number of a Complex Rearrangement problem
for all the 288 triplets (A, B, β). For 5 triplets, we identified a ISA intermediate genome in
which β affects fewer chromosomes than in the reference genome. This illustrates that a
chromothripsis event could have broken fewer chromosomes in an intermediate genome than
it affects in the reference.
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One such triplet (A, B, β) is from a prostate adenocarcinoma sample PR-3042 (Figure 7)
in which β1 affects chromosomes 4, 5 and 10. In this sample we found a ISA 3-break
τ ′ = (α′, β′) that breaks chromosomes 4 and 5, and transforms the reference genome A into
a genome in which β affects two chromosomes. This suggests that the chromothripsis event
could have broken two rearranged chromosomes instead of the three reference chromosomes
affected by β.

3.2.2 The number of affected chromosomes is overestimated
Since identifying a subset β ⊆ B of the novel adjacencies introduced by a chromothripsis event
is challenging, we further analyzed the 288 triplets (A, B, β) considering the possibility that
false positives in β might lead to an overestimation of the number of the affected reference
chromosomes. For 17/288 triplets we found a multi-break τ ′ = (α′, β′) such that β \ β′

affects fewer reference chromosomes than β and the ratio |β∩β′|
|β| is less than 0.2. The latter

property ensures that only a small fraction of the adjacencies in β are proposed to be false
positives, while the former establishes that the multi-break τ ′ and a chromothripsis event
introducing adjacencies β \ β′ is a simpler evolutionary explanation than a chromothripsis
event introducing adjacencies β.

One such triplet (A, B, β), shown in Figure 8, is from a Barrett’s esophagus sample
740_T2_35_24253 in which β affects chromosomes 2, 3, 4, 17 and 22. In this sample we
found a ISA 2-break τ ′ = (α′, β′) that breaks chromosomes 4 and 17, and a ISA 3-break
τ ′′ = (α′′, β′′) that breaks chromosomes 2, 3, and 4, such that β \ (β′ ∪ β′′) only affects
chromosomes 4 and 22. This suggests that the chromothripsis event could have broken two
chromosomes (4 and 22) instead of five chromosomes (2, 3, 4, 17 and 22) affected by β.

3.2.3 Processing JaBbA graphs
A JaBbA graph is a data structure that stores synteny blocks (called intervals), reference
adjacencies (called REF connections) and novel adjacencies (called ALT connections). See for
example the JaBbA graph of a Barrett’s esophagus sample 740_T2_35_24253 downloaded
from gGnome.js portal [16].

A reference genome AJ and a set of novel adjacencies BJ can be immediately retrieved
from the JaBbA graph, however the breakpoint graph G(AJ , BJ ) thus obtained would have
almost no cycles. One technical reason for this is that the synteny blocks are identified with
single-nucleotide precision in JaBbA graphs and the breakpoint regions between adjacent
synteny blocks are empty. However genome rearrangements oftentimes result in duplications
or deletions of the regions surrounding chromosomal breaks [23], and in the genome rear-
rangement literature [29, 2] such regions are usually interpreted as non-empty breakpoint
regions instead of synteny blocks. We thus identify synteny blocks potentially deleted or
duplicated by genome rearrangements, and incorporate this information to obtain genome
graph A and novel adjacencies B used in our analysis (see Figure 9 for further details).

3.2.4 Summary
We presented two examples for how a chromothripsis event could have broken fewer chromo-
somes than it affects in the reference genome. The analyzed chromothripsis events in the
gGnome.js portal affect up to seven chromosomes, and in future work it would be of interest
to analyze the chromothripsis events identified by Cortés Ciriano et al. [12] that affect up to
eighteen chromosomes.

