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Abstract

Many perceptual decision making models posit that participants accumulate noisy evidence over time to improve the
accuracy of their decisions, and that in free response tasks, participants respond when the accumulated evidence reaches a
decision threshold. Research on the neural correlates of these models’ components focuses primarily on evidence
accumulation. Far less attention has been paid to the neural correlates of decision thresholds, reflecting the final
commitment to a decision. Inspired by a model of bistable neural activity that implements a decision threshold, we
reinterpret human lateralized readiness potentials (LRPs) as reflecting the crossing of a decision threshold. Interestingly, this
threshold crossing preserves signatures of a drift-diffusion process of evidence accumulation that feeds in to the threshold
mechanism. We show that, as our model predicts, LRP amplitudes and growth rates recorded while participants performed
a motion discrimination task correlate with individual differences in behaviorally-estimated prior beliefs, decision thresholds
and evidence accumulation rates. As such LRPs provide a useful measure to test dynamical models of both evidence
accumulation and decision commitment processes non-invasively.
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Introduction

Decision making has traditionally been described as a process of

evidence accumulation up to an abstract decision threshold, in

which accumulation over time increases the chance of an accurate

response (e.g., [1]). Here we focus on a mechanism for

implementing this decision threshold in a neurally-plausible

network, and the predictions that makes for neural activity [2,3].

We then show that these predictions are satisfied by the lateralized

readiness potential (LRP), a difference wave between centrally

located scalp potentials that routinely accompanies manual

responding. Paradoxically, this emphasis on decision threshold

activity turns out to provide a useful methodological approach to

studying the evidence accumulation process thought to precede

decision threshold-crossing.

A canonical evidence accumulation model for response-time

tasks is the drift diffusion model (DDM; [4]). In the DDM, the

presentation of a stimulus drives a noisy evidence-accumulation

process until it reaches one of two decision thresholds. Participants

emit the response corresponding to the threshold reached. The

quality of perceptual information determines the speed of

accumulation (drift) relative to the intensity of background noise

(diffusion). The noisiness of the process accounts for across-trial

variability in response times (RTs) and accuracy. Differences in the

height of the decision threshold determine speed-accuracy trade-

offs (SATs): an increase in threshold height emphasizes accuracy

over speed. A participant’s accuracy is determined by which of the

decision thresholds is reached first. His/her response time (RT) is

determined by the time it takes to reach this decision threshold,

plus the time taken for non-decision processes (e.g., perceptual and

motor delays).

Recent efforts have focused on finding neural correlates of the

process of evidence accumulation in perceptual decision making

with monkey neurophysiology (e.g., [5–7]), human magnetoen-

cephalography (e.g., [8,9]), functional magnetic resonance imaging

(fMRI; e.g., [10]) and electroencephalography (EEG; e.g., [11–

13]). Although neural correlates of decision thresholds and

changes in their height have been extensively studied [14–17],

decision making research typically treats the crossing of a decision

threshold abstractly. In other words, it is unclear how the system

moves from decision-preparation/evidence accumulation (OFF)

instantaneously to decision-commitment (ON) [18]. In the

preparation state, the system sends virtually zero input to the

motor system until evidence builds to a critical level, at which

point a punctate transition into the decision-commitment state

occurs, possibly accompanied by an almost immediate muscular

contraction [19]. Consequently most decision making models

implicitly assume that the decision system is capable of

implementing a non-linear step function that switches from OFF

to ON when evidence exceeds some critical level. Subcortical

structures are good candidates for such punctate transitions
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[20,21] but what if the transition is not in fact punctate, but is

instead a relatively gradual process in its own right? Would cortical

populations with the same properties (i.e., time constants) as

cortical accumulators be able to implement such a threshold

mechanism, or must such mechanisms be relegated to subcortical

structures such as the basal ganglia?

To address this question, we used a multi-layer neural network

model that explicitly describes how accumulated evidence is

transformed into a motor response [2,3]. We previously hypoth-

esized that the threshold layer of this model was associated with

premotor cortex. Since this is the primary source of the LRP that

can be measured with scalp EEG, our objective was to examine

whether changes in LRP shape and amplitude across task

conditions support and confirm the qualitative predictions of our

model. If so, this would lend support to a model of cortical decision

commitment.

Specification of the multi-layer decision model
The circuit model that describes the complete process of

evidence accumulation and motor implementation [2,3] is based

on a simplified representation of firing-rate activity in a cortical

neural population (cf. [22,23]). We do not explicitly model how

this population-level activity translates into macroscopically

observable EEG activity via forward modeling with a skull and

scalp model since we do not have enough physical information to

justify this approach. We rather propose a qualitative mapping in

which increases and decreases in model activity are reflected in

similar changes in the across-trial average of event-locked EEG

signals, the event-related potential (ERP). Under this representa-

tion, neural populations typically act as leaky integrators of the

activity of their input populations.

A more detailed model description, including equations, can be

found in File S1. Simply, the model makes use of the fact that

recurrent units can be configured such that they have exactly two

stable states, reflecting the two states of decision preparation and

commitment. These are exactly the same units that can be

configured to work as integrators when the recurrent connections

are weak enough.

Activation profiles of threshold detectors
Putting together these bistable units with integrator units, Simen

and Cohen (2009) [2] created a model for two-alternative forced

choices. This model consisted first of an evidence accumulation

layer consisting of two leaky competing accumulators (cf. [24]),

each of which accumulates evidence in favor of one of two

competing response options. Mounting evidence suggests that

evidence accumulation is mediated by a large variety of brain

areas, such as parietal cortex (e.g., [5]), dorsolateral prefrontal

cortex [25,26], frontal eye field–FEF [27,28], caudate [29], and

superior colliculus [30]. We therefore depict evidence accumula-

tion in somewhat posterior, bilateral electrode locations, where

evidence for, say, a left button press is integrated in the

accumulation layer in the right hemisphere (blue) and evidence

for a right button press is similarly integrated in the left

hemisphere (red). The middle panel of Figure 1A shows the

activation of each accumulator unit over time; the right panel of

Figure 1A plots the difference between these activations. This

difference approximates a drift-diffusion process when the

leakiness of the accumulators is balanced by reciprocal, lateral

inhibition between them [31].

