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Abstract

Motivated by a certain molecular reconstruction methodology in cryo-electron
microscopy, we consider the problem of solving a linear system with two un-
known orthogonal matrices, which is a generalization of the well-known orthog-
onal Procrustes problem. We propose an algorithm based on a semi-definite
programming (SDP) relaxation, and give a theoretical guarantee for its perfor-
mance. Both theoretically and empirically, the proposed algorithm performs
better than the näıve approach of solving the linear system directly without the
orthogonal constraints. We also consider the generalization to linear systems
with more than two unknown orthogonal matrices.
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1. Introduction

In this paper, we consider the following problem: given known matrices
X1,X2 ∈ RN×D and unknown orthogonal matrices V1,V2 ∈ O(D), recover V1

and V2 from X3 ∈ RN×D defined by

X3 = X1V1 + X2V2. (1)

A näıve approach would be solving (1) while dropping the constraints of or-
thogonality on V1 and V2. This linear system has ND linear constraints and
2D2 unknown variables, therefore, this approach can recover V1 and V2 when
N ≥ 2D. The question is, can we develop an algorithm that takes the con-
straints of orthogonality into consideration, so that it is able to recover V1 and
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V2 when N < 2D, and more stably when the observation X3 is contaminated
by noise?

The associated least squares problem

min
V1,V2∈O(D)

‖X1V1 + X2V2 −X3‖2F (2)

can be considered as a generalization of the well-known orthogonal Procrustes
problem [1]:

min
V ∈O(D)

‖X1V −X2‖2F , (3)

with the main difference being that the minimization in (2) is over two orthog-
onal matrices instead of just one as in (3). Although the orthogonal Procrustes
problem has a closed form solution using the singular value decomposition,
problem (2) does not enjoy this property.

Still, (2) can be reformulated so that it belongs to a wider class of prob-
lems called the little Grothendieck problem [2], which again belongs to QO-OC
(Quadratic Optimization under Orthogonality Constraints) considered by Ne-
mirovski [3]. QO-OCs have been well studied and include many important
problems as special cases, such as Max-Cut [4] and generalized orthogonal Pro-
crustes [5, 6, 7]

min
V1,...,Vn∈O(D)

∑
1≤i,j≤n

‖XiVi −XjVj‖2F ,

which has applications to areas such as psychometrics, image and shape analysis
and biometric identification.

The non-commutative little Grothendieck problem [8] is defined by:

min
V1,...,Vn∈O(D)

n∑
i,j=1

tr(CijViV
>
j ). (4)

Problem (2) can be considered as a special case of (4) with n = 3. The argument
is as follows. For convenience, we homogenize (1) by introducing a slack unitary
variable V3 ∈ O(D) and consider the augmented linear system

X1V1 + X2V2 + X3V3 = 0 (5)

Clearly, if (V1,V2,V3) is a solution to (5), then the pair (−V1V
>

3 ,−V2V
>

3 )
is a solution to the original linear system (1). The least squares formulation
corresponding to (5) is

min
V1,V2,V3∈O(D)

‖X1V1 + X2V2 + X3V3‖2F . (6)

Let C ∈ R3D×3D be a Hermitian matrix with the (i, j)−th D ×D block given
by Cij = X>i Xj . The least squares problem (6) is equivalent to

min
V1,V2,V3∈O(D)

3∑
i,j=1

tr(CijVjV
>
i ), (7)

which is the little Grothendieck problem (4) with n = 3.
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1.1. Motivation

Our problem arises naturally in single particle reconstruction (SPR) from
cryo-electron microscopy (EM), where the goal is to determine the 3D struc-
ture of a macromolecule complex from 2D projection images of identical, but
randomly oriented, copies of the macromolecule. Zvi Kam [9] showed that the
spherical harmonic expansion coefficients of the Fourier transform of the 3D
molecule, when arranged as matrices, can be estimated from 2D projection
images up to an orthogonal matrix (for each degree of spherical harmonics).
Based on this observation, Bhamre et al. [10] recently proposed “Orthogonal
Replacement” (OR), an orthogonal matrix retrieval procedure in which cryo-
EM projection images are available for two unknown structures ϕ(1) and ϕ(2)

whose difference ϕ(2) − ϕ(1) is known. It follows from Kam’s theory that we
are given the spherical harmonic expansion coefficients of ϕ(1) and ϕ(2) up to
an orthogonal matrix, and their difference. Then the problem of recovering
the spherical harmonic expansion coefficients of ϕ(1) and ϕ(2) is reduced to the
mathematical problem (1). If (1) can be solved for smaller N , then we can re-
construct ϕ(1) and ϕ(2) with higher resolution. The cryo-EM application serves
as the main motivation of this paper. We refer the reader to [10] for further
details regarding the specific application to cryo-EM.

2. Algorithm and Main result

The little Grothendieck problem and QO-OCs are generally intractable, for
example, it is well-known that the Max-Cut Problem is NP-hard. Many ap-
proximation algorithms have been proposed and analyzed [4, 3, 11, 12, 2, 13],
and the principle of these algorithms is to apply a semi-definite programming
(SDP) relaxation followed by a rounding procedure. The SDP can be solved
in polynomial time (for any finite precision). Based on the same principle, we
relax the problem (7) to an SDP as follows.

Let H ∈ R3D×3D be a Hermitian matrix with the (i, j)−th D × D block
given by Hij = ViV

>
j , that is,

H =

 V1

V2

V3

(V >1 ,V >2 ,V >3
)
.

Then (7) is equivalent to

min
H<0,Hii=I,rank(H)=D

tr(CH),

where H < 0 denotes that H is a positive semidefinite matrix. The only
constraint which is non-convex is the rank constraint. Dropping it leads to the
following SDP:

min tr(CH), subject to H < 0 and Hii = I. (8)
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If the solution satisfies rank(H) = D, then V1, V2 and V3 are extracted by
applying decomposition to H as follows. Let H = UU>, where

U =

 U1

U2

U3

 ∈ R3D×D, and Ui ∈ RD×D

then Vi = Ui, 1 ≤ i ≤ 3 would be a solution.
Notice that the solution to (5) is not unique: if (U1,U2,U3) satisfies (5), then

for any U ∈ O(D), the triplet (U1U ,U2U ,U3U) satisfies (5) as well. Although
the solution to (5) is not unique, the solution to the original problem (2) is
uniquely given by (−U1U

>
3 ,−U2U

>
3 ).

