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SHARP: Shielding-Aware Robust Planning for Safe
and Efficient Human-Robot Interaction

Haimin Hu1, Kensuke Nakamura2, and Jaime F. Fisac1

Abstract—Jointly achieving safety and efficiency in human-
robot interaction settings is a challenging problem, as the robot’s
planning objectives may be at odds with the human’s own intent
and expectations. Recent approaches ensure safe robot opera-
tion in uncertain environments through a supervisory control
scheme, sometimes called “shielding”, which overrides the robot’s
nominal plan with a safety fallback strategy when a safety-
critical event is imminent. These reactive “last-resort” strategies
(typically in the form of aggressive emergency maneuvers) focus
on preserving safety without efficiency considerations; when the
nominal planner is unaware of possible safety overrides, shielding
can be activated more frequently than necessary, leading to
degraded performance. In this work, we propose a new shielding-
based planning approach that allows the robot to plan efficiently
by explicitly accounting for possible future shielding events.
Leveraging recent work on Bayesian human motion prediction,
the resulting robot policy proactively balances nominal perfor-
mance with the risk of high-cost emergency maneuvers triggered
by low-probability human behaviors. We formalize Shielding-
Aware Robust Planning (SHARP) as a stochastic optimal control
problem and propose a computationally efficient framework for
finding tractable approximate solutions at runtime. Our method
outperforms the shielding-agnostic motion planning baseline
(equipped with the same human intent inference scheme) on
simulated driving examples with human trajectories taken from
the recently released Waymo Open Motion Dataset.

Index Terms—Human-aware motion planning, safety in HRI,
planning under uncertainty.

I. INTRODUCTION

IN recent years, much effort has been devoted to developing
robotic systems that can coexist and interact with humans.

Indeed, in order to serve people in daily life, autonomous
systems must competently predict and seamlessly adapt to
human behaviour. Examples include autonomous driving [1],
[2], indoor aerial robots [3] and robotic arms [4]. These
applications are safety-critical, since inappropriate robot be-
haviours can pose significant danger to humans. Therefore, it
is crucial to develop motion planning algorithms for human-
robot interaction that not only yield high performance but also
guarantee safety at all times.

In typical human-robot interaction scenarios, since the
robot’s safety and performance are naturally coupled with the
human’s movements, the robot must be able to make real-time
inferences about the human’s future motion during planning.
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Fig. 1: An autonomous car seeks to overtake a vehicle driven
by a distracted human (longitudinal positions are shown in relative
coordinates). Top: A planner without formal safety guarantees incurs
in a collision. Middle: A shielding-agnostic planner triggers safety
overrides unnecessarily often, maintaining safety at the cost of
performance and comfort. Bottom: Our proposed planner reasons
about future shielding events and avoids relying on safety overrides
if possible, which significantly improves the resulting performance.

Predicting human motion while planning the robot’s trajectory
can be generally cast as a partially-observable stochastic
game [5]. In [2], the authors modeled the interaction between
the human and the robot as a dynamic game that allows for
real-time trajectory planning. In [1], the authors simplified the
problem to an open-loop Stackelberg game and showed that
the human’s objective function can be learned using inverse
reinforcement learning methods [6].

Comparing to the large body of work on performance-
oriented planning for human-robot interaction, ensuring safe
interactions subject to uncertain human motion is a relatively
less explored topic. One popular way of achieving safety for
human-robot interaction tasks is by adding to the planning
problem a chance constraint or cost penalty for collision avoid-
ance, which is then accounted for via probabilistic predictions
of the human’s future motion (see for example [1]). In [3],
the authors proposed to have the robot maintain a runtime
measure of its degree of confidence in a learned human model.
This allows the robot to plan probabilistically safe trajectories
accounting for the observed accuracy of its own human motion
predictions. Ultimately, however, under any such probabilistic
approaches, safety can be compromised when the human takes
low-probability actions. This is also known as the issue of the
“long tail” of unlikely events [7].

In general, all-time safety in human-robot interaction can be
ensured by a least-restrictive supervisory control scheme, often
referred to as shielding. This approach involves synthesizing
and implementing a reactive safety fallback policy as the
“last-resort”, which overrides a nominal policy only when
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a safety-critical event, e.g. a collision, is imminent. Such
shielding mechanisms include, for example, reachability anal-
ysis [8]–[10], control barrier functions [11], [12], Lyapunov
methods [13], and model predictive control [14], [15]. Despite
being effective at guaranteeing safety, applying shielding too
frequently can greatly degrade the planning performance of
the robot, since the safety controllers are typically designed
without performance consideration such as task completion
time, passenger comfort or energy consumption.

Simultaneously ensuring safety and optimizing performance
for human-robot interaction tasks can be formulated as a
stochastic optimal control problem (OCP), which combines
propagating uncertainty (i.e. human motion), guaranteeing
safety and optimizing the robot’s objectives altogether in a
single optimization problem. In principle, a stochastic OCP
can be solved using stochastic dynamic programming [16],
which is, however, only tractable for toy examples [17]. Recent
work [18] proposes to approximately solve the OCP using
stochastic model predictive control (SMPC) methods [19].

