
ar
X

iv
:1

20
1.

48
99

v2
 [

cs
.D

S
]

1
M

ar
 2

01
2

Finding Endogenously Formed Communities

Maria-Florina Balcan∗ Christian Borgs† Mark Braverman‡ Jennifer Chayes§

Shang-Hua Teng¶

March 2, 2012

Abstract

A central problem in e-commerce is determining overlappingcommunities (clusters) among indi-
viduals or objects in the absence of external identificationor tagging. We address this problem by
introducing a framework that captures the notion of communities or clusters determined by the relative
affinities among their members. To this end we define what we call an affinity system, which is a set of
elements, each with a vector characterizing its preferencefor all other elements in the set. We define a
natural notion of (potentially overlapping) communities in an affinity system, in which the members of a
given community collectively prefer each other to anyone else outside the community. Thus these com-
munities are endogenously formed in the affinity system and are “self-determined” or “self-certified” by
its members.

We provide a tight polynomial bound on the number of self-determined communities as a function
of the robustness of the community. We present a polynomial-time algorithm for enumerating these
communities. Moreover, we obtain a local algorithm with a strong stochastic performance guarantee
that can find a community in time nearly linear in the of size the community (as opposed to the size of
the network).

Social networks and social interactions fit particularly naturally within the affinity system framework
– if we can appropriately extract the affinities from the relatively sparse yet rich information from social
networks and social interactions, our analysis then yieldsa set of efficient algorithms for enumerating
self-determined communities in social networks. In the context of social networks we also connect our
analysis with results about(α, β)-clusters introduced by Mishra, Schreiber, Stanton, and Tarjan [16, 17].
In contrast with the polynomial bound we prove on the number of communities in the affinity system
model, we show that there exists a family of networks with superpolynomial number of(α, β)-clusters.

1 Introduction

Affinity Systems The problem of identifying endogenously1 formed overlapping communities or clusters
arises in many contexts within e-commerce: finding overlapping communities in a social network, clustering

∗School of Computer Science, College of Computing, Georgia Institute of Technology, Atlanta, Georgia.
†Microsoft Research, New England, Cambridge, MA.
‡Princeton University and University of Toronto
§Microsoft Research, New England, Cambridge, MA.
¶Computer Science Department, University of Southern California.
1endogenous: growing or developing from within; originating within.

1

http://arxiv.org/abs/1201.4899v2

retail products using collaborative filtering, clusteringdocuments using citation information, classifying
videos using viewing logs, etc. In such settings one needs tocluster the set of objects into meaningful,
potentially overlapping subsets by only using informationabout relations between the objects. In this paper
we develop the notion of an affinity system to model these scenarios.

An affinity system is a collection of elements with a set of “preferences” each of these elements has over
other elements within the system. These preferences may be expressed as a vector of rankings, or, more
generally, as a vector of non-negative weights representing affinities. For example, when clustering videos,
affinities may represent the likelihood of the videos to be co-watched, with videos that are co-watched more
often “ranking” each other higher. When clustering documents, a document will “prefer” documents it cites
over documents it doesn’t.

Perhaps the most natural application of affinity systems is to the study of social networks. Social interaction
is often determined by affinities among the members. For example, in daily life, we often stay more in touch
with people we like more. When we go to a conference, we often hang out more with people with whom we
share more interests. Therefore, these social interactions, and their manifestations as online social networks
fit well within the affinity system paradigm.

Endogenously Formed Communities in Affinity SystemsA central question concerning groups of indi-
viduals, documents, products, etc., is how to determine communities, oroverlappingclusters that capture the
coherence among their members. For example, in the context of retail products discussed above, it may be
useful to automatically “tag” the products with multiple categories for subsequent personalized marketing.
In the context of professional networks, a person may belongto multiple explicit or implicit communities,
for example a scientist may simultaneously belong to the community of Economists and the community of
Computer Scientist. The question of finding overlapping communities is closely related to the very well
studied question of clustering [10], but is much more general, since now elements may (and will) belong to
multiple communities.

