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Abstract

There is increased appreciation that dopamine (DA) neurons in the midbrain respond not only to 

reward1 and reward-predicting cues1,2, but also to other variables such as distance to reward3, 

movements4–9, and behavioral choices10,11. Based on these findings, a major open question is how 

the responses to these diverse variables are organized across the population of DA neurons. In 

other words, do individual DA neurons multiplex multiple variables, or are subsets of neurons 

specialized in encoding specific behavioral variables? The reason that this fundamental question 

has been difficult to resolve is that recordings from large populations of individual DA neurons 

have not been performed in a behavioral task with sufficient complexity to examine these diverse 

variables simultaneously. To address this gap, we used 2-photon calcium imaging through an 

implanted lens to record activity of >300 midbrain DA neurons in the ventral tegmental area 

(VTA) during a complex decision-making task. As mice navigated in a virtual reality (VR) 

environment, DA neurons encoded an array of sensory, motor, and cognitive variables. These 

responses were functionally clustered, such that subpopulations of neurons transmitted 

information about a subset of behavioral variables, in addition to encoding reward. These 

functional clusters were spatially organized, such that neighboring neurons were more likely to be 

part of the same cluster. Taken together with the topography between DA neurons and their 

projections, this specialization and anatomical organization may aid downstream circuits in 

correctly interpreting the wide range of signals transmitted by DA neurons.
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To determine how responses are organized across the population of VTA DA neurons, we 

sought to record at cellular resolution from ensembles of identified DA neurons in a 

behavioral task with sufficient complexity to engage many of the behavioral variables that 

are now thought to be of relevance to DA neurons. These variables include reward1,12, 

reward-predicting cues1,2, reward history11,13, spatial position3, kinematics (velocity, 

acceleration, view angle)4–7, and behavioral choices10,11,14.

Towards this end, we trained 20 mice on a decision-making task in a VR environment that 

encompassed this wide range of behavioral variables (“Accumulating Towers” task15; Fig. 

1a,b; visual snapshots of maze in Extended Data Fig. 1a; Supplementary Video 1). As mice 

navigated the central stem of the virtual T-maze, they observed transient reward-predicting 

cues on the left and right of the maze stem that signaled which maze arm was most likely to 

be rewarded (“cue period”; Fig. 1b; cues consisted of white towers, see Methods). By 

turning to the side with more cues, the mice received a water reward, while turning to the 

other side resulted in a tone and a 3s time out. The 2s period after reward delivery or tone 

presentation was termed the “outcome period” (Fig. 1b). As expected, after training, mice 

tended to turn to the maze arm associated with more cues (Fig. 1c; average percent correct is 

77.6±0.9%).

To perform 2-photon activity imaging from ensembles of DA neurons during this task, we 

implanted a gradient index (GRIN) lens above the VTA16. GCaMP expression was achieved 

either by injecting a Cre-dependent GCaMP virus in the VTA of DAT::Cre mice, or by 

crossing a GCaMP reporter line with DAT::Cre mice (Fig. 1d; Supplementary Video 2 for 

sample imaging video; also see Extended Data Fig. 2 for relationship between spikes and 

fluorescence in DA neurons). In either case, an mCherry virus was injected into the VTA to 

facilitate motion correction (Extended Data Fig. 3, see Methods). Using this approach, we 

recorded activity of ~10–30 DA neurons simultaneously in each of 20 mice during 

performance of the VR task (Fig. 1e,f; n=303 DA neurons from 20 mice; 292 neurons were 

estimated to be in the VTA and 11 in the SNc, see Extended Data Fig. 4b for reconstructed 

locations).

Responses of 284 out of 303 DA neurons were significantly modulated by one or more of 

the following variables (Fig. 2a): spatial position (n=91, 30%), kinematics (n=137, 45%), 

reward-predicting cues (n=77, 25%), choice accuracy (whether the trial resulted in reward; 

n=69, 23%), reward history (whether the previous trial was rewarded; n=95, 31%), and 

reward (n=232, 77%; significance was assessed based on nested comparisons of the 

encoding model described below, see Methods). The first five variables were quantified 

during the cue period, and the final variable (reward) was quantified during the outcome 

period.

During the cue period, individual neurons exhibited diverse responses to most of these 

variables (Fig. 2a). For example, neurons that were modulated by spatial position most often 

exhibited upward ramps, although some displayed downward ramps, consistent with ramps 

previously identified with fast-scan cyclic voltammetry in the striatum3,17,18 (example single 

trials in Extended Data Fig. 1b). Neurons that were selective to kinematics were tuned to a 

range of velocities, acceleration or view angles. Neurons that responded to reward-predicting 

Engelhard et al. Page 2

Nature. Author manuscript; available in PMC 2020 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cues often, but not always, displayed stronger responses to contralateral versus ipsilateral 

cues19. Neurons that were modulated by accuracy universally displayed higher activity to 

error (as opposed to correct) trials, while neurons that were modulated by previous trial 

outcome were modulated in either direction.

In contrast to the diverse responses to many of the variables during the cue period (e.g. 

upward versus downward spatial ramps), most neurons responded consistently during the 

outcome period, with stronger responses to reward than lack of reward (Fig. 2a).

Thus, for the first time, we have access to many of the behavioral variables that are thought 

to be relevant to DA neurons within a single behavioral paradigm. This puts us in a position 

to achieve our goal of understanding how the responses to these variables are organized 

across the DA population. To do this, we need a method to accurately quantify how much of 

the variance of the neural responses can be attributed to each behavioral variable 

individually, despite the presence of multiple behavioral variables.

Towards this end, we quantitatively predicted the GCaMP signal based on the measured 

behavioral variables with an encoding model (Fig. 2b; see Methods). To derive the predictors 

for the model, each variable was considered either as a discrete “event” variable, a “whole-

trial” variable, or a “continuous” variable. In the case of “event” variables (left cues, right 

cues, reward), predictors were generated by convolving the event’s time series with a spline 

basis set, in order to allow flexibility in the temporal influence of cues on GCaMP. In the 

case of “whole-trial” variables (previous reward, accuracy), the value of the binary predictor 

throughout the trial indicated reward on the previous (or current) trial. In the case of 

“continuous” variables (position, kinematics [velocity / acceleration / view angle]), 

predictors included the variables raised to the first, second and third power, in order to 

enable flexibility in the relationship between the variable and GCaMP. This model was 

chosen to include behavioral variables that significantly improved predictions of neural 

activity, after comparing several models (model comparisons in Extended Data Fig. 1d,e).

Using this encoding model, we quantified the relative contribution of each behavioral 

variable to the response of each neuron by determining how much the explained variance 

declined when that variable was removed from the model (see Methods; relative 

contributions for example neurons in Extended Data Fig. 5). Averaged across the population, 

the highest relative contribution during the cue period was attributed to kinematics 

(32.4±1.9% of the total variance explained during the cue period), followed in descending 

order by spatial position (22±1.7%), previous reward (17.7±1.5%), cues (14.6±1.4%), and 

accuracy (13.5±1.5%; Fig. 2c,d). During the outcome period, reward contributed strongly to 

the response (74.7±1.8%), consistent with the large number of neurons that responded to 

reward (Fig 2a).

How is the relative contribution of these behavioral variables to neural responses distributed 

across the population? During the cue period, most behavioral variables had a small 

contribution to the response of each neuron, while a small subset had a large contribution. In 

contrast, during the outcome period, reward contributed to a large fraction of the response of 

most neurons (Fig. 2d). This raises the possibility that during the cue period, subsets of DA 
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neurons are specialized to encode specific behavioral variables, while during the outcome 

period, most DA neurons encode reward.

To more systematically examine this idea, we performed clustering of the neurons based on 

the relative contributions of each behavioral variable to each neuron, using a Gaussian 

Mixture Model (GMM; Fig. 3a; see Methods). We found that 5 clusters of neurons gave the 

best (lowest) Bayesian Information Criterion (BIC) score for this data (Fig. 3a; see Methods 

for details on BIC score calculation). These 5 clusters explained the data better than 

expected by chance (p<0.0001, comparing the likelihood of the data given the clustering 

model to that of shuffled data, for null distributions generated by shuffling across behavioral 

variables, as well as by shuffling across neurons; Extended Data Fig. 6a). Thus, we can 

conclude that VTA DA neurons display a statistically significant degree of functional 

clustering.

Each cluster was composed of DA neurons that responded most strongly to a specific 

behavioral variable during the cue period. Note that this specialization does not mean that 

DA neurons only encoded a single variable during the cue period; in fact, many neurons also 

significantly encoded a 2nd variable, but not as strongly (Fig. 3b). In contrast to the 

specialization during the cue period, all clusters were composed of neurons that had reward 

responses (Fig. 3a; Extended Data Fig. 7a). Thus, this clustering analysis provided further 

evidence that VTA DA neurons are specialized during the cue period, while they share a 

response to reward during the outcome period. Consistent with the idea that cue period 

activity differed across clusters, neural activity predicted choice and accuracy to different 

extents in different clusters (Extended Data Fig. 6b). Supporting the robustness of these 

clusters, similar cluster assignment was obtained when the procedure was implemented 

independently on random halves of the trials of each neuron, or with clustering based on a 

different clustering procedure20 (Extended Data Fig. 7; see Methods).

We next sought to determine if the functional clusters of DA neurons were anatomically 

organized within the VTA. The location of each neuron was estimated based on combining 

histological reconstruction of the lens tract with the position of the neuron within the 

imaging field21 (Extended Data Fig. 4a,b; see Methods). We observed significant 

dependence of cluster identity on A/P location for 3 of the 5 clusters, and on M/L location 

for 4 of the 5 clusters (Fig. 3c,d; p<0.01, comparing STD of the relative concentration of 

neurons within a cluster to a shuffled distribution obtained by randomly permuting the A/P 

or M/L location of all neurons relative to cluster identity, Holm-Bonferroni correction; see 

Methods). Specifically, neurons belonging to the cluster associated with kinematics were 

located more laterally and posteriorly (cluster 1), those associated with accuracy were 

located more medially and anteriorly (cluster 5), and neurons associated with previous 

reward were located more laterally (cluster 3).

Directly correlating the A/P and M/L location of the neurons with the relative contributions 

of each behavioral variable led to similar findings (Extended Data Fig. 4c,d). To ascertain 

that this anatomical organization cannot be explained by differences between individual 

mice rather than by a true dependence on location, we considered a multinomial mixed 

effect regression using the cluster identity of the neurons as the dependent variable, the A/P 
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and M/L locations as fixed effects, and mouse identity as a random effect for the intercepts. 