Statement of contributions: In this paper, we propose
a novel shielding-aware planning framework that jointly
achieves safety and performance for human-robot interaction.
The key element of our approach is the formulation of a
stochastic OCP that reasons about future shielding events
via human motion prediction, while optimizing the robot’s
trajectory. The resulting policy improves the planning perfor-
mance by preventing the robot from having to apply a costly
shielding maneuver in the future. We reformulate the OCP
by exploiting the structure in the human uncertainty model
and solve it using efficient approximate dynamic programming
methods. We evaluated our approach on simulated driving
scenarios, with the human driver’s trajectories taken from the
Waymo Open Motion Dataset [20]. On average, our proposed
planner improved the planning performance by at least 16%
comparing to the state-of-the-art SMPC baseline across all
testing scenarios.

II. PRELIMINARIES

A. Dynamical Systems

We consider a broad class of discrete-time dynamical sys-
tems for the robot and human, respectively,

xRt+1 = fR(xRt , u
R
t ), xHt+1 = fH(xHt , u

H
t ), (1)

where the input constraints are uRt ∈ UR ⊆ RmR and uHt ∈
UH ⊆ RmH . We now define a joint system that captures the
interactions between the human and robot subsystems,

xt+1 = f(xt, u
R
t , u

H
t ), (2)

where f : Rnx ×UR ×UH → Rnx are the joint human-robot
dynamics, whose state vector is given by xt = Φ

[
xRt , x

H
t

]
and Φ : Rnx × RnR+nH is a change-of-coordinates matrix.

Remark 1: The theoretical analysis in this paper extends
to multi-human interaction by letting xHt , u

H
t in (2) represent

the joint state and actions of multiple humans. Computational
scalability is limited in practice by the exponential complexity
common to combinatorial problems of this kind.

Running example: We consider a highway driving scenario,
as depicted in Fig. 1, involving an autonomous vehicle (R)
and a human-driven vehicle (H), each modeled by simplified
dynamics taken from [2]. The states are the relative longi-
tudinal position prx, relative velocity vr and lateral positions
piy, i ∈ {R,H}. The controls are the desired lateral velocity
vilat and acceleration ai. The robot’s task is to safely overtake
the human.

B. Safe Human-Robot Interactive Planning via Shielding

In this paper, we focus on safety-critical human-robot inter-
action applications in which the state trajectory of the human-
robot joint system must not enter a failure set F ⊆ Rnx . This
includes, for example, the robot colliding with the human.
To ensure that xt /∈ F for all t ≥ 0 despite the worst-case
human actions, we make use of a supervisory safe control
strategy, often referred to as “shielding”, which is defined as
a tuple (Ω, πs). Here, set Ω ⊆ Rnx is a safe set that satisfies
Ω ∩ F = ∅, and πs : Rnx → UR is a safe control policy
that keeps the state inside Ω even under the worst-case human
action. This is formalized in the following definition.

Definition 1 (Robust controlled-invariant set): Given dy-
namics (2) with a bounded uncertain input uHt ∈ UH , a set
Ω ⊆ Rnx is a robust controlled-invariant set if there exists a
control policy πs : Rnx→ UR that keeps xt from leaving Ω:

x0 ∈ Ω⇒ xt ∈ Ω, ∀t > 0, ∀uHt ∈ UH , uRt = πs(xt). (3)

The definition suggests that the safe control πs(xt) is needed
only when the state is about to leave the safe set. Let the
shielding set SR ⊂ Ω× UR contain all state-action pairs that
might result in the next state being outside of the safe set:

SR = {(x, uR) ∈ Ω× UR | ∃ũH∈ UH: f
(
x, uR, ũH

)
/∈ Ω}.

(4)
We can then define a “least-restrictive” supervisory safety

filter for arbitrary candidate control actions ũRt :

uRt = πæ(xt; ũ
R
t ) :=

{
ũRt , if (xt, ũ

R
t ) 6∈ SR

πs(xt), if (xt, ũ
R
t ) ∈ SR (5)

The shielding mechanism (5) allows the robot to apply any
nominal controller πt : Rnx → UR as long as

(
xt, πt(xt)

)
is not in the shielding set SR; otherwise, it overrides πt(xt)
with the safety policy πs(xt). The result below follows.

Proposition 1 (Shielding): If a set Ω is robust controlled-
invariant under πs(·), then it is robust controlled-invariant
under πæ

(
· ;πt(·)

)
, for any nominal control policy πt(·).