1 Links to gGnome.js portal [16] for visualizing the JaBbA graphs were tested to work on Google Chrome.

http://mskilab.com/gGraph/index.html?file=PR-3042.json&location=3:184066923-198022431%204:0-191154277%205:0-180915261%206:0-39146367%20|%2010:109989421-110030552%20|%2010:127356622-135534748%2011:0-1697015&view=
http://mskilab.com/gGraph/index.html?file=PR-3042.json&location=4:58161664-58397757%20|%205:23745953-24149885%20|%205:45508499-46243038&view=
http://mskilab.com/gGraph/index.html?file=740_T2_35_24253.json&location=2:118083058-118083062%20|%203:13427720-13427725%20|%203:89715847-198022431%204:0-191154277%205:0-81501779%20|%2017:27503431-27504907%20|%2022:25311241-30134257%20|%2022:47531432-47531437&view=
http://mskilab.com/gGraph/index.html?file=740_T2_35_24253.json&location=4:83167672-83168308%20|%2017:27503656-27504599&view=
http://mskilab.com/gGraph/index.html?file=740_T2_35_24253.json&location=2:118082852-118083144%20|%202:229866786-243199374%203:0-33533481%20|%204:147837892-147838739&view=
https://github.com/raphael-group/MICRO/blob/main/jabba_data/graphs/740_T2_35_24253.json
http://mskilab.com/gGraph/
http://mskilab.com/gGraph/
http://mskilab.com/gGraph/
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Figure 7 A Circos plot [20] of chromosomes 4, 5, and 10 from prostate adenocarcinoma sample
PR-3042. Arcs in the plot indicate the novel adjacencies B. Red arcs are the adjacencies β identified
as introduced by a chromothripsis event by Hadi et al. [16], the three blue arcs are the adjacencies
β′ introduced by a ISA 3-break τ ′ = (α′, β′) found by our method, and gray arcs are the remaining
adjacencies B \ (β ∪ β′). The multi-break τ ′ transforms chromosomes 4 and 5 into the rearranged
chromosomes whose segments are indicated by green and blue arrows. Red arcs β affect all three
chromosomes (4, 5, and 10) in the reference genome, but only two chromosomes (10 and the green
rearranged chromosome) in the rearranged genome. We suggest that the multi-break τ ′ preceded
the chromothripsis event that broke two chromosomes.

4 Discussion

In this work, we introduce a unified model for simple and complex genome rearrangements
where each mutation is modeled as a multi-break. Within this model we formulate a novel
maximum parsimony principle based on minimizing the number of chromosomes broken by a
rearrangement. We formulate the problem of minimizing the chromosome number for the
case of a pair of genomes and for the case of a genome and a set of novel adjacencies derived
from a sequencing sample. We present exact algorithms to solve both problems under the
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Figure 8 A Circos plot [20] of chromosomes 2, 3, 4, 17, and 22 from a Barrett’s esophagus sample
740_T2_35_24253. Arcs in the plot indicate the novel adjacencies B. A subset β ⊆ B, affecting
chromosomes 2, 3, 4, 17, and 22, is identified as introduced by a chromothripsis event by Hadi et
al. [16], however our analysis partitions β into three subsets: two green arcs β′ (indistinguishable in
this plot) introduced by a ISA 2-break τ ′ = (α′, β′); two purple arcs introduced by a ISA 3-break
τ ′′ = (α′′, β′′); and nineteen red arcs β \ (β′ ∪ β′′). The blue arc is introduced by the 3-break τ ′′ in
addition to the two purple arcs, while gray arcs are the remaining adjacencies B \ (β ∪ β′ ∪ β′′). We
suggest that the chromothripsis event only introduced the red arcs β \(β′ ∪β′′) affecting chromosomes
4 and 22, while β′ and β′′ were introduced instead by the ISA multi-breaks τ ′ and τ ′′.
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Figure 9 (Top left) A portion of a reference genome (black) and novel adjacencies (gray) retrieved
from a JaBbA graph with synteny block 2 being duplicated by a rearrangement. We say that a
synteny block is duplicated by a rearrangement if it contains less than 1kbp, both of its extremities
(blue) are incident to separate novel adjacencies (gray), neither of the adjacent extremities (yellow)
is incident to a novel adjacency, and the copy numbers provided in the JaBbA graph of blocks 1 and
3 are lower than the copy number of block 2. (Middle left) We assume that synteny block 2 got
duplicated by a rearrangement that resulted in the depicted local organization of a genome. (Bottom
left) A portion of the updated reference genome and novel adjacencies that are used in our analysis.
(Top right) A portion of a reference genome (black) and novel adjacencies (gray) retrieved from a
JaBbA graph with synteny block 2 being deleted by a rearrangement. We say that a synteny block is
deleted by a rearrangement if it contains less than 100kbp, neither of its extremities (blue) is incident
to a novel adjacency, both adjacent extremities (yellow) are incident to separate novel adjacencies
(gray), neither of the neighboring synteny blocks (1 and 3) is duplicated by a rearrangement, and
the copy numbers provided in the JaBbA graph of blocks 1 and 3 are greater than the copy number
of block 2. (Middle right) We assume that synteny block 2 got deleted by a rearrangement that
resulted in the depicted local organization of a genome. (Bottom right) A portion of the updated
reference genome and novel adjacencies that are used in our analysis.
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infinite sites assumption and apply these algorithms to analyze 5 human genomes harboring
congenital complex rearrangements and 252 cancer genomes harboring chromothripsis events.
For one human genome and 22 cancer genomes we compute multi-break scenarios containing
complex rearrangements that affect fewer chromosomes than previously reported.

