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Abstract

A central problem in e-commerce is determining overlapgiotnmunities (clusters) among indi-
viduals or objects in the absence of external identificatiotagging. We address this problem by
introducing a framework that captures the notion of comniesir clusters determined by the relative
affinities among their members. To this end we define what Wenaffinity system, which is a set of
elements, each with a vector characterizing its preferércall other elements in the set. We define a
natural notion of (potentially overlapping) communitiasain affinity system, in which the members of a
given community collectively prefer each other to anyorse eutside the community. Thus these com-
munities are endogenously formed in the affinity system aadself-determined” or “self-certified” by
its members.

We provide a tight polynomial bound on the number of seliedained communities as a function
of the robustness of the community. We present a polynotimed-algorithm for enumerating these
communities. Moreover, we obtain a local algorithm with sy stochastic performance guarantee
that can find a community in time nearly linear in the of size tommunity (as opposed to the size of
the network).

Social networks and social interactions fit particularlfumally within the affinity system framework
— if we can appropriately extract the affinities from the tigksly sparse yet rich information from social
networks and social interactions, our analysis then yialdst of efficient algorithms for enumerating
self-determined communities in social networks. In theternof social networks we also connect our
analysis with results abo(dy, 3)-clusters introduced by Mishra, Schreiber, Stanton, amgidl6,17].

In contrast with the polynomial bound we prove on the numiferoonmunities in the affinity system
model, we show that there exists a family of networks withespplynomial number of«, 3)-clusters.

Introduction

Affinity Systems The problem of identifying endogenou@ltormed overlapping communities or clusters
arises in many contexts within e-commerce: finding ovelitagppommunities in a social network, clustering
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retail products using collaborative filtering, clusteridgcuments using citation information, classifying
videos using viewing logs, etc. In such settings one needsuier the set of objects into meaningful,
potentially overlapping subsets by only using informatarout relations between the objects. In this paper
we develop the notion of an affinity system to model theseaies

An affinity system is a collection of elements with a set ofdf@rences” each of these elements has over
other elements within the system. These preferences maydressed as a vector of rankings, or, more
generally, as a vector of non-negative weights represgiatifinities. For example, when clustering videos,
affinities may represent the likelihood of the videos to bevaiched, with videos that are co-watched more
often “ranking” each other higher. When clustering docuteea document will “prefer” documents it cites
over documents it doesn't.

Perhaps the most natural application of affinity systems iké study of social networks. Saocial interaction
is often determined by affinities among the members. For gl@rn daily life, we often stay more in touch
with people we like more. When we go to a conference, we oféerglout more with people with whom we
share more interests. Therefore, these social interactaom their manifestations as online social networks
fit well within the affinity system paradigm.

Endogenously Formed Communities in Affinity SystemsA central question concerning groups of indi-
viduals, documents, products, etc., is how to determinenconities, oroverlappingclusters that capture the
coherence among their members. For example, in the conitestad products discussed above, it may be
useful to automatically “tag” the products with multipletegories for subsequent personalized marketing.
In the context of professional networks, a person may belomgultiple explicit or implicit communities,
for example a scientist may simultaneously belong to thensanity of Economists and the community of
Computer Scientist. The question of finding overlapping camities is closely related to the very well
studied question of clustering [10], but is much more gdnsitace now elements may (and will) belong to
multiple communities.

In this paper we formalize a natural notion of self-detemicommunity and develop efficient algorithms to
identify overlapping communities of this type as well asg@hbounds on the number of such communities.
Self-determined communities correspond to subsets thlatteely prefer each other more than they prefer
those outside the subset, where preference is defined byatkéngs or weights of the affinity system.
These communities are endogenously formed in the affinisyesy. What is particularly nice about this
formulation is that we do not require that the subsets beatpecified sizes. For example, a solution of the
flexible capacity roommate problem would group togetheptewaho prefer living with each other to living
with anyone else in another room. Switching to the contesbefal and professional networks, an academic
community can be viewed as a group of scholars which appescthe work of others in the community
to that of the work of people outside their community. In hkk$e cases, the overlapping communities or
clusters are self-certified or self-determined.

More formally, we study the mathematical structure of sidfermined communities in an affinity system
and design efficient algorithms for discovering them. In mast basic model, we have membersl/ =
{1,...,n} in an affinity system, and we assume each memls¢aites a strict ranking; of all members in
the order of her preferences. To evaluate whether a si$bsksize|S| = k is a good community, imagine
that each membey € S casts a vote for each of ilsmost preferred members (1 : k). The number of
votes that memberreceivesgs(i) = |{i € ms(1 : |S|)|s € S}, is the collective preference given 5y
We says is self-determinedf everyone inS receives more votes froi than everyone outsidg.

Different self-determined communities may have differégegjree of coherence or robustness depending on



both the fraction of votes received by the community memlbsra/ell as the gap between the fraction of
votes received by the community members and the non-contynmn@mbers. To capture this, we s8ys a
(0, o, B) self-determined communjtior 0 < g < o < 1andf > 0 if

e each membes € S casts a vote for each of it§S| most preferred members (1 : 6|5]).

e for eachi € S, the amount of vote receives;;s(se)(z') = |{i € m5(1: 0|S])|s € S}|, is at leasty|S]|.

o for each;j ¢ S, the amount of votg receives¢g’)(j) = |{j € ms(1:0|S])|s € S}, is at most3|S|.
We start by analyzing how many communities can exist in anigffsystem. Interestingly, we show that for
constantsy, 3, # we have a polynomial bound af°(°s(1/@)/2) on the number of, «, )-self-determined
communities. Our analysis, using probabilistic methotis) gields a polynomial-time algorithm for enu-
merating these communities. Moreover, we show that our thasimearly tight, by exhibiting an affinity
system withn2(1/%) (9, o, 8)-self-determined communities.

We then present a local community finding algorithm that is/\afficient for an interesting range of pa-
rameters. This algorithm, when given robustness paraméter, 5, and a member € V, either returns

a (0, a, B)-self-determined community of sizein time O(f(«, 3,0) - tlogt) or an empty set. The algo-
rithm satisfies the following performance guaranteey it 1/2, if v is chosen uniformly at random from
a (0, a, p)-self-determined community, then with probabilityQ(2« — 1), our local algorithm will suc-
cessfully recovelS and so in time dependent only (and nearly) on|tileand not on the size of the entire
affinity system. As a consequence of this analysis, we caw shat in the (natural) case when> 1/2

we obtain anear-linearalgorithm for finding all self-determined communities, stamtially improving on
the polynomial-time guarantee discussed above. Quaslitocal algorithms are particularly important
in the context of studying internet-scale networks, whemenequadratic-time algorithms are not feasible,
and where one sometime does not have access to the entirerkdiw only to a local portion of it. The
guasi-linear algorithm is one of our main technical conitifns, as its techniques can potentially be used
to convert other polynomial cluster-detection algorithm® local quasi-linear algorithms — at least in the
average case.

We also studymulti-facet affinity systemahere each member may have a number of different rankings
of other members. For example, membenay have two rankings; ., andm; scicnce, Where first ranks
members by how much funthinks they are and the second ranks them according to a@adéfinity. In

this context, we say is a self-determined community if there exists a vector @iods of rankings (in this
case, in{ fun, science}'S) such that if members vote according to their associateitehthe resulting
votes self-certifyS. We prove that if each member has a constant number of raskatigour results can be
extended, even though there could be exponential numbemnabinations of rankings.