Equation (5) and Proposition 1 describe a variety of shield-
ing mechanisms, from Hamilton-Jacobi and Lyapunov analy-
sis [8], [13] to predictive policy rollouts [9], [14], [15]. In this
paper, we focus on efficient shielding-aware planning, only
assuming that we have access to some shielding mechanism
πæ. Our framework is therefore quite general and can work in
conjunction with many existing shielding methods.

Running example: A typical failure set for system (2) is
F := {x ∈ R4 |

(
|prx| < 5.5 m ∧ |pRy − pHy | < 2.0 m

)
∨

|pRy | > 3.7 m}, including any loss of separation between the
two vehicles as well as R exceeding the road edges. Note
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that F is a static set in the joint state space, even as H and
R move. We use Hamilton-Jacobi (HJ) reachability [8] to
compute the safe set Ω and control policy πs for shielding.

C. Predicting Human Motion

The robot’s main task is to achieve desirable performance
through minimizing a cost function `R(xt, u

R
t ) over time. Note

that both the cost function and the safe controller πs(xt)
depend on human’s state xHt . Therefore, in order to plan
efficiently, the robot must be able to predict the human’s
actions, since they can not only affect the robot’s cost directly,
but also indirectly by triggering (costly) shielding events. Here,
we use the “noisily-rational” Boltzmann model originated
from cognitive science [21] to predict human’s future motion.
Concretely, the probability of H taking a specific action
uHt ∈ UH is given by,

P
(
uHt | xt, βt, θt

)
=

e−βtQ
H
θt

(xt,uHt )∑
ũHt ∈ŨH

e−βtQ
H
θt

(xt,ũHt )
, (6)

where QHθt(xt, u
H
t ) is the human’s state-action value function,

characterized by a set of time-varying parameters θt ∈ Rnθ
indicating human’s possible intents. The inverse temperature
βt > 0, sometimes called “rationality coefficient” or “model
confidence”, quantifies the tendency of the human’s actions to
concentrate around the modeled optimum. This model assumes
that the human is exponentially likelier to pick actions with
better state-action values.

Remark 2: Our framework is agnostic to the concrete
methods for determining the human’s possible intents θ, which
is usually specified by the system designer based on domain
knowledge or learned from prior data. Goal-driven models of
human motion are well-established in the literature. See for
example [1], [6].

Running example: The human’s state-action value function
is expressed as the convex combination of two basis functions,
QHθt(·) = θtQ

H
1 (·) + (1 − θt)QH2 (·), θt ∈ [0, 1], where QH1 (·)

and QH2 (·) are quadratic functions capturing H tracking two
possible intents: driving in the left and right lane, respectively,
at the cruising speed 30 m/s.

D. Inferring Human Model Parameters

In general, parameters (βt, θt) ∈ Ξ ⊆ R≥0 × Rnθ at each
time instance t are unknown to the robot and therefore can
only be estimated from past observations. To address this,
we define the information vector It :=

[
xt, u

H
t−1, It−1

]
as

the collection of all causally observable information at time
t ≥ 0, with I0 = [x0]. We then define the belief state
bt := P (βt, θt | It) ∈ ∆ as the probability distribution of
parameters (βt, θt) conditioned on It, and b0 := P (β0, θ0)
is a given prior distribution. When the robot receives a new
observation uHt ∈ It+1, the current belief state bt ∈ ∆ is
updated using the recursive Bayesian estimation,

b−t+1 := P (βt, θt | It+1)

=
P (uHt | xt, βt, θt)bt(βt, θt)∑

(β̃,θ̃)∈Ξ̃ P (uHt | xt, β̃, θ̃)bt(β̃, θ̃)
(7)

Fig. 2: Overview of the proposed SHARP framework.

bt+1 = P (βt+1, θt+1 | It+1)

=
∑

(β̃,θ̃)∈Ξ̃ P (βt+1, θt+1 | β̃, θ̃)P (β̃, θ̃ | It+1) (8)

where P (β′, θ′ | β, θ) is a transition model and a set Ξ̃
discretized from Ξ is used as the support. We can then
rewrite (7) and (8) compactly as a dynamical system,

bt+1 = g(bt, xt, u
H
t ). (9)

III. SHARP: SHIELDING-AWARE ROBUST PLANNING

In this paper, our goal is to plan an efficient trajectory for
the robot while ensuring safety at all times. A naı̈ve approach
would be using a shielding-agnostic nominal planner in (5),
whose main focus is on performance but is unaware of the
possibility of being overridden by the shielding mechanism.
This approach can, however, yield a trajectory far from optimal
in the presence of noisily rational human agents. The main
reason is that shielding-agnostic planners tend to unwittingly
activate shielding, resulting in frequent discrepancies between
the efficiently planned trajectory, which will not be allowed to
take place, and the costly executed trajectory, which was unac-
counted for in planning. Conversely, a planner with shielding
awareness reasons about potential future shielding events
based on human motion predictions and preempts unnecessary
overrides, thereby improving closed-loop performance.