While multi-breaks have previously been used to model complex genome rearrangements [4,
10], to our knowledge the present work is the first to use the number of chromosomes broken
by a rearrangement as a constraint on a rearrangement scenario. For simple rearrangements,
Yin et al. [38] briefly mention the problem of prioritizing intra-chromosomal rearrangements
(inversions) over inter-chromosomal rearrangements (translocations); however, as far as we
are aware, the problem remains open.

We note a number of limitations and directions for future work. First, the time complexities
of the Minimum Chromosome Number and the Minimum Chromosome Number of a
Complex Rearrangement problems remain unknown. It would be desirable to derive
a more efficient algorithm to compute or approximate the minimum chromosome number.
Second, our method is sensitive to missing novel adjacencies – if at least one novel adjacency
introduced by a multi-break remains unidentified from the sequencing data, then this multi-
break is excluded from our analyses. Such missing novel adjacencies are abundant in short-read
sequencing data [1, 8]. It would be helpful to further extend our model to address missing and
erroneous novel adjacencies present in real data, although such issues will also be reduced from
improved identification of novel adjacencies from long-read sequencing data. Third, extending
our genome representation and space of allowed rearrangements would yield more realistic
reconstructions. In particular, following the standard approach in the genome rearrangement
literature, we analyze a haploid representation of the genome. However, the human genome is
diploid and assigning novel adjacencies to the correct chromosomal homolog [2] will be useful
for analyzing complex rearrangements and counting the distinct homologous chromosomes
involved in these rearrangements. Another extension is to incorporate additional events
including duplication and loss of chromosomal regions. Finally, our enumeration algorithm
could be used to solve other optimization problems for the ISA multi-break scenarios, such
as minimizing the number of circular excisions (e.g. from ecDNA [34]) in a ISA multi-break
scenario or maximizing the number of inversions.
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A Proofs

A.1 Lemma 1
▶ Lemma. Suppose that A and B are co-tailed genomes that contain the same synteny blocks,
E(A) are the adjacencies of A that are absent from B, and E(B) are the adjacencies of B

that are absent from A. The multi-break τt = (E(A), E(B)) is the unique multi-break that
transforms A into B.

Proof. If genomes A and B are co-tailed and contain the same synteny blocks, then a block
extremity is in some adjacency of A if and only if it is in some adjacency of B, and the same
property holds for E(A) and E(B). As E(A) ∩ E(B) = ∅ by construction, we obtain that
τt = (E(A), E(B)) is a multi-break that transforms A into B.

Now if a multi-break τ = (α, β) transforms A into B, then E(A) ⊆ α and E(B) ⊆ β as
τ has to break the adjacencies in E(A) and introduce the adjacencies in E(B). What is
more, if τ breaks an adjacency e = {u, v} then, due to the definition of a multi-break, we
obtain that it introduces an adjacency f ̸= e of B incident to u. However B contains a single
adjacency incident to u, thus B does not contain e, which establishes that α = E(A). As
|α| = |β| and |E(A)| = |E(B)| we obtain that β = E(B) and conclude that τ = τt. ◀

A.2 Theorem 1
▶ Theorem. Let {H1, . . . , Hm} be the connected components of the chromosomes graph
C(A, B). Genomes Ai and Bi consisting respectively of the chromosomes of A and B

included in a component Hi are co-tailed and contain the same synteny blocks. Also, the
minimum chromosome number c(A, B) is equal to maxi≤m c(Ai, Bi).

Proof. Let Si be the synteny blocks, and let Ui be the telomeres of a genome A included in
a connected component Hi of the chromosome graph C(A, B) for i ≤ m. Due to A and B

being co-tailed and containing the same synteny blocks, Si are the synteny blocks, and Ui are
the telomeres of both genomes Ai and Bi, which ensures that Ai and Bi are also co-tailed
and contain the same synteny blocks.