In this paper we formalize a natural notion of self-determined community and develop efficient algorithms to
identify overlapping communities of this type as well as general bounds on the number of such communities.
Self-determined communities correspond to subsets that collectively prefer each other more than they prefer
those outside the subset, where preference is defined by the rankings or weights of the affinity system.
These communities are endogenously formed in the affinity system. What is particularly nice about this
formulation is that we do not require that the subsets be of pre-specified sizes. For example, a solution of the
flexible capacity roommate problem would group together people who prefer living with each other to living
with anyone else in another room. Switching to the context ofsocial and professional networks, an academic
community can be viewed as a group of scholars which appreciates the work of others in the community
to that of the work of people outside their community. In all these cases, the overlapping communities or
clusters are self-certified or self-determined.

More formally, we study the mathematical structure of self-determined communities in an affinity system
and design efficient algorithms for discovering them. In ourmost basic model, we haven membersV =
{1, ..., n} in an affinity system, and we assume each memberi states a strict rankingπi of all members in
the order of her preferences. To evaluate whether a subsetS of size|S| = k is a good community, imagine
that each members ∈ S casts a vote for each of itsk most preferred membersπs(1 : k). The number of
votes that memberi receives,φS(i) = |{i ∈ πs(1 : |S|)|s ∈ S}|, is the collective preference given byS.
We sayS is self-determinedif everyone inS receives more votes fromS than everyone outsideS.

Different self-determined communities may have differentdegree of coherence or robustness depending on

2

both the fraction of votes received by the community membersas well as the gap between the fraction of
votes received by the community members and the non-community members. To capture this, we sayS is a
(θ, α, β) self-determined community, for 0 ≤ β < α ≤ 1 andθ > 0 if

• each members ∈ S casts a vote for each of itsθ|S| most preferred membersπs(1 : θ|S|).

• for eachi ∈ S, the amount of votei receives,φ(θ)S (i) = |{i ∈ πs(1 : θ|S|)|s ∈ S}|, is at leastα|S|.

• for eachj 6∈ S, the amount of votej receives,φ(θ)S (j) = |{j ∈ πs(1 : θ|S|)|s ∈ S}|, is at mostβ|S|.

We start by analyzing how many communities can exist in an affinity system. Interestingly, we show that for
constantsα, β, θ we have a polynomial bound ofnO(log(1/α)/α) on the number of(θ, α, β)-self-determined
communities. Our analysis, using probabilistic methods, also yields a polynomial-time algorithm for enu-
merating these communities. Moreover, we show that our bound is nearly tight, by exhibiting an affinity
system withnΩ(1/α) (θ, α, β)-self-determined communities.

We then present a local community finding algorithm that is very efficient for an interesting range of pa-
rameters. This algorithm, when given robustness parameters θ, α, β, and a memberv ∈ V , either returns
a (θ, α, β)-self-determined community of sizet in timeO(f(α, β, θ) · t log t) or an empty set. The algo-
rithm satisfies the following performance guarantee: ifα > 1/2, if v is chosen uniformly at random from
a (θ, α, β)-self-determined communityS, then with probabilityΩ(2α − 1), our local algorithm will suc-
cessfully recoverS and so in time dependent only (and nearly) on the|S| and not on the size of the entire
affinity system. As a consequence of this analysis, we can show that in the (natural) case whenα > 1/2
we obtain anear-linearalgorithm for finding all self-determined communities, substantially improving on
the polynomial-time guarantee discussed above. Quasi-linear local algorithms are particularly important
in the context of studying internet-scale networks, where even quadratic-time algorithms are not feasible,
and where one sometime does not have access to the entire network but only to a local portion of it. The
quasi-linear algorithm is one of our main technical contributions, as its techniques can potentially be used
to convert other polynomial cluster-detection algorithmsinto local quasi-linear algorithms – at least in the
average case.

We also studymulti-facet affinity systemswhere each member may have a number of different rankings
of other members. For example, memberi may have two rankingsπi,fun andπi,science, where first ranks
members by how much funi thinks they are and the second ranks them according to academic affinity. In
this context, we sayS is a self-determined community if there exists a vector of choices of rankings (in this
case, in{fun, science}|S|) such that if members vote according to their associated choice, the resulting
votes self-certifyS. We prove that if each member has a constant number of rankings, all our results can be
extended, even though there could be exponential number of combinations of rankings.