When rank(H) > D, then there does not exist U ∈ R3D×D such that
H = UU> and the linear system (1) does not have a solution. However, we
could employ the rounding procedure described in [2]: Let H = UU>, where

U =

 U1

U2

U3

 ∈ R3D×3D, and Ui ∈ RD×3D,

then we generate approximate solutions by V1 = f(−U1U
>
3 ) and V2 = f(−U2U

>
3 ),

where f is a rounding procedure to the nearest orthogonal matrix as follows. For
any Z ∈ RD×D with SVD decomposition Z = UZΣZV

>
Z , f(Z) = UZV

>
Z =

Z(Z>Z)−
1
2 [14].

2.1. Main results

The main contribution of this paper is a particular theoretical guarantee for
the SDP approach to return a solution of rank D and recover V1 and V2 exactly.
We start with a theorem that controls the lower bound of the objective function
in (8). Throughout the paper, for any d-dimensional subspace L in RD, PL is a
projector of size D × d to the subspace.

Theorem 2.1. For generic X1,X2 ∈ RN×D with N ≥ D+1, X3 = −X1−X2,
k ≥ D, and

U =

U =

 U1

U2

U3

 ∈ R3D×k : Ui ∈ RD×k,U1U
>
1 = U2U

>
2 = U3U

>
3 = I,

 ,

then for any U ∈ U ,

‖XU‖F ≥ c(X1,X2)‖U>PL⊥1
‖2F , (9)

where X = (X1,X2,X3) ∈ RN×3D,

L1 = {x ∈ R3D : x = (v,v,v) for some v ∈ RD},

and c(X1,X2) is a constant depending on X1 and X2 and it is positive for
generic X1 and X2.
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Based on Theorem 2.1 and ‖XU‖2F = tr(CH), this paper proves that when
N ≥ D + 1, the SDP method recovers the orthogonal matrices for generic
cases, i.e., the property holds for (X1,X2) that lies in a dense open subset of
RN×D × RN×D. This is formally stated next. Its part (b) shows that the SDP
method is stable to noise.

Theorem 2.2. (a) For generic X1,X2 ∈ RN×D with N ≥ D + 1, the SDP
method recovers V1 and V2 exactly.
(b) Under the assumptions in (a), and suppose that the input matrices of the

SDP method are X̂i such that ‖X̂i −Xi‖F ≤ ε for 1 ≤ i ≤ 3, then the SDP
method recovers {Vi}2i=1 approximately in the sense that the error between the

recovered orthogonal matrix V̂i and the true orthogonal matrix Vi, ‖V̂i − Vi‖F ,
is bounded above by C

√
ε for some C that does not depend on ε.

The result (a) shows that the SDP method successfully recovers the orthog-
onal matrices as long as N ≥ D + 1, compared with the stringent requirement
N ≥ 2D for the näıve least squares approach. The condition N ≥ D+1 is nearly
optimal. In (1), there are ND constraints and D(D − 1) variables. Hence, it is
impossible to recover V1 and V2 when N < D − 1.

The result (b) shows that the SDP method is stable to noise in the input
matrices. We remark that it might be possible to improve the stability analysis:
While the current analysis gives an error of O(

√
ε), the empirical performance

usually has an error of O(ε), as shown in Table 2 of Section 3.
We also remark that Theorem 2.2 can be generalized to the complex case—

the proof applies to the case of unitary matrices as well. For the complex
case, there are 2ND constraints and 2D2 degrees of freedom. Therefore, it is
impossible to recover V1 and V2 when N < D. Moreover, we suspect that
recovery is impossible even for N = D, which would suggest that the sufficient
condition N ≥ D + 1 in Theorem 2.2(a) is also necessary: in fact, it is easy to
verify the impossibility of recovering V1 and V2 when N = D = 1.

2.2. Generalization

A natural generalization of (1) is the following problem: given known matri-
ces X1,X2, . . . ,XK−1 ∈ RN×D and unknown orthogonal matrices V1,V2, . . . ,VK−1 ∈
O(D), recover {Vi}K−1

i=1 from

XK =

K−1∑
i=1

XiVi. (10)

For this generalized problem, the SDP method is formulated as follows. We
first homogenize it to

K∑
i=1

XiVi = 0,

and let H ∈ RKD×KD be a Hermitian matrix with the (i, j)−th D ×D block
given by Hij = ViV

>
j . Then the SDP method solves

min tr(CH), subject to H < 0 and Hii = I for all 1 ≤ i ≤ K, (11)
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where Hii represents the (i, i)−th D×D block. Then we extract the orthogonal
matrices by the procedure described in Section 2.

For this generalized problem and its associated SDP approach, we have the
following theoretical guarantee.

Theorem 2.3. For generic {Xi}K−1
i=1 ∈ RN×D, if N ≥ (K − 2)D+ 1, then the

SDP method recovers {Vi}K−1
i=1 exactly.

Theorem 2.2(a) can be considered as a special case of Theorem 2.3 when
K = 3. However, for K > 3, the condition N ≥ (K − 2)D + 1 is not close to
optimal. Since (10) has ND constraints and D(D − 1)(K − 1)/2 variables, the
information-theoretic limit is N = (D − 1)(K − 1)/2. Simulations in Section 3
also show that the SDP approach empirically recovers the orthogonal matrices
even when N is smaller than (K − 2)D+ 1. However, the theoretical guarantee
in Theorem 2.3 is still more powerful than the least squares approach of solving
min{Vi}K−1

i=1 ∈RD×D ‖
∑K−1
i=1 XiVi −XK‖2F , which requires N ≥ (K − 1)D+ 1 to

recover {Vi}K−1
i=1 .

3. Numerical Experiments

In this section, we compare several methods for solving (1) and (10) on ar-
tificial data sets. The data sets are generated as follows: {Xi}K−1

i=1 are random
matrices with i.i.d standard Gaussian entries N (0, 1), {Vi}K−1

i=1 are random or-
thogonal matrices (according to Haar measure) generated by QR decomposition
of random matrices with i.i.d standard Gaussian entries, and XK is generated
by (10).