This confirmed that anatomical location significantly predicted cluster identity (p<0.002, 

Wald test on the set of null hypotheses that all A/P coefficients in the model are equal to 

each other and all M/L coefficients are equal to each other; n=190, χ2=20.82, deg. 

freedom=6).

A complementary approach to examine spatial organization in our data is to examine the 

spatial organization of pairwise correlations between neurons. This allows us to separately 

consider the spatial organization of the “signal” correlation (i.e. correlations that can be 

explained by responses to behavioral variables; conceptually related to functional clustering 

in Fig. 3), and also of the “noise” correlation (i.e. neural correlations that cannot be 

explained by the behavioral variables). DA neurons are thought to have high noise 

correlations22–24, but the spatial organization of these correlations has not been described.

To first confirm that DA neurons in our experiment indeed have high noise correlations, we 

added an additional predictor to the encoding model from Fig. 2b: a “network” predictor that 

reflects the activity of other simultaneously imaged neurons (for each neuron, the new 

predictor was the 1st PCA of the ΔF/F from all other simultaneously recorded neurons; Fig. 

4a). Consistent with DA neurons having high noise correlations, the performance of this new 

model explained a substantially higher variance of neural activity (R2 from behavioral + 

“network” model: 50.7±1%; behavior-only model: 25.7±0.9%; Fig 4b).

We examined the spatial structure of the signal and noise correlations by considering all 

simultaneously recorded pairs of neurons (n=1492; Fig. 4c). Signal correlation was defined 

as the pairwise correlation between the predictions of the behavior-only encoding model for 

each neuron; noise correlation was defined as the pairwise correlation between the residuals 

of the same model. The signal correlation decreased with distance between neurons during 

the cue period (ρ=−0.1, p<6×10−5), but not the outcome period (ρ=−0.03, p<0.23). This is 

consistent with the results from the previous analyses, which had suggested specialized and 

spatially organized responses during the cue period (Fig. 3d) in contrast to widespread 

reward responses during the outcome period (Fig. 2a,c). On the other hand, the noise 

correlations decreased similarly with distance during both the cue period (ρ=−0.19, 

p<4×10−13) and the outcome period (ρ=−0.14, p<4×10−8), suggesting that noise correlations 

arise from electrical synapses or shared inputs between neighboring neurons not accounted 

for in the model. These findings were confirmed using an alternative method for calculating 

noise correlations25, and were robust to the level of neuropil correction (Extended Data Fig. 

6c,d).

Are the widespread reward responses in VTA DA neurons during the outcome period 

consistent with reward prediction error (RPE)? We first confirmed that we can replicate 

classic RPE during Pavlovian conditioning with 2-photon imaging (Fig. 5a–d). We then 

sought to determine to what extent reward expectation modulates reward responses in our 

decision-making task. In this regard, a strength of our task is that it engages two separable 

dimensions of reward expectation: previous trial outcome, and trial difficulty (Fig. 5e). If 

DA neurons reflect RPE, we would expect reward responses to be higher whenever reward 

expectation is low, for both dimensions of reward expectation. Indeed, across the population, 
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reward responses were modulated by expectation in a manner that was consistent with RPE 

(Fig. 5f–h; median d’=0.1 comparing reward responses based on median splitting trial 

difficulty, p<3×10−12; median d’=0.094 comparing reward responses across both previous 

trial outcomes, p<6×10−5; two-sided Wilcoxon signed rank test and n=232 in both cases). 

Interestingly, across neurons, the extent of modulation by each dimension of reward 

expectation was (weakly) correlated, suggesting that neurons are modulated similarly by 

each type of RPE (Fig. 5i; ρ=.21, p<0.002, Pearson correlation between the RPE d’ values 

for previous trial outcome and trial difficulty for all reward responsive neurons, n=232). In 

addition, reward responses in all but one of the functionally defined clusters are significantly 

modulated by RPE (Fig. 5j). In further support of the modulation of reward responses by 

reward expectation, we found that modulation of the reward response depends on task 

performance in a manner that is consistent with RPE (performance across individuals: 

Extended Data Fig. 6e; performance during the shaping protocol: Extended Data Fig. 8, 9).

In summary, we have described organizational principles of the DA system: neurons display 

specialized and anatomically organized responses to non-reward variables, while the same 

neurons convey a less specialized reward response. These conclusions depended on 

combining, for the first time, a high-dimensional behavioral task (6 quantified behavioral 

variables) with high-dimensional neural recordings (>300 identified VTA DA neurons).

Considering the functional and anatomical organization reported here, alongside the 

established topography between DA neurons and their downstream targets19,26,27, we can 

predict that specific downstream targets are likely to receive information from DA neurons 

about reward and only a subset of non-reward variables. Thus, this organizational structure 

may greatly simplify the question of how downstream circuits correctly interpret the wide 

range of non-reward signals encoded by midbrain DA neurons. A major open question is 

how downstream targets utilize these specialized non-reward signals. One possibility is that 

these signals reinforce downstream activity patterns related to the encoded variable, altering 

the probability that the behavior is repeated (in analogy to the established reinforcement 

function of reward responses28,12). Alternatively, or in addition, they may serve to enhance 

ongoing activity patterns29, influencing the vigor of the ongoing behavior30, but not 

necessarily the probability of it being repeated in the future. New experiments will likely be 

designed to address these important hypotheses.

METHODS

Animals and surgery

All experimental procedures were conducted in accordance with the National Institutes of 

Health guidelines and were reviewed by the Princeton University Institutional Animal Care 

and Use Committee (IACUC). A total of 31 mice were used in this study. For the virtual 

reality experiments, we used either male DAT::IRES-Cre mice (n=14, The Jackson 

Laboratory strain 006660; extensively characterized in 31) or male mice resulting from the 

cross of DATIREScre mice and the GCaMP6f reporter line Ai148 mice 32 (n=6, 

Ai148×DAT::cre, The Jackson Laboratory strain 030328; see Extended Data Fig. 10 for 

validation of co-localization of GCaMP and TH in this line). For the Pavlovian conditioning 

experiments, we used male and female Ai148×DAT::cre mice (n=8). For the slice recording 
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experiments, we used male and female Ai148×DAT::cre mice (n=3). Mice were maintained 

on a 12-hour light on – 12-hour light off schedule. All procedures were conducted during 

their light off period. Mice were 2–6 months old.

Mice between 8–12 weeks underwent sterile stereotaxic surgery under isoflurane anesthesia 

(3–4% for induction, .75–1.5% for maintenance). The skull was exposed and the periosteum 

removed using a delicate bone scraper (Fine Science Tools). The edges of the skin were 

affixed to the skull using a small amount of Vetbond (3M). We injected 800 nl of a viral 

combination of AAV5-CAG-FLEX-GCaMP6m-WPRE-SV40 (n=12) or AAV5-CAG-FLEX-

GCaMP6f-WPRE-SV40 (n=2; U Penn Vector Core) with 1.6×1012/mL titer and AAV9-

CB7-CI-mCherry-WPRE-rBG (U Penn Vector Core) with 2.3×1012/mL titer. Two such 

injections were made at stereotactic coordinates: 0.5 mm lateral, 2.6 or 3.8 mm posterior, 4.7 

mm in depth (relative to bregma). After the injections, we implanted a 0.6 mm diameter 

GRIN lens (GLP-0673, Inscopix or NEM-060–25-10–920-S-1.5p, GrinTech) in the VTA 

(coordinates shown in Extended Data Fig. 4) using a 3D printed custom lens holder. After 

implantation, a small amount of diluted metabond cement (Parkell) was applied to affix the 

lens to the skull using a 1 ml syringe and 18 gauge needle. After 20 minutes, the lens holder 

grip on the lens was loosened while the lens was observed through the microscope used for 

surgery to ascertain there was no movement of the lens. Then, a previously described 

titanium headplate was positioned over the skull using a custom tool and aligned parallel to 

the stereotax using an angle meter 33. The headplate was then affixed to the skull using 

metabond. A titanium ring was then glued to the headplate using dental cement blackened 

with carbon.

Virtual reality behavioral system

In order to enable a navigation-based decision-making task under head-fixed conditions, we 

used a virtual reality (VR) system similar to that described previously 34,35 (Fig. 1a). Mice 

were held head-fixed under a two-photon microscope using two custom headplate holders 

and ran on an air-supported, Styrofoam spherical treadmill that was 8-inch in diameter. We 

found that the precise alignment of the mouse on top of the sphere was important for 

maintaining good behavioral performance; therefore, we used a custom alignment tool for 

this purpose. The sphere’s movement were measured using an optical flow sensor 

(ADNS3080) located underneath the sphere and controlled by an Arduino Due; this 

information was sent to the VR computer, running the ViRMEn software engine 36 (https://

pni.princeton.edu/pni-software-tools/virmen) under Matlab, which displayed and controlled 

the VR environment. The measured sphere displacements (dX and dY, where Y is parallel to 

the long stem of the T-maze) resulted in translational displacements in the virtual 

environment of equal length in the corresponding axis. The speed of the mouse was given by 

dX2
dt + dY 2

dt , where dt was the time elapsed from the previous sampling of the sensor. The 

mouse acceleration was the moment-by-moment change in speed. The mouse view angle in 

the virtual world was calculated as follows: first, we calculated the current displacement 

angle as: ω = atan2(-dX∙sign(dY), |dY|). Then, the rate of change of the view angle (θ) was 

given by:
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dθ
dt = sign ω ⋅ min e 1.4 ω 1.2

− 1, π
2 − θ

This exponential function was tuned to stabilize trajectories during the long stem of the 

maze, while allowing sharp turns into the maze arms (see 15 for more details).

The display was projected using a DLP projector (Mitsubishi HD4000) running at 85 Hz 

onto a custom toroidal screen with a 270˚ horizontal field of view. Reward delivery was 

accomplished by sending by a TTL pulse from the VR computer to a solenoid valve 

(NResearch) which released a drop of a water to a lick tube located slightly in front and 

below the mice’s mouth. The tone signifying trial failure was played through conventional 

computer speakers (Logitech). The setup was enclosed in a custom-designed cabinet built 

from optical rails (Thorlabs) and lined with sound-absorbing foam sheeting (McMaster-

Carr).

Optical imaging and data acquisition

Imaging was performed using a custom-built, VR-compatible two-photon microscope 35. 