Our results can be extended to weighted affinity systems where the affinities of each member are given
by a numerical weighting rather than just an ordinal ranking. For example, memberi may give her most
preferred member weight1, next two preferred members weight0.7, next one weight0.5, and so on. A
weighted affinity system can be expressed asA = {V, a1, ..., an}, whereai is a n-dimensional vector
ai = (ai,1, ..., ai,n) and0 ≤ ai,j ≤ 1 specifies the degree of affinity thati has forj. One can naturally
define(θ, α, β)-self-determined communities for weighted affinity systems. The only requirement is that
members are only allowed to cast votes up to a total weight ofθt when voting for a community of sizet,
while respecting the affinity system. We show that all our bounds and algorithmic results extend to weighted
affinity systems with only a slight loss in the parameters.

3

Endogenously Formed Communities in Social NetworksOur general formulation enables us to shed
light on the challenging task of defining and finding overlapping communities in social networks [19, 17,
16, 14, 15]. Typically, a social network can be viewed as graph G = (V,E), where the edges could be
either undirected (e.g., the Facebook social network determined by friend list) or directed (e.g. the Twitter
network). An edge could be unweighted or weighted (e.g., theSkype phone-call networks or the Facebook
network based on the number of times that one person writes onthe wall of others).

It turns out that a social network can be realized as a projection of an affinity system. Indeed, although our
affinity systems are typically dense, their projections as social networks can be very sparse as are many
observed social networks. We can think of our observed social network interactions as being induced (in
various ways) by the underlying latent set of affinities. To be precise, given a social networkG = {V,W,w}
with weightsw = (wij), we would like to recover the communities in the original affinity system. A natural
way to do this is to lift the social network back to an affinity systemA = {V, a1, ..., an} and then to solve the
problem in the lifted system. For example, several natural approaches for lifting based on different beliefs
about how the social network may have emerged from an underlying set of affinities include:

1. Direct Lifting: One can directly lift to an affinity system by definingai,j = wi,j if (i, j) ∈ E,
otherwiseai,j = 0 (we assume WLOG thatwi,j ∈ [0, 1])).

2. Shortest Path Lifting: If G = (V,E) is an unweighted social network, and the shortest path distance
from i to j is di,j, one may defineai,j = 1/di,j . The shortest path lifting can be extended to weighted
cases by appropriated normalization.

3. Personal Page Rank Lifting: Let pi be the personal PageRank vector [2] of vertexi, we defineai,j =
pi,j/max(pi).

4. Effective Resistance Lifting: Let ri,j be effective resistance of fromi to j by viewingG a network of
resistors, using1/w(e) as the resistance ofe ∈ E [9], we defineai,j = mink(ri,k/ri,j).

Each style of lifting corresponds to a particular belief on how this social network may have emerged from a
latent underlying affinity system. For instance, Direct Lifting corresponds to the belief that a social network
G = (V,E), such as the Twitter network, arose from a latent affinityA′ = (V, {a′1, ..., a′n}) by a process
in which each memberi connects to thedi top most elements according to the affinity systemA′. In other
words,i follows j, i.e.,(i, j) is a directed edge in this social network, ifj is among thedi top most elements
of i according toA′. Similarly, one can think of Shortest Path Lifting as corresponding to the belief that
the social network serves as an approximate spanner of the underlying affinity system [18], and Effective
Resistance Lifting corresponds to the belief that a social network is approximately based on some spectral
sparsification of those underlying affinities [20].

Given a social network, once we derive a corresponding affinity systemA, we may use our notion of self-
determined community and apply our algorithms and analysisto obtain communities in the original network.
From our analysis for affinity systems, we immediately obtain that there is a polynomial number of such
communities in a social network, and they can be enumerated in polynomial time.