Let Ti be a ISA multi-break scenario for Ai and Bi with the chromosome number
c∗(Ti) = c(Ai, Bi) for i ≤ m. A sequence T of multi-breaks obtained by concatenating the
scenarios {T1, . . . , Tm} is a ISA multi-break scenario for A and B with a chromosome number
equal to maxi≤m c(Ai, Bi), which establishes inequality c(A, B) ≤ c∗(T ) = maxi≤m c(Ai, Bi).

We say that a multi-break τ = (α, β) is split if α includes edges from more than one
connected component of the chromosome graph C(A, B). A multi-break scenario is splitless
if it does not contain a split multi-break. Let cs(A, B) be the minimum chromosome
number of a splitless ISA multi-break scenario for A and B. In what follows we show that
c(A, B) = cs(A, B) and cs(A, B) ≥ maxi≤m c(Ai, Bi).

First, let T be a ISA multi-break scenario for A and B with c∗(T) = c(A, B). If T is
splitless, then c(A, B) ≥ cs(A, B). Otherwise, let τ = (α, β) be a split ISA multi-break in
T with α and β including adjacencies from the connected components {Hσ(1), . . . , Hσ(l)}
of the chromosome graph C(A, B), where σ : {1, . . . , l} → {1, . . . , m} is an injection for
l ≤ m. The scenario T being a ISA multi-break scenario means that α does not include
adjacencies introduced by multi-breaks preceding τ in T, and that β does not include
adjacencies broken by the multi-breaks proceeding τ in T, which ensures that α and β

are respectively adjacencies of A and B, and thus are included among the edges of the
chromosome graph C(A, B). Partition the adjacencies α and β into subsets {α1, . . . , αl}
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and {β1, . . . , βl} where αi and βi respectively are the adjacencies of α and β included in a
component Hσ(i) of the chromosome graph. This way τi = (αi, βi) a ISA multi-break for
A and B that is not split, and the multi-break τ then can be replaced in the scenario T
with a sequence of multi-breaks ((α1, β1), . . . , (al, βl)) to obtain a ISA multi-break scenario
T′ for A and B that has less split multi-breaks than T. Let A′ be a genome transformed
by τ during the scenario T. By construction, the multi-breaks {(α1, β1), . . . , (αl, βl)} break
disjoint subsets of chromosomes of A′, which ensures that the number of chromosomes broken
by a multi-break τ during T is equal to the sum of the numbers of chromosomes broken by
the multi-breaks {(α1, β1), . . . , (αl, βl)} during T′, and thus c∗(T′) ≤ c∗(T). We proceed
until a splitless ISA multi-break scenario for A and B with a chromosome number smaller
than or equal to c∗(T) is obtained, thus establishing that c(A, B) = c∗(T) ≥ cs(A, B). A
splitless ISA multi-break scenario is also a ISA multi-break scenario, thus we have that
c(A, B) ≤ cs(A, B), and conclude that c(A, B) = cs(A, B).

Finally, let T be a splitless ISA multi-break scenario for A and B with c∗(T) = cs(A, B),
and let Ti be a subsequence of T that consists of the multi-breaks that break adjacencies
in Ai. The subsequence Ti is a ISA multi-break scenario for Ai and Bi, and every subset
of chromosomes broken by a multi-break in Ti is also broken by the same multi-break
in T, which ensures that c∗(T) ≥ c∗(Ti). Thus we obtain an inequality cs(A, B) =
c∗(T) ≥ maxi≤m c∗(Ti) ≥ maxi≤m c(Ai, Bi), which allows us to conclude that c(A, B) =
maxi≤m c(Ai, Bi). ◀

A.3 Lemma 2
▶ Lemma. For genomes A and B, the function T : P(A, B) → I(A, B) between the set
P(A, B) of the ordered partitions of the cycles of the breakpoint graph G(A, B) and the set
I(A, B) of the ISA multi-break scenarios for A and B is a bijection.

Proof. Let P = (P1, . . . , Pl) be an ordered partition of the connected components of the
breakpoint graph G(A, B), and let αi and βi be respectively black and gray edges in Pi for
i ∈ {1, . . . , l}. We start by showing that τ(Pi) = (αi, βi) is a multi-break. By construction of
the breakpoint graph we have that αi ∩ βi ⊆ E(A) ∩ E(B) = ∅, where E(A) and E(B) are
respectively the adjacencies of A that are absent from B and the adjacencies of B that are
absent from A. Every vertex in Pi is incident to one black and one gray edge. This ensures
that for αi =

{
{u1, u2}, . . . , {u2k−1, u2k}

}
there exists a permutation σ of a set {1, . . . , 2k}

such that βi =
{

{uσ(1), uσ(2)}, . . . , {uσ(2k−1), uσ(2k)}
}

, which means that τ(Pi) = (αi, βi) is
a multi-break.