The microscope was equipped with a pulsed Ti:sapphire laser (Chameleon Vision, Coherent) 

tuned to 920 nm. The scanning unit used a 5 mm Galvanometer and an 8 kHz resonant 

scanning mirror (Cambridge Technologies). The collected photons were split into two 

channels by a dichroic mirror (FF562-Di03, Semrock). The light for the green and red 

channels respectively were filtered using bandpass filters (FF01–520/60 and FF01–607/70, 

Semrock), and then detected using GaAsP photomultiplier tubes (pmts, 1077PA–40, 

Hamamatsu). The signal from the pmts was amplified using a high speed current amplifier 

(59–179, Edmund). Black rubber tubing was attached to the objective (Zeiss 20×, 0.5 NA) as 

a light shield covering the space from the objective to the titanium ring surrounding the 

GRIN lens. Double distilled water was used as the immersion medium. The microscope 

could be rotated along the medial-lateral axis of the mice which allowed alignment of that 

optical axes of the microscope objective and GRIN lens as described previously for 

microprism imaging 35. Control of the microscope and image acquisition were performed 

using the ScanImage software (Vidrio Technologies; 37) that was run on a separate 

(scanning) computer. Images were acquired at 30 Hz at a resolution of 512 × 512 pixels. 

Average beam power measured at the front of the objective was 40–60 mW. Synchronization 

between the behavioral logs and acquired images was achieved by sending behavioral 

information each time the VR environment was refreshed from the VR computer to the 

scanning computer via an I2C serial bus; behavioral information was then stored in the 

header of the image files.

Behavioral training

Seven days after the surgery, mice were started on a water restriction protocol, with a daily 

allotment of water of 1 – 1.5 ml. Mice were monitored for signs of dehydration or drops in 

body mass below 80% of the initial value. If any of these conditions occurred, mice were 

given ad libitum access to water until recovering. The animals were handled daily from the 

start of water restriction. 5 days after starting water restriction and handling, mice began 
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training in the behavioral setup. Training consisted of a shaping procedure with 9 levels of T-

mazes with progressively longer stem length and cognitive difficulty (Extended Data Fig. 8). 

After shaping concluded, in each session the first few trials (5–30) were warm-up trials 

drawn from mazes 5–8, and then trials from the final maze (#9) were used for the remainder 

of the session; Warm-up trials were excluded from all analyses in the paper. The mice 

typically received their daily allotment of water during task performance; if not, the 

remainder was provided to them at the end of the day.

Details of the behavioral task

At the beginning of each trial, mice were presented with the start of a virtual T-maze. After 

30 cm (Start region) the cue region began, in which cues randomly appeared on either side 

of the corridor. The number of cues presented were sampled from a Poisson distribution, 

with means of 6.4 to one of the sides, and 1.3 to the other. In order to obtain better 

estimation of the psychometric curves, we additionally oversampled easy trials by having 

5% of trials with a difference in # cues between the sides of 12 or more (using the same 

probability distributions). The identity of the high-cue-probability and low-cue-probability 

sides (left or right) were recalculated each trial to randomize the task and avoid side bias 15. 

The locations of the cues were randomly assigned along the cue region using a uniform 

distribution, with the added constraint of a minimum spatial distance of 14 cm between cues 

(regardless of their side). Each cue was presented when the mouse arrived 10 cm from its 

location, and disappeared once it was 4 cm behind the mouse. Thus, presentation of multiple 

cues did not overlap in time. The portion of the maze where cues were presented (cue 

region) was 220 cm long, and after it the stem of the T-maze continued for another 80 cm 

where no cues were presented (delay region). At the end of the T-maze the mouse had to 

enter one of the arms, and full entry constituted a choice. Turning into the correct (more 

cues) side would elicit a water reward (6.4 uL), while an incorrect choice elicited a tone 

(pulsing 6 to 12 KHz tone for 1 s). At the time of reward or tone delivery, the visual 

environment froze for 1 s, and then disappeared for 2 s (after a successful trial) or 5 s (after a 

failed trial) before another trial was started.

Pavlovian conditioning

After water restriction and handling, mice were habituated to head fixation for 2–3 sessions. 

Training consisted of 5 sessions (1 session/day); each session consisted of 50 reward 

deliveries (8 ul of water/reward). During training, each reward was preceded by a 2 s tone 

that ended at the time of reward delivery. The time between a reward and the next tone 

delivery was sampled from an exponential distribution with a mean of 40 s. The tone 

consisted of a sum of multiple sine waves with frequencies of 2, 4, 6, 8 and 16 Khz, and an 

amplitude of 70dB. All of the mice exhibited anticipatory licking by the end of the 5 days 

(increase in lick rate after tone presentation but before reward delivery). Some of the mice 

were previously trained for several days in a similar protocol where the tone amplitude was 

60dB and the time between reward and subsequent tone was sampled from a uniform 

distribution between 5 and 15 s; these mice did not exhibit anticipatory licking until trained 

in the final protocol. After training, RPE was assessed in a single test session that consisted 

of 64 trials; 50 of those trials were identical to the training trials (tone followed by reward), 

7 trials were unexpected reward trials (reward delivery with no preceding tone) and 7 trials 
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were unexpected omissions (tone not followed by reward). In all cases the intertrial interval 

was sampled from an exponential distribution with a mean of 40 s. Trial identity was 

sampled randomly with the following exceptions: 1- the first 5 trials were standard trials 

(tone+reward). 2- The first 2 non-standard trials were unexpected reward trials.

Session and trial selection

We selected sessions and trials such that each recorded neuron would only appear in one 

session, and during which mice were engaged in the task. Our dataset contained one main 

imaging field/mouse, with the exception of three mice, in which we obtained two separate 

imaging fields at different depths. Thus, we analyzed 23 sessions from 20 mice (one session 

per imaging field). Sessions had at least 100 trials and mice performed at least 65% correct. 

Mice were between 3–6 months old during imaging and were trained for an average of 30 

sessions before data collection (a range of 18–51 training sessions).

We removed a small fraction of trials in which mice were not engaged in the task, based on 

the following criteria: i) We calculated a smoothed performance measure by processing the 

binary trials success vector through a zero-phase filter composed of a 21 point centered 

Gaussian with std. dev.=3. Trials where this measure was less than 0.5 were removed. ii) A 

sequence of 5 or more trials with the same choice and success rate equal or less than 20% 

was removed. iii) A sequence of 10 or more trials with the same choice was removed. The 

removed trials comprised 15% of trials per session on average. Most of these trials occurred 

close to the end of the session when the animals tended to exhibit decreased performance. 

These trials were not removed for consideration of the mice performance when dividing the 

mice into two groups based on performance, or from the dataset used when dividing blocks 

of trials in a session based on performance (Extended Data Fig. 6). Average performance 

across sessions on all trials was 73.3±1.1%, average performance after removal of these 

trials was 77.6±0.9%, average performance on the easiest 20% of trials (based on the 

absolute difference in cues) after removal was 87%±1.7%.

Motion correction procedure

Deep brain imaging can be associated with spatially nonuniform fast motion (frame to 

frame), as well as spatially nonuniform slow drift of the field of view (over several minutes). 

To perform accurate motion correction despite the spatial non-uniformity, we divided the 

video into small regions (‘patches’) that had relatively uniform motion, and separately 

corrected the motion within each patch, as described below (schematic of procedure in 

Extended Data Fig. 3; example video before and after motion correction in Supplementary 

Video 2). Motion correction was performed on the red channel of the recording when 

available, otherwise it was performed on the green channel (n=9).

Before dividing the video into patches, we first performed rigid motion correction using a 

standard normalized cross-correlation method, to eliminate any spatially uniform motion 

(‘matchTemplate’ function in the openCV package in Python). This correction was 

performed on non-overlapping 50 s video clips to eliminate concerns that slow drift over the 

course of minutes would degrade performance. The template for the cross-correlation was 

calculated by dividing each clip into non-overlapping sections of 100 frames, calculating the 
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mean image of each section, and obtaining the median of the mean images. Before these 

motion correction steps, the video was pre-processed as follows: i- thresholded by 

subtracting a constant number and setting negative values to 0, such that the lower ~50% of 

pixels were 0, ii- used the openCV function ‘erode’ (with a scalar ‘1’ kernel), iii- convolved 

with a Gaussian (std. dev. = 2 pixels). Motion correction and template calculation were 

performed iteratively 10 times or until all absolute shifts were less than 1 pixel in both axes. 

Finally, the 50 s clips had to be aligned to each other. This required generating a ‘master 

template’ for the entire video, and then using the same normalized cross-correlation 

procedure as before (‘matchTemplate’ function). The master template was calculated by 

taking the median of the templates of all clips.

The next step of motion correction involved compensating for spatially nonuniform, slow 

drift by estimating the drift in local patches. Patches were defined manually around neurons 

of interest to contain objects that drifted coherently (patch width ~80–160 pixels). In order 

to estimate the drift of each patch over time, we used a non-rigid image registration 

algorithm (demons algorithm, ‘imregdemons’ function in matlab). This algorithm outputs a 

pixel by pixel correction. However, directly applying this correction risks distorting the 

shape of the neurons or the amplitude of signals. Therefore, we applied a uniform correction 

for each patch, based on the average shift of all pixels in the patch (based on the demons 

output). We implemented the demons algorithm on the templates from the 50 s clips 

described in the previous paragraph, again using the median of these templates as the 

‘master template’. The registration and master template was computed iteratively 20 times, 

or until the increase in the average correlation between each corrected template and the 

overall template was less than the s.e.m. of these correlations. We found that the 

performance of the non-rigid registration improved if the templates were first processed 

through a local normalization procedure 38.

Finally, we performed standard rigid motion correction using the normalized cross-

correlation method on each patch and each clip. We then repeated the rigid motion 

correction after taking a rolling mean of every two frames and downsampling the video by a 

factor of two. This increased signal strength; we used this downsampled video for 

subsequent analysis. After correcting for motion within clips, we had to correct across clips. 

To this end, we performed rigid motion correction on the clip templates. The motion 

correction code can be found in: https://github.com/benengx/Deep-Brain-Motion-Corr.

Calculation of ΔF/F from the motion-corrected images

The first step in calculating ΔF/F for each neuron was to define the neuron’s ROI, as well as 

the annulus around that ROI that would be used for neuropil correction 39,40. Each neuron’s 

ROI was defined manually using the mean and std projections of the movie as well as 

inspecting a movie that was downsampled by a factor of 5. An initial automatic annulus was 

generated by enlarging the borders of the ROI twice (by 5 um and 10 um); the annulus was 

the shape contained between the two enlarged borders, where we expect that observed 

activity would be due to neuropil but not the cell itself. Next, we manually reshaped the 

annulus region to avoid any visible dendrites, processes or cell bodies, while approximately 

maintaining its original area.
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In order to correct for neuropil contamination, we subtracted a scaled version of the annulus 

fluorescence from the raw trace ( Fcorr(t)= Fraw(t) - ϒ∙Fannulus(t) ), where Fraw(t) is the mean 

fluorescence in the neuron’s ROI at time t, Fannulus(t) is the mean fluorescence in the 

corresponding annulus ROI at time t, and ϒ is the correction factor 21,39). The correction 

factor is intended to reflect the fraction of the z-section that is generated by neuropil versus 

the cell that is being imaged. The correction factor used was 0.58, which is in line with 

previously reported correction factors in GRIN lens imaging 21,41 and resulted in positive 

corrected traces. After neuropil subtraction, smoothing was performed by processing the 

corrected trace through a zero-phase filter using a 25 point centered Gaussian with 1.5 

samples points std.