Our results can be extended to weighted affinity systems ewtier affinities of each member are given
by a numerical weighting rather than just an ordinal rankifgr example, membe&rmay give her most
preferred member weight, next two preferred members weight7, next one weight).5, and so on. A
weighted affinity system can be expressed4as= {V,a,...,a,}, wherea; is a n-dimensional vector
a; = (ain,...,ain) and0 < a; ; < 1 specifies the degree of affinity thahas forj. One can naturally
define (0, «, B)-self-determined communities for weighted affinity syssenThe only requirement is that
members are only allowed to cast votes up to a total weight @fhen voting for a community of size
while respecting the affinity system. We show that all ourrimsuand algorithmic results extend to weighted
affinity systems with only a slight loss in the parameters.
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Endogenously Formed Communities in Social NetworksOur general formulation enables us to shed
light on the challenging task of defining and finding overiagpcommunities in social networks [19,117,
16,[14,[15]. Typically, a social network can be viewed as grép= (V, E), where the edges could be
either undirected (e.g., the Facebook social network aeéted by friend list) or directed (e.g. the Twitter
network). An edge could be unweighted or weighted (e.g. ke phone-call networks or the Facebook
network based on the number of times that one person writédseomall of others).

It turns out that a social network can be realized as a piiojecf an affinity system. Indeed, although our
affinity systems are typically dense, their projections @sad networks can be very sparse as are many
observed social networks. We can think of our observed koeiavork interactions as being induced (in
various ways) by the underlying latent set of affinities. &pbecise, given a social netwatk= {V, W, w}

with weightsw = (w;;), we would like to recover the communities in the originalrait§i system. A natural
way to do this is to lift the social network back to an affiniggemA = {V, a4, ..., a,,} and then to solve the
problem in the lifted system. For example, several natyspt@aches for lifting based on different beliefs
about how the social network may have emerged from an uridgrbet of affinities include:

1. Direct Lifting: One can directly lift to an affinity system by defining; = w;; if (4,5) € E,
otherwiseq; ; = 0 (we assume WLOG that; ; € [0, 1])).

2. Shortest Path Liftinglf G = (V, E) is an unweighted social network, and the shortest pathrdista
fromito j is d; j, one may define; ; = 1/d; ;. The shortest path lifting can be extended to weighted
cases by appropriated normalization.

3. Personal Page Rank Liftind_et p; be the personal PageRank vectar [2] of vertewe defines; ; =
Pi,j/ max(p;).

4. Effective Resistance Liftindetr; ; be effective resistance of froito j by viewing G a network of
resistors, usind /w(e) as the resistance efe E [9], we definea; ; = ming(r; 1 /ri ;).

Each style of lifting corresponds to a particular belief @wtthis social network may have emerged from a
latent underlying affinity system. For instance, Directibd) corresponds to the belief that a social network
G = (V, E), such as the Twitter network, arose from a latent affinity= (V, {a},...,a,}) by a process

in which each membeirconnects to thé; top most elements according to the affinity systémIn other
words,: follows j, i.e., (i, j) is a directed edge in this social networkj ils among thel; top most elements
of 7 according toA’. Similarly, one can think of Shortest Path Lifting as cop@sding to the belief that
the social network serves as an approximate spanner of therlyimg affinity system([18], and Effective
Resistance Lifting corresponds to the belief that a so@alvark is approximately based on some spectral
sparsification of those underlying affinities [20].

Given a social network, once we derive a corresponding gffsyistemA, we may use our notion of self-

determined community and apply our algorithms and anatgsabtain communities in the original network.
From our analysis for affinity systems, we immediately abthiat there is a polynomial number of such
communities in a social network, and they can be enumeratpdlynomial time.

We note that while the input social network is potentiallyywsparse, appropriate lifting procedures can
produce an affinity system better reflecting the true ratatiips between entities. Moreover, many can
be performed locally, allowing for our local algorithm totdenine meaningful communities especially
efficiently.



We also note that our study of multi-facet affinity systemeved us to model and analyze communities in
more complex social networks — such as such Google+ witlesirghich enable its users to share different
things with different circles of people. This extension n#go enable us to model interdisciplinary sub-
fields according to scientific works or interactions.

Self-determined Communities and(«, 3)-clusters In this paper, we also provide several new results for
communities defined agv, 5)-clusters, a notion introduced by Mishra, Schreiber, $tarand Tarjan [16]
for analyzing (unweighted) social networks. In their defom, S is an(«, )-cluster (fora > 3) if for every

i € S, the number of neighbors coming frashis at leasiv|S| and for everyj ¢ S, the number of neighbors
coming from S is at most/3|S|. We prove that there exists a family of networks with supbmpamial
number of(a, §)-clusters. For instance, if = 1 anda — g = 0.01, then inG(n, 1/2), the Erdds-Renyi
random graph with /2 edge probability, the expected number(af 5)-clusters is:2(°8™), We also show
that under the assumption that the planted clique problehard, even finding aingle («, 5)-cluster is
computational hard. Interestingly, our notion of commiasitin social networks obtained via direct lifting
is quite similar to the notion ofa, 3)-clusters, with the only difference that we bound the totabant of
votes a member may c&btThis twist seems to be essential to obtain only a polynomiahlmer of such
communities and to be able to enumerate them in polynonmme. ti

Related Work Problems of clustering or grouping data (based on netwopkiowise similarity information
or ranked data) have been extensively studied in many diifdields. The classic goals have been to produce
either a patrtition or a hierarchal clustering of the daté, B8,04,[8,[5/ 13]. With the rise of online social
networks, there has been significant recent interest irtifgieng overlapping clusters, or communities, in
networks ranging from professional contact networks taticih networks to product-purchasing networks,
with many heuristics and optimization criteria being prega[14, 15, 19, 16, 17, 12]. However, much of this
work has disallowed natural communities such as those icomgahighly popular nodes [21, 22, 114,115] or
not given general guarantees on the number or computatienrteeded to find all overlapping communities
meeting natural criteria [7, 16, 117,112]. By contrast, ouwwifi@rmalization leads to natural communities and
efficient algorithms for identifying all such communitieddditionally, our model allows us to deal with
asymmetries in the input in a very natural way.

Independently, in recent workl[3] consider several assiongt(that are between worst case and average
case) concerning community structure and provide effictguarithms in these settings. Remarkably, while
their setting is somewhat different from ours some of thigjoathms are similar in spirit.

2 Preliminaries and Notation

In our most basic model, we consider an affinity system witmembersV’ = {1,...,n} and assume
that each membeir € V states a strict ranking; of all members in the order of her preferences. Let
II={m,...,m}. Fort > 0,5 C V,i €V we denote by (i) the number of members ifi that placei
among the topmostelements of their preference list. Thatig(i) = [{s € S|i € m5(1:¢)}|. Ford > 0,

we letg? (i) == vge‘sﬂ (7). We define a natural notion of self-determined communityodews:

2For example, for the direct lifting o, the notion of the community we obtain is as followsis a (6, «, 8)-self-determined
community inG if every i € S receives at least|S| collective vote and everyone not fireceives at most|S| collective vote.
If G is unweighted(i, j) € E, i € S, andd; is the out-degree af then one way to set up the affinity system is toilebntribute
min(1, 6|S|/d;) to the collective vote of.



Definition 1 Given three positive parametefisa, 8, where5 < a < 1 and an affinity syster(V, IT) we
say that a subsef of V' is an @, «, ) self-determineccommunity with respect td/, IT) if we have both

(1) Foralli e S, ¢%(i) > a|S|.
(2) Forall j ¢ S, ¢%(j) < B|5].