We proceed by showing that T(P) = ((α1, β1), . . . , (αl, βl)) is a ISA multi-break scenario
for A and B. The set P is an ordered partition of the connected components of G(A, B),
thus {α1, . . . , αl} and {β1, . . . , βl} respectively partitions E(A) and E(B). This already
ensures that T(P) = ((α1, β1), . . . , (αl, βl)) is a multi-break scenario for A and B. In order
to establish that T(P) is a ISA multi-break scenario for A and B we have to show that an
adjacency joined by a multi-break in T(P) is not broken by a subsequent multi-break in T(P);
i.e., that for 1 ≤ i < j ≤ l we have βi ∩ αj = ∅. Let i < j be two elements from {1, . . . , l},
and let e = {u, v} be an adjacency in αj . Due to (αj , βj) being a multi-break, there exists
an adjacency f ̸= e in βj that includes u. By construction, we have that βj ⊆ E(B), which
means that f is an adjacency of B and, by definition of a genome, f is the single adjacency
of B that includes u. As {β1, . . . , βl} partitions E(B) and i ̸= j, we conclude that βi does
not contain an adjacency that includes u, thus βi does not include e = {u, v}. This way we
obtain that βi ∩ αj = ∅, and conclude that T(P) is a ISA multi-break scenario for A and B.
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The function P 7→ τ(P ) is an injection between the subsets of the connected components
of the breakpoint graph and multi-breaks. Let P = (P1, . . . , Pl) and P′ = (P ′

1, . . . , P ′
m) be

two ordered partitions of the connected components of the breakpoint graph with T(P) =
(τ(P1), . . . , τ(Pl)) = (τ(P ′

1), . . . , τ(P ′
m)) = T(P′). From the equality T(P) = T(P′) and the

injectivity of P 7→ τ(P ) we obtain that l = m and that Pi = P ′
i for i ∈ {1, . . . , l}. This

way we obtain that P = P′, and conclude that P 7→ T(P) is an injection between the
ordered partitions of the connected components of the breakpoint graph G(A, B) and the
ISA multi-break scenarios for A and B.

It remains to show that P 7→ T(P) is a surjection between the ordered partitions of the
connected components of the breakpoint graph G(A, B) and the ISA multi-break scenarios
for A and B. Let T = ((α1, β1), . . . , (αl, βl)) be a ISA multi-break scenario for A and B. We
start by showing that ∪l

i=1αi ⊆ E(A) and ∪l
i=1βi ⊆ E(B). Let i be an element in {1, . . . , l},

and let e = {u, v} be an adjacency in αi. Due to T being a ISA multi-break scenario for
A and B, the adjacency e is not joined by any of the multi-breaks preceding (αi, βi) in T,
which ensures that e is an adjacency of A. In what follows we show that e is not an adjacency
of B, and conclude that e ∈ E(A). Due to (αi, βi) being a multi-break, there exists an
adjacency f ̸= e in βi that includes u. Due to T being a ISA multi-break scenario for A and
B, the adjacency f is an adjacency of B, as it is not broken by any of the multi-breaks that
follow (αi, βi) in T. By definition of a genome, f is the single adjacency of B that includes
u, which means that e is not an adjacency of B. This way we obtain that e ∈ E(A), and
conclude that ∪l

i=1αi ⊆ E(A). Now, let e = {u, v} be an adjacency in βi. Due to (αi, βi)
being a multi-break, there exists an adjacency f ̸= e in αi that includes u. We have already
shown that f ∈ E(A), and, as f is the single adjacency of A that includes u, we obtain that
e ∈ E(B), and conclude that ∪l

i=1βi ⊆ E(B).
We proceed by showing that {α1, . . . , αl} and {β1, . . . , βl} partitions E(A) and E(B).