ΔF/F at time t was defined as (F(t)-F0(t))/F0(t), where F0(t) is the 8th percentile of the 

smoothed and neuropil corrected trace based on the preceding 60 seconds of recording.

Selection of neurons in the dataset

Neurons were selected for analysis based on visual inspection of recording stability, using 

both the images as well as ΔF/F traces. Only neurons that were stable for at least 50 trials 

were included in the dataset. The full dataset comprised of n=303 neurons from n=20 mice. 

Of these, n=233 were considered to have a good fit by the encoding model described in the 

next section (>5% variance explained by the model during the cue period; reduced dataset). 

The full dataset was used in Fig. 2a, Fig. 3b, Fig. 4b, and Extended Data Fig. 1. For analyses 

where the specific output values of the encoding model were important, we used the reduced 

dataset composed of neurons for which the encoding model had a good fit (Fig 2c,d, Fig. 

3a,c,d, Fig. 4c, Extended Data Fig. 4, Extended Data Fig. 6, Extended Data Fig. 7). With 

regards to the dataset collected throughout learning, neurons that had >5% variance 

explained by the model during the cue period were used in Extended Data Fig. 8b (except 

for the panel titled “Model Fit”, for which all neurons were used). The full learning dataset 

was used in Extended Data Fig. 8c and Extended Data Fig.9. When analyzing modulation of 

outcome activity in rewarded trials (Fig. 5f–j,), we used all neurons that had significant 

reward responses (n=232; see Fig. 2a).

Encoding model

In order to quantify the contribution of behavioral variables to neural activity, we employed 

an encoding model, which was a multiple linear regression with the ΔF/F trace of each 

neuron as the dependent variable, and predictors derived from the behavioral variables as the 

independent variables (Fig. 2b). To derive the predictors, we divided the behavioral variables 

into 3 classes: “event” variables, “whole trial” variables, and “continuous” variables. 

“Event” variables (left and right cues, reward) were variables that occurred in discrete points 

in time. To derive the predictors for these variables, each event was convolved with a 7 

degrees-of-freedom regression spline basis set with a 2 s duration, generated using the ‘bs’ 

package in R. “Whole-trial” variables (accuracy, previous reward) were variables whose 

value remained constant for an entire trial. These were coded as binary predictors, with a 

value of ‘1’ in all time points of trials where the animals received a reward (accuracy) or 

trials after receiving a reward (previous reward) and ‘0’ elsewhere. “Continuous” variables 

(position and kinematic variables) could change their value at every time point. In the case 
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of kinematics, we included 3 “sub-variables” that were closely related to each other: 

velocity, acceleration, and view angle. Up to 3 predictors were generated per continuous 

variable (or sub-variable), by raising each variable to the 1st, 2nd and 3rd powers. The 

optimal number of predictors to use per continuous variable (for each neuron) was assessed 

by 5-fold cross-validation over trials. (The reason that we used position along the maze as a 

continuous variable, rather than time in trial, was a previous study 3 which found that on a T-

maze in which rats occasionally paused, DA activity seemed to be more closely related to 

position than time.)

The encoding model thus was:

F = β0 + ∑
k = 1

KE
∑

j = 1

Nsp
βjk

E ejk + ∑
k = 1

KW
βk

W wk + ∑
k = 1

KC
∑

j = 1

dk
βjk

C ck
j + ε

Where F is ΔF/F of a neuron, ek
j is is the jth spline basis function convolved with the kth 

event variable, wk is the predictor for the kth whole-trial variable, ck is the kth continuous 

variable, KE, KW, KC are the numbers of Event, Whole-trial, and Continuous variables 

correspondingly. Nsp is the number of splines (7 in all cases), dk is the maximal polynomial 

degree used for each kth continuous variable, the β values are the regression coefficients for 

the different predictors, and ε is a Gaussian noise term. The β values were calculated using 

the least squares criterion after z-scoring the predictors (‘glmfit’ matlab function). The code 

can be found in: https://github.com/benengx/encodingmodel. Example single-trial fits for 

several cells are shown in Extended Data Fig. 1c.

Model comparison

We tested several behavioral variables on order to optimize the encoding model. The 

behavioral variables used in the final model (position, cues, kinematics, accuracy, previous 

reward) were those whose removal resulted in a significant degradation of the fit of the 

model prediction to the data across the population (Extended Data Fig. 1d). Improved fits 

were assessed by comparing the R2 for each model (obtained with 5-fold crossvalidation) 

with a paired t-test across the population of neurons. We also considered other behavioral 

variables that did not improve the fit and therefore were not included in the final model (see 

Extended Data Fig. 1d,e). The other variables that we considered are: early and late cues: a 

separate set of predictors was calculated for cues appearing in the 1st half of the cue region 

and cues appearing in the 2nd half. #L - #R: a predictor that at each timepoint takes the value 

of the current difference between left-and right-side cues that had appeared in the trial. |#L - 
#R|: a predictor that at each timepoint takes the absolute value of the current difference 

between left- and right-side cues that had appeared in the trial. #L, #R: two predictors that at 

each timepoint take the value of the current number of either left- or right-side cues that had 

appeared in the trial. P(Reward on right) (nominal): a predictor that takes the current 

probability of the right side being rewarded based on the number of left- and right-side cues 

that had appeared in the trial and the sampling statistics of the cues. Given the Poisson 

distributions from which the cues were sampled (and ignoring the constraint of minimum 

distance between cues) this probability is given by the following logistic function: 
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1
1 + 4.92 #L − #R  where #L, #R are the current counts of left- and right-sided cues 

respectively. The value of 4.92 is the ratio of Poisson means for high- and low-cue 

probability sides. P(Reward) (nominal): a predictor that takes the current probability of 

being rewarded (i.e. making the correct choice) based on the number of left- and right-side 

cues that had appeared in the trial and the sampling statistics of the cues. Equivalent to 

max(P(Reward on right),1-P(Reward on right)). P(Reward on right) (empirical): a predictor 

that takes the current probability of the right side being rewarded based on the number of 

left- and right-side cues that had appeared in the trial, but instead of using the actual 

statistics of the cues, this probability was calculated using the psychometric curve of each 

mouse as the function that related the cue appearances to the probability of each side to be 

rewarded. Thus, this probability is given by: 1
1 + a#L − #R  where the parameter a is estimated 

by fitting a logistic function to the psychometric curve of each mouse. P(Reward) 
(empirical): a predictor that takes the current probability of being rewarded (i.e. making the 

correct choice) based on the number of left- and right-side cues that had appeared in the trial 

and calculated using the psychometric curve of each mouse as the function that related the 

cue appearances to the probability of each side to be rewarded. Equivalent to max(P(Reward 
on right),1-P(Reward on right)). Difficulty of previous trial: a predictor that is the final value 

of |#L - #R| from the previous trial. Confirmatory/disconfirmatory cues: Instead of dividing 

cues in left- and right-sided, cues are divided depending on whether they are confirming or 

disconfirming the current best estimate of the rewarded side. e.g. if the current count is 3 

left-side cues and 1 right-side cue, if the next cue is a left-side cue it is confirmatory, and if it 

is a right-side cue it is disconfirmatory (in case of an even count the next cue is considered 

confirmatory).

Calculation of the relative contributions of behavioral variables to neural activity

We quantified the relative contribution of each behavioral variable to neural activity (Fig. 

2c,d) by determining how the performance of the encoding model declined when each 

variable was excluded from the model. We predicted neural activity with all variables (“full 

model”) or by excluding one of the variables (“partial model”), in either case with 5-fold 

cross-validation (over trials; meaning that in each fold 80% of trials were used for training 

the model and the remainder of trials were used for testing the model performance). The 

relative contribution of each behavioral variable was calculated by comparing the variance 

explained of the partial model to the variance explained of the full model. In the case of the 

cue period, in which five behavioral variables, relative contribution of each variable was 

defined as 1 −
Rp, i2

Rf
2 /∑j = 1

5 1 −
Rp, j2

Rf
2  where R2

p,i is the variance explained of the partial 

model that excludes the ith variable and R2
f is that of the full model. In the case of the 

outcome period, two event variables were considered: time of reward and time of outcome 

(reward or tone delivery). The relative contribution of reward was calculated by comparing 

the variance explained of a partial model with only the time of outcome, compared to a full 

model that had both time of reward and time of outcome as event predictors, 1 −
Rp2

Rf
2 . This 
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allowed us to identify variance in the neural activity that could be attributed to reward rather 

than simply reaching the end of the maze. Negative relative contributions were set to 0 (this 

occurs when the R2 of the full model is lower than that of the partial model, due to 

introduction of noise by the excluded variable).

We used two approaches to exclude variables from the full model and calculate variance 

explained by the partial model. In the first approach, the partial model was equivalent to the 

full model, except that the β values of the predictors of the excluded variable were set to 

zero (“no refitting”). In the second approach, we calculated new β values by re-running the 

regression without the predictors of the excluded variable (“refitting”). Both approaches to 

exclude variables produced comparable results; the “no refitting” approach was used to 

generate the main figures, while comparison with the “refitting” approach is shown in 

Extended Data Fig. 7b,c,g.

To determine if the contribution of a behavioral variable was statistically significant for each 

neuron (Fig. 2a; Fig. 3b; Extended Data Fig. 8c; Extended Data Fig. 9), we first calculated 

the F-statistic of the nested model comparison test where the reduced model was the model 

without that behavioral variable included. We then proceeded to calculate the same statistic 

on 1000 instances of shuffled data, where shuffling was performed on non-overlapping 3s 

bins (to maintain the autocorrelation of the signal). The p-value used for significance was 

obtained by comparing the value of the original F-statistic to the shuffle distribution, using 

the Bonferroni correction to account for the number of behavioral variables tested for each 

neuron; the threshold for significance was a p-value of 0.01 after correction.

To visualize the average responses for all significant neurons for each behavioral variable 

(Fig. 2a) averaging was performed as follows: In the case of position, accuracy and previous 

reward, the averaging is over trials. In the case of kinematics, the averaging is over 

timepoints. In the case of cues and reward, the averaging was across event occurrences. For 

the event variables (cues and reward), the average baseline activity was subtracted (in the 

second preceding the event).