Throughout the paper, we will denote by= o« — 5. Fixing 6, we say that { votes forj with respect to a
subsetS” if j € m;(1: [0]S|]). WhenS is clear from the context we say thiatotes forj.

Note that communitiemay overlap As a simple example, assume we have two detand A, of sizen /2
with n/8 nodes in common (representing, say, researchers in Aflgesiand researchers in Complexity).
Assume each node id; \ A; ranks first the nodes id; and then the nodes iA; and that each node in
A; N Aj ranks the nodes id; U A; arbitrarily. Then eacid; is a(1,3/4,1/4) self-determined community.

We also consider (more general) weighted affinity systerhgrevthe preferences of each memberolve
numerical weightings (degrees of affinity) rather than arsbrdinal ranking. A weighted affinity system is
expressed ad = {V, ay, ..., a, }, Whereg; is an-dimensional vectot; = (a; 1, ..., ai,) @and0 < a; ; <1
specifies the degree of affinity thahas forj. For examplej may give her top-ranked node a weightlof
she might have a tie between its second and third-rankedsrgidimg both a weight 0.7, and so on. If
memberi chooses not to vote for a given node, this can be modeled ygdiliat node a weight df.

We can naturally extend our notion @, «, 5)-self-determined communities to weighted affinity systems
In the definition of voting, the only requirement is that meargare only allowed to cast votes up to a total
weight of /t when voting for a community of size For example, to evaluate whether a sulisét a good
community, each member € S casts a weighted vote as follows:determines a prefix of the weights
(sorted from highest to lowest) of total valdgS| and zeros out the rest. If there are ties at the boundary, a
natural conversion is to scale down the weights of those s\po at the boundary to make the sum exactly
equal tof|S|. In general, we denote the resulting vector (after capgiegamount of vote a member casts

when voting for a community of sizg a5a§‘5|. The amount of the weight that membies V receives from
Sisal(i) = 3 ,cq ai'f‘. Given these, we can define ah &, 3) weighted self-determinecbmmunity as

follows:

Definition 2 Givenf,a, 8 > 0, 5 < a < 1 and an weighted affinity systefir, A) we say that a subset
of Vis an @, «, 5) weighted self-determinecdommunity with respect td/, A) if we have both

(1) Foralli e S,a%(i) > a|S|.

(2) Forallj ¢ 5,a%(j) < B[S

We note that given an (weighted) affinity system and aSsete cantestin time polynomial inn whether

a proposed sef is a (0, a, §)-self-determined community or not. Also, fixing(& «, 3)-self-determined
communityS, one can easily show that there exists a multiseff sizek(y) = 2log (4n)/~v? such that the
set of elements voted by at least & — ~/2) fraction of U (or in the weighted case, the set of elements
receiving(a—-y/2)|U]| total vote fromU) is identical toS. This then implies a very simple quasi-polynomial
procedure for finding all self-determined communities, al as am©(°¢"/7*) upper bound on the number
of (6, «, B)-self-determined communities. (See Apperdix]A.1 for de}ai



In this paper we presentraulti-stageapproach for finding an unknown community in an affinity sgsthat
provides much better guarantees for interesting settihtf'egarameters. At a generic level, this algorithm
takes as input informatio about an unknown communit§ and outputs a lisC of subsets ol s.t. if
information I is correct with respect t&, then with high probability. containsS. This algorithm has
two main steps: it first generates a ligt of setsS; s.t. at least one of the elements i is a rough
approximation taS' in the sense tha$; nearly containsS and it is not much larger thafi. In the second
step, it runs a purification procedure to generate adighat containsS. (See Algorithn{IL.) Both steps
have to be done with care by exploiting properties of setédrined communities and we will describe
in detail in the following sections ways to implement bothpst of this generic scheme. We also discuss
how to adapt this scheme for outputting a self-determinednoanity in a local manner, for enumerating all
self-determined communities, as well as extensions toiffadet affinity systems and applications of our
analysis to social networks.

Algorithm 1 A generic algorithm for identifying an unknown communiy
Input: Preference systeifV, IT), information about an unknown community.

(1) Using information! to generate a lis€; of setsS; s.t. at least one of the elementsdn is a rough
approximation taS.

(2) Run a purification procedure to generate adis.t. at least one of the elementsdns identical toS.
(3) Remove from the list all the sets that are not self-determined communities.

Output: List of self-determined communities.

3 Finding Self-determined Communities

In this section we show how to instantiate the generic Athan{] if the information we are given about the
unknown communityS is its size and the parametetsa, ands. We show that this leads to a polynomial
time algorithm in the case whefg «, andg are constant. We start with a structural result showingftirat
any self-determined community there exist a small number of community members s.t. thenuniicheir
votes contains almost afl.

Lemmal Let S be a(6, «, §)-self-determined community. Let= o — 8, M = log (16/7)/a. There
exists asel/, |U| < M s.t. thesetS; = {i € V|3s € U,i € w5(1 : 0|S])} satisfiedS \ Si| < (v/16)]S].

Proof: Note that any subsef of S receives a total of at least|S||S| votes from elements of, which
implies that for any such' there existgs € S that votes for at least|S| members of5. Given this, we find
the desired elements, ... iy € S greedily one by one. Formally, I&; = S. Leti; € S be an element
that votes for at leasta|S; | elements inS;. Let .S, be the setS minus the set of elements voted fy In
general, at step > 2, there existg; € S that votes by at least @ fraction of S;. Let S;;1 be the setS;
minus the set of elements voted hy We clearly haveS; 1| < (1 — «)!|S1|, s0|Sn+1] < (v/16)]S4| for
M =log (16/v)/«a. By construction the séf = {i1,...,i) € S} satisfies the desired condition®

Given LemmaL, we can use the following procedure for geimgrat list that contains a rough approxima-
tion to S which covers at least B— /16 fraction of S and whose size is at masig (16/v)|S].
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Algorithm 2 Generate rough approximations
Input: Preference systeifV/, IT), information/ (parameteré, a, 3, sizet).

e SetL=0,y=a—3,k(f ay) =log(16/v)/a.

e Exhaustively search over all subsétf V' of sizek; (6, «, v); for each set/ add to the listC the set
S1 C V of points voted by at least an elementin(i.e.,S; = {i € V|3s € U,i € 7s(1: 6t)}).

Output: List of sets..

We now describe a lemma that will be useful for analyzing thefigation step, suggesting how we convert
a rough approximation t§ into a list of candidate much-closer approximations$'to

Lemma 2 Fix a (0, «, 5)-self-determined communisy. Lety = o — 3,t = |S|,andS; C V, |S1| = M6t
s.t. [S\ Si| < 4t/16. LetU be a set ofk points drawn uniformly at random froff = S N S;. Let
Sy be the subset of points iff; that are voted by at least am — ~/2 fraction of nodes iU, i.e., Sy =
{i € S1]v%(i) > (o — v/2)|U|}. If k = 8log(320M /57)/+?, then with probability> 1 — 4, we have the

symmetric differenceA(Sz, S)| < ~t/8.

Proof: We start by showing that the points are voted by at least @/2 larger fraction ofS than the
points inSp \ S. Leti € S. SinceS is (6, o, B)-self-determined, at leastt points inS vote fori and since
|S\ S| < ~t/16 we get that at leagy — /16t points inS vote fori. Since|S| < t, we obtain that at least
aa — /16 fraction of points inS vote fors. Letj be a point inS; \ S. We know that at mostt points inS
vote forj and sinceS| > (1 — v/16)t, we have that at most@— 3~ /4 fraction of points inS vote for .