Based on this central insight, we propose a new planning
formulation that accounts for possible future shielding events,
which we call Shielding-Aware Robust Planning (SHARP).
The core of SHARP is a stochastic optimal control problem
formulated as follows:

min
π[0:N−1]

E
β[0:N−1],θ[0:N−1],

uH[0:N−1]

N−1∑
k=0

`R(xk, u
R
k ) + `RF (xN ) (10a)

s.t. x0 = xt, b0 = bt, (10b)
∀k = 0, . . . , N − 1 :

xk+1 = f
(
xk, u

R
k , u

H
k

)
(10c)

bk+1 = g
(
bk, xk, u

H
k

)
(10d)

uRk = πæ
(
xt;πk(xk, bk)

)
(10e)

where `R : Rnx × UR → R≥0 and `RF : Rnx → R≥0

are designer-specified stage and terminal cost function, and
πk : Rnx ×∆→ UR is a causal feedback policy that lever-
ages the (yet-to-be-acquired) knowledge of xk and bk.

In theory, problem (10) can be solved using stochas-
tic dynamic programming [16]. An optimal value function
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Vk(xk, bk) and control policy π∗k(xk, bk) can be obtained
backwards in time using the Bellman recursion,

Vk(xk, bk) = min
πk(xk,bk)

`R(xk, u
R
k )

+ E
(βk,θk)∼bk,uHk

[Vk+1(xk+1, bk+1) | Ik]

s.t. (10c)− (10e)

(11)

with terminal condition VN (xN , bN ) = `RF (xN ). Due to causal
feedback, the controller obtained by solving (11) takes into
account information that will become available in the future.
As a result, the robot is able to predict upcoming shielding
events using not only the current belief state bt, but also a
series of potential future belief states propagated via (10d),
thus gaining an opportunity to plan a more efficient trajectory
while staying safe without relying on the (usually) costly
shielding maneuvers. Unfortunately, (11) is computationally
intractable in all but the simplest cases. Even with spatial
discretization, the belief states bk generally live in a high
dimensional space, which makes solving (11) infeasible in
practice due to the “curse of dimensionality” [16].

Next, we focus on developing a tractable and efficient
computation framework for solving OCP (10) approximately.
Our road map is to reformulate (10) in two ways, each
tackled with a different approximate dynamic programming
method. Our main focus is on reformulating (10) as a scenario-
tree-based stochastic model predictive control (ST-SMPC)
problem, which is a real-time trajectory optimization method
originally developed in [19]. This approach estimates the
expectation in (10a) and propagates the belief states in (10d)
based on a small number of likely uncertainty realizations,
thereby preserving a simplified but representative truncation
of the original problem’s structure. However, we first present
a simpler relaxation of (11) based on the QMDP assump-
tion [22], which allows computing a tabular solution offline.
The solution is a value function that approximately captures
the cost-to-go over the full horizon N , and can be used as
a guiding terminal cost function in ST-SMPC to implicitly
extend the planning horizon. The overall SHARP framework
is illustrated in Fig. 2.

A. Problem Simplification with the QMDP Assumption

In this section, we discuss how to solve a relaxation of (11)
with an offline tabular dynamic programming scheme. We
start by discretizing the joint state space and robot’s action
space into X̃, ŨR, and letting zt := [xt, βt, θt]. Now, under
perfect observability of zt, we would have a fully certain
belief bt ≡ 1(βt,θt) and (11) would reduce to a full-information
problem that can be numerically solved with the Bellman
recursion:

Ṽk(zk) = min
πk(zk)

`R(xk, u
R
k )

+
∑

(β̃,θ̃)∈Ξ̃

P (β̃, θ̃ | βk, θk) E
uHk

[
Ṽk+1(z̃k+1)

]
s.t. (10c), (10e),

(12)

where z̃k+1 := [xk+1, β̃, θ̃]. This simplified Bellman recursion
follows the QMDP assumption [22], which optimistically

assumes that the uncertainties in the current belief states (β, θ)
disappear in one time-step. Here, in lieu of evolving the
belief states with the measurement update (7), uncertainties
in (β, θ) are now propagated only by the transition model
P (β′, θ′ | β, θ) in (8). As a result, the Bellman recursion (12)
can be computed efficiently, at the cost of losing the ability
to account for future uncertainties. Given a state xt, a belief
state bt and a lookup table of Ṽ0(·) obtained by (12), we can
obtain a value function,

VF (xt, bt) := min
πk(xt,bt)

`R(xt, u
R
t )

+ E
(βt,θt)∼bt

E
uHk

E
(β̃,θ̃)

[
Ṽ0(z̃t+1)

]
,

(13)

which is an optimistic estimate of the true cost-to-go Vt(xt, bt)
of (11). In Section III-B4, we will use this approximate
value function as a guiding terminal cost in ST-SMPC. As a
byproduct of (13), we can obtain a causal feedback control
policy, which we refer to as SHARP-QMDP. In the next
section, we will use this policy to construct a scenario tree
for ST-SMPC. Nonetheless, it can also be used directly as
the nominal planner in (5) for online planning. Although this
policy no longer propagates belief states, it is still effective at
predicting shielding events and gains an information advantage
over a shielding-unaware policy due to causal feedback and
the shielding constraint (10e).