Weighted Regression

When calculating the relative contribution of reward (Fig. 2c,d, Fig. 3a, Extended Data Fig. 

5, Extended Data Fig. 6e,f, Extended Data Fig. 7, Extended Data Fig. 8b) and the decoding 

performance of choice and accuracy (Extended Data Fig. 6b), we used weighted regression 

to control for the different number of trials of each type (correct/incorrect trials or left/right 

choices). Assuming na trials of type a and nb trials of type b the weights of type a trials are 

given by: 
nb

na + nb
 and the weights of type b trials are given by: 

na
na + nb

.

Clustering analysis

To identify functional clusters of neurons (Fig. 3a), we used a clustering procedure based on 

a Gaussian mixture model (GMM) that was applied on the matrix of contributions of 

behavioral variables to the neural activity. To do that, we used the ‘fitgmdist’ function in 

Matlab (Mathworks, Inc) with 1000 maximum iterations, 0.35 regularization value, 100 

replicates, and the covariance matrix constrained to diagonal. This produces a Gaussian 
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mixture model where the major axes of the Gaussians are parallel to the axes of the feature 

space, which enables flexibility beyond that of the k-means algorithm while still maintaining 

a relatively small number of parameters to be fitted.

To test the fit of the clustering model (Extended Data Fig. 6a), we shuffled 10,000 times the 

relative contribution values both across behavioral variables (Extended Data Fig. 6a, top) 

and across neurons (Extended Data Fig. 6a, bottom; the contributions for the cue period 

variables were re-normalized per neuron after shuffling). After each shuffling iteration, we 

repeated the clustering and recalculated the log-likelihood of the clustering model. The 

distribution of log- likelihood values for shuffled data was then compared to the log-

likelihood of the clustering model on the real data.

The BIC score was used to select the number of clusters. It is a penalized likelihood term 

defined as 2(NlogL) + Mlog(n), where NlogL is the negative log-likelihood of the data, M is 

the number of parameters of the GMM, and n is the number of observations. The first term 

rewards model with good fit, while the second term penalizes more complex models. The 

BIC score was calculated by the ‘fitgmdist’ function.

Alternative clustering analysis on the predicted traces

In Extended Data Fig. 7i,j, we used an alternative method to functionally cluster the neurons, 

in order to compare to the clusters described in Fig. 3. Behavioral predictors from one 

session were used to generate predicted activity traces based on the encoding model, for 

each neuron that had >5% variance explained by the behavioral model by multiplying the 

predictor matrix by the weights (n=233). A similarity matrix was constructed by taking the 

absolute correlation between the predicted traces for each neuronal pair. The similarity 

matrix was clustered via information-based clustering 20 using the published matlab code 

with parameters: T=0.1, Csize=5, InitNum=10. Neurons were assigned a cluster identity to 

the cluster for which they had the highest probability of belonging, provided that probability 

was higher than 0.75. The confusion matrix shown in extended Data Fig. 7j was constructed 

from neurons that had a cluster identity in both the relative contributions clustering approach 

(method used in the main paper) and the alternative method described here (clustering the 

similarity matrix obtained from the predicted neuronal traces; n=158). The value in bin i,j of 

the matrix was calculated by 
# IDrel . contr . = j ∧ IDpred . traces = i
# IDrel . contr . = j ∨ IDpred . traces = i .

Quantification of reward prediction error signals with d’

In Fig. 5, the strength of modulation of reward responses by reward expectation was 

calculated using the d’ measure as follows: 1- We divided rewarded trials into trials with 

either high reward expectation (HRE) or low reward expectation (LRE). For the pavlovian 

conditioning experiments, HRE trials were those where reward delivery was preceded by a 

tone, and LRE trials were those where reward delivery was not preceded by a tone. For the 

virtual reality experiments, trials were divided in two different ways: for the trial difficulty 

criterion, we ranked trials according to the strength of the evidence (absolute value of the 

difference between the total number of right- and left-sided cues). The top half of those trials 

(strong evidence) were considered HRE trials and the bottom half (weak evidence) were 
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considered LRE trials. For the previous outcome criterion, previously rewarded trials were 

HRE trials and previously unrewarded trials were LRE trials. 2- We calculated the average 

reward response in each trial by averaging activity in the first 2 s following reward delivery 

and subtracting from that the average activity in the 1 s preceding reward delivery. 3- The d’ 

for the reward responses for HRE and LRE trials was calculated as follows:

d′ =
μLRE − μHRE

0.5 σLRE
2 + σLRE

2

where μ and σ2 are the mean and variance of the distribution of reward responses for the 

denoted trial group. Thus, positive d’ values indicate activity consistent with a reward 

prediction error signal (stronger reward response for low reward expectation trials). To 

evaluate if RPE was significantly represented across the population (Fig. 5d,h,j) we tested if 

the d’ distribution was significantly different from 0 using a 2-sided Wilcoxon signed rank 

test. For the d’ distributions of the different neuronal clusters (Fig. 5j, right), p-values are 

shown after a Holm-Bonferroni correction for the 10 distributions. The number of neurons 

assigned to clusters 1 through 5 (which also had a significant reward response) are 62, 26, 

18, 25, and 22 respectively.

Histology

After completion of behavioral experiments, mice were perfused with 4% PFA in PBS, and 

then brains were removed and postfixed in 4% PFA for 24 additional hours before 

transferring to 30% sucrose in PBS. After post-fixing, 40 micron sections were made with 

either a microtome (American Optical 860) or cryostat (Leica CM3050 S). Brain sections 

were washed with PBST (Phosphate buffered saline with 0.4% Triton x-100) for 30 min, and 

then placed in blocking buffer (10 ml PBST + 0.2 ml normal donkey serum + 0.1 g bovine 

serum albumin (sigma A7906–100G) for 1 hour. Sections were incubated overnight at 4° C 

in primary antibodies for TH (TH Ab; Aves labs, E.C. 1.14.16.2, chicken polyclonal anti-

peptide antibody mixture, 1:1000 dilution) and GFP (Molecular probes G10362, rabbit 

monoclonal, 1:1000 dilution). Sections were then washed with PBST for 30 min, then 

incubated for 1 hour at room temperature in Alexa fluor 647 (Jackson ImmunoResearch 

Donkey-anti-chicken, 1:1000 dilution) and Donkey anti-rabbit Alexa fluor 488 (Jackson 

ImmunoResearch, 711–545-152, 1:1000 dilution). Following PBST washes, sections were 

mounted in 1:2500 DAPI in Fluoromount-G. Whole sections were imaged with a Nikon 

Ti2000E microscope.

Estimation of the neurons’ location

In order to investigate the relationship between the activity of the neurons and their location 

in the VTA (Fig. 3c,d), we estimated each neuron’s location by combining information about 

the position of the GRIN lens from histology with the location of the imaged neurons within 

the field of view. Histological slices stained for Tyrosine hydroxylase (TH) featuring the 

tract left by the GRIN lens (Extended Data Fig. 4a) were processed through the Wholebrain 

software 42 by applying registration points using the VTA, SNc and cerebral peduncle as 

primary markers. The center of the bottom of the lesion was used as a proxy for the center of 
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the lens, and its location was provided by the atlas coordinates output of the software. These 

coordinates are derived from the Allen mouse brain Common Coordinate Framework (CCF) 

mapped to stereotactic coordinates 42.

In order to directly estimate the optical properties of the GRIN lenses, we generated samples 

from a solution of agarose and fluorescent beads (10um, Molecular Probes). We first 

confirmed the size of the beads by imaging the samples directly with the 2-photon 

microscope which was calibrated by previous imaging of a 10um x10um grid (Thorlabs). 

We then proceeded to image the samples through the two types of GRIN lenses used. Given 

that GRIN lenses have different magnifications at different imaging depths, we calibrated the 

magnification factor at each depth by measuring the observed size of the beads in the x-y 

axes, and used that size to estimate the magnification factor. In order to relate the movement 

of the stage in the z-axis with the imaging depth of the imaged fields, we also measured the 

observed size of the beads across the z-axis. The z plane used to image each field of view 

was estimated by identifying the field of view from a z-stack that was previously obtained 

for each mouse.

For each neuron, the center of mass of its ROI was used as the marker for the neuron 

location within the field of view. The absolute location of the neuron was the vector sum of 

its distance from the lens center in the field of view to the measured location of the lens 

center in atlas coordinates. These estimates were used in Figs. 3 & 4 and Extended Data 

Figs. 4 & 6.

The relative concentration across the A/P or M/L axis of neurons belonging to a given 

cluster (Fig. 3d) was calculated as follows. First, the concentration of neurons belonging to a 

cluster was estimated using Gaussian kernel smoothing via the ‘ksdensity’ function in 

Matlab with a bandwidth of 50 um applied only on these neurons. Second, the relative 

concentration for each cluster was calculated as the concentration per cluster divided by the 

sum of concentrations calculated for all clusters. To calculate the 95% confidence intervals 

of the relative concentrations (Fig. 3d, dashed lines), we ran 10000 iterations where in each 

we randomized the cluster identities of the neurons and then proceeded to calculate the 

relative concentrations of each cluster as above. For each point in the A/P or M/L axis, the 

edges of confidence interval were the 2.5 and 97.5 percentiles of the distribution of 

concentrations calculated from the shuffled data. Significant spatial structure for each cluster 

along each axis was assessed by comparing the standard deviation of the relative 

concentrations of the data with that obtained from shuffled distributions, where shuffling 

was performed 10,000 times by randomizing the locations of the neurons relative to their 

cluster identity. The obtained p-values (Fig. 3d) were then Holm-Bonferroni corrected for 

the 10 conditions (5 clusters x 2 axes).

Signal and noise correlations

To investigate how the correlations between pairs of neurons were spatially organized in the 

VTA, we calculated signal and noise correlations for all pairs of neurons that were 

simultaneously recorded (Fig. 4c). The signal correlation between a pair of neurons was 

calculated by correlating the predictions of the encoding model for both neurons in the cue 

period or outcome period. The noise correlation was the correlation between the residuals 
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for each neuron pair. We also used an alternative method for estimating the noise 

correlations 43,25 (Extended Data Fig. 6c). The alternative noise correlation estimate 

between a pair of neurons (i,j) was calculated as follows: we first fit an augmented encoding 

model for neuron i which had as an additional predictor the activity of neuron j; we then 

calculated the normalized improvement in the fit using ΔV n i j = V i j − V i
V i j , where V(i|j), 

V(i) are the variances explained by the augmented and original (behavioral-only) encoding 

models respectively for neuron i. We repeated this procedure for neuron j and obtained 

ΔVn(j|i). The noise correlation estimate was the mean of the two ΔVn values. To investigate 

the relationship between pairwise signal and noise correlations and interneuronal distance 

we calculated Pearson’s linear correlation coefficient and its associated p-value between the 

pairwise correlations and the pairwise distances for each condition (shown in each panel of 

Fig. 4c and Extended Data Fig. 6c).