The second layer (Figure 1B; blue shading) is the threshold layer

that consists of the bistable switch units described above, which

detect when activity in either of the corresponding accumulation

layer units has exceeded a critical value. The threshold units are

leaky integrators with strongly positive, recurrent feedback. This

positive feedback causes the units to produce nearly binary outputs

which can remain relatively quiescent for a broad range of inputs

up to one critical value, at which point they quickly become

maximally activated and remain so even for modest fluctuations in

their input (see, e.g., [22,23]).

The middle panel of figure 1B shows threshold-unit activations

and the right panel of Figure 1B shows their difference over time.

Threshold units track the accumulation units in the period prior to

the stereotyped peak. The pre-stimulus level and the rate of

increase of threshold-unit activity after stimulus onset can be

modulated by biasing signals sent to the threshold units. These

signals can adapt SAT and response-bias settings to take

advantage of changes in task conditions that affect reward rate

[32].

Finally, like the threshold layer, the response layer (Figure 1C)

consists of interconnected, bistable switch units that implement a

‘reset’ signal. They activate at the time of a response and, in

addition to triggering movement, provide feedback inhibition that

drives down the accumulator and threshold unit activations in

preparation for the next decision.

While there have been many studies of the neural correlates of

evidence accumulation and motor responses, very little is known

about the neural correlates of the process that connects these two:

threshold crossing (but see [13]). We propose that the dynamics of

the threshold layer may be reflected in LRP activity. This is in

contrast to previous work, which has suggested that either the LRP

reflects something akin to our evidence accumulation layer [33], or

something more akin to our response layer [34,35]. Because

neither of these views has been conclusive, we propose a

perspective that could reconcile them. Since the threshold layer

lies between the response and accumulation layers, it has both a

continuous and a ballistic component to its dynamics. The gradual

aspect is in agreement with Spencer & Coles’ conception [33],

while the ballistic aspect is in agreement with Rinkenauer et al.’s

conception [35]. Note that we expect only a qualitative match

between model-activations and LRPs, since each unit in our model

represents a population of neurons, and the model does not

contain detailed assumptions about brain anatomy and filtering of

neural activity by the skull.

In particular, we predict that the slow, early part of the LRP

should display correlations with the participants’ rate of evidence

accumulation, which can be conveniently estimated with a DDM

fit. This correlation with drift rate arises because changes in

threshold-unit activation depend strongly on the threshold unit’s

input (see Figure 1D). In other words, as drift varies, the difference

between preliminary activations across conditions forms the gray

area depicted in Figure 1D. Specifically, changes in drift should

produce a positive area between the LRP curves when the high-

drift LRP is subtracted from the low-drift LRP, and the size of this

area should be correlated with the difference in drift values

estimated from fits of the DDM to RT and accuracy data. We

focus on the area between curves rather than rate of rise of the

function because the area between curves is much less sensitive to

artifactual fluctuations in the EEG data [36].

This account makes a further prediction. Very high levels of

drift can cause an overshoot phenomenon, in which the threshold

unit activation rises to a higher maximum before resetting, relative

to lower-drift conditions (see Figure 1E). As a result, the peak of

the LRP moves in position, and shifts closer to the time of the

response for very high drift rates. This peak-location prediction is

interesting because although it has been observed in the LRP

literature [35], we are unaware of any widely accepted account of

it.

LRP and Threshold Crossing
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Figure 1. Neural network implementation of the DDM and associated LRP predictions. The neural network model of decision making
consists of three layers (units with S-shaped curves denote bistable switch units). In the evidence accumulation layer (A), located potentially in
parietal cortex, activity increases with motion input over time (red= leftward motion; blue= rightward motion). The difference in left minus right
activations approximates a drift-diffusion process. This accumulation layer feeds into the threshold layer (B), which is potentially located in primary
motor cortex. The difference between left and right switch unit activations then reflects the LRP signal. The threshold layer’s output is transformed
into a punctate motor output in the response layer (A), which also ensures that the threshold and accumulation layers are reset after the response. (D)
Our model predicts that for changes in signal-to-noise ratio, in the accumulation layer the slope of neural activity changes, while in the threshold
layer there is a non-linear change in slope. Consequently, the change due to increases in signal-to-noise ratio is best quantified by the area between
curves. (E) Additionally, the model predicts that the magnitude and location of the response-locked simulated LRP should vary with signal-to-noise
ratio (pink = low drift;green=high drift). (F) When varying response bias, the model predicts that the height of the LRP should change (pink = low
bias;green=high bias).
doi:10.1371/journal.pone.0090943.g001
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In contrast to the slow early part of the LRP, the fast,

stereotyped part of the LRP should depend mostly on the

threshold unit’s self-excitation properties. This means it should

exhibit a rapid ballistic increase once a critical value of input has

been surpassed. Changes in the magnitude of this ballistic

component (relative to baseline levels of activation) result primarily

from strategic biasing. This biasing changes response probabilities

prior to evidence accumulation by adding a continuous, biasing

increment to the accumulated evidence that otherwise constitutes

the threshold unit’s input; this biasing in turn elevates initial

activation levels. Figure 1F shows three different levels of response

bias: for the pink plot, almost no additional bias is added; for the

yellow, an intermediate level of input bias is added, with the result

that the pre-stimulus input level hovers to the right of zero. The

corresponding output level increases relative to the zero-bias case

but remains at the low-activation stable state. The green trace

shows the effect of a strong bias, which brings the activity of the

threshold unit close to its tipping point.