B. ST-SMPC with the Sparse LQG Tree

The performance of SHARP-QMDP can be limited by its
inability to propagate the belief states with measurements on
human uncertainties. In this section, we focus on developing
a shielding-aware planner that propagates the belief states
and leverages them to better predict future shielding events.
Motivated by recent advances in approximate dynamic pro-
gramming for uncertain systems [18], [23], we propose to
propagate the belief states in (10d) using samples of uHk . This
leads to a scenario tree that allows us to reformulate (10) as a
computationally tractable ST-SMPC problem. With discretized
human action and parameter spaces ŨH , Ξ̃, the (intractable)
Bellman recursion (11) can be evaluated for any given state
x0 and belief state b0:

V0(x0, b0) = min
u0∈UR

`R(x0, u
R
0 ) +

∑
β,θ b0(β, θ)·∑

ũH0 ∈ŨH
P (ũH | xH0 , β, θ)V1(x̃1, b̃1),

(14)

with value functions at subsequent times obtained recursively
in an analogous manner. The next state x̃1 and belief state
b̃1 are obtained by computing x̃1 = f

(
pre(x̃1), ũR0 , ũ

H
0

)
and

b̃1 = g(pre(b̃1),pre(x̃H1 ), ũH0 ). Here, pre(x̃1) := x0 is the pre-
decessor state of x̃1, similarly for beliefs. Given a sequence of
human uncertainty realizations (β̃[0:N−1], θ̃[0:N−1], ũ

H
[0:N−1]),

we refer to the corresponding state and belief state trajectory
(x̃[0:N ], b̃[0:N ]) as a scenario. Note that by expanding (11)
using (14), the total number of scenarios is (|Ξ̃||ŨH |)N .
As a result, the optimization problem can quickly become
intractable due to an exponentially growing number of decision
variables. Therefore, we use ST-SMPC to solve the problem
over a subset of representative human uncertainty realizations.
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Fig. 3: Illustration of a sparse LQG scenario tree. Red (colored) dots
denote (non-)shielding nodes. The bell curve at node ñ represents the
Gaussian distribution P (uH | xñ, β, θ). Two scenarios (1 and 2) are
branched out from the root node n0, while Scenario 3 is discarded
due to its similarity with Scenario 1.

Remark 3: Recall that in (6) we use a human’s state-
action value function QHθt(xt, u

H
t ) that depends on the robot’s

state xRt . This introduces coupling between uncertainties and
decision variables in (14), which significantly increases the
complexity of the optimization. In order to plan in real time,
we consider a class of human state-action value function
parametrized as QHθt(x

H
t , u

H
t ), which (conservatively) assumes

that the human does not react to the robot. As a result,
the human’s action model (6) equals P (uHt | xHt , βt, θt).
Nonetheless, we show in Section IV that our method is
still effective with a “responsive” human, whose unmodeled
responses cause a reduction in the inferred inverse temperature
βt, similar to [3]. Our work may be extended to explicitly
account for human reactions leveraging recent advances in
dual SMPC with state-dependent uncertainty [23].

1) Constructing a sparse scenario tree: Our proposed
scenario tree construction procedure is summarized in Alg. 1
and depicted in Fig. 3. We start by introducing some useful
definitions. We denote a node in the tree as n, whose state
and belief state are denoted as xn and bn. The set of all
nodes is defined as N . We define the transition probability
from a parent node pre(n) to its child node n as P̄n :=∑

(β,θ)∼bn bn(β, θ) · P (uH | pre(xHn ), β, θ). Subsequently,
the path transition probability of node n, i.e. the transition
probability from the root node n0 to node n can be computed
recursively as Pn := P̄n · P̄pre(n) · · · P̄n0

.
In order to efficiently leverage belief state propagation for

predicting future shielding events, our scenario tree construc-
tion procedure differs from the conventional ones [18], [19],
[23] in three key aspects. First, at scenario branching time
(Alg. 1, Line 21), we only need to draw samples for human’s
actions uH but not for the parameters (β, θ). Importantly,
those uH samples are only used for updating the belief states
(Alg. 1, Line 18). In the next section, we show that by
exploiting the problem structure, the robot’s action obtained
by solving the SMPC will adapt to the belief states instead
of the samples. Second, after each scenario branching, instead
of propagating the (belief) states for only one time step, we
perform a forward simulation up to a truncated horizon of

Algorithm 1 Constructing a sparse LQG scenario tree

Input: Current state xt ∈ Ω and belief state bt, maximum
number of nodes M > 0, truncated horizon N̄ ≤ N ,
surrogate policy πQMDP(x, b)