We compare the following five methods:

1. The SDP relaxation approach (SDP) described in Section 2.

2. The näıve least squares approach (LS):

min
{Vi}K−1

i=1

‖XK −
K−1∑
i=1

XiVi‖2F

3. Since the convex hull of the set of orthogonal matrices is the set of ma-
trices with operator norm not greater than one, we can strengthen the LS
approach by constraining its domain (C-LS):

min
{Vi}K−1

i=1

‖XK −
K−1∑
i=1

XiVi‖2F , subject to ‖Vi‖ ≤ 1, 1 ≤ i ≤ K − 1

4. This is an approach suggested to us by Afonso Bandeira. Let us start
with the case K = 3. If V3 = V1V

>
2 , then from (1), X3V

>
2 = X1V3 +X2

and X3V
>

1 = X1 + X2V
>

3 . Then we solve the expanded least squares
problem based on these three equations (LS+):

min
V1,V2,V3

‖X3−X1V1−X2V2‖2F+‖X3V
>

2 −X1V3−X2‖2F+‖X3V
>

1 −X1−X2V
>

3 ‖2F .
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Defining

H =

 I V3 −V1

V >3 I −V2

−V >1 −V >2 I

 ,

the optimization problem can be rewritten as

min
H∈R3D×3D

‖(X1,X2,X3)H‖2F , subject to H = H>, Hii = I.

In general, for K ≥ 3, this method can be formulated as

min
H∈RKD×KD

tr(CH2), subject to H = H> and Hii = I for all 1 ≤ i ≤ K,

where Hij represents the ij-th D ×D block of H.

5. The LS+ approach with constraints on the operator norm of Hij (C-LS+):

min
H∈RKD×KD

tr(CH2), subject to H = H>, Hii = I and ‖Hij‖ ≤ 1 for all 1 ≤ i, j ≤ K.

To compare the SDP/LS+/C-LS+ approaches, we summarize their objective
functions and their constraints in Table 1. There are two main differences. First,
the objective functions are different. However, since tr(CH) = 0 if and only if
tr(CH2) = 0 (considering C < 0 and H < 0), this difference does not affect
the property of exact recovery. Second, the constraints of the SDP approach
are more restrictive than those of the C-LS+ approach (Hii = Hjj = I and
H < 0 imply ‖Hij‖ ≤ 1), which is more restrictive than the C-LS approach.
This observation partially justifies the fact that SDP performs better than C-
LS+, and C-LS+ performs better than C-LS. However, these interpretations
do not justify the empirical finding in Figures 1 and 3 that C-LS+ and SDP
behave very similarly in the absence of noise. We leave the explanation of this
observation as an open question.

Table 1: Comparison between SDP, LS+ and C-LS+ approaches.

objective function common constraint other constraints
SDP tr(CH) H < 0
LS+ tr(CH2) Hii = I, H = H>

C-LS+ tr(CH2) ‖Hij‖ ≤ 1

Among these optimization approaches, the LS method has an explicit solu-
tion by decomposing it into D sub-problems, where each is a regression problem
that estimates KD regression parameters. All other methods are convex and
can be solved by CVX [15], where the default solver SeDuMi is used [16]. While
the LS+ approach can also be written as a least squares problem with an explicit
solution, this problem is not decomposable (unlike the LS method).

When the solution matrices of LS/C-LS are not orthogonal, they are rounded
to the nearest orthogonal matrices using the approach in [14]. The rounding
procedure of LS+/C-LS+ is the same as that of the SDP method.
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Figure 1: The dependence of the mean recovery error (over 50 runs) with respect to N , when
D = 10 (left panel) and D = 20 (right panel). The y-axis represents the mean recovery error
of V1 in Frobenius norm.

In the first simulation, we aim to find the size of N such that the orthogonal
matrices be exactly recovered by the suggested algorithms for K = 3. We let
D = 10 or 20 and choose various values for N , and record the mean recovery
error of V1 (in Frobenius norm) over 50 repeated simulations in Figure 1. The
performance of LS verifies our theoretical analysis: it recovers the orthogonal
matrices for N ≥ 2D. LS fails when N < 2D because the null space of [X1,X2]
is nontrivial and there are infinite solutions. Besides, LS+ succeeds when N ≥
3D/2. SDP and C-LS+ are the best approaches and they succeed when N ≥
D + 1, which verifies Theorem 2.2.

In the second simulation, we test the stability of the suggested algorithms
when K = 3 and the measurement matrix X3 is contaminated elementwisely
by Gaussian noise N (0, σ2). We use the setting N = 12, 16, 22, D = 10 and
σ = 0.01 or 0.1 and record the mean recovery error over 50 runs in Table 2, which
shows that the SDP relaxation approach is more stable to noise than competing
approaches. This motivates our interest in studying the SDP approach.

Table 2: The mean recovery error over 50 runs in the noisy setting for K = 3 and
D = 10.

N σ SDP C-LS+ LS+ C-LS LS
12 0.01 0.071 0.076 0.482 0.508 2.260
16 0.01 0.026 0.031 0.037 0.059 1.926
22 0.01 0.018 0.021 0.020 0.030 0.077
12 0.1 0.742 0.742 1.088 0.880 2.341
16 0.1 0.261 0.328 0.399 0.459 2.034
22 0.1 0.175 0.217 0.216 0.262 0.834

In the third simulation, we compare these methods for K = 5 and D = 5, 10.
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Figure 2: The dependence of the mean recovery error (over 50 runs) with respect to N , when
K = 5, D = 5 (left panel) and K = 5, D = 10 (right panel). The y-axis represents the mean
recovery error of V1 in Frobenius norm.

The results are shown in Figure 3. This simulation verifies Theorem 2.3 by
showing that the SDP approach successfully recovers the orthogonal matrices
for N ≥ (K − 2)D+ 1. Indeed, the empirical performance of the SDP approach
is even better: it recovers {Vi}5i=1 at N = 12 and 25 respectively, which are
smaller than (K − 2)D + 1. Compared with LS/LS+/C-LS, the SDP and C-
LS+ approaches recover the orthogonal matrices with smaller N .