Fix i € S;. By Hoeffding’s inequality, sincé/ is a set ofS log(320M /5v)/~? points drawn uniformly at
random fromS we have that with probability at least— 0 /(166 M) the fraction of points irS' that vote

for 7 is within /4 of the fraction of points irU that vote fori. These together with the above observations
imply that the expected size ¢A\(Ss, S)| is (v6/(160M))0Mt = ~4t/16. By Markov's inequality we
obtain that there is at mostfachance thatA(S,, S)| > ~4t/16. Using the factS \ S| < ~t/16 we finally
get that with probabilityl — 0 we have|A(S2, S)| < ~t/8. W

Algorithm 3 Purification procedure
Input: Preference systeifV, IT), informationI (parameter$, «, 53, v, k2(0, «, v), Na2(0, i, ), sizet), list
of rough approximation£ .

e For each elemert; € L1, repeatN, (4, «, ) times

e Sample a sdl/; of k2 (6, «, y) points at random fron§;. Let S, = {i € Slyugg (1) > (a—~/2)|Us]}.
o LetSs = {i € V[v¥ (i) > (a —~/2)|S2|}. Add S to the listL.

Output: List of sets..

We now show how Lemmag 1 ahH 2 can be used to identify and eatenssmmunities.

Theorem 1 Fix a (0, a, B)-self-determined community. Lety = a — 3, k1(0,a,y) = log (16/7)/«,
k2(6,0,7) = 25 log (329'“1) No(0, ) = O((0k1)* log (1/6)). Using Algorithn{2 together with Algo-




rithm[3 for steps (1) and (2) of Algorithih 1, we have that withiqability > 1 — 6 one of the elements in the
list £ we output iddenticalto S.

Proof: Since when running Algorithil2 we search over all subset® af V' of size k1 (6, a,7), by
Lemmall in one of the rounds we find a §&k.t. the set of point§; that are voted by at least an element
in U cover al — v/16 fraction of S. So,£; contains a rough approximation £

Since|S| = t, U, is a set ofk, elements drawn at random frafh= SNS; with probability > (¢/(2t0k;))".
Therefore forN, = O((20k;1)*2 log(1/5)), with probability> 1 — §/2 in one of the rounds the s&b is a
set ofk, elements drawn at random frofh In such a round, by Lemnfa 2, with probability 1 — 0/2 we
get a setSy such thafA(Ss, S)| < vt/8. A simple calculation shows th&t = S. W

Corollary 1 The number o0, a, 8)-self-determined communities in an affinity systémll) satisfies

Glog(l/v)»

o3 1o
B(n) = nOUog(1/7)/a) mgTu/w> (G ros (5 and with probability> 1 — 1/n we can find all

of them in timeB(n)poly(n).

We note that Theoreim 1 and Corollddy 1 apply even if some nddesot list all members of in their
preference lists, and then some nodes in a commuhitgve fewer thad|.S| votes in total. Ifd, o, and
are constant, then Corolldry 1 shows that the number of caritiesiisO (n!°8 (1/7)/¢) which ispolynomial
in n and they can be found in polynomial time. We can show that épeddence on'/* is necessary:

Theorem 2 For any constan® > 1, for anya > 2\/5/711/4, there exists an instance such that the number
of (8, a, 5)-self-determined communities with- 5 = v = a/2 is nf(1/®),

PROOF SKETCH: ConsiderL = /n blobs By, ..., By, each of size/n. Assume that each point ranks the
points inside its blob first (in an arbitrary order) and itthranks the points outside its blob randomly. One
can show that with non-zero probability fbKx n'/*/(21/6) any union ofl blobs satisfies th&, o, 3)-self-
stability property with parameters = 1// andy = «/2. Full details appear in AppendixA.1.1

3.1 Self-determined Communities in Weighted Affinity Systens
We provide here a simple efficient reduction from the weidhtase to the non-weighted case.

Theorem 3 Given a weighted affinity systefi, A), 6, «, 3, ¢ < a, and a community size there is an
efficient procedure that constructs a non-weighted ingtdic, IT) along with a mappingf from V' to V,
s.t. for any(6, «, ) communityS in V' there exists &6, « — ¢, 3) communityS” in (V' II) with f(S) = S.

Proof: Given the original weighted instan¢&’, A), we construct a non-weighted instan@dé, II) as fol-
lows. For eachs € V, we create a blotB, of k¥ nodes inV’. For anys,5 € V, if pis the weightagfg with
which s votes fors, we connectB; to B; with Gy, .|,k |, WhereGy ;. | x| IS @ bipartite graph witlk nodes
on the left and: nodes on the right such that each edge on the left has outelggr| and each node on the
right has in-degreépk |. Clearly all nodes i’ rank at most:|S|# other nodes (and do not have an opinion
about the rest). Let = 1/e. Consider a communit$ in (V, A). For anys € S and for each node ihe B,
the total vote from nodes iB; for s € S (when evaluating whether;c s B; is a good community or not)



is at leasty| S|k — |S| > k|S|(a — €). Moreover, fors ¢ S and for each node iB; we have the total vote
from the nodes irB; for 5 € S is at most3|S|k. ThereforeU;csBs is a legal(d, « — ¢, 3)-self-determined
community of sizekt in the non-weighted instang®”’, A). B

Using this reduction we immediately get the following resul

Theorem 4 For any¥é, «, 8, v = a — 3, the number of weighte@, o, 3)-self-determined communities is
elogu/v)))

O3 1o
B(n) = (n/v)CUeg1/n)/a) (M) (Grtos (253 and we can find them in tim@(n)poly(n).

67

Proof: We perform the reduction in Theordr 3 with= +/2 and use the algorithm in Theorém 1 and the
bound in Corollanf L. The proof follows from the fact that tlkember of vertices in the new instance has
increased by only a factor &f/~. We also note that each set output on the reduced instancineare
examined on the original weighted affinity system, and képt satisfies the community definition with
original parameters. B

3.2 Self-determined Communities in Multi-faceted Affinity Systems

A multi-faceted affinity system is a system where each nodg naa@e more than one rankings of other
nodes. Suppose that each elemei#t allowed to have at most different rankingsr}, . .. »sz- We say
that the pair(S, ) is a multi-faceted community where : S — {1,..., f}, if S is a community where
¥ (i) specifies which ranking facet should be used by elemeht other words, as before, |¢>§¢(i) =

{s € S|i € wf(s)(l : [0]S]1)}. Then(S,v) is a(«, 8, 6)-multifaceted community if for ali € S,
%)) > alS|, and forallj ¢ S, 9% ,(j) < BIS|.

We show that for a boundef], even though there may be exponentially many functiong is not harder
to find multifaceted communities than to find regular comrtiesi Note that all our sampling algorithms
can be adapted as follows. Once a representative sgmple . ,ix} of the communityS is obtained, we
can guess the facets(iy ), ..., (i;;) while adding a multiplicativef* factor to the running time. We can
thus get the sef, approximatingS in the same way as it is found in Algorithrhs 2 dnd 3 while adding
a multiplicative factor off*1 %2 to the running time. We thus obtain a li§tthat for each multi-faceted
community(S, ) contains a se; such thatA (S, .S) < ~vt/8. GivenS; we can outpulS with probability

> f‘81°g”/’72/2: guess a sdt/; of m = 8log n/v? points inSs; guess a functiony, on Us; outputS = the
set of points that receive at ledst — ~/2)t votes according t¢Ux, »2). Moreover, a facet structurg’ can
be recovered o so that(S,v’) is an(« — /4, 8 + /4, 8)-multifaceted community using a combination
of linear programming and sampling. Details appear in ApipeA.3.