Output: A scenario tree defined by node sets Nt,N s
t

// Initialization:
1: xn0

← xt, bn0
← bt, tn0

← 0, Pn0
← 1

2: Nt ← {n0}, N s
t ← ∅, m← 1, nbr ← n0

3: while m ≤M do
// Forward Simulation for One Scenario:

4: ñ← nbr
5: for all k ← tnbr , tnbr + 1, . . . , N̄ − 1 do

// Robot Control:
6: uRñ ← πQMDP(xñ, bñ)
7: if (xñ, u

R
ñ ) ∈ SR then // Shielding required

8: uRñ ← πs(xñ)
9: N s

t ← N s
t ∪ {ñ}

10: end if
// Human Control:

11: if k = tnbr and |Nt| > 1 then // Branching
12: uHñ ← uHbr
13: else // Non-branching
14: uHñ ← arg max

∑
β,θ bñ(β, θ)P (uH |xHñ , β, θ)

15: end if
16: Compute path transition probability: Pnm ← Pñ ·∑

β,θ bñ(β, θ) · P (uHñ | xHñ , β, θ)
17: Update state: xnm ← f

(
xñ, u

R
ñ , u

H
ñ

)
18: Update belief state: bnm ← g(bñ, xñ, u

H
ñ )

19: Nt ← Nt ∪ {nm}, ñ← nm, m← m+ 1
20: end for
21: (nbr, u

H
br )← GETBRANCHNODE(Nt)

22: end while
23: Nt ← NORMALIZEPATHTRANSPROB(Nt)

N̄ ≤ N (Alg. 1, Line 3-20). This generally leads to a sparse
scenario tree with an increased depth, allowing us to capture
more shielding events in the future. Finally, when branching
out new nodes (Alg. 1, Line 21), instead of selecting nodes
with higher realization probabilities [19], we are interested
in those that lead to distinct trajectories, which are essentially
shaped by different shielding events. Concretely, when picking
a new branch node nbr, we prioritize one with a smaller time
step tbr, which is likelier to result in a distinct trajectory from
the existing ones in the tree. At node nbr, we sample several
human’s action ũH ∈ UH , each of which produces a scenario
(x̃[0:N̄ ], b̃[0:N̄ ]) via forward simulation. We then pick uHbr = ũH

that leads to the most different scenario from all existing ones
in the tree. The difference between two scenarios is measured
in terms of the difference in the metric ξ>Hξ, where ξ is a
vector stacking all components of x̃[0:N̄ ], b̃[0:N̄ ] and H is a
positive semidefinite matrix.

2) Optimizing over LQG scenarios: In ST-SMPC, given
a scenario tree, one shall optimize simultaneously for each
scenario a robot’s action sequence, which reacts to the hu-
man uncertainty in that scenario. One key difference of our
approach from ST-SMPC literature [18], [19], [23] is that
the optimized robot’s action uRñ at node ñ does not react to
the samples, i.e. the human’s action uHñ , but to the entire



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. FEBRUARY, 2022

distributions P (uH | xHñ , β, θ) and bñ. Specifically, given
a scenario (xñ[0:N̄]

, bñ[0:N̄]
) associated with node sequence

ñ[0:N̄ ], the corresponding scenario optimization problem is,

min
ūRñ[0:N̄−1]

N̄−1∑
k=0

E
(β,θ)∼bñk ,

uHñk
∼P (uH |xHñk ,β,θ)

`R(x̄ñk , ū
R
ñk

) (15)

subject to constraints (10b), (10c) and (10e), where we use
(̄·) to denote decision variables. If this scenario shares nodes
with other scenarios (e.g. node n0 in Fig. 3), then the robot’s
action at those shared nodes should be constrained to be the
same, which enforces causality [19].

One key observation of (15) is that if QHθ (xH , uH) is
approximated as a quadratic function of uH , then the human’s
action uncertainty P (uH | xH , β, θ) becomes a Gaussian dis-
tribution with mean ûH(β, θ) := arg maxP (uH | xH , β, θ).
Furthermore, we linearize the joint dynamics (2) around sce-
nario trajectories xñ[0:N̄]

, uRñ[0:N̄]
and uHñ[0:N̄]

to obtain a linear
dynamical system,

δx+ = Añkδx+BRñkδu
R +BHñkδu

H
ñk
, (16)

where δx = x − xñk , δuR = uR − uRñk , δuHñk = ûHñk − uHñk
and Añk is the Jacobian Dxñk

f(·), likewise for BRñk and
BHñk . If we further drop the shielding constraint (10e) for
a moment (we will return to this in the next section) and
consider a quadratic cost `R, then (15) becomes a Linear-
Quadratic-Gaussian (LQG) problem, whose optimal solution
is known to be certainty-equivalent [24]. The resulting robot’s
control sequence uRñ[0:N̄−1]

will be robust to distributions
P (uH | xHñk , β, θ) and bñk(β, θ).