At last, we record the running time for all approaches in Table 3. Although
the running time is not the main focus of this paper, and CVX is not optimized
for the approaches, this table gives a sense of the running times. Table 3 clearly
shows that the LS approach is much faster than the other approaches, and the
SDP approach is consistently faster than C-LS+. We suspect that it is due to
the fact that SDP has fewer constraints, even though the constraint of SDP is
more restrictive than that of C-LS+.

Table 3: The average running time (in seconds) when σ = 0.1, K = 3, D = 10, N = 15
(first row) and σ = 0.1, K = 5, D = 10, N = 35 (second row).

SDP C-LS+ LS+ C-LS LS
0.64 0.76 0.20 0.48 0.0005
5.33 6.58 0.62 0.93 0.0017

4. Proofs of main results

In this section, we first provide the proof for Theorem 2.2, assuming Theo-
rem 2.1, and then provide the proofs for Theorems 2.1 and 2.3. The main reason
for this organization is that, given Theorem 2.1 (whose proof is more technical),
the proof of Theorem 2.2 is rather straightforward. This organization would
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also emphasize the importance of Theorem 2.1, which plays an important role
in the proof of Theorems 2.2.

4.1. Proof of Theorem 2.2

Part (a) follows from the result in part (b) with ε = 0, so it is sufficient to
prove part (b).

In the proof of part (b), we first claim that it is sufficient to prove the case

V1 = V2 = −I, i.e., when X1 +X2 +X3 = 0 and ‖X̂i−Xi‖F ≤ ε for 1 ≤ i ≤ 3,

then the SDP method recovers V̂1 and V̂2 such that ‖V̂i+I‖ ≤ C
√
ε for i = 1, 2.

This result implies that if the input of the SDP method is (−X̂1V1,−X̂2V2, X̂3)
and the output is denoted by (Ṽ1, Ṽ2), then ‖Ṽi + I‖F ≤ C

√
ε for i = 1, 2.

Additionally, it can be verified that if the SDP method outputs (V1,V2)
when the input is (X1,X2,X3), U1 and U2 are two orthogonal matrices, then
the output for (X1U1,X2U2,X3) would be (U>1 V1,U

>
2 V2). Applying this ob-

servation, we have Ṽi = −V̂iV >i . Combining it with ‖Ṽi + I‖F ≤ C
√
ε for

i = 1, 2, the theorem is proved.
The rest of the proof will assume V1 = V2 = −I and X1 + X2 + X3 = 0.

We represent the noisy setting in (8) by X̂, Ĉ and Ĥ, the clean setting by

X, C and H, and write the decomposition of H and Ĥ by H = UU> and
Ĥ = ÛÛ>.

Since ÛiÛ
>
i = I, ‖Û‖ ≤

∑3
i=1 ‖Ûi‖ = 3, (30) implies

‖XÛ‖F − ‖X̂Û‖F ≤ ‖(X − X̂)Û‖F ≤ 3‖X − X̂‖F ≤ 9ε (12)

and following the same argument,

‖X̂U‖F ≤ 9ε+ ‖XU‖F . (13)

Since Ĥ = ÛÛ> is the minimizer of the SDP problem, we have ‖X̂Û‖F ≤
‖X̂U‖F . Combining it with ‖XU‖F = 0 and (13),

‖X̂Û‖F ≤ 9ε. (14)

Combining (12), (14) with Theorem 2.1,

9ε ≥ ‖X̂Û‖F ≥ ‖XÛ‖F − 9ε ≥ c(X)‖Û>PL⊥1
‖2F − 9ε, (15)

so we have

‖Û>PL⊥1
‖F ≤

√
18ε

c(X)
. (16)

Combining it with Lemma 4.2,

‖Û1Û
>
3 − I‖F =‖Û1 − Û3‖F = ‖Û>(I,0,−I)‖F = ‖Û>PL⊥1

P>L⊥1
(I,0,−I)‖F

≤‖Û>PL⊥1
‖F ‖P>L⊥1 (I,0,−I)‖ ≤ 2

√
18ε

c(X)
.
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Since the post-processing step f(Z) is a continuous and differentiable func-
tion with respect to Z and f(−I) = −I, the difference between the recovered

orthogonal matrix V̂1 and V1 = −I, ‖V̂1 + I‖F , is bounded above by C
√
ε when

c(X) > 0. Similarly we have ‖V̂2 + I‖F < C
√
ε.

4.2. Proof of Theorem 2.1

Proof. The main idea of the proof is to investigate Ũ∗, which is defined to be
nearest matrix to U in the set Ũ defined in (17). Then we represent Ũ∗ in the
form of (21), and show that ‖L‖F is bounded by C1‖XU‖F , for some C1 > 0.
With additional bounds ‖KY1‖F , ‖KY2‖F ≤ C2

√
‖XU‖F and

‖Ũ∗>PL⊥1
‖F ≤

∥∥∥∥( (LY1)> (LY2)> 0
(KY1)> (KY2)> 0

)∥∥∥∥
F

,

we will show that ‖Ũ∗>PL⊥1
‖F is bounded above by a function of ‖XU‖F

in (24). By analyzing the properties of Ũ∗, the same statement holds for
‖UPL⊥1

‖F , and the theorem is proved.
We first remark that it is sufficient to prove the case N = D + 1. If this is

true, then for N > D + 1, (9) holds when X is replaced by X ′, the submatrix
consists of the first D + 1 rows of X. Since ‖XU‖F ≥ ‖X ′U‖F , (9) is proved.
Therefore, for the rest of the proof, we assume N = D + 1.

We first define the following:

Ū = {Ū ∈ R3D×k : XŪ = 0},
Ũ = {Ũ ∈ R3D×k : XŨ = 0, Ũ3 = U3}, (17)

and in (17), Ũ3 and U3 represent the submatrix consists of the last D rows of
Ũ and U . We also define the distances between two matrices and the distances
between a matrix and a set by

dist(U ,U ′) = ‖U −U ′‖F , dist(U ,U) = min
U ′∈U

‖U −U ′‖F .