Let e and f be respectively adjacencies in E(A) and E(B). By definition we have that
E(A) ∩ E(B) = ∅, thus every adjacency in E(A) must be broken by a multi-break in T, and
every adjacency in E(B) must be joined by a multi-break in T. This ensures that there exist
i, j ∈ {1, . . . , l} such that e ∈ αi and f ∈ βi. By definition of a genome, the adjacencies of
A contain a single copy of e and the adjacencies of B contain a single copy of f . What is
more, {e} ∩ ∪l

i=1βi ⊆ E(A) ∩ E(B) = ∅, thus e is not joined by any of the multi-breaks in T,
which ensures that it is only broken by (αi, βi) in T. Similarly, f is not broken by any of the
multi-breaks in T, which ensures that it is only joined by (αj , βj) in T. We conclude that
{α1, . . . , αl} and {β1, . . . , βl} respectively partitions E(A) and E(B).

Let Pi be a subgraph of G(A, B) induced by adjacencies αi and βi for i ∈ {1, . . . , l}.
We will show that Pi is a subset of the connected components of G(A, B). We do this by
establishing that for every vertex u in Pi all the edges incident to u in G(A, B) are also
present in Pi. A vertex u of Pi is incident to one black and one gray edge in G(A, B).
By construction of Pi, u is in some adjacency in αi ∪ βi, however due to (αi, βi) being a
multi-break, we obtain that u is both in some adjacency in αi and in some adjacency in βi.
This ensures that Pi contains one black and one gray edge incident to u, and thus that all
the edges incident to u in G(A, B) are also present in Pi. This way we conclude that Pi is a
subset of the connected components of G(A, B).

Finally, due to {α1, . . . , αl} and {β1, . . . , βl} respectively partitioning E(A) and E(B),
we obtain that P = (P1, . . . , Pl) is an ordered partition of the connected components
of the breakpoint graph G(A, B). By construction of P, we have that T(P) = T =
((α1, β1), . . . , (αl, βl)), which ensures that P 7→ T(P) is a surjection between the ordered
partitions of the connected components of the breakpoint graph G(A, B) and the ISA
multi-break scenarios for A and B. ◀
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A.4 Theorem 2
▶ Theorem. Let {H1, . . . , Hm} be the connected components of the chromosomes graph
C(A, B). If Ai is a genome consisting of the chromosomes of A included in Hi, and Bi

are the adjacencies in B included in Hi, then the chromosome number c(A, B, β) is equal to
Σm

i=1c(Ai, Bi, Bi ∩ β).

Proof. Let A′ be a ISA intermediate genome for A and B in which β affects c(A, B, β)
chromosomes. A genome A′

i that consists of the chromosomes of A′ included in a connected
component Hi of the chromosome graph C(A, B) is a ISA intermediate genome for Ai and
Bi. What is more, c(A, B, β) = Σm

i=1ci where ci is the number of chromosomes affected in A′
i

by β. By construction of the chromosome graph, if an adjacency e ∈ β affects a chromosome
in Ai, then e ∈ Bi ∩ β, which ensures that the numbers of chromosomes affected by Bi ∩ β in
A′

i is equal to ci. This allows us to conclude that c(A, B, β) ≥ Σm
i=1c(Ai, Bi, Bi ∩ β).

Let A′
i be a ISA intermediate genome for Ai and Bi in which Bi ∩β affects c(Ai, Bi, Bi ∩β)

chromosomes for i ≤ m. A genome A′ that consists of the union of the chromosomes of the
genomes {A′

1, . . . , A′
m} is a ISA intermediate genome for A and B. Whats is more, β affects

Σm
i=1c(Ai, Bi, Bi ∩β) chromosomes in A′, thus we have that c(A, B, β) ≤ Σm

i=1c(Ai, Bi, Bi ∩β),
and finally conclude that c(A, B, β) = Σm

i=1c(Ai, Bi, Bi ∩ β). ◀


	1 Introduction
	2 Methods
	2.1 Multi-breaks and rearrangement scenarios
	2.2 The chromosome number of a multi-break scenario
	2.3 Enumeration of ISA multi-break scenarios
	2.4 The chromosome number of a complex rearrangement

	3 Results
	3.1 The minimum chromosome number of a congenital complex rearrangement
	3.2 The minimum chromosome number of a chromothripsis in cancer
	3.2.1 Chromothripsis event breaks less chromosomes than it affects
	3.2.2 The number of affected chromosomes is overestimated
	3.2.3 Processing JaBbA graphs
	3.2.4 Summary


	4 Discussion
	A Proofs
	A.1 Lemma 1
	A.2 Theorem 1
	A.3 Lemma 2
	A.4 Theorem 2