Empirically, changes in response bias should therefore affect the

baseline-to-peak height of the LRP. Hence, differences in LRP-

peak amplitude across bias conditions should be correlated with

differences in the estimated starting point parameter of the DDM.

We will test the predictions for signal-to-noise ratio and response

bias in two experiments.

Results

Experiment 1
Our first prediction concerns the effect of motion coherence on

the LRP. Stimulus coherence affects the speed of evidence

accumulation in the model (see Figure 1D). This accumulation

rate is reflected in threshold layer activations primarily by the rise

time of the predicted LRP, resulting in a separation between the

curves for different coherence levels. As the difference between

stimulus coherences increases, the separation between these curves

should increase. Before testing this prediction experimentally, we

wanted to confirm that our manipulation of coherence was

successful. Figure 2 illustrates the coherences used for the two

difficulty levels (A) and the resulting behavioral data (B,C). As

expected, accuracy was lower [t(19)=18.0, pv0:001] and RT

was longer [t(19)=9.0, pv0:001] for the more difficult low-

coherence trials, which had a significantly lower coherence than

the high-coherence trials [t(19)=15.0, pv0:001].
We also used two control tasks to test whether putative

threshold-crossing activity reflected in the LRP from the dot-

motion task reflected evidence accumulation alone, or in contrast,

reflected only evidence-independent motor preparation. In these

tasks, participants were not required to integrate motion evidence

(non-integration tasks). In the signal detection control task, partici-

pants were instructed to press a pre-defined button (left or right), as

soon as any dot-stimuli appeared on the screen. These dot-stimuli

had 0% motion coherence. The task was designed to measure

participants’ signal detection RTs to the appearance of dot-stimuli.

These signal detection times were then used to create trials of the

second control task, the arrow task.

The arrow task was designed to be virtually identical to the dot-

motion discrimination task, with the exception of the evidence

accumulation process. As such, the arrows trials and dot-motion

trials, which were run in separate blocks, were matched in

perceptual and motor demands and average dot-motion viewing

time, but the arrows task required only brief, non-noisy evidence

accumulation on the part of the participant.

We fit the pure DDM to the behavioral data for each individual

participant separately with the Matlab Diffusion Model Analysis

Toolbox, DMAT [37,38]. We allowed the drift, starting point and

non-decision time (Ter) to vary between the low and high

coherence conditions, and restricted the variability parameters to

be zero. An unbiased starting point is half the magnitude of the

decision threshold parameter. Because there is evidence that

participants keep their decision thresholds constant when only drift

rate is experimentally manipulated [39], we kept thresholds fixed

across conditions during fitting. We also tried a model in which the

threshold varied between low- and high-coherence conditions,

which was a better model (lower Bayesian Information Criterion;

BIC) for 8/20 participants. A much more complex model in which

drift, threshold, non-decision time were all allowed to vary

between conditions and the various noise parameters were also

non-zero, was the best model (lowest BIC) for 4/20 participants.

We computed separate fits for the arrow and signal detection

trials. Following common practice, the noise coefficient in these fits

was constrained to be 0.1. Table 1 shows the mean fitted

parameters.

We next examined whether the LRPs showed evidence of

behavior similar to that of threshold units in our model. In

particular, the model predicts that, for simple signal detection

(which does not require evidence to be accumulated for a

discrimination), the activity should ramp up much more quickly

than for conditions requiring stimulus discrimination and the

integration of evidence (see green time course in Figure 1D).

Specifically, the LRP a few hundred milliseconds prior to the

ballistic deflection shows clear modulation with changes in the drift

rate. In Figure 3C, we compare the response-locked LRPs for trials

Figure 2. Behavioral performance in Experiment 1. Mean (sem) coherence (A), accuracy (B), and response time (C) across subjects for the low
and high coherence conditions. Coherences were tuned to ensure approximately 70 and 90% correct performance for each participant, and the two
conditions are statistically different from each other for all three measures (coherence, accuracy, and response time).
doi:10.1371/journal.pone.0090943.g002

LRP and Threshold Crossing
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in which the participant had to integrate motion information to

trials in which s/he did not have to do so, because the correct

response was specified beforehand (red trace), or indicated with an

arrow after dot-motion onset (green trace). Arrow stimuli show a

steeper slope than the dot motion condition because their drift rate

is higher (t(19)=2.1, pv0:05; Table 1). This increased drift rate

also causes an LRP peak of the non-integration condition (arrows)

that is closer to the time of the response than the lower drift rate

integration condition (prediction: Figure 1E; experiment:

Figure 3C; Marrows =228 ms; Mintegration =292 ms;

t(19)=11.99, pv0:001).
We then compared the low- and high-coherence response-

locked LRPs, the early part of which we predicted would reflect

the DDM drift rate. Figure 3A shows that as predicted in

Figure 1D, these LRPs differ between low and high coherence in

the shaded pre-peak regime. Our model predicts that changing the

speed of evidence accumulation should change the shape of the

early part of the LRP, which reflects low but increasing levels of

input from the accumulator units. Closer to the response, the LRP

will look more stereotyped across conditions (see Figure 1D).