Theorem 5 Let S be anf-faceted(«, 3, §)-community. Then there is an algorithm that rungitm?) time
and outputsS, as well as a facet structur¢’ on S such that(S, ¢') is an(a—~/4, B+ /4, 6)-multifaceted

_o( L 100 (9los (/)
community with probability> (f - n)~C oz (1/7)/) (%W) oGk tos (*555)) f~Ologn/7?),

4 A Local Algorithm for Finding Self-determined Communitie s

In this section we describe a local algorithm for finding a owmity. Given a single element and the
target community size, the goal of the algorithm is to output a communiiyof sizet containingv. Let us
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fix a target communitys' that we are trying to uncover this way.

We note that we need > 1/2 for a local algorithm that uses only one seed to succeed.<f1/2 then one
may have a validé, «, 3)-community that is comprised of two disjoint cliques of vegs. In this case, no
local algorithm that starts with just one vertex as a seed nmapverboth cliques, however we can extend
the construction below if we start with(1/«) seeds. Below, we focus on providing a local algorithm for
a > 1/2. Our local algorithm will follow the structure of the generigorithm[l. The main technical
challenge is to provide a local procedure for producing hoagproximations. In general, it is not possible
to do so starting fronany seed vertex» € S. For example, ifv is a super-popular vertex that is voted
first by everyondn V, thenv will belong to all communities including, butv would contain no “special
information” that would allow one to identify5. However, we will show that constant fractiorof the
nodes inS are sufficiently “representative” &f to enable one to recovér.

Let us fixt andd. For an element, we let R(v) be a uniformly random element which receives vote
with these parameters. In other word&v) := uniform element ofr,(1 : 6 - ¢t). We start with the main
technical claim that enables a local procedure for producduigh approximations.

Lemma 3 LetS be any(6, «, 3)-community of sizé. Letn := 2o — 1 > 0. Then there is a subsét C S
such that/T| > nt and for each paiw € T andu € S, we havePr[R(R(v)) = u] > @=U2/0

Proof: For each element € S denote byOg(v) := m,(1 : 6 - t) N S — the elements of thatv votes for,
and bylg(v) :={ue S: vem(l:0-t)}—the elements of that vote forv. By the community property
we know that/g(v)| > «t for all v € S. Observe that

Y 10s@)| =Y 1s)| = at®.

veS vES

Hence at least ap-fraction of v’s in S must satisfy|Og(v)| > t/2, wheren = 2a — 1. LetT :=
{v: |0Og(v)| >t/2} C S.Foranyv € T and anyu € S, we have

05(0) N Is(w)] > |0s()] + [Is(w)] — ¢ > (@~ 1/2) -t.

To finish the proof note that

Pr{R(R(v)) = u] > Pr[R(v) € Os(v) N Is(u)]

v
|

1 j—
0-1t 0-t 0-t t
u

We call any vertex in the setT” in LemmalB a “good seed vertex” fagf. LemmalB3 suggests a natural
procedure (Algorithni}4) for generating a rough approxiorain a local way given a good seed vertex.

Algorithm 4 Generate rough approximations
Input: Preference systeifV/, IT), information! (parameter$, «, 3, -, vertexv, sizet).

o SetS; = {u : Prlu= R(R(v))] > w}

Output: List of setsC = {5 }.

11



ka2 (0,
Theorem 6 Assumex > 1/2. Letky (6, c,y) = O (M),Nﬂ@,a,y) = (a_’;(f/z) 20 log(1/9).

Assuming is a good seed element for a commursitythen by using Algorithinl 4 together with Algoritfiin 3
for steps (1) and (2) of Algorithid 1, we have that with proligbi> 1 — § we will outputsS.

Proof: Itis enough to show that each iteration of the purificatiaqgoathm (Algorithm[3) has a probability
k
> (%) *to outputS. Sincev is a good seed element §f the setS; produced by Algorithnl 4 must

containS. It is easy to see thab;| < t62?/(a — 1/2). Thus, applying Lemm@l 2 with/ = 0/(a — 1/2)

we see that if the points @f are drawn uniformly fronts, then with high probabilitys; is v/8-close toS,

andSs; = S. Since conditioned oV, C S, Us is uniform in S, our probability of success is given by the
k k

probability thatU; C S, which is equal to(%) ’ > (a;—é/z> 2, which completes the proof. B

Note that wherx > 1/2, 3, andf are constants, the purification procedure will run in a camstumber of

iterations. Our main result of this section is the following

Theorem 7 Supposex > 1/2. Assumey, 3, #, andd are constants. I is chosen uniformly at random
from S, then with probability at least2a — 1)(1 — ) we can findS in time O(t log t).

Proof: First, by Lemma 3, with probability at leagx — 1, elementv is such that for alku € S, we

have Pr[R(R(v)) = u] > 22, We now implement Algorithm 4 by performinéas_"sz) log(2t/6)

random draws fronR(R(v)) and lettingS; be the set of points hit at least! log(2¢/J) times. By Chernoff
bounds, for each. € S, we have included: in S; with probability at leastl — e~8108(2t/9)/8 — 1 _
d/(2t), so with probability at least — §/2 we haveS; 2 S. Furthermore, since we only include points

hit at least4 log(2t/0) times, we havgsS;| < (f_efj2> Thus, the analysis in Theorem 3 implies that

the purification step (Algorithm 3) will succeed with prolidp at least1 — 6/2 for a choice ofN, =
< 202 >k2(970éﬁ)

as1 log(2/4). Putting these together yields the desired success ptitpaburthermore, since
a, 3, 0, 0 are constants, the overall time@¥tlogt). W

It is not hard to see that the algorithm in Theofem 6 will wovkm if ¢ is given to it only up to some small
multiplicative error. As a corollary of Theorem 6, we seet i@ number of communities is actually linear
and we can find all of them in quasilinear time.

Theorem 8 Suppose that > 1/2. The total number off, «, /3)-self-determined communities is bounded
>O(log<e/aw<a1/2))

02 2 >> , Which isO(n) if «, 3, and# are constants.

1
min(7,1/2—a) (a—1/2

by O (n

Proof: It is easy to see that executing the Algorithm in Theofém 7revlvee only do one iteration of the
purification step (i.e., of Algorithrh]3) with inputs € ((1 — e)t, (1 4+ e)t), & = a —4e, ' = B+ 4e,
0’ = 6(1 + ¢), and an appropriate seed vertexc S will lead to a discovery of arif, «, 3)-community

. . . _ k2(6,01,7) . - .
of size|S| = t with probability > p := (aeé/Q ’ , as long ag is sufficiently small. Here it is

enough to take = min(vy,a — 1/2)/100. Thus a pair(v,t'), wherev is a vertex and’ is the target size
corresponds to at mosy/p distinct communities. Moreover, each communityof sizet corresponds to
more thant(2« — 1)/2 such pairs. Sincé€ needs only to be within a multiplicative + ¢) from ¢, we can

always select’ from the set of value§(1+¢)’ : i =0,1,...,[log,,.n]}. Foreach valu¢, the number of

12



communities of size betweeghandt'(1 + ¢) is thus bounded by the number of possible péitsy) (= n),
times1/p and divided byt'(2ac — 1) /2:

- . : n.o_ 1p
< - —t
#{communities of size betweehandt'(1 + )} < v Ra—1)/2

Summing over the possible valuestbfve obtain the upper bound:

2 02 k2(07a77)
n's(2a—1)'<a—1/2> ’

which leads to the bound in the statement of the theorelh.