We note that while the input social network is potentially very sparse, appropriate lifting procedures can
produce an affinity system better reflecting the true relationships between entities. Moreover, many can
be performed locally, allowing for our local algorithm to determine meaningful communities especially
efficiently.

4

We also note that our study of multi-facet affinity systems allows us to model and analyze communities in
more complex social networks – such as such Google+ with circles which enable its users to share different
things with different circles of people. This extension mayalso enable us to model interdisciplinary sub-
fields according to scientific works or interactions.

Self-determined Communities and(α, β)-clusters In this paper, we also provide several new results for
communities defined as(α, β)-clusters, a notion introduced by Mishra, Schreiber, Stanton, and Tarjan [16]
for analyzing (unweighted) social networks. In their definition,S is an(α, β)-cluster (forα > β) if for every
i ∈ S, the number of neighbors coming fromS is at leastα|S| and for everyj 6∈ S, the number of neighbors
coming fromS is at mostβ|S|. We prove that there exists a family of networks with superpolynomial
number of(α, β)-clusters. For instance, ifα = 1 andα − β = 0.01, then inG(n, 1/2), the Erdös-Renyi
random graph with1/2 edge probability, the expected number of(α, β)-clusters isnΩ(logn). We also show
that under the assumption that the planted clique problem ishard, even finding asingle (α, β)-cluster is
computational hard. Interestingly, our notion of communities in social networks obtained via direct lifting
is quite similar to the notion of(α, β)-clusters, with the only difference that we bound the total amount of
votes a member may cast.2 This twist seems to be essential to obtain only a polynomial number of such
communities and to be able to enumerate them in polynomial time.

Related Work Problems of clustering or grouping data (based on network orpairwise similarity information
or ranked data) have been extensively studied in many different fields. The classic goals have been to produce
either a partition or a hierarchal clustering of the data [10, 6, 4, 8, 5, 13]. With the rise of online social
networks, there has been significant recent interest in identifying overlapping clusters, or communities, in
networks ranging from professional contact networks to citation networks to product-purchasing networks,
with many heuristics and optimization criteria being proposed [14, 15, 19, 16, 17, 12]. However, much of this
work has disallowed natural communities such as those containing highly popular nodes [21, 22, 14, 15] or
not given general guarantees on the number or computation time needed to find all overlapping communities
meeting natural criteria [7, 16, 17, 12]. By contrast, our new formalization leads to natural communities and
efficient algorithms for identifying all such communities.Additionally, our model allows us to deal with
asymmetries in the input in a very natural way.

Independently, in recent work [3] consider several assumptions (that are between worst case and average
case) concerning community structure and provide efficientalgorithms in these settings. Remarkably, while
their setting is somewhat different from ours some of their algorithms are similar in spirit.

2 Preliminaries and Notation

In our most basic model, we consider an affinity system withn membersV = {1, ..., n} and assume
that each memberi ∈ V states a strict rankingπi of all members in the order of her preferences. Let
Π = {π1, . . . , πn}. For t > 0, S ⊆ V , i ∈ V we denote byvtS(i) the number of members inS that placei
among the topmostt elements of their preference list. That isvtS(i) = |{s ∈ S|i ∈ πs(1 : t)}| . For θ > 0,

we letφθS(i) := v
⌈θ|S|⌉
S (i). We define a natural notion of self-determined community as follows:

2For example, for the direct lifting ofG, the notion of the community we obtain is as follows:S is a(θ, α, β)-self-determined
community inG if every i ∈ S receives at leastα|S| collective vote and everyone not inS receives at mostβ|S| collective vote.
If G is unweighted,(i, j) ∈ E, i ∈ S, anddi is the out-degree ofi, then one way to set up the affinity system is to leti contribute
min(1, θ|S|/di) to the collective vote ofj.

5

Definition 1 Given three positive parametersθ, α, β, whereβ < α ≤ 1 and an affinity system(V,Π) we
say that a subsetS of V is an (θ, α, β) self-determinedcommunity with respect to(V,Π) if we have both

(1) For all i ∈ S, φθS(i) ≥ α |S|.

(2) For all j 6∈ S, φθS(j) ≤ β |S|.