Ex vivo recordings to compare GCaMP6f fluorescence with activity in DA neurons

In order to compare GCaMP6f fluorescence with spike times in DA neurons (Extended Data 

Fig. 2), we performed ex vivo slice imaging and electrophysiolgical recordings in 

Ai148×DAT::Cre mice. Mice were anesthetized with an i.p. injection of Euthasol (0.06ml/

30g) and decapitated. After extraction, the brain was immersed in ice-cold carbogenated 

NMDG ACSF (92 mM NMDG, 2.5 mM KCl, 1.25 mM NaH2PO4, 30 mM NaHCO3, 20 

mM HEPES, 25 mM glucose, 2 mM thiourea, 5 mM Na-ascorbate, 3 mM Na-pyruvate, 0.5 

mM CaCl2·4H2O, 10 mM MgSO4·7H2O, and 12 mM N-Acetyl-L-cysteine) for 2 minutes. 

The pH was adjusted to 7.3–7.4. Afterwards coronal slices (300um) were sectioned using a 

vibratome (VT1200s, Leica) and then incubated in NMDG ACSF at 34°C for 15 minutes. 

Slices were then transferred into a holding solution of HEPES ACSF (92 mM NaCl, 2.5 mM 

KCl, 1.25 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 2 mM 

thiourea, 5 mM Na-ascorbate, 3 mM Na-pyruvate, 2 mM CaCl2·4H2O, 2 mM 

MgSO4·7H2O and 12 mM N-Acetyl-l-cysteine, bubbled at room temperature with 95% 02/ 

5% CO2) for at least 45 mins until recordings were performed.

During cell-attached recordings, slices were perfused with a recording ACSF solution (120 

mM NaCl, 3.5 mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 1.3 mM MgCl2, 2 mM 

CaCl2 and 11 mM D-(+)-glucose, continuously bubbled with 95% O2/5% CO2) held at 

30°C. Picrotoxin (100 μM) was added to the recording solution to block tonic inhibition and 

promote spontaneous activity. Cell-attached recordings were performed using a Multiclamp 

700B (Molecular Devices, Sunnyvale, CA) using pipettes with a resistance of 4–6 MOhm 

filled with a solution identical to the recording ACSF. Infrared differential interference 

contrast–enhanced visual guidance was used to select neurons that were 3–4 cell layers 

below the surface of the slices, which were held at room temperature while the recording 

solution was delivered to slices via superfusion driven by peristaltic pump. Cell-attached 

recordings were collected once a seal (200 MOhm to >5 GOhm) between the recording 

pipette and the cell membrane was obtained. To generate bursts in cells that did not exhibit 

spontaneous bursting activity, a second glass pipette filled with recording ACSF containing 

20 μM NMDA was placed above the recorded cell. Slight positive pressure (~12 psi) was 

briefly applied (100–250 ms) to generate bursting activity in the recorded cell. During 

bursts, spikes typically exhibited a gradual reduction in amplitude as observed previously 44. 
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Action potential currents were recorded in voltage-clamp mode with voltage clamped at 0 

mV, which maintained an average holding current of 0 pA. Cell-attached currents were low-

pass filtered at 1 kHz and digitized and stored at 10 kHz (Clampex 9; MDS Analytical 

Technologies). All experiments were completed within 4 hours after slicing the brain. 

Fluorescence was imaged using a CMOS camera (ORCA-Flash 2.8, Hamamatsu) at 30 Hz 

using a GFP filter cube set (exciter ET470/40x, dichroic T495LP, emitter ET525/50m).

GCaMP6f kernel estimation

To generate fluorescence traces from simulated spike trains (Extended Data Fig. 7k) we 

estimated a GCaMP6f kernel from 39 by the following equation: y = e− t
500 − e− t

50  where t = 

[0, 1000] (t in ms).

Statistical procedures notes

No statistical methods were used to predetermine sample size. The experiments were not 

randomized and the investigators were not blinded to allocation during experiments and 

outcome assessment.

Extended Data
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Extended Data Figure 1. Features of the VR task, encoding model predictions, and selection of 
the encoding model.
a, Example screenshots of the virtual world presented to the mouse in different positions 

along the maze. b, Activity trace during 6 consecutive trials of an example neuron that was 

significantly modulated by position in the central stem. The colored strip below the trace 

describes the trial epochs: cue period (gray), delay period (blue), outcome period (pink). 

Reward delivery is denoted by a water droplet. c, ΔF/F traces for 10 example neurons during 

6 consecutive trials (green). Overlaid are the predictions of the behavioral model for these 
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trials (blue). The colored strip below each trace denotes the trial epochs: cue period (gray), 

delay period (blue), outcome period (pink). Reward delivery is denoted by a water droplet. 

d, Mean (across neurons) of percent variance explained (tested on held-out data with 5-fold 

crossvalidation) by the final model (red) and other models where a variables was either 

removed (blue) or added (green). See Methods for descriptions of all variables that were 

tested. All models for which a variable was removed from the final model performed 

significantly worse, based on comparing R2 for all neurons (p<2×10−6, 2-sided paired t-test, 

n=303, Holm-Bonferroni correction for all model comparisons). For models where variables 

were added to those in the final model, the performance either did not exhibit a significant 

difference, or was degraded. See Methods for complete description of all models. e, 

Comparison of performance for all neurons of the final model (x-axis) and all the other 

models. Each panel shows the comparison with one model; significance of the 2-sided 

paired t-test (After Holm-Bonferroni correction) is shown in each panel. n=303 in all cases.
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Extended Data Figure 2. Simultaneous calcium imaging and cell-attached recording in DA 
neurons in the VTA of Ai148×DAT::Cre mice.
a, Relative change in fluorescence (top) and cell-attached current (bottom) recorded 

simultaneously. b, Average spike-triggered fluorescence (average over n=126 spikes). c, 
Zoomed in spike waveform for the same cell as in (a). d, Examples of bursts from 3 different 

DA cellsdifferent DA cells, showing cell-attached current (top) and change in fluorescence 

(bottom). The spike times are shown with black bars under the fluorescence trace. The red 

horizontal bars under the current traces show the timing of NMDA puffs (see Methods).
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Extended Data Figure 3. Motion correction procedure.
We developed a custom motion correction procedure to compensate for both non-rigid slow 

drift of the field of view (timescale: 10s of min) as well as non-rigid fast motion (timescale: 

10s of ms). Importantly, the procedure avoids any use of interpolation, which can produce 

artifacts. The procedure consists of the following main steps: 1 (blue box) the entire movie is 

divided in non-overlapping 50 s chunks; in each chunk we perform rigid motion correction 

using standard cross-correlation methods (on the red channel). The template for each chunk 

is calculated by dividing the chunk into non-overlapping sections of 100 frames, calculating 

the mean image of each section, and obtaining the median of the mean images. 2 (red box) 

we use a non-rigid algorithm for image registration to align all the templates. The algorithm 

outputs shift parameters for every pixel and template. Separately, we manually draw patches 

that include neurons of interest in the first template. For each template, we use the shift 

parameters of all the pixels in each patch to estimate the average motion of the patch. We use 

that information to crop the patch from each 50 s chunk of the movie. 3 (orange box) we 

perform rigid motion correction (as above) on the concatenated patch movies, down-sample 

by a factor of 2 (to increase the signal strength) and then perform rigid motion correction 

again. 4 (green box) we extract the patch templates by using the mean projection, and hand 

draw ROIs of the objects of interest. See Methods for a detailed explanation of motion 

correction algorithm, and see Supplementary Video 2 for an example video before and after 

correction. Code available in: https://github.com/benengx/Deep-Brain-Motion-Corr.
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Extended Data Figure 4. Recovered neuron locations and validation of the spatial organization of 
neural responses.
a, Example of lens location recovery. Coronal histological slices stained for Tyrosine 

hydroxylase were aligned to the Allen brain Atlas 45 using the Wholebrain software package 
42. The center of the lens was marked and its position in common coordinates was recovered 

by using the software. b, Left: recovered centers of GRIN lenses from all mice (black 

ellipses) are shown on top of the atlas images. Right: recovered locations of all neurons that 

entered the clustering analysis based on an encoding model R2 during the cue period >5% 
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(n=233; see Methods for details on location recovery). Neurons are color-coded according to 

their cluster identity. c, Relative contributions of each behavioral variable as a function of 

neuron location along the A/P,M/L and D/V axes. In each row, the relative contribution of a 

behavioral variable is correlated with the A/P (left), M/L (middle) of D/V (right) locations. 

The correlation value and significance (after Holm-Bonferroni correction for all tests) is 

shown in the panel (n=233 in all cases). The linear fits of the entire population is shown by a 

black line, and linear fits of neurons belonging to individual mice (which had more than 5 

neurons) are shown by gray lines. d, statistical tests of the spatial organization of responses 

to different behavioral variables that account for individual differences across mice. The 

table lists the p-values and F-statistics obtained for 3 statistical tests for the spatial 

organization of the cue-period variables. The first test was a mixed effect model which 

included all neurons that had good fit to the behavioral model during the cue period (R2>5%, 

n=233). In this model, the relative contribution for a given variable to each neuron was the 

dependent variable, the A/P, M/L, D/V locations and their pairwise interactions were 

independent fixed effects, and the mouse identity was a random effect for the intercepts 

(MATLAB code: model = fitglme(Data,’variable~ml*ap*dv-ml:ap:dv+(1|mouseID)’)). For 

this test, the degrees of freedom for the numerator and denominator respectively were 6 and 

226. In the Field of View (FOV) tests, for every variable we averaged the relative 

contributions of all neurons in a given FOV. (For mice that had two FOVs we combined 

neurons from the two FOVs). A regression was run with the average relative contributions as 

the dependent variable, and the A/P, M/L, D/V of the lens locations and their pairwise 

interactions were independent fixed effects (n=19). In the weighted version of the FOV test, 

we additionally weighed each FOV observation by the number of neurons in that FOV. For 

these two tests, the degrees of freedom for the numerator and denominator respectively were 

6 and 12. In all cases the listed p-values correspond to the F-test for the fixed effects.
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Extended Data Figure 5. Average activity and relative contributions of different behavioral 
variables for several example cells.
The panels show activity averages time-locked to different behavioral variables for 6 

example cells. The percentage of relative contribution of the corresponding behavioral 

variable to the activity of each cell is displayed in each panel.
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Extended Data Figure 6. Additional analyses of neural encoding.
a, Distributions of the negative log-likelihood of the clustering model (Fig. 3) for shuffled 