Note: We can extend our local approach to weighted and multi-fataffinity systems. See Appendix A.4.

4.1 An Alternative Non-local Algorithm

The analysis in this section suggests an alternative waygioerating rough approximations in the non-local
model which leads to an algorithm that provides asympttyiteetter bounds than Theordr 1 in interesting
cases, in particular wheh o, and~ are constants and there is a large gap betweand~. This leads to
an improved polynomial bound af®(°(1/2)/) on the number off, o, 5)-self-determined communities
whend, «, and~ are constants using Algorithinh 5:

Algorithm 5 Generate rough approximations
Input: Preference systeifV, IT), informationI (parameter®, «, /3, sizet).

e SetL=0;v=0—a.

e Exhaustively search over all subséfgof V' of size[(log1/a)/a] + 1; for eachU to the £ the set
Sy = {w . v, Prle = R(R(y))) > ﬁft}

Output: List of sets..

Theorem 9 Fix a (0, «, 5)-self-determined communiy. Lety = o — 3, k1(0,a,y) = O (log (1/a) /),

ko (0, 0,7) = O (712 log (%1)) No(0, o, 7) = O((62/a3)* 1og (1/6)). Using Algorithns together with
Algorithm[3 for steps (1) and (2) of Algorithimh 1, then with Ipability > 1 — ¢ one of the elements in the
list £ we output igdenticalto S.

PROOF SKETCH: By using a reasoning similar to the one in Lemima 2 we can shaivthere exist a set
Uy of [(log 1/a)/a] 4 1 points such that the subggt of points voted by at least a memberlip contains
> 1 — «/2 fraction of S. We show in the following that the corresponding Setindeed coversS. Fix a
vertexz € S. We need to show that

[0

> Prlz = R(R(y))] > 55

yeUo

Let@ C S be the set of elements that vote farWe know thai@| > at, sincex € S. Thus

U1 N Q| > U1 + Q| — || > at/2.

13



Eachz € U; N Q contributes at least/62t? to the sumd_, ., Pr(z = R(R(y))]. Thus this sum is at least
(at/2) - (1/6%t?) = o/(26%*t). Hencer € Sy, as required. Moreover, by observing that

> > Prlz=R(R(y)] =) > Prlz=R(R(y)] <1/
z yelo yelp @

. 2
we obtain| S| < 2.

Since when running Algorithiinl 5 we exhaustively search ollesubsets of/; of V' of sizek; (6, «,7), in
one of the rounds we find a s&f s.t. |S1| < %ﬁt S C S1. So,L1 contains a rough approximation f
Finally, using a reasoning similar to the one in Theokém 1 etelye desired conclusion.l

Theoreni® gives asymptotically better bounds than Thebierheh N, = n*1(?:*7) js the dominant term

in the bound (e.g., whef, «, and~y are constants) and especially when there is a large gap &etwand

v — sincek; is reduced fromog(16/7)/« to [log(1/a)/a] + 1. On the other hand, Theorédm 9 has worse
dependence ofiand« in N», so for certain parameter settings, Theofém 1 can be pbiéeeapecially if
one optimizes the constants in Lemrhas 1[@nd 2 based on thegavameters.

5 Self-determined Communities in Social Networks

In this section we present a natural notion of self-deteathinommunities in social networks and discuss
how our analysis sheds light on the notion(ef, 5)-clusters [[16| 17, 12]. We assume that the input is a
directed graphG = (V, E) and for a vertex we denote byl; its out-degree. As discussed in Section 1,
given a social network we can consider the affinity systenuéed by direct lifting and then consider self-
determined communities in that affinity system. This leadhé following very natural notion:

Definition 3 LetG = (V, E) be a directed graph and lét o, 5 > 0 with 5 < a < 1. Consider the affinity
systemV,ay,...,a,) Wherea; ; = w; ; if (i, j) € E anda; ; = 0 otherwise. A subset C Visa (0, «, )
self-determined community @ if it is a (0, «, 8) weighted self-determined community(in a4, ..., a,).

Note that when evaluating a community of sizeach node is allowed a total vote of at mogtt. One
natural way to achieve this is to only fractionally count eslfrom high-degree nodésgiving them weight
min(6t/d;, 1) when evaluating a community of sizén the induced weighted affinity system.

The community notion introduced in [16,]17] is as follows:

Definition 4 Leta, 5 with 8 < a < 1 be two positive parameters. Given an undirected gr&ph; (V, E),
where every vertex has a self-loop, a sulfs&t V' is an («, 8)-cluster if S is:

(1) Internally Dense¥i € S, |E(i, S)| > «|S].
(2) Externally SparseYi ¢ S, |E(i,S)| < B|S].

The (o, 8)-cluster notion resembles our community notion in Defimif® In particular, in the case where
the graph is undirected, Definitign 3 is similar to Definitidnexcept that in the case of our Definitioh 3
each node is allowed a total vote of at most. As discussed above one way to achieve this is to only
fractionally count edges from high-degree nodegiving them weightnin(6|S|/d;, 1). This distinction is
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crucial for getting polynomial time algorithms. From ousuds in the previous sections we have that every
graph has only a polynomial number of communities satighfdefinition[3 and moreover, we can find all
of them in polynomial time. In contrast, as we show, therestegiaphs with a superpolynomial number of
(o, B)-clusters.

Theorem 10 For any constant, a = 1, a— 3 = 1/2—e, there exist instances withf2(°e™) (o, §)-clusters.

Proof: Consider the grapty',, , with p = 1/2. Consider all(}) sets of sizés = 2% (1 — §), wheres is a
constant (determined later). For each suchSse¢he probability it is a clique is

p(g) > (1/2)%2/2 — (1/2)21og2 n(1=6)2/¢ _ ,—k(1=5)

We now want to show that conditioned éhbeing a clique, it is also afw, 3)-cluster with probability at
leastl/2. This will imply that theexpectechumber of(«, 3)-clusters is at least

0.5 <Z> n—k(=8) _  Q(logn)

Fix such set of siz& = 210#(1 — 6§). The probability that a node outside is connected to more tha
(1/2 + e)-fraction of the set is upper bounded by

k(1+e)
2" <%> 2 < ni2~ 3+ — pip—(+a01-0),

By imposing? — (1 +€)(1 — §) < —1 +log,,(2), we get that this probability is upper boundediy2n).
So by union bound over all nodes we then get the desired rasflheed to imposél + €)(1 — &) — 2 >

1+ log,,(2). This is true ford < ¢/4 andl > 12/¢ andn large enough.

We note that for certain range of parameters our bounds inréh&13 this improves over the general upper
bound given in[[16, 17]. Moreover, we show that even in grapitis only one(«, 3)-cluster, we show that
finding this cluster is at least as hard solving piented clique problerfor planted cliques of siz&(logn),
which is believed to be hard (see, e.g., Hazan and Krauthgiddp.

The Hidden Clique Problem: In this problem, the input is a graph on n vertices drawn ad@amfrom the
following distributionG,, ; 2 . pick a random graph fronts,, ; ,, and plant in it a clique of sizé = k(n).
The goal is to recover the planted clique (in polynomial finveith probability at least (say)/2 over the
input distribution. The clique is hidden in the sense thalatation is adversarial and not known to the
algorithm. The hidden clique problem becomes only easiér gats larger, and the best polynomial-time
algorithm to datel[1], solves the problem whenever Q(,/n). Finding a hidden clique fat = clogn for
anyc is believed to be hard. The decision version of this probleaiso believed to be hard.