Consequently, the difference between drift estimates in each

motion coherence condition should correlate across subjects with

the area between their corresponding LRP curves in their rising

phase. It is important to examine the area between curves for the

early phase of the LRP, rather than the height of its peak, because

our model showed that this early phase is most sensitive to the

differences between conditions. We therefore examined whether

the area between the curves from 250 to 150 ms before the

response, during the LRP’s rising phase, reflected the difference

between the estimated DDM parameters for low and high

coherence (Figure 3B). Indeed, as the area between the low- and

high-coherence LRPs increases, the difference between the

estimates of the drift rate decreases [robust regression

t(19)~2:02, pv0:05].
We next examined whether we could use the response-locked

LRPs together with stimulus-locked LRPs to disentangle the

stimulus- and response components of the DDM’s non-decision

time parameter Ter. Ter models the combined effects of a

perceptual latency and a motor latency. The stimulus-locked

LRP shows a period near zero until it departs from baseline (see

Figures S4 and S5). We hypothesized that the time until the LRP

departs from baseline reflects the stimulus-processing latency, and

the time between the peak of the LRP and the response, the motor

latency. This follows from our conception of the LRP consisting of

two phases: the early, smoothly rising phase as reflecting evidence

accumulation, and the later, ballistic phase reflecting the

commitment to a decision and actual motor response. We defined

the time at which the LRP departed from the baseline as the

intersection of the initial horizontal part of the LRP with the rising

phase of the peak. Figure 3D shows that Ter estimated from the

LRP in this way correlates with the behaviorally-estimated Ter

[robust regression, t(39)~2:14, pv0:05]. Together, these results

suggest that the early, slowly rising phase of the LRP is consistent

with aspects of evidence accumulation that spread from the

accumulation layer of our model into its threshold layer.

One may, however, wonder whether the threshold layer of the

model is the best fit for the data, or whether alternatively the

accumulation layer better models the LRP. To address this

question, we computed the root-mean-square deviation (RMSD)

between the LRP waveform and the traces predicted by the model

(after scaling them to have the same height). For every set of

parameters, we then computed the goodness-of-fit between the

model-generated averages of its accumulation layer and its

threshold layer. The threshold layer showed a better fit (lower

RMSD) to the response-locked LRP than the accumulation layer

for 59% of the (plausible) parameter space. The plausible

parameter space spans those sets of parameters that lead to model

responses within the empirically observed response window.

Altogether, Experiment 1 suggests that LRPs exhibit charac-

teristics consistent with our modeled response threshold detectors,

which are implemented in bistable, neural switch populations.

More precisely, when response-locked, the area between the low-

and high-coherence LRPs predicts drift rates of evidence

accumulation. In addition, we can predict Ter by adding the time

to LRP onset to the time between the LRP peak and the actual

response. This demonstrates that the LRP may provide a useful

index of the average state of evidence accumulation within a trial,

despite its typical interpretation as a predominantly motor-related

phenomenon (but see [13]). It is also consistent with predictions

regarding SAT settings, which is the main phenomenon that the

threshold layer of our neural network model aims to describe.

Interestingly, inspection of Figure 3A reveals a notable feature

of the data: the LRP for signal detection trials appears to have a

smaller peak than the LRP in the conditions in which the response

is not known before the start of the trial (i.e., arrows and

integration trials). This suggests that the height of the response-

locked LRP may also reflect a participant’s response bias. When

threshold units receive a continuous biasing signal, as would be

appropriate in the signal detection case in which only one response

is required, they require less evidence input to reach the critical

level needed to emit a response. Their pre-stimulus baseline

activation levels are already partway toward the threshold for

responding. If threshold units are biased asymmetrically in a two-

choice context, then the attenuation of the LRP height should be

Table 1. Pure DDM parameters for best fitting model to data from Experiment 1.

Condition Drift Decision threshold Non-decision time Starting point Ntrials

M SEM M SEM M SEM M SEM M

Low coh 0.060 0.008 0.151 0.013 0.435 0.013 0.076 0.005 614

High coh 0.172 0.008 - - 0.402 0.016 0.078 0.006 677

Arrows 0.803 0.076 0.214 0.041 0.219 0.010 0.098 0.031 1273

Signal detection 1.056 0.187 0.418 0.107 0.162 0.023 0.265 0.103 199

Data are presented separately for low and high coherence trials (integration conditions), and arrows and signal detection trials (non-integration conditions). The last
column indicates the average number of trials in each of the conditions. Parameters that do not vary between conditions are indicated with a dash (-). Our scaling of the
threshold parameter adheres to the Ratcliff convention according to which one of the decision thresholds is placed at zero, and the other decision threshold at the
value represented by the decision threshold parameter.
doi:10.1371/journal.pone.0090943.t001

LRP and Threshold Crossing

PLOS ONE | www.plosone.org 5 March 2014 | Volume 9 | Issue 3 | e90943



proportional to the DDM’s behaviorally-estimated decision bias

parameter. Asymmetric biasing is in fact optimal in the two-choice

case of Experiment 2, as we describe below [31]. We test this

prediction of LRP-amplitude attenuation with increasing response

bias in Experiment 2. This is a crucial prediction to test, because

up to now, we have only verified the continuous aspect of the

threshold units–they reflect signatures of evidence accumulation.

The model’s ballistic aspect can be tested by examining response

bias, which should affect the LRP’s magnitude.

Figure 3. Response-locked LRPs and individual differences for Experiment 1. (A) Grand average response-locked LRP, demonstrating the
difference between low and high coherence conditions. Vertical lines indicate stimulus onsets for the respective conditions. Shaded area indicates the
time window where low and high-coherence differ significantly (t-test with p,0.05). Inset shows a topographical map (nose up) of lateralized EEG
activity, demonstrating that electrodes C3 and C4 are maxima of this measure. (B) Individual differences in DDM estimate of drift rate correlate with
area between curves of high- and low-coherence LRPs. Each dot reflects the difference between low- and high-coherence drift and area between LRP
curves for a single participant. (C) Grand average response-locked LRP demonstrating the difference between integration and non-integration
conditions. Blue trace reflects the evidence-integration condition (average of low- and high-coherence trials). Red reflects a task condition where the
participant has to press a pre-specified button, whereas green shows trials on which a participant is instructed by an arrow cue which button to press.
Vertical lines indicate dot-motion onsets for the respective conditions. (D) We estimated non-decision time Ter from the LRP by adding the time until
departure from baseline to the distance between LRP peak and the actual motor response. The thus-estimated neural Ter correlates with the
behaviorally-estimated Ter . Each dot reflects data from one participant in one condition (low or high coherence).
doi:10.1371/journal.pone.0090943.g003

LRP and Threshold Crossing
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Experiment 2
To test the second prediction from our model—that the height

of the LRP peak reflects a participant’s decision bias, with a

smaller height indicating an increase in decision bias (Figure 1F)—

we conducted an experiment in which we manipulated stimulus

proportions to induce four distinct levels of decision bias. Simen et

al. [40] have previously shown that when the proportions of

leftward vs. rightward dot-motion stimuli make it more likely that

the dots will move in one of the two possible directions,

participants typically adapt to this change, as predicted by Bogacz

and colleagues [31], by shifting starting points and reducing

thresholds to achieve a nearly optimal response bias.