(gray) versus real data (red) indicates a significant fit of the clustering model. Top: Shuffling 

of relative contributions across variables. Bottom: Shuffling across neurons. b, Prediction of 

choice and accuracy from neurons in each cluster. For each neuron, decoding was performed 

by logistic regression using the average cue period activity (on a trial-by-trial basis) to 

predict choice or accuracy. Regression was performed using 10-fold crossvalidation (over 

trials). Separate decoders were trained to predict either choice or accuracy. Weighted 
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decoding was used to control for the different number of trials of each type (left/right 

choices or correct/incorrect trials; see Methods). Each panel shows a histogram of the 

decoding performance for a given variable (left column: choice, right column: accuracy) and 

a given cluster (rows). Gray vertical lines indicate 50% performance (chance level). Vertical 

yellow lines indicate the median of the distribution. Significance was assessed by a 2-sided 

Wilcoxon signed rank test and is presented after a Holm-Bonferroni correction for the 10 

tests. For clusters 1 through 5, n= 74, 36, 27, 27, and 26 respectively. The predictive power 

of the different clusters is broadly consistent with their association with the different 

behavioral variables: choice was significantly predicted by neurons belonging to clusters 1 

(associated primarily with kinematics, which contains the view angle component that is 

strongly related to choice) and 3 (associated primarily with cues, which determine choice for 

successful trials). The strongest predictive power for the mice’s accuracy is exhibited by 

cluster 5, which is primarily associated with accuracy.c, Noise correlations estimated by an 

alternative method. Here, noise correlations were estimated by calculating the increase in 

variance explained by the behavioral-only encoding model when the second neuron activity 

was added to it as a predictor 25,43. The noise correlation estimate is shown for all neuronal 

pairs (n=1492) during the cue period (left) and outcome period (right). d, To investigate the 

possible effect of neuropil contamination on the observed relationship between pairwise 

correlations and distance (Fig. 4), we systematically varied the neuropil correction factor 

from 0 to 1 and recalculated the relationship between correlations and interneuronal distance 

for the different conditions. In all cases, we find a similar pattern to the one presented in the 

main text: 1- A significant negative slope between distance and signal and noise correlations 

in the cue period. 2- A significant negative slope between distance and as noise correlations 

in the outcome period. 3- No relationship between distance and signal correlations in the 

outcome period. e, To investigate the relationship between task performance and neural 

encoding, mice were divided into 2 groups based on their task performance. The relative 

contributions of the behavioral variables were averaged separately for neurons belonging to 

the mice in each group. Consistent with modulation by reward expectation, we found that 

cue-related activity was stronger and reward responses were weaker in the top performing 

mice. Interestingly, previous reward (which does not provide useful information for task 

performance) was more strongly represented in the bottom performing mice (2-sided 

Wilcoxon signed rank test, n1=129 neurons in the top performing mice, n2=104 in the 

bottom performing mice, with Holm-Bonferroni correction for the 6 tests). f, To investigate 

the relationship between instantaneous performance and neural encoding, for each session, 

all trials were grouped into blocks of 10 consecutive trials with no overlap; these blocks 

were split into two groups based on whether the average performance in the block was 

greater or less than the median performance across all blocks in that session. The panel 

shows the relative contributions of all behavioral variables calculated separately for the 

better- or worse- performance blocks. The results did not show a significant difference for 

any of the variables (2-sided Wilcoxon signed rank test, n1=n2=233 neurons, with Holm-

Bonferroni correction for the 6 tests), suggesting that the instantaneous performance of each 

mouse does not have a large effect on the strength of representation of the different 

variables.
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Extended Data Figure 7. Validation of the clustering procedure and encoding model.
a, Summary of average relative contributions of the different behavioral variables for 

neurons belonging to each cluster as calculated via the approach used in the paper (no-

refitting; see Methods). Left: Average relative contributions of cue period behavioral 

variables to neural activity for each cluster. Right: average relative contribution of reward for 

each cluster. b, Same as a, but for the clustering analysis performed on the contributions 

calculated using the refitting approach (see Methods). c, Normalized confusion matrix for 

the cluster identities of each neuron, obtained by comparing the clustering of the relative 
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contributions based on either the no-refitting or the refitting approach (see Methods for 

description of 2 approaches). The main diagonal represents neurons for which the cluster 

identities matched (97.8%). d, Average relative contributions of clusters obtained by 

separately analyzing two random halves of the trials for each neuron. Correlations between 

the average relative contributions in each cluster across the two sets are as follows (n=5 in 

all cases): Position: ρ = .99, p < 8×10−5. Cues: ρ = .99, p < 4×10−4, Kinematics: ρ = .99, p < 

2×10−4. Accuracy: ρ = .99, p < 3×10−4. Previous Reward: ρ = .99, p < 0.001. Reward 

Response: ρ = .48, p < 0.42. e, Normalized confusion matrix for the cluster identities of each 

neuron, obtained by clustering the two random halves of the data. The main diagonal 

represents neurons for which the cluster identities matched (79.1%). Note that chance level 

of matching is 20%. The matrix was calculated for neurons for which a cluster was assigned 

in the procedures for both halves of the data (>75% probability to belong to a cluster, n=91). 

f, Average absolute value of the correlations for all pairs of predictors across all behavioral 

variables during the cue period (average across all predictor pairs and mice). g, Average 

relative contributions assessed separately using 3 different approaches: 1- No refitting (NR; 

used in the paper). 2- No refitting + LASSO regularization (NR+L). 3- Refitting (R). 

Correlations between the results of the different approaches are as follows: ρ(NR,NR+L) = 

1, p < 7×10−9. ρ(NR,R) = .99, p < 1×10−4. ρ(NR+L,R) = .99, p < 8×10−5 (n=6 in all cases). 

When omitting the reward response contributions: ρ(NR,NR+L) = 1, p < 2×10−5. ρ(NR,R) 

= .91, p < 0.04. ρ(NR+L,R) = .92, p < 0.03 (n=5 in all cases). Lasso regularization was 

applied using the ‘lasso’ function in Matlab; the mean square error (MSE) of the model was 

estimated using 5-fold crossvalidation, and we chose the lambda value that minimized the 

MSE. The results with lasso regularization were almost identical to the result without 

regularization, suggesting that there was not significant overfitting in our model. h, Average 

relative contributions assessed separately using two random halves of the data. For each 

neuron we randomly divided all the trials where the neuron was recorded into 2 separate 

subsets while matching the number of rewarded and previously rewarded trials between the 

subsets. Each subset of trials was then used to calculate the relative contributions of the 

behavioral variables. (ρ = .99, p < 3×10−4 for all behavioral variables (n=6), ρ = .8, p < 0.11 

when omitting the reward response contributions (n=5)). i, We tested the robustness of the 

clustering results by performing an alternative clustering procedure based on the predicted 

neuronal traces. The panel depicts the analysis pipeline for this clustering approach: after 

learning the regression weights for all neurons, behavioral predictors from one session were 

used to generate predicted activity traces for all neurons. A similarity matrix was constructed 

by taking the absolute correlation between the predicted traces for each neuronal pair. The 

similarity matrix was clustered using information-based clustering 20 (see Methods) and 

ordered by the obtained clusters (right panel; cluster identity for each neuron depicted by a 

colored stripe to the right of the panel). j, Normalized confusion matrix for the cluster 

identities of each neuron, comparing the cluster identity obtained by clustering the relative 

contributions (method used in the main text; Fig. 3) and the alternative method described 

here (clustering the similarity matrix obtained from the predicted neuronal traces). The two 

clustering methods involve conceptual differences which may result in different clustering 

organizations. For example, the method used in Fig. 3, which clusters the relative 

contributions of the behavioral variables, is independent of a particular tuning for these 

variables, while the method presented here should be affected by such tuning (e.g. upward vs 
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downward position ramps). Nevertheless, we find a similar overall clustering structure 

between the two methods, with the following main differences: 1- original clusters 3 and 5 

(associated with previous reward and accuracy) are joined in a single cluster (new cluster 5). 

2- Original cluster 1 (associated with kinematics) is now split into 2 clusters (new clusters 1 

and 3). Further investigation of the split of the kinematics cluster showed that the neurons 

that split from the main kinematics cluster have stronger modulation for the view angle 

component of kinematics (based on the regression coefficient values). Such a split could not 

occur in the formulation used in the main text which combined all the kinematics 

components (speed, acceleration and view angle). k, Further validation of the encoding 

model by simulating data with known relative contributions of the different behavioral 

variables. We replaced the activity of each neuron by a simulated trace that was computed 

using known relative contributions of the different behavioral variables as follows: first, the 

predictors corresponding to each behavioral variable were summed, resulting in one 

predictor per variable. Each of these predictors was z-scored and multiplied by a different 

relative contribution (taken from the values obtained for the real data). The scaled predictors 

were then summed, resulting in a single vector which forms the basis of the firing rate of the 

simulated neuron. To this vector we added a constant in order to obtain an average firing rate 

close to 5 Hz (which was observed in in-vivo electrophysiological recordings 22). After 

zeroing negative values of this firing rate vector we used it to generate a spike train using a 

Poisson process. Finally, the spike train was convolved with an approximate GCaMP kernel 

(see Methods). We proceeded to estimate the relative contributions for the simulated trace 

using the encoding model procedure. Each panel shows the relative contributions used to 

simulate the traces (x-axis) and the recovered contributions (y-axis) for a given behavioral 

variable; the correlation between the original and recovered relative contributions and its 

associated p-value are denoted in each panel (n=233 in all cases).
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Extended Data Figure 8. Evolution of neural responses throughout learning.
a, Schematic of the shaping protocol. Training consisted of 9 mazes with increasing task 

difficulty. In the first 5 mazes, cues were permanent and were visible from the beginning of 

the trial (but still became progressively bigger as the mouse approached them). From maze 6 

onward, cues only appeared when the mouse approached within 10 cm of their location. 

From maze 7 onward, cues could also appear on the unrewarded side. Cues were randomly 

distributed along the cue region. The number of cues on each side was sampled from a 

Poisson distribution with the mean indicated for each maze. b, Task performance, model fit, 
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and relative contributions of the behavioral variables throughout learning. The total number 

of neurons, the number of neurons with good model fit during the cue period (R2>5%; these 

were used to calculate the relative contributions of the behavioral variables during the cue 

period), and the number of mice analyzed in each training stage are indicated at the top. 