We begin with a simpler result that finding tapproximately-largest«, 3)-cluster is at least as hard as the
hidden clique problem.

Theorem 11 Suppose that foor = 1 and 8 — o = 1/4, there was an algorithm that for some constant
¢ could find an(«, 3)-cluster of size at least/ AX/c, whereM AX is size of the largest community with
those parameters. Then, that algorithm could be used tandisish (1) a random graply,, ; /, from (2) a
random graphG,, ; /> in which a clique of sizclog,(n) has been planted.
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Proof: We can show that with probability at ledst- 1/n the largest clique i, ; /, largest clique has size
2log(n), which implies the largesio, ) cluster (witha = 1 and3 — a = 1/4) has size amost2log(n).
On the other hand we can also show that with probability &tlea 1/n, for ¢ > 81n 2 the planted clique
of size2clog,(n) is a cluster with these parameters. Thus, under the assuntptibdistinguishing these
two cases is hard, the problem of finding the approximateigest(«, /3)-cluster is hard. B

We now show that in fact, even finding a singte 3)-cluster is as hard as the hidden clique problem. Here,
instead ofG:), ; ;o we will useG,, , for constant > 1/2. Note that the hidden clique problem remains hard
in this setting as well

Theorem 12 For sufficiently small (constant) and e, with probability at leastl — 3/n, we have that: (1)
the graphG,, 1—— has no(1, 1 —+) clusters; and (2) a hidden clique of sigielog nisan(l,1—-) cluster.
Therefore, finding even one such cluster is as hard as theshidtique problem.

Proof: ConsiderG,, , for p =1 —~ — e. We start by showing that with probability at ledst- 1/n» the size
of the largest clique is at mo%. For anyk, the probability that there exists a clique of skzes at

most .
<Z>p(§) < %plﬁ/zp—k/g
Fork = ﬁ = —2log,, n, this is
ﬁn—ﬂogp n 2008, m)° _ p? _n_ 0(1).
k! k! k! n

This immediately implies that with probability at ledst 1/n, G,, ,, does not contains arfy, 1—+) clusters

of size greater thapn(f_l%e).

We now show that with probability at least— 1/n, G,, , does not contain anfl, 1 — ) clusters of size
< ﬁ For this, we will show that for any sét of size < ﬁ and any node not in S, the
probability thatv connects to at leagt — +)|S| nodes insides is at leastl //n. Because these events are
independent over the different nodesthis implies that the probability that no nodeoutsideS connects

n—k
to at least(1 — )|.S| nodes insides is at most(l - %) < e~V™/2, By union bound over all set§

of size at mosgﬁ, this will imply that the probability there exits@, 1 — ~) cluster of size at most

—2lnn__ ;

Consider a se$ of sizek and a node outsideS. The probability thaw connects to more thafl — )k
nodes inside5 is at least

_ vk
(5)a=r-a0eran = (U)o - gtk k.
This follows from the fact that
<k> B Y R (e L B (€ e 01 LA ((1—7)@)’7’“
vk (vk)! - vk ’

k(vk/e)vk k
3In particular, if it were easy, then one could solve the denisersion of the hidden clique problem for, 12 by first adding
additional random edges and then solving the problentfoy,. We assume here that the planted clique has size greatettghan
largest clique that would be found @(n, p).
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where we use the fact thatk)! < 2v/2m7k(vk/e) ™ < k(yk/e)*.
So, the probability that connects to more thail — v)k nodes inside5 is at least

1 gl1—" v +e Tk !
(1 —~— . >(1—v—¢e]"—.
=7 T . 2 [(L =7 —ee’]" ¢
This is decreasing with and thus it suffices to consider= ﬁ For thisk, we get that the probability
thatv connects to more thafi — )k nodes insides is at least
1 __2ylan ] g2y
E6_21nne 11‘(;7776) — En 2 ln(lfw’yfs) .

We want this to be greater thdny/n, and thus it suffices to have2 — % > —0.4. This holds for

—)
v =0.1,e = 0.01.

Finally, it is easy to show that with probability at least- 1/n, a hidden clique of sizé& = E%lnn
is a(l,1 — ~) cluster. This follows by noticing that every vertex outsitle clique has in expectation
k(1 — v — €) connections insides the clique, so by Hoeffding bounds,ptiedability it has more than
k(1 —~—¢€)+ek = k(1 —~) neighbors inside the clique is at mdgt:2. By union bound, we get that with
probability at least — 1/n every vertex outside the clique has at mbst — ) neighbors inside the clique
so the planted clique is a community as desirel.
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A Additional Proofs

A.1 Finding Self-determined Communities in Quasi-Polynomal Time

We present here a simple quasi-polynomial algorithm fonegnating all the self-determined communities.
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Theorem 13 For anyd, a, 3,7 = o — 3, there aren®(°e"/7*) sets which ard6, a, 3) (weighted) self-
determined communities. All such communities can be foynbing Algorithni b with parameters a, 3,

v =a— Bandk(y) = 2log (4n) /.

Proof: Fix a (¢, «, 5) (weighted) self-determined communiiy We show that there exists a multigétof
sizek(y) = 2log (4n)/~* such that the sefy; of points inV that receive at leagty — ~v/2)|U| amount of
vote from points inU is identical toS. The proof follows simply by the probabilistic method. Let fix

a pointi € V. By Hoeffding, if we draw a set/ of 21og (4n)/~v? uniformly at random froms, then with
probability 1 — 1/(2n), the average amount of vote thateceives from points i/ is within /2 of the
average amount of vote thateceives from points irt. By union bound, we get that with probability at
least1/2, for all points inV” the average amount of vote that they receive from point$ is within /2 of
the average amount of vote that they receive from pointS. itUsing this together with the definition of a
self-determined community, we get that with probabilig2 we obtainSy; = S for U of size2log (4n)/v?
drawn uniformly at random fron$. This then implies that there must exist a multigeof size k() such
thatSy = S.

Since in Algorithni6 we exhaustively search over all mutggé (of point fromV’) of sizek(), we clearly
get the listZ we output contains all th@, «, 3) (weighted) self-determined communities. Moreover, djear
nOUogn/v*) js an upper bound on the number(6f a, §) (weighted) self-determined communitiesli

Algorithm 6 Algorithm for enumerating self-determined communities
Input: Affinity system(V,II), parameter$, «, 3, v; k(7);

e SetL = ().
e Exhaustively search over all multisétswith elements froni” of sizek ().

e Fort = 1ton (determining the meaning of “vote for”) do:

e Let Sy be the subset of points i that receive at leagty — ~/2)|U| amount of vote from
points inU. Add Sy to the listL.

e Remove from the lisC all the sets that are n¢#, a, 3) weighted self-determined communities.

Output: List of self-determined communities.

A.2 Additional Proofs in Section[3

THEOREM[Z For any constarit > 1, for anya > 2\/§/n1/4, there exists an instance such that the number
of (6, a, B)-self-determined communities with— o = v = a/2 is n2(1/®),

Proof: ConsiderL = /n blobs By, ..., By, each of sizg/n. Assume that each point ranks the points inside
its blob first (in an arbitrary order) and it then ranks thenp®butside its blob randomly. We claim that with
non-zero probability foi < n'/*/(2/8) any union ofl blobs satisfies théd, a, 3)-self-stability property
with parametersy = 1/1 andy = «/2.