As expected, participants’ accuracies increase and their RTs

decrease across blocks as the stimulus proportions in a block

increasingly favor one of the two motion directions [see Figure 4;

repeated measures ANOVAs indicate that both accuracy and RT

vary with the level of response bias: Fs(3,99)w67:4, pv0:001], in
agreement with previous results [40]. We also note that DDM

parameter estimates are sensitive to the different bias-level

conditions (Table 2). Given these fits, Figure 4C shows that

behavioral estimates of decision bias (as captured by changes in the

starting point) increase with the bias condition, as predicted for

optimal responding [31].

Figure 5A shows a grand average response-locked LRP split by

bias condition. The height of the LRP decreased with decision bias

[one-way repeated measures ANOVA with response bias proba-

bility as continuous variable F (1,49)=25.4, pv0:001]. We next

asked whether decreases in peak height within participants

correlated with individual differences in the behaviorally-estimated

response bias. When we subtracted peak height from the height of

the LRP in the unbiased condition, there was a significant relation

between this normalized LRP height and behaviorally-estimated

DDM starting points [t-test on individual participant slopes of

LRP height on starting-point estimate t(24)=5.74, pv0:001; see
Figure 5B].

If the height of the LRP reflects the distance from threshold,

which decreases with response bias, then this also predicts that the

LRPs for the trials in which the stimuli move in the direction

opposite to the bias direction (‘‘non-preferred’’) should have a

higher amplitude. Figure 5C shows that indeed this is the case

[paired t-test on areas between the preferred and non-preferred

curves between 2150 and 250 ms: t(99)=11.4, pv0:001]. In
short, the dynamics of the LRP are also consistent with our

model’s predictions for manipulations of response bias.

Discussion

There is a substantial literature on the neural basis of the

integrators that correspond to the accumulation layer of the model

(Figure 1A). In contrast, thresholds play a critical role in nearly all

decision making models–allowing levels of evidence (or urgency, or

preference) to rise and fall during deliberation without any

concomitant bodily movement prior to decision commitment. Yet,

the mechanisms underlying threshold operation have received far

less attention than the mechanisms underlying evidence accumu-

lation [18]. We have therefore focused on finding non-invasive,

high temporal resolution signatures of a neural threshold

mechanism in the context of a three-stage neural network model

of the decision process that specifies a neurally-plausible mecha-

nism for crossing the decision threshold.

We have shown that LRPs may reflect the operation of such

mechanisms. We found that LRP dynamics are consistent with the

dynamics predicted by our model’s threshold layer. In particular,

the early non-ballistic LRP component’s behavior reflected signal-

to-noise ratio. The LRP’s shape was more consistent with

activation levels in the threshold layer of our neural network

model than with those in the accumulation layer. We also found

that neural correlates of Ter (non-decision time) were correlated

with behavioral estimates of Ter. The magnitude of the ballistic

part of the LRP (peak height) was consistent with predictions

concerning response bias.

Peak shifting
Beyond these basic predictions of the model, we have given a

model-based account of LRP peak-shifting between integration

(motion-detection) and non-integration (arrows/signal detection)

conditions of our task. Previous studies [41–44] have not produced

a clear picture of which task conditions cause a shift in LRP peak.

We have demonstrated that the LRP peak moves closer to the

response when there is a very high drift rate, and the threshold

unit rises to a maximum before resetting (Figure 1E). However, in

addition to our account, elements of these other accounts may also

contribute to peak shifting. For example, when the evidence is less

noisy (in the non-integration trials), it may produce more rapid

and ballistic post-decision motor processing because the partici-

pant may allow less continuous checking of the to-be-emitted

response [45].

Figure 4. Behavioral data for Experiment 2. Mean accuracy (A) and reaction time (B) as a function of response bias condition. (C). Fitted DDM
starting point increases with response bias condition. Response bias condition is operationalized as the proportion of trials in biased direction. Error
bars reflect sem.
doi:10.1371/journal.pone.0090943.g004
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Table 2. DDM parameters for best fitting model to data from Experiment 2.

condition Drift Decision threshold Non-decision time Starting point Ntrials

M SEM M SEM M SEM M SEM M

0.50/0.50 0.0952 0.006 0.137 0.006 0.289 0.022 0.0613 0.003 869

0.60/0.40 - - - - - - 0.0616 0.003 863

0.75/0.25 - - - - - - 0.0689 0.003 880

0.90/0.10 - - - - - - 0.0889 0.004 935

Fits were done separately for each of the response bias conditions. Only the starting point is allowed to vary between the different conditions. Parameters that do not
vary between conditions are indicated with a dash (-). Last column indicates the number of trials in each condition.
doi:10.1371/journal.pone.0090943.t002

Figure 5. Response-locked LRPs in Experiment 2. (A) Grand average LRP waveform separated by response bias (cf. Figure 1F). (B) Relationship
between normalized LRP peak height and fitted DDM response bias. There is a significant correlation between the DDM starting-point parameter and
LRP height. Error bars reflect sem. (C) Grand average response-locked LRPs in Experiment 2 separately for the preferred (solid) and non-preferred
(dashed) direction. As predicted by our model, the LRP is larger for the non-preferred compared to the preferred direction [t(99)= 11.4, pv0:001].
doi:10.1371/journal.pone.0090943.g005
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Does the LRP reflect evidence accumulation or threshold
crossing?
Historically, the LRP has played an important role in debates

about the nature and timing of mental processing (e.g.,

[35,46,47]). In the context of decision making, for example,

Spencer & Coles (1999) [33] showed that the LRP recordings of

Gratton et al (1988) [46] qualitatively matched the activity of

evidence accumulator units in a neural network model of the

flanker task [48], at least during the non-ballistic phase of the LRP.