Then we have
dist(U , Ū) ≥ C dist(U , Ũ), (18)

for C = 1/2. The proof of (18) is deferred to Section 4.2.1.
Assuming that σmin(X) is the smallest singular value of X, and for any

matrix A ∈ Rm×n, Sp(A) represents the subspace spanned by the row vectors
of A in Rn, then we have

‖XU‖F ≥ σmin(X)‖P>Sp(X)U‖F = σmin(X) dist(U , Ū) ≥ Cσmin(X) dist(U , Ũ),

(19)

where the last inequality follows from (18).
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Assuming that Ũ∗ = arg minŨ∈Ũ dist(Ũ ,U), then using

 U3

U3

U3

 ∈ Ũ we

have

dist(Ũ∗,U) ≤ dist

 U3

U3

U3

 ,U

 ≤ √8D. (20)

Now let us investigate dist(Ũ∗,U) further. If Y1 and Y2 ∈ R(2D−N)×D

are chosen such that [X1,X2][Y1,Y2]> = 0, then using X1 + X2 + X3 = 0,
there exist L ∈ RD×(3D−N), K ∈ R(k−D)×(3D−N) and an orthogonal matrix
U ′3 ∈ Rk×k such that

Ũ∗ =

 I + LY1 KY1

I + LY2 KY2

I 0

U ′3. (21)

That is, if we write Ũ∗ =

 Ũ∗1
Ũ∗2
Ũ∗3

, then

Ũ∗1 = (I + LY1,KY1)U ′3, Ũ∗2 = (I + LY2,KY2)U ′3, Ũ∗3 = U3

(Ũ∗3 = U3 follows from definition of Ũ). Since for any U1 ∈ Rk×D with SVD
decomposition U1 = UU1ΣU1V

>
U1

, the closest orthogonal matrix in Rk×D is

given by UU1
V >U1

, so the distance between Ũ∗ and U is

dist(Ũ∗,U) =

√√√√ 3∑
i=1

‖ΣŨ∗i
− I‖2F .

Applying (20), all singular values of Ũ1, Ũ2 and Ũ3 (i.e., all diagonal entries of
{ΣŨ∗i

}3i=1) are smaller than
√

8D + 1. Let C ′ =
√

8D + 2, then dist(U ,U) can

be controlled as follows:

C ′2 dist2(U , Ũ) = C ′2 dist2(Ũ∗,U) ≥ C ′2 dist2(Ũ∗,U) = C ′2
3∑
i=1

‖ΣŨ∗i
− I‖2F

≥
3∑
i=1

‖Σ2
Ũ∗i
− I‖2F = ‖Ũ∗1 Ũ∗>1 − I‖2F + ‖Ũ∗2 Ũ∗>2 − I‖2F + ‖Ũ∗3 Ũ∗>3 − I‖2F

=‖LY1 + Y >1 L> − Y >1 (L>L + K>K)Y1‖2F
+ ‖LY2 + Y >2 L> − Y >2 (L>L + K>K)Y2‖2F (22)

≥(min(0, λmin(LY1 + Y >1 L>)))2 + (min(0, λmin(LY2 + Y >2 L>)))2, (23)

where the last inequality follows from the observation that Y >1 (L>L+K>K)Y1

and Y >2 (L>L + K>K)Y2 are positive semidefinite, and for any symmetric
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matrix X, the distance to the nearest positive semidefinite matrix (in Forbenius
norm) is at least −min(0, λmin(X)).

Then (19) and (23) imply

λmin(LY1 + Y >1 L>) ≥ −C
′‖XU‖F

Cσmin(X)
, λmin(LY2 + Y >2 L>) ≥ −C

′‖XU‖F
Cσmin(X)

.

Now we introduce an important lemma.

Lemma 4.1. For D > M , L ∈ RD×M and Y ,Z ∈ RM×D, if λmin(LY +
Y >L>) ≥ −ε and λmin(LZ +Z>L>) ≥ −ε, where λmin represents the smallest
eigenvalue, then ‖L‖F ≤ εc(Y ,Z), where c(Y ,Z) > 0 for generic Y and Z.

The proof of Lemma 4.1 is rather technical and deferred to Section 4.4.
Applying Lemma 4.1, for generic Y1 and Y2 (and as a result, for generic X1 and
X2) there exists C1 depending on Y1 and Y2 such that ‖L‖F ≤ C1‖XU‖F . In
addition, we have

‖LY1 + Y >1 L> − Y >1 (L>L + K>K)Y1‖F
≥‖Y >1 K>KY1‖F − ‖Y >1 L>LY1‖F − ‖LY1 + Y >1 L>‖F ,

and ‖Y >1 K>KY1‖F ≥ 1√
D

tr(Y >1 K>KY1) = 1√
D
‖KY1‖2F . As a result, there

exists C2 depending on Y1,Y2,X such that if ‖KY1‖F > C2

√
‖XU‖F then

‖LY1 + Y >1 L> − Y >1 (L>L + K>K)Y1‖F ≥
C ′‖XU‖F
Cσmin(X)

,

which violates (22) and (19). Therefore, by contradiction we proved ‖KY1‖F ≤
C2

√
‖XU‖F , and similarly, ‖KY2‖F ≤ C2

√
‖XU‖F . Combining it with

‖L‖F ≤ C1‖XU‖F , we have

‖Ũ∗>PL⊥1
‖F = ‖Ũ∗>PL⊥1

‖F =

∥∥∥∥( (LY1)> (LY2)> 0
(KY1)> (KY2)> 0

)
PL⊥1

∥∥∥∥
F

≤
∥∥∥∥( (LY1)> (LY2)> 0

(KY1)> (KY2)> 0

)∥∥∥∥
F

≤ ‖LY1‖F + ‖LY2‖F + ‖KY1‖F + ‖KY2‖F

≤‖L‖F (‖Y1‖+ ‖Y2‖) + ‖KY1‖F + ‖KY2‖F
≤(‖Y1‖+ ‖Y2‖)C1‖XU‖F + 2C2

√
‖XU‖F . (24)

Recall that C1 and C2 only depends on X1 and X2 (X, Y1, and Y2 are generated
from X1 and X2), combining (19) and (24) we have

‖U>PL⊥1
‖F ≤ ‖Ũ∗>PL⊥1

‖F + ‖(U − Ũ∗)>PL⊥1
‖F ≤ ‖Ũ∗>PL⊥1

‖F + ‖U − Ũ∗‖F

≤(‖Y1‖+ ‖Y2‖)C1‖XU‖F + 2C2

√
‖XU‖F +

1

Cσmin(X)
‖XU‖F .