3) Convexifying the shielding constraint: The final piece we
need to deal with is the shielding constraint (10e), which is
in general non-convex. In this paper, we propose to convexify
it using the discrete-time exponential control barrier function
(CBF) developed in [25]. The main idea is to linearize the
system and approximate the safe set as a halfspace at any
state x ∈ SR(·), in which case an affine CBF can be constructed
analytically [25]. Concretely, given a shielding node ñ ∈ N s,
we first obtain a linearized system at (xñ, uñ) according to
(16). We then approximate the safe set Ω locally at xñ as a
halfspace defined by

Ω̄ñ := {x | nñ>(x− xñ) ≥ 0} = {δx | nñ>δx ≥ 0}, (17)

where nñ := f(xñ, π
s(xñ), uHñ )−xñ approximates the normal

vector of the tangent space of SR
uRñ

at xñ, as illustrated in
Fig. 4.

Proposition 2: [25, Prop. 4] Given a safe set Ω̄ñ define
by (17), the affine function hñ(δx) := nñ

>δx is a discrete-
time exponential CBF for system (16) linearized at (xñ, uñ)
if there exists γ ∈ (0, 1] and uR ∈ UR such that ∀δx ∈ Ω̄ñ,
hñ
(
Añδx+BRñ δu

R +BHñ δu
H
)

+ (γ − 1)hñ(δx) ≥ 0 holds.
Using the CBF defined in Proposition 2, we can now

approximate the shielding constraint (10e) as,

n>ñ
[
(Añ + (γ − 1)I) δx+BRñ δu

R +BHñ δu
H
]
≥ 0, (18)

which is linear (and hence convex) in δx and δuR.

⌦̄ñ
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Fig. 4: Illustration of a CBF-based convex shielding constraint.

Remark 4: As pointed out in [25], constraint (18) is not
necessarily feasible for bounded control input. Therefore, we
incorporate it as a soft constraint in the ST-SMPC problem.

4) Overall ST-SMPC Problem for SHARP: Given a sparse
LQG scenario tree defined by node sets Nt and N s

t , we can
approximate (11) as an ST-SMPC problem,

min
Πt

∑
ñ∈Nt\Lt

∑
β,θ

bñ(β, θ)Pñ`
R(x̄β,θñ , πñ)

+
∑
ñ∈Lt

∑
β,θ

bñ(β, θ)PñVF (x̄β,θñ , bñ)

s.t. ∀ñ ∈ Nt \ Lt : πñ ∈ UR,
∀ñ ∈ Nt \ {n0} : (16),
∀ñ ∈ N s

t : (18),

(19)

where Lt is the set of all leaf nodes ñ with tñ = N̄ ,
Πt := {πñ(x̄β,θñ , bñ) : ñ ∈ Nt \ Lt} is the collection of
robot’s control inputs associated with all non-leaf nodes, and
VF (·, ·) is the QMDP value function defined in (13). The path
transition probabilities are normalized such that they sum up
to 1 at each time step (Alg. 1, Line 23). Problem (19) is
a quadratic program and thus can be solved efficiently. The
optimal solution Π∗t to (19) is implemented in a receding
horizon fashion, i.e. πSMPC(xt, bt) = π∗n0

. We refer to this
policy as SHARP-SMPC.

IV. RESULTS

In this section, we evaluate SHARP on simulated driving
scenarios, where we use the human driver’s trajectories both
from the Waymo Open Motion Dataset [20] and simulated
using a car-following model in [26]. For simulation pur-
poses, vehicle dynamics are described by a kinematic bicycle
model [2] and discretized with a time step of ∆t = 0.2 s;
for planning, we use the linearized model from the Running
Example. All simulations are performed using MATLAB and
YALMIP [27] on a laptop with an Intel Core i7-7820HQ
CPU. The code and dataset are available at https://github.com/
SafeRoboticsLab/SHARP

Ablation. We consider an ablation method that uses the
state-of-the-art stochastic MPC scheme [18], which is based
on the ST-SMPC technique originally developed in [19], but
additionally propagates the belief states that allows for human
motion prediction via (6) and (9). The MPC only has control
constraints. Therefore, the scenario information is only used
by the objective function and the resulting policy is safety-
unaware (though nonetheless safe thanks to shielding).

Baseline. Our baseline method adds to the ablation soft
collision-avoidance constraints of xñ /∈ F , ∀ñ ∈ N . We
used a simple grid search to determine approximately optimal
weights for the soft constraints. Note that the baseline policy
is safety-aware but shielding-agnostic.

https://github.com/SafeRoboticsLab/SHARP
https://github.com/SafeRoboticsLab/SHARP
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Fig. 5: Cost reduction and shielding frequency of Scenario 1 with 50
human trajectories from the Waymo Open Motion Dataset [20]. The
central mark, bottom and top edges of the box indicate the median,
25th and 75th percentiles, respectively. The max whisker length is
the interquartile range. Outliers are shown as points.