Rinkenauer et al (2004) [35] focused on the LRP as a signature of

SAT adaptation, but argued that their data were inconsistent with

models of evidence accumulation. We propose that the early part

of the LRP does reflect evidence accumulation (and therefore

correlates with individual differences in DDM parameters),

whereas variations in the later, ballistic part, on which Rinkenauer

and colleagues focus, reflect primarily the adaptation of SAT.

According to our model, the slowly rising phase of the LRP results

from the sub-threshold input to the threshold units by the

accumulator units. Once threshold unit activity crosses a critical

level, it rises very quickly to a maximum, which accounts for the

ballistic phase of the LRP. Our proposal is similar to that of Kelly

& O’Connell [49], who recently showed that the LRP occurred at

a later point in time than a putative correlate of evidence

accumulation (in their account, the centroparietal positive

potential).

Fixed vs. modifiable thresholds
Evidence for threshold mechanisms in neural activity is

abundant, and adapting thresholds to change SATs is a classic

element of psychological decision making models [1]. However,

the degree to which thresholds are modifiable is disputed on the

basis of physiological evidence. Purcell et al. (2010) [28], for

example, examine ramping response-locked FEF movement/

buildup neuron activity in monkeys responding to visual stimuli

with saccadic eye movements. Although movement neurons in the

FEF are arguably at a neural level analogous to our threshold

layer, they model this activity as a process of gated evidence

accumulation our accumulation layer), in which evidence accu-

mulation begins only after a threshold level of input from a sensory

detector (visual neurons in FEF) is received. RTs are determined

by the time at which evidence exceeds a second, fixed, response

threshold, and the slope of this evidence is a key determinant of

RT, although in their work the ramp-up period typically occupies

a small proportion of the total RT.

This work by Purcell, Schall and colleagues adds to a body of

physiological data that appears to provide evidence against the

notion of easily modifiable response thresholds. FEF activity in

experiments such as [28,50] typically ramps to the same level

regardless of RT. In our Experiment 2, we have interpreted our

data in precisely the opposite terms, with biasing activity

hypothesized to modify the level to which evidence should

accumulate before triggering a response (by supplementing the

evidence inputs to the threshold units). This is also consistent with

recent work by Heitz & Schall (2012) [51], who demonstrated

there were neurons in motor cortex (recorded during a visual

search task) that had a different final firing rate depending on the

level of their SAT. It should, however, be noted that they found

several other signatures of SAT adaptations as well.

Some evidence suggests that instead of thresholds themselves, it

is the initial firing rate at which putative accumulators begin to

accumulate evidence that effects a change in response biases [52].

This type of dynamics might also account for our LRP data, but it

would require biasing the accumulator layer of our model rather

than the threshold layer (see e.g., [53,54]). To still approximate

optimal evidence accumulation in such a model, the biasing signal

would need to be disabled at the start of each accumulation [31].

Our model of the threshold layer provides another, possibly

simpler way to resolve the conflict between behavioral evidence for

threshold adaptability and optimal evidence accumulation versus

physiological evidence for fixed response thresholds. If putative

FEF evidence accumulators in Purcell et al. [28] are instead

reinterpreted as threshold-crossing detectors, then the signatures of

evidence accumulation they display can be understood as the

echoes of evidence accumulation taking place in other brain areas

that project to FEF — areas in which accumulators may in fact

ramp to different levels of activity before triggering transitions

from an FEF switch’s down state to its up state.

The reason that the neural data are often taken to support fixed

thresholds is that adjustable thresholds are difficult to observe in

neural data. A simple modification of our model illustrates why

this is the case. Adjustable decision thresholds might be obscured

by neurally plausible excitatory feedback connections from the

threshold layer to the accumulator layer. These would force the

accumulators up to the same level for all decisions, following the

stereotyped behavior of the threshold units. Hence, indications

that a given brain area plays a role in evidence accumulation

should focus on the earliest levels of neural processing at which

ramping can be observed (see [3] for more details).

Non-decision time
In our study, we observed a relation between LRP peaks and

behavioral non-decision time (Ter; Figure 3D). The slope of this

relationship was smaller than one, such that the neurally-estimated

Ter underestimates the behaviorally-estimated Ter. It is therefore

likely that in addition to the perceptual and motor processes that

we estimate from the LRP, there is at least one other process that

contributes to Ter. An alternative possibility is that the small slope

is caused by the fact that the 1DF method that we use to determine

the LRP-based estimate of Ter is biased towards finding shorter

Ter estimates, because the earliest above-baseline fluctuation will

determine Ter. As a result, the slope between behaviorally- and

LRP-estimated Ter will tend to be smaller than one, as we

observed.

Effects of bias
The outcome of our bias manipulation is consistent with the

results of previous LRP studies that did not explicitly investigate

connections to the DDM. Jentsch and Sommer (2002) [55] saw

shallower LRPs for repeat- compared to alternation trials, and it is

plausible that repeat trials create a decision bias (e.g., [56,57]).