Considering that ‖U‖ ≤ 3 and ‖XU‖F ≤ ‖U‖‖X‖F ≤ 3‖X‖F , so if we let
C4 = 3‖X‖F , then

‖U>PL⊥1
‖F ≤

(
(‖Y1‖+ ‖Y2‖)C1

√
C4 + 2C2 +

1

Cσmin(X)

√
C4

)√
‖XU‖F ,
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and Theorem 2.1 is proved.

4.2.1. Proof of (18)

Suppose that Ū∗ = arg minŪ∈Ū dist(Ū ,U) and

U − Ū∗ =

 V1

V2

V3

 , where Vi ∈ RD×k for i = 1, 2, 3,

then

Ũ = Ū∗ +

 V3

V3

V3


would satisfies that Ũ ∈ Ũ , and as a result,

dist(U , Ū) = dist(U , Ū∗) =
√
‖V1‖2F + ‖V2‖2F + ‖V3‖2F ≥ C

√
‖V1 + V3‖2F + ‖V2 + V3‖2F

=C dist(U , Ũ) ≥ C dist(U , Ũ),

where C can chosen to be 1/2.

4.3. Proof of Theorem 2.3

Proof. We start with the same argument as in the proof of Theorem 2.2 and
assume Vi = −I for all 1 ≤ i ≤ K − 1 and

∑K
i=1 Xi = 0. Then the proof

can be divided into three steps. First, we show that it is sufficient to prove
that a property defined in (26) is satisfied for generic Y ∈ Rp×KD where p =
max ((K − 1)D −N, 0). Then we establish that (26) indeed holds for generic Y .
To this end, secondly, we show that any Y that does not satisfy this property
lies in a certain set. Finally, in the third step, we show that this set is of measure
zero.

4.3.1. Step 1: reduction of the problem to the property (26)

By the assumption that Vi = −I for all 1 ≤ i ≤ K − 1, X1 + . . .+ XK = 0,
and

tr
(
H(I, . . . , I)>(I, . . . , I)

)
= tr

(
(I, . . . , I)H(I, . . . , I)>

)
= ‖X1+. . .+XK‖2F = 0.

Considering that tr(HC) ≥ 0 for any H < 0, if the solution to the SDP
problem is not uniquely given by (I, . . . , I)>(I, . . . , I), then there exists H 6=
(I, . . . , I)>(I, . . . , I) such that tr(CH) = 0. Let H = UU> for a matrix U ∈
RKD×k, then using the properties of H, we have U ∈ U for

U =

U =

 U1

...
UK

 : Ui ∈ RD×k,UiU
>
i = I,∀1 ≤ i ≤ K,P>L⊥1 U 6= 0

 ,
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L1 defined by

L1 = {z ∈ RKD : z = (x,x, . . . ,x) for some x ∈ RD},

and P>
L⊥1

U 6= 0 means that U1,U2, · · · ,UK are not all the same.

Since tr(CH) = 0, we have ‖XU‖F = 0. Let Sp(A) and Col(A) be the
subspaces spanned by the row vectors of A and the column vectors of A respec-
tively, then

Sp(X)⊥ ⊇ Col(U). (25)

For any two subspace L and L′, we use L + L′ to represent the subspace
{x+y : x ∈ L,y ∈ L′}, then we claim that to prove Theorem 2.3, it is sufficient
to prove the following statement with p = max ((K − 1)D −N, 0):

For generic Y ∈ Rp×KD, Col(U) 6⊆ Sp(Y ) + L1 for every U ∈ U . (26)

The argument is as follows. Since
∑K
i=1 Xi = 0,

dim(Sp(X)) = rank(X) = rank([X1,X2, · · · ,XK−1,XK ])

= rank([X1,X2, · · · ,XK−1]),

which is min ((K − 1)D,N) for generic {Xi}K−1
i=1 ∈ RN×D, so Sp(X) is a generic

min ((K − 1)D,N)-dimensional subspace in L⊥1 (and L⊥1 is a subspace of RDK).
So, Sp(X)⊥ is the sum of L1 and a generic p-dimensional subspace in RKD.

Therefore, for generic {X}K−1
i=1 , Sp(X)⊥ is equivalent to Sp(Y ) + L1, where Y

is a generic matrix of size p×KD. If (26) holds, then (25) would not hold for
generic {X}K−1

i=1 and every U ∈ U . By the analysis before (25), the solution to
the SDP problem is uniquely given by (I, . . . , I)>(I, . . . , I), and Theorem 2.3 is
proved.

4.3.2. Step 2: finding matrices that do not satisfy (26)

In this part we show that every Y violating (26) lies in the set ∪pd=1Md,
where Md is the range of the function

gd
(
{Yi}K−1

i=0 ,Z,L,L0

)
= PL

[(
Y1P

>
L0
, · · · ,YKP>L0

)
+ (Y0, · · · ,Y0)

]
+ PL⊥Z.

The domain of the function gd is as follows: Yi ∈ Rd×d for 1 ≤ i ≤ K − 1,
Y0 ∈ Rd×D, Z ∈ R(p−d)×KD, L0 is a d-dimensional subspace in RD, and L is a
d-dimensional subspace in Rp. In addition, YK = −

∑K−1
i=1 Yi.

For every Y violating (26), there exists U ∈ U such that Col(U) ⊆ Sp(Y )+
L1. We let U = U (1) + U (2), where the columns of U (1) lie in L1 and the
columns of U (2) are orthogonal to L1. As a result, Col(U (2)) is a subspace in
RKD that intersects L1 only at origin, and we let d = dim(Col(U (2))). We have
d ≥ 1, since otherwise U (2) is a zero matrix, and P>

L⊥1
U = P>

L⊥1
U (1) = 0, which

contradicts U ∈ U .
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Denote

U (1) =


U

(1)
1
...