Shaded colors are s.e.m. The results showed that task performance increased steadily across 

the permanent cue mazes, and then dropped in the first transient cue maze, most likely due 

to the working memory component that is added in the transient cue mazes. The overall R2 

of the behavioral model increased across learning, indicating that over training, neural 

activity could be better explained by the measured behavioral variables. Interestingly, the 

relative contribution of position increased monotonically during the permanent cue mazes, 

but then dropped during the transient cue mazes, similar to the animals’ performance across 

the mazes. This is consistent with the interpretation of positional ramps as reflecting a value 

signal 3,18 since the expected value at each position is closely related to reward expectation 

for that session, and reward expectation is determined by average task performance. The 

relative contributions for cues also increased during early learning, consistent with being a 

reflection of the strength of the cue-reward association. Note that this value is somewhat 

decreased in the last maze, in which (because of the increased task difficulty) each cue has a 

lower predictive power with respect to reward. The relative contribution of previous reward 

decreased across the permanent cue mazes, then transiently increased during the first 

transient cue session. Since relying on previous reward is the wrong strategy in this task, this 

decrease in the relative contribution of previous reward may relate to animals weighting 

previous reward more heavily during the major steps in training when they have not yet 

learned the correct strategy for solving the task. The relative contribution of kinematics 

declined over the training procedure. This may be due to the kinematic aspect of the 

behavior becoming less variable over training, as the animal’s motor skills improved for VR 

navigation. Interestingly, the relative contribution of trial accuracy was significantly higher 

during the transient cue mazes than the permanent cue mazes. This result potentially 

suggests that DA activity is correlated with task performance preferentially when there is a 

working memory component. The reward response declined during the permanent cue 

mazes, and remained relatively consistent during the transient cue mazes; this is consistent 

with an RPE signal, since RPE implies negative modulation of reward responses by reward 

expectation (and reward expectation is related to task performance). c, Proportion of neurons 

that were significantly modulated by the different behavioral variables throughout learning 

(see Methods). Shaded colors show the 1 STD confidence intervals for a binomial 

distribution calculated using Jeffreys method. d, Details of the shaping procedure. The table 

lists the parameters of the mazes progressively used during the shaping of the behavior. The 

“permanent cues” field indicates if the cues were presented at the beginning of the trial; 

otherwise, each cue was presented when the mouse was 10 cm away from its location. 

“High- (and low) -cue-probability side mean” indicates the means of the Poisson distribution 

from which the number of cues presented on each side were drawn (at least 1 cue was 

always drawn); “none” indicates that no cues were presented for the low-probability side on 

any trial in that maze. The mice were automatically advanced to the next maze if the 

following criteria were met: 1- their performance was above a predetermined threshold 

(“minimum performance for advancing” field) for a given number of trials (“number of trials 
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to calculate performance” field). 2- They completed at least n sessions in the current maze, 

where n is given by the “minimum number of sessions for advancing” field.
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Extended Data Figure 9. Neural responses related to position, cues, and accuracy throughout 
learning.
a, For each behavioral variable (position, cues and accuracy), each heatmap contains all 

significant neurons for that maze, with each row representing the average response of one 

neuron (each neuron’s activity is normalized by its peak). Statistical significance is assessed 

by comparing the F-statistic obtained from a nested model comparison with or without each 

behavioral variable to a distribution of the same F-statistic obtained from shuffled data (see 

Methods). In the case of position and accuracy, the averaging is over trials. In the case of 

cues, the averaging is across cue occurrences, and the average baseline activity was 

subtracted (in the second preceding the cue occurrence). The number of significant and total 

neurons for that variable and maze are indicated at the top of each heatmap. The height of 

the heatmaps for each maze is proportional to the average fraction of significant neurons 

(across variables) for that maze. b, Changes in tuning across learning. Left: percentage of 

neurons with significant responses to position that exhibited a positive slope in their average 

response. Middle: percentage of neurons with significant responses to cues that exhibited 
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higher response to contralateral cues (compared to ipsilateral cues). Right: percentage of 

neurons with significant responses to accuracy that exhibited higher response in error trials 

(compared to correct trials). Shaded colors show the 1 std. dev. confidence intervals for a 

binomial distribution calculated using Jeffreys method. The horizontal dotted lines indicate 

50% in each panel. Position-selective neurons exhibited early in training more downward 

ramps than upward ramps (left panel, mazes 2 & 3). Since upward and not downward ramps 

are consistent with a value signal 3,18, this result suggests an evolution in the specific tuning 

-and not only the strength of representation- of this variable that is consistent with a value 

signal. Throughout training, cue-selective neurons are mostly selective for either 

contralateral or ipsilateral cues, and the preferential representation of contralateral cues 

develops late in training. This is interesting, because selectivity for contralateral vs 

ipsilateral cues is not a prediction of the RPE framework. Accuracy-selective neurons exhibit 

a strong bias towards elevated activity for error trials versus correct trials which was evident 

by the last permanent cue maze.
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Extended Data Figure 10. Specific expression of GCaMP6f in midbrain dopamine neurons in the 
Ai148×DAT::cre mouse line.
a, Example GCaMP6f expression (green) and TH antibody staining (red). Square indicates 

location of high-magnification view of GCaMP expression in TH+ neurons. Upper scale bar: 

500 μm. Lower scale bar: 100 μm. b, Quantification of penetrance and specificity of 

Ai148×DAT::cre line. Penetrance is the number of TH+ neurons also expressing GCaMP 

(mean: 95.2%; s.e.m.: 1.52%; n=11 sections (1082 cells, 2 mice)). Specificity is the number 

of GCaMP+ neurons that are also TH+ (mean: 96.7%; s.e.m.: 0.74%; n= 11 sections (1075 

cells, 2 mice)). c, Examples of lesions caused by GRIN lens implants (left). Insets are higher 

magnification images of the regions where TH+ neurons were counted underneath the lens 

and compared to counts contralateral to the lens. Scale bar: 50μm. White overlay indicates 

location of the lesion. Cells were counted in 50 μm by 50 μm squares from 0 to 300 μm 

below the lens. d, Average number of TH+ neurons per 50 μm2 by distance from the bottom 

of the lens. Orange: average count under the lens. Gray: average count from the contralateral 

hemisphere. Shaded colors are s.e.m. n = 11 mice.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 2-photon imaging of VTA DA neuron during navigation and decision-making in virtual 
reality.
a, Schematic of the experimental setup. b, Schematic of an example trial. In the central stem 

of the maze, the mouse is presented with transient visual cues to either side (“cue period”). 

Turning to the arm with more cues results in reward delivery, while turning to the other arm 

results in a tone and a 3s timeout. c, Fraction right choices based on the difference in right vs 

left cues in each trial. Gray are all individual sessions used in this paper; black are mean, 

s.e.m., and logistic fit to the mean across sessions. d, Schematic of the surgical strategy. e, 
Fields of view for 4 example mice. Scale bar: 20um. f, Left: Simultaneous imaging of 

GCaMP and mCherry in another example animal, with 4 neurons demarcated. Right: traces 

from those 4 neurons during 6 consecutive trials. Bars below the traces indicate within-trial 

epochs: cue period (grey), delay period (blue), outcome period (pink). Water drop: reward 

delivery.
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Figure 2. Quantifying VTA DA neuron responses to specific behavioral variables in the task.
a, Neural activity in relation to the following behavioral variables: position along the central 

stem of the maze, kinematics (speed, acceleration, view angle), cues (contralateral or 

ipsilateral to the recording side), accuracy (if the mouse made the correct choice at the end 

of the maze), previous trial reward (if the previous trial was rewarded), and reward (versus 

not). For each variable, the upper panel is the average ΔF/F of an example neuron while the 

lower panel contains all neurons significantly modulated by that variable, with each row 

representing the peak-normalized average response of each neuron (grey arrow indicates 

example neuron within heatmap). See Methods for statistics and averaging. b, Schematic of 

encoding model used to quantify the relationship between behavioral variables and activity 

of each neuron (see Methods). Inset: predicted and actual ΔF/F across 5 trials for one 

neuron; additional examples in Extended Data Fig. 1c. c, Relative contribution of each 

behavioral variable to explained variance of the neural activity, averaged across neurons. d, 
Same as c, but full distribution. All error bars are s.e.m.
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Figure 3. Functional and spatial organization of VTA DA neurons.
a, The clustering procedure. Left: Relative contribution of each behavioral variable to 

explained variance of neural activity for each neuron, before clustering (all neurons and 

variables are shown). Right: Same data grouped based on GMM clustering (ordered within 

each cluster by each neuron’s probability to belong to the cluster). Colored vertical lines on 

the right denote cluster identity. Neurons with <75% probability to belong to any cluster not 

assigned to a cluster (<18% of neurons unassigned). Bottom middle: BIC scores used to 

select the optimal number of clusters. b, Histogram of the number of behavioral variables 

during the cue period for which neurons were significantly modulated by, for all neurons 

(grey) and for the subset of neurons with significant reward response (pink). c, Recovered 

locations within the VTA of each neuron along the A/P and M/L axes. Cluster identity 

denoted by color. d, Relative concentration of neurons belonging to each cluster across the 

A/P (left) and M/L (right) axes. Dashed lines indicate 95% confidence interval (see 

Methods).
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Figure 4. Spatial organization of signal and noise correlations in VTA DA neuron pairs.
a, Schematic of the expanded encoding model (behavioral + network model) which includes 

one additional predictor compared to that in Fig. 2b: the 1st principal component of the 

activity of all simultaneously recorded neurons other than the neuron being modeled. b, 
Comparison of the performance of the behavioral-only and the behavioral + network 

encoding models indicates high noise correlations. c, Signal and noise correlations for all 

simultaneously recorded pairs during the cue period (left) and the outcome period (right) as 

a function of the distance between the neurons (n=1492).
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Figure 5. Two separable dimensions of reward expectation modulate reward responses in DA 
neurons during decision-making.
a, Schematic of the Pavlovian conditioning paradigm for data in panels b-d. b, An example 

cell where reward responses are modulated by expectation, consistent with RPE. d’ 

compares the unexpected and expected reward response (see Methods). c, Same as b, but 

average population response. d, histogram of d’ comparisons of unexpected and expected 

reward for all neurons. n=8 mice and n=65 neurons. e, In the VR T-maze, two dimensions of 

reward expectation were quantified: trial difficulty, and previous trial outcome. f, An 

example DA neuron modulated by both RPE dimensions. g, Same as f, but average 

population response. h, d’ histograms for both RPE dimensions for all reward-responsive 

neurons (n=232). i, Across the population, a significant (but noisy) correlation between the 2 

dimensions of RPE. j, Reward responses in most functionally defined clusters are 

significantly modulated by RPE across at least 1 dimension, as shown by the average 

responses (left) and the d’ histograms (right; see Methods for details on significance). In all 

cases, shaded colors are s.e.m.
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