Simulation Setup. The ablation, baseline and SHARP
planners are equipped with the same HJ-reachability-based
shielding policy [8]. They also use the same human intent
inference scheme (6) and (9) to obtain a prediction of hu-
man’s future trajectories. All ST-SMPC problems use a bound
M = 70 on the number of nodes in the tree, and are solved
with MOSEK [28] (average solving time 60 ms).

Metrics. We first define the closed-loop cost as JRcl :=∑Tsim
t=0 `

R(xt, u
R
t ), where Tsim is the simulation horizon, and

x[0:Tsim], u[0:Tsim] are the executed state and input trajectories
(with replanning). To measure the performance of the planners,
we consider the following two metrics:
• Cost reduction rate: Defined as the percentage reduction

of the closed-loop cost achieved by a certain planner with
respect to the one achieved by the ablation.

• Shielding frequency: A number defined as Tæ/Tsim ×
100%, where Tæ is the number of time steps when
shielding is used.

A. Scenario 1: Highway Overtaking
We first show simulation results for Scenario 1, which

is the running example. We simulate the scenario for 50
times, each with a different human’s trajectory taken from the
Waymo Open Motion Dataset [20]. The performance metrics
are presented in Fig. 5. We observe that SHARP planners
outperform the baseline in both metrics, due to their ability
to take advantage of human inference to predict the costly
shielding events. On the other hand, even though the baseline
also leverages human inference for collision avoidance, the
heuristic proximity penalty can negatively interfere with the
robot’s actual performance criterion, and is ultimately less
effective at preventing unnecessary shielding events.

Snapshots of one simulation trial are shown in Fig. 6. We
observe that SHARP-SMPC accurately predicts the human’s
future movement to the right lane, controls the robot to
stay in the left lane, following the human without incurring
shielding (top left), and safely overtakes the human when
a window of opportunity opens (top right). SHARP-QMDP,
despite rendering a low shielding frequency as well thanks
to the shielding-awareness, cannot as effectively reason about
and react to the human’s uncertain trajectory due to the overly
optimistic QMDP assumption, resulting in a more conservative
trajectory. The baseline triggers more shielding events and
produces a less efficient trajectory than the SHARP planners
due to lack of shielding-awareness.

Fig. 6: Simulation snapshots of Scenario 1. Longitudinal positions
are shown in relative coordinates with pHx = 0. The left column
displays trajectories for t = [0, 4.8] s and the right one displays the
remainder of the trajectories. (pRx , p

R
y )-slices of the safe set Ω, taken

at the terminal state in each trajectory, are indicated in blue. A red
vehicle snapshot indicates a shielding override.

B. Scenario 2: Traffic Intersection
Next, we consider a traffic intersection scenario where the

human may choose to stop, go straight or make a right turn.
The performance metrics obtained from 50 simulation trials
with human’s trajectories taken from the Waymo Open Motion
Dataset are shown in Fig. 8. Snapshots of two simulation trials
with the human going straight and turning right are depicted
in Fig. 7.

C. Responsive Human
Finally, we revisit Scenario 1 with a responsive human (see

Remark 3). We simulate the behaviour of the human with the
car following model from [26, Chapter 4], which is also used
in microscopic traffic simulators such as SUMO [29]. The
parameter values we used are human’s preferred acceleration
a = 3 m/s2, reaction time τ = 1 s, and random velocity
perturbation η = 0.1 m/s. The human also performs random
lane changing maneuvers. The performance metrics obtained
from 50 simulation trials are shown in Fig. 9. We observe
that even in the face of unmodeled human behavior, SHARP
planners still outperform the baseline.

V. DISCUSSION

Summary. We have introduced Shielding-Aware Robust
Planning (SHARP), a decision-making framework for safe
and efficient interaction. The SHARP policy improves
robustness by accounting for possible future shielding events,
proactively balancing nominal performance with costly
emergency maneuvers triggered by unlikely human behaviors.
Limitations and future work. Performance of SHARP
policies can be limited by neglecting human reactions to the
robot’s future decisions. The scenario tree approach provides
a promising avenue for extended formulations that tractably
account for human responsiveness. Similarly, scalability im-
provements are needed in order to compute real-time SHARP
policies for multi-human multi-robot interaction. Finally, the
current framework assumes that the robot can accurately
observe the state and past human actions, which is often
unrealistic. Combining the efficient risk mitigation of SHARP
with recent advances in safe perception-aware planning [9] is
likely to yield more general and powerful frameworks.
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Fig. 7: Simulation snapshots of Scenario 2. A red vehicle snapshot indicates a shielding override.
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Fig. 8: Cost reduction and shielding frequency of Scenario 2 with
50 human trajectories from the Waymo Open Motion Dataset [20].
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from 50 trials, where the human is simulated using [26].
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