Töllner and colleagues [58] similarly showed that, relative to the

preceding choice, a different response in a visual search task has a

larger amplitude than the same response. Scheibe and colleagues

[59] showed a larger LRP amplitude for invalidly cued compared

to validly cued trials. A cue will make a response in the cued

direction more likely, which, in a DDM framework, would be

modeled by moving the starting point closer to the relevant

decision threshold on those trials [59]. did not observe an effect of

explicitly manipulated prior probability of a response on LRP

amplitude, although they might have observed one if they had

included the most extreme prior probability conditions. In short,

our work shows that these previous findings of changes in LRP

amplitude can be reinterpreted as changes in DDM starting

points.
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Conclusion

We have shown evidence consistent with the hypothesis that the

LRP derives from the activity of threshold units in a neural

network implementation of the DDM. Our model provides a

neural mechanism for turning a continuous signal into a discrete

output. Because the threshold units lie in-between evidence

accumulation units and motor output units, LRPs exhibit both

an early signature of gradual evidence accumulation as well as a

later, ballistic, response-related (‘‘motor’’) component. An example

of evidence for the gradual-accumulation interpretation of the

LRP is that the area between curves from the low- and high-

coherence conditions correlates with individual differences in

behaviorally-estimated DDM parameters. Similarly, the height of

the LRP agrees with predictions of changes in response bias. We

therefore suggest that the LRP signals the process of crossing a

decision threshold, but also, because it provides an echo of the

process of evidence accumulation, that it can be used to study how

experimental manipulations affect evidence accumulation in the

brain.

Materials and Methods

Ethics statement
The experiments were approved by the Institutional Review

Board of Princeton University. The procedure included written

informed consent, which was provided by all participants.

Experiment 1
Model. Matlab code used to simulate the neural network

model that made the qualitative predictions is available in File S2.

Task. In this experiment (for which some of the data have

also been reported in [12]), we tested the model’s prediction that

manipulating stimulus coherence would change the area between

the LRP curves for low- and high coherence conditions.

Participants determined the motion direction of random dot

kinematograms. These random dot kinematograms were similar to

those used in a series of psychophysical and decision making

experiments involving humans and monkeys (e.g.,

[5,39,40,60,61]). Stimuli consisted of an aperture of approximately

7.6 cm diameter viewed from approximately 100 cm (approxi-

mately 4 degrees visual angle) in which white dots (262 pixels)

moved on a black background. A subset of dots moved coherently

either to the left or to the right on each trial, whereas the

remainder of dots were distractors that jumped randomly from

frame to frame. Motion coherence was defined as the percentage

of coherently moving dots. Dot density was 17 dots/square degree,

selected so that individual dots could not easily be tracked.

Tracking was further discouraged by using three interleaved sets of

dots of equal size, each of which was plotted in one of three

successive video frames. Therefore each set of dots returned after

three frames, with a random displacement. The speed of the dots

was approximately 7 degrees/second.

Following the procedure used in [40], stimuli remained visible

until participants made a response (i.e., pressing the ‘Z’ key with

their left index finger to indicate leftward motion or the ‘M’ key

with their right index finger to indicate rightward motion), at

which point the stimulus disappeared and a variable response-to-

stimulus interval (RSI) ensued. Correct responses were rewarded

with $0.01; errors were unrewarded. Sessions lasted a fixed

amount of time (50 minutes), so faster performance led to more

trials completed. Participants made on average $12.27 per session.

Reward feedback was displayed visually and signaled with a tone

after each trial. Participants were instructed to maximize their

earnings.

The arrows control condition was constructed as follows. Each

arrows trial started with random dot motion (0% coherence),

followed by the appearance of a clearly visible yellow arrow in the

center of the screen pointing in the direction to which a participant

should respond. The onset time of the arrow was calibrated such

that the duration of 0% coherence dots viewing time matched the

dot-viewing times in the main task. More concretely, the arrow

onset time distribution was created by subtracting the average

button-press latency (obtained from the signal detection control

task) from a randomly selected RT in the main task from the

previous session (this was done separately for each coherence). We

restricted our EEG analyses to the correct trials, because there are

many different reasons for making errors, which could introduce

noise in the model predictions and analyses.

The experiment presentation code was written in PsychToolbox

[62]. Dot stimuli were presented with PsychToolbox extensions

written by J. I. Gold (http://code.google.com/p/dotsx/).
Participants. Twenty-three members of the Princeton com-

munity (twelve female, mean age 25) participated in Experiment 1.

Participants engaged in three hour-long behavioral-only training

sessions in which they became familiar with the task. At the

beginning of these training sessions, performance on a psycho-

metric block (trials with fixed viewing times of 1000 ms and five

different coherences) was used to determine the coherences at

which they performed at approximately 70 and 90% correct.

These coherence levels were used for the remainder of the session,

and the coherences from the last psychometric block were used for

the two EEG sessions. Data of three participants, whose LRPs did

not show any modulation by movement, were removed from the

analysis.

Recording Methods. We recorded EEG data from 128

channels using Neuroscan EEG caps (Neuroscan, Charlotte, NC)

with a Sensorium EPA-6 amplifier (Sensorium Inc., Charlotte,

VT). Data were digitized at 1000 Hz and band-pass filtered from

0.02–300 Hz; all impedances ,30 kV. Acquisition was controlled

by Cogniscan software (EJC Systems Inc., Newfoundland, NJ). All

data were referenced to the left mastoid and off-line rereferenced

to an average reference after automatic bad-channel removal

[63,64].

Data Analysis. The LRP is thought to reflect the lateralized

aspect of the activity of primary motor cortex [46,47,65,66] and is

computed by subtracting the EEG in electrode C3 from electrode

C4 for left-handed responses, and C4 from C3 for right-handed

responses, and then averaging these differences [67]. Figure 3A,

which shows a topography of lateralized EEG activity, demon-

strates that C3 and C4 are indeed the maxima of lateralized

response activity.

We computed LRPs with 4-Hz low-pass filtered EEG data [35].