Let us fix a setS which is a union of blobs. Note that for each poinin S, the expected number of points
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in .S voting fori is
Vit i - v

Also, for a pointj not in S the expected number of points $hvoting for j is

l\/ﬁ% < l\/ﬁ% < Vn/4,

for i < n'/*/(2v/6). By Chernoff, we have that the probability thyit voted by more thag/n /2 is at most
—\/n/48
(& .

By union bound, we get that the probability that there exastetS which is a union of blobs that does not
satisfy the(6, «, §)-self-stability property withe = 1/, v = 0/2 is at most

n-nl/?. e Vn/8 < 1,
forl <n'/*/(2v6). m

COROLLARY [l The number of#, o, 3)-self-determined communities in an affinity systémI1) satisfies

O(% log (9108 (1/W)>>
B(n) = nOlog(1/)/a) (“gTWW) g /) and with probability> 1 — 1/n we can find all of

them in timeB(n)poly(n).

Proof: Consider a community size For any (0, a, 3)-self-determined community and letpg be the
probability thatS is in the list output by Algorithm in Theorem 1 with parametér o, 3, t. By Theoreni L
we have thaps > 1 — ¢. By linearly of expectation we have that ¢ ps is the expected number of
(0, o, B)-self-determined communities in the list output by our altpon. Combining these, we obtain that

B(n)(1 - 6) < Ygps < Ni(0)Na(6) whereky = log (16/7)/a, ka(3) = % log (2242 ), Ny(8) = n*s

and Ny (5) = O((20k;)*2() 1og(1/6)). By settingd = 1/2, we get the desired bound,

1 e ((flos (/)
B(n) = nOUoz(1/7)/a) <910g(1/7)>0(v21g( =)
(6

Let N = N1(1/2)N2(1/2)n. By running the algorithm in Theorem2llog[/N] times we have that for each
(0, o, p)-self-determined community, the probability thatS is not output in any of the runs is at most
(1/2)2%e(N) < 1/N2. By union bound, with probability at least— 1/n, we output all of them. B

A.3 Self-determined Communities in Multi-faceted Affinity Systems

Recall that a multi-faceted affinity system is a system wigaeh node may have more than one rankings
of other nodes. This may reflect, for example, that a person lmse two rankings of other people, one
corresponding to personal friends (in descending orddffinfts), and one of co-workers. Suppose that each
elementi is allowed to have at mogt different rankingsr}, . .. ,wlf. We say that the paitS, ¢) is a multi-
faceted community where : S — {1,..., f}, if S is a community where)(:) specifies which ranking

facet should be used by elemeéntn other words, as before, Iégw(i) ={s e S e wf(s)(l : [01S]1)}.

Then (S,v) is an(«, 3, #)-multifaceted community if for ali € S, ¢>gw(z‘) > «|S|, and for allj ¢ S,
0 (s ’
5. (7) < BIS].
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For a bounded, it is not harder to find multifaceted communities than to fiagular communities. Note
that in all our sampling algorithms can be adapted as follo@ace a representative samglg, . .., i}

of the communityS is obtained, we can guess the facets, ), . . . , 1 (i) while adding a multiplicativef*
factor to the running time. We can thus get the SepproximatingS in the same way as it is found in
Algorithms[2 and B while adding a multiplicative factor g1 +*2 to the running time. We thus obtain a list
L that for each multi-faceted communit$, v») contains seb, such thatA(Ss, S) < vt/8:

o) ilo 0log (1/7)
Claim 1 We can output a list of (f - n)@Uee(1/7)/@) (%W (s (52))

each multi-faceted communifythere is anS, € £ such thatA (S, S) < ~t/8.

sets, such that for

It remains to show that:

Lemma 4 Suppose thatS, ¢) is a valid («, 5, #)-multifaceted community of size Givent and a setS,
such thatA(Ss, S) < ~t/8, there is an algorithm that outputS$ with probability > f‘SlOg"/Vz/z

Moreover, a facet structurg¢’ can be recovered ofi so that(S, ¢’) is an(«a—~/4, 8+~/4, 6)-multifaceted
community.

Together with Clainill, Lemmid 4 shows that multifaceted comities can indeed be recovered in polyno-
mial time.

THEOREM[E Let S be anf-faceted o, 3, #)-community. Then there is an algorithm that run&im?) time
and outputsS, as well as a facet structute on .S such tha{.S, ¢') is an(a — /4, 8 +v/4, 0)-multifaceted
community with probability at least

(f - )0 (1/9)/a) <M> ~0(35 s (52 )

(07

f~Ologn/7?),

Proof:(of Lemma4). The algorithm is very simple. Guess algebf m = 8logn /2 points inSs; guess a
functioniy on Us; outputS = the set of points that receive at legst— ~/2)t votes according tQUs, 12).

Note that in the non-faceted case, by Hoeffding’s inequaliith probability > 1/2 selecting a set/; as
above and then selecting those points that receive at(leasty/2)t votes fromU, would have yielded.
This is because each elementSofeceives at leagty—/8)t votes from elements &z, while each element
of the complement* receives at mosts + +/8)t votes from elements of,. This reasoning extends to
the multifaceted settingarovided the functiomy, coincides with the functiory on the elements df, N S.
This indeed happens with probability f~U2l = f=8lsn/7* completing the proof of the first part of the
lemma.

For the second part of the lemma we assume that thg seknown and we need to recover the facets
that makeS a community. Note that this step is necessary in order tdywtrat S is indeed a multifaceted
community. There are two cases to consider.

Case 1:t < 8logn/v2. In this case we can fing by exhaustively checking all possibilities in time
O(qSIOg”/’YQ), which is the same as the probability of success of the fiegt st

Case 2:t > 8logn/~v% In this case we use linear programming to find a fractionasive +; of the
function ¢ first. In other words, we find a function; : S x {1,...,q} — [0,1] such that(S, ) is a
“community” on average:
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1. foralls € S, Zlf:l Yy(s,i) =1,
2. forallz € S, ESES zzle wf(s7 Z) " Xzeni(1:0t) > at,
3. forall Yy gé S, ZSGS szzl T/Jf(& Z) " Xyeni(1:0t) < /Bt-

This linear program is feasible, since the origigals an integral solution to it. As a result, we obtain a
fractional solutiony; satisfying the three conditions. To obtaiti we round«; by sampling. In other
words, we set)’(s) = i with probability ¢¢(s,i). By Hoeffding’s inequality, sincé > 8logn/+?, the
sampling will preserve conditions 2 and 3 that were imposed pup to an additive error of /4. Thus, by
definition, (S, ¢") will be an (o — /4, 8 4 ~/4, )-multifaceted community. B

A.4 Extensions to weighted affinity systems and to the local adel

We note that that Algorithml4 can be combined with our reaucfrom weighted to unweighted communi-
ties to obtain a local algorithm for finding communities ie threighted case.

Extending the local approach to the multi-faceted settsxghore involved, since the definition &f(v)
would need to be adapted to this setting. Indeed, the magdtted versiodk ¢ (v) of R(v) can be taken to be

a random element voted by a random facet v. Then Algorithn 4 can be adapted by taking the threshold
to bew, wheref is the number of facets. Note that while an approximationnp@mmunity

S can be found locally in near-linear time, finding the exaahomunity S as well as the facet structure on
S as in Lemmau will still takef©(oen/7*) time.
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