U
(1)
K

 and U (2) =


U

(2)
1
...

U
(2)
K

 ,

then U
(1)
1 = U

(1)
2 = · · · = U

(1)
K . Recall for all 1 ≤ i ≤ K, U

(1)
i U

(1)>
i +

U
(2)
i U

(2)>
i = UiU

>
i = I, we have

U
(2)
1 U

(2)>
1 = U

(2)
2 U

(2)>
2 = · · · = U

(2)
K U

(2)>
K .

Therefore,

Col
(
U

(2)
1

)
= Col

(
U

(2)
2

)
= . . . = Col

(
U

(2)
K

)
, (27)

and

dim
(

Col(U
(2)
1 )
)

= rank
(
U

(2)
1

)
≤ rank

(
U (2)

)
= dim

(
Col(U (2))

)
= d.

Since Col(U) = Col(U (2)) + Col(U (1)), and Col(U (1)) ⊆ L1, the assump-
tion Sp(Y ) + L1 ⊇ Col(U) is equivalent to Sp(Y ) + L1 ⊇ Col(U (2)). Recall
dim (Sp(Y )) ≤ p, and Col(U (2)) is a subspace in RKD that intersects L1 only
at origin, we have d ≤ p.

Apply Sp(Y ) + L1 ⊇ Col(U (2)) and dim
(
Col(U (2))

)
= d, there exists Y0 ∈

Rd×D and L, a d-dimensional subspace in Rp, such that

Sp
(
P>L [Y − (Y0,Y0, · · · ,Y0)]

)
= Col

(
U (2)

)
.

Recall the property (27), there exists Yi ∈ Rd×d for 1 ≤ i ≤ K and L0, a

d-dimensional subspace in RD that contains Sp(U
(2)>
1 ), such that

P>L [Y − (Y0,Y0, · · · ,Y0)] =
(
Y1P

>
L0
,Y2P

>
L0
, · · · ,YKP>L0

)
. (28)

In addition, since Col(U (2)) is orthogonal to L1.

YK = −
K−1∑
i=1

Yi. (29)

Combining (28), (29), and the estimation 1 ≤ d ≤ p, every Y that does not
satisfy (26) lies in the set ∪pd=1Md.

4.3.3. Step 3: counting the dimension of Md

In this step, we count the dimensions of Md for all 1 ≤ d ≤ p, and show
that they are smaller than pKD, the dimension of Rp×KD, which implies that
generic Y ∈ Rp×KD does not belong to ∪pd=1Md, and (26) is proved.

For any d, the degree of freedom is {Yi}K−1
i=1 is (K − 1)d2, the degree of

freedom of Y0 is Dd, the degree of freedom of Z is KD(p − d), the degree of
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freedom of L and L1 are d(p − d) and d(D − d) respectively. Considering that
d ≤ p ≤ D− 1, the total dimension of Md is smaller than KDp, the dimension
of Rp×KD. Since gd is smooth and the dimension of its range is larger than its
domain, all elements in Md are its critical values. Applying [17, Theorem 6.8],
Md has measure zero in R(D−1)×KD. Therefore, R(D−1)×KD \ Md is dense.
Since R(D−1)×KD \ Md is a closed set, generic Y does not lie in the set Md.
Combining this result for all 1 ≤ d ≤ p, generic Y does not lie in the set
∪pd=1Md.

4.4. Proof of Lemma 4.1

We first state two lemmas that are rather easy to verify.

Lemma 4.2. When A ∈ Rm×n, B ∈ Rn×l, where l ≥ n and the singular values
of B are σ1 ≥ σ2 ≥ · · · ≥ σn, then

σn‖A‖F ≤ ‖AB‖F ≤ σ1‖A‖F . (30)

Proof. First we claim that for any x ∈ Rn,

σ2
n‖x‖2 ≤ ‖x>B‖2 ≤ σ2

1‖x‖2. (31)

Assuming that the SVD decomposition of B is given by B = UB diag(σ1, · · · , σn)V >B ,
then the first inequality in (31) can be proved as follows:

‖x>B‖2 = x>BB>x = x>UB diag(σ2
1 , · · · , σ2

n)U>Bx ≥ σ2
n‖x>UB‖2 = σ2

n‖x‖2,

and second inequality in (31) can be proved similarly.
Assuming that A = (a1, . . . ,am), and combining (31) with x = ai for 1 ≤

i ≤ m, (30) is proved.

Lemma 4.3. The smallest eigenvalue of(
a b
b 0

)
is smaller than

− b2

max(a, 0) + |b|
.

Proof. The smaller eigenvalue is

a−
√
a2 + 4b2

2
= − 2b2

a+
√
a2 + 4b2

≤ − 2b2

a+ (|a|+ 2|b|)
= − b2

max(a, 0) + |b|
.

Proof of Lemma 4.1. First of all, WLOG we may assume that

Y =

(
IM×M

0M×D−M

)
. (32)
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If we proved the case (32), then other cases can be proved as follows. For generic
Y , there are invertible matrices B ∈ RM×M and A ∈ RD×D such that

BY A =

(
IM×M

0M×D−M

)
.

Note that

(A>LB−1)(BY A) + (BY A)>(A>LB−1)> = A>(LY + Y >L>)A,

we have

λmin((ALB−1)(BY A) + (BY A)>(ALB−1)>) ≥ −‖A‖2ε,

and similarly

λmin((ALB−1)(BZA) + (BZA)>(ALB−1)>) ≥ −‖A‖2ε.

Since the case (32) is assumed to be proved,

‖ALB−1‖F ≤ ε‖A‖2c(BY A,BZA).