Note that the results with higher low-pass filter cut-offs are

qualitatively similar; importantly the correlations of aspects of the

LRPs with drift diffusion model parameters (discussed in more

detail below) are still significant (p,0.05) with a low-pass filter cut-

off of 40 Hz. Trials with eyeblinks (detected with a running

average of the eye channel exceeding 100 mV) were removed. We

also removed trials with signal amplitude larger than 70 mV, or
variance larger than 80 or smaller than 0.1 mV, or kurtosis larger
than 5 [68] from the analysis. Stimulus-locked LRPs were

baseline-corrected to the average over the 200 ms period

immediately preceding stimulus-onset. Response-locked LRPs

were baseline-corrected to the period of 400–600 ms pre-response

[35]. All LRP plots in this article are grand averages, i.e., averages

across all participants.
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We determined the LRP height for stimulus-locked LRPs by

computing the distance between the height of the LRP at its onset

and the peak (the first maximum before the RT). LRP onset was

defined by 1DF (1-degree-of-freedom) regression [69,70], and

verified by visual inspection. 1DF regression finds the intersection

between a line fitted to the stimulus onset (the initial segment) and

a line fitted to the LRP rise to peak. We constrained the slope of

the initial segment to be zero.
Model fits. We fit the DDM to the behavioral data for each

individual participant with the diffusion model analysis toolbox

(DMAT; [37,38]). As demonstrated by Bogacz [31], the DDM

closely approximates the accumulator layer of the neural network

model of Simen and Cohen [2]. DMAT captures individual

differences in drift rate, speed-accuracy trade-off and bias

sensitivity. These translate into testable predictions regarding

threshold unit dynamics that we examine here. The version of the

model we fit is the pure DDM [71], in which there is no variability

in drift rate, starting point, or non-decision time.

Experiment 2
The methods for this experiment were identical to those

described for Experiment 1, with the exception of the following.
Task. In this experiment, we used only a single coherence

level (corresponding to 80% correct performance), while we varied

response bias. Response bias was manipulated by changing the

probability that the dots would move in one of the two directions

from 0.5 (no bias) to 0.6, 0.75 and 0.9. We also manipulated

response-stimulus interval (RSI; see [40] for a review of the effects

of RSI and prior probability on behavioral performance in two-

alternative forced-choice tasks with response-terminated stimuli).

For the purposes of this analysis, we collapse across the two RSI

levels, which did not show any consistent differences in this

behavior. Also in this experiment we focused exclusively on the

correct trials, which was even more important than in Experiment

1, because the error rates differed between conditions.
Participants. Twenty-five members of the Princeton com-

munity participated in Experiment 2 (fifteen female, mean age

20.1). In this experiment, we adapted each participant’s motion

coherence during the practice sessions such that they performed at

approximately 80% correct. Participants were trained for four

hour-long behavioral sessions. Participants made on average

$16.02 per session.

Data Analysis. We determined the height of response-locked

LRPs by computing the distance between the last peak before the

response and the preceding trough. We verified the output of this

automated procedure by visual inspection. When we computed

the areas between curves we chose a time window identical to the

window used in Experiment 1.

Supporting Information

Figure S1 Mechanism for threshold crossing detection
predicted by the model’s threshold layer. (A) Small arrows

and shading depict the rate of change of a threshold unit’s

activation as a function of its current input and its own output.

Dark shading implies negative, light shading implies positive

velocity. Solid S-curve depicts stable equilibrium points of the

noise-free system; dashed segment of the S-curve depicts unstable

equilibria; dark circle depicts a typical initial condition. Arrows

depict the velocity of the system state, and are vertical because

input is constant. (B) Small vector field arrows show a rightward

component when input is positive and increasing. Large arrows

show the state trajectory: gradual increase in subthreshold region,

followed by rapid increase in the unstable region, resulting in the

rising phase shown in Figure 1B. (C) When threshold layer output

enters superthreshold region, response layer units abruptly

activate, supplying inhibition that forces the threshold unit back

down to its initial value (see Figure 1C).

(EPS)

Figure S2 Observed versus expected quantiles of the RT
distribution, illustrating model fit quality for Experi-
ment 1. A perfect fit would show all points on the unit slope line.

Different symbols reflect the different drift conditions.

(EPS)

Figure S3 Observed versus expected quantiles of the RT
distribution, demonstrating model fit quality of Exper-
iment 2. Shown are from left to right, top-to-bottom the 10th,

30th, 50th, 70th and 90th quantile. A perfect fit would show all

points on the unit slope line. Different symbols reflect the different

bias conditions.

(EPS)

Figure S4 Grand average stimulus-locked LRPs for
Experiment 1, emphasizing the difference between
integration and non-integration conditions occurring
close to stimulus appearance. Vertical lines indicate median

RT for each condition. Note that the LRP for the arrow trials

(green) rises only relatively late because the arrow that indicates

the response arrives after a period of dot motion. The arrow

arrival time is calibrated to create dot-viewing times equivalent to

the dot-motion trials.

(EPS)

Figure S5 Stimulus-locked LRPs and individual differ-
ences for Experiment 1. (A) Grand average LRP waveforms,

separated by coherence. Vertical lines indicates median RT for the

respective conditions. Shaded area indicates the time window for

computing the area between curves. The LRP rises more quickly

for high- than for low-coherence conditions. (B) Difference

between low- and high-coherence stimulus-locked LRP in the

window from 400–500 ms post-stimulus correlates with individual

differences in drift rate. Each dot reflects the difference between

low- and high-coherence LRP and drift rate for an individual.

(EPS)

File S1 Supplementary information. More detailed de-

scription of the model, stimulus-locked LRP data, and model fit

quality assessments.

(PDF)

File S2 Model code. Code to fit the neural network model of

decision making of Simen and Cohen (2009).

(ZIP)
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