Applying Lemma 4.2, ‖ALB−1‖F ≥ ‖L‖Fσmin(A)/‖B‖, and the generic case

is proved with c(Y ,Z) = ‖A‖2‖B‖
σmin(A) c(BY A,BZA), which is positive for generic

Z since c(BY A,BZA) is positive for generic BZA.
The rest of the proof will assume (32) and use induction on k, which is the

integer such that k(D −M) < M ≤ (k + 1)(D −M). For k = 1, let us denote

L =

(
L1

L2

)
, Z = (Z1,Z2),

where L1,Z1 ∈ RM×M , L2 ∈ RM×(D−M), and Z2 ∈ R(D−M)×M . Then

LY + Y >L> =

(
L1 + L>1 L>2

L2 0

)
If ‖L2‖ = b and ‖L1‖ = a, then there exists u ∈ RM ,v ∈ RD−M such that
‖u‖ = ‖v‖ = 1 and u>L2v = b. Then(

u 0
0 v

)
(LY + Y >L>)

(
u 0
0 v

)>
=

(
u>(L1 + L>1 )u b

b 0

)
,

and its smallest eigenvalue is larger than −ε since

(
u 0
0 v

)>(
u 0
0 v

)
= I.

Applying Lemma 4.3 with the estimation u>(L1 + L>1 )u ≤ 2a, we have

b2 ≤ ε(2a+ b). (33)
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In another aspect, applying Lemma 4.2 we have

For generic Z, C1‖L1‖F ≥ ‖L1Z2‖F ≥ C2‖L1‖F for some C1, C2 > 0.

Therefore, we can find u ∈ RM and v ∈ RN−M such that |u>(L1Z2)v| ≥ C2a.
Note that(

u 0
0 v

)
(LZ+Z>L>)

(
u 0
0 v

)>
=

(
u>(L1Z1 + Z>1 L>1 )u u>(Z>2 L>1 )v

u>(L1Z2)v 0

)
+L′,

where ‖L′‖ < C3b. Since |u>(L1Z1 + Z>1 L>1 )u| ≤ C4a for some C4 > 0,
Lemma 4.3 shows that the smallest eigenvalue of(

u>(L1Z1 + Z>1 L>1 )u u>(Z>2 L>1 )v
u>(L1Z2)v 0

)
is smaller than

− C2
2

C4 + C1
a.

Let C ′4 =
C2

2

C4+C1
, applying λmin(LZ + Z>L>) ≥ −ε we have

C3b− C ′4a > −ε. (34)

This means a < 1
C′4

(C3b+ ε). Plug it into (33), we have

b2 ≤ ε(b+ 2a) ≤ ε
(
b+

2

C ′4
(C3b+ ε)

)
= ε
(

1 +
2C3

C ′4

)
b+

2

C ′4
ε2,

which implies that b < Cε. Applying (34), we also have a < C ′ε and the Lemma
is proved for k = 1.

For k > 1, let us first write

L =

(
L1,1 L1,2

L2,1 L2,2

)
,

where L1,1 ∈ RM×(2M−D), L1,2 ∈ RM×(D−M), L2,1 ∈ R(D−M)×(2M−D), L2,2 ∈
R(D−M)×(D−M) and similarly write

Z =

(
Z1,1 Z1,2

Z2,1 Z2,2

)
,

where Z1,1 ∈ R(2M−D)×M , Z1,2 ∈ R(D−M)×M , Z2,1 ∈ R(2M−D)×(D−M), Z2,2 ∈
R(D−M)×(D−M). WLOG we may assume that Z1,2 = 0, by finding an appro-
priate orthogonal matrix A ∈ RM×M and consider (LA′,AY ,AY ) instead of
(L,Y ,Z), then

Z =

(
Z1,1 0
Z2,1 Z2,2

)
,
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and for generic Z, Z2,2 is full-rank, i.e., the rank isD−M . Let b = ‖(L2,1,L2,2)‖F ,
a1 = ‖L1,1‖F and a2 = ‖L1,2‖F . Then following the proof of (33), applying
λmin(LY + Y >L>) ≥ −ε we have

b2

a1 + a2 + b
≤ ε. (35)

If another aspect,

LZ+Z>L> =

(
L1,1Z1,1 + L1,2Z2,1 + Z>1,1L

>
1,1 + Z>1,2L

>
2,1 L1,2Z2,2

Z>2,2L
>
1,2 0

)
+L′,

where ‖L′‖ < C1b. Again Lemma 4.2 means that we have C2a2 ≤ ‖L1,2Z2,2‖ ≤
C3a2 and ‖L1,1Z1,1 +L1,2Z2,1 +Z>1,1L

>
1,1 +Z>1,2L

>
2,1‖ ≤ C4(a1 +a2). Lemma 4.3

then implies
C2

2a
2
2

C4(a1 + a2) + C3a2
≤ ε+ C1b. (36)

At last, note that L1,1Z1,1 + L1,2Z2,1 + Z>1,1L
>
1,1 + Z>1,2L

>
2,1 is a submatrix

of LZ + Z>L>, so its smallest eigenvalue is also larger than −ε. Since there
exists C5 such that ‖L1,2Z2,1 + Z>1,2L

>
2,1‖ ≤ C5a2, the smallest eigenvalue of

L1,1Z1,1 + Z>1,1L
>
1,1 is larger than −ε− C5a2. Let

Y1,1 =

(
I(2M−D)×(2M−D)

0(2M−D)×(D−M)

)
and using the same argument, the smallest eigenvalue of L1,1Z1,1 + Z>1,1L

>
1,1 is

larger than −ε−C ′5a2. Since (k− 1)(D−M) < 2M −D ≤ k(D−M), we may
apply the case k − 1 to L1,1, Y1,1 and Z1,1 and have

a1 ≤ C6((C5 + C ′5)a2 + ε). (37)

Plug in (37) to (35) and (36) we have

b2 ≤ εC7(ε+ a2 + b) (38)

and
a2

2 ≤ C8(ε+ a2)(ε+ b), i.e.,a2(a2 − C8b) ≤ εC8(ε+ a2 + b). (39)

If a2 ≥ 2C8b, then (39) implies

1

2
a2

2 ≤ εC8(ε+ a2 +
1

2C8
a2),

which implies a2 ≤ Cε. This then implies b ≤ C ′ε (from assumption) and
a1 ≤ C ′′ε (from (37)).

If a2 < 2C8b, then (38) implies b < Cε, which then implies a1, a2 < C ′ε.
For either case we have a1 + a2 + b < C ′′′ε, and Lemma 4.1 is proved since

‖L‖F ≤ ‖L1,1‖F + ‖L1,2‖F + ‖(L2,1,L2,2)‖F = a+ b+ c.
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