Throughout the paper, we will denote byγ = α − β. Fixing θ, we say that “i votes forj with respect to a
subsetS” if j ∈ πi(1 : ⌈θ |S|⌉). WhenS is clear from the context we say thati votes forj.

Note that communitiesmay overlap. As a simple example, assume we have two setsA1 andA2 of sizen/2
with n/8 nodes in common (representing, say, researchers in Algorithms and researchers in Complexity).
Assume each node inAi \ Aj ranks first the nodes inAi and then the nodes inAj and that each node in
Ai ∩Aj ranks the nodes inAi ∪Aj arbitrarily. Then eachAi is a(1, 3/4, 1/4) self-determined community.

We also consider (more general) weighted affinity systems, where the preferences of each memberi involve
numerical weightings (degrees of affinity) rather than justan ordinal ranking. A weighted affinity system is
expressed asA = {V, a1, ..., an}, whereai is an-dimensional vectorai = (ai,1, ..., ai,n) and0 ≤ ai,j ≤ 1
specifies the degree of affinity thati has forj. For example,i may give her top-ranked node a weight of1,
she might have a tie between its second and third-ranked nodes giving both a weight of0.7, and so on. If
memberi chooses not to vote for a given node, this can be modeled by giving that node a weight of0.

We can naturally extend our notion of(θ, α, β)-self-determined communities to weighted affinity systems.
In the definition of voting, the only requirement is that members are only allowed to cast votes up to a total
weight ofθt when voting for a community of sizet. For example, to evaluate whether a subsetS is a good
community, each members ∈ S casts a weighted vote as follows:s determines a prefix of the weights
(sorted from highest to lowest) of total valueθ|S| and zeros out the rest. If there are ties at the boundary, a
natural conversion is to scale down the weights of those nodes just at the boundary to make the sum exactly
equal toθ|S|. In general, we denote the resulting vector (after capping the amount of vote a member casts

when voting for a community of sizet) asaθ|S|s . The amount of the weight that memberi ∈ V receives from
S is aθS(i) =

∑

s∈S a
θ|S|
s,i . Given these, we can define an (θ, α, β) weighted self-determinedcommunity as

follows:

Definition 2 Givenθ, α, β ≥ 0, β < α ≤ 1 and an weighted affinity system(V,A) we say that a subsetS
of V is an (θ, α, β) weighted self-determinedcommunity with respect to(V,A) if we have both

(1) For all i ∈ S, aθS(i) ≥ α |S|.

(2) For all j 6∈ S, aθS(j) ≤ β |S|.

We note that given an (weighted) affinity system and a setS we cantest in time polynomial inn whether
a proposed setS is a (θ, α, β)-self-determined community or not. Also, fixing a(θ, α, β)-self-determined
communityS, one can easily show that there exists a multisetU of sizek(γ) = 2 log (4n)/γ2 such that the
set of elementsi voted by at least a(α − γ/2) fraction ofU (or in the weighted case, the set of elementsi
receiving(α−γ/2)|U | total vote fromU) is identical toS. This then implies a very simple quasi-polynomial
procedure for finding all self-determined communities, as well as annO(logn/γ2) upper bound on the number
of (θ, α, β)-self-determined communities. (See Appendix A.1 for details).

6

In this paper we present amulti-stageapproach for finding an unknown community in an affinity system that
provides much better guarantees for interesting settings of the parameters. At a generic level, this algorithm
takes as input informationI about an unknown communityS and outputs a listL of subsets ofV s.t. if
information I is correct with respect toS, then with high probabilityL containsS. This algorithm has
two main steps: it first generates a listL1 of setsS1 s.t. at least one of the elements inL1 is a rough
approximation toS in the sense thatS1 nearly containsS and it is not much larger thanS. In the second
step, it runs a purification procedure to generate a listL that containsS. (See Algorithm 1.) Both steps
have to be done with care by exploiting properties of self-determined communities and we will describe
in detail in the following sections ways to implement both steps of this generic scheme. We also discuss
how to adapt this scheme for outputting a self-determined community in a local manner, for enumerating all
self-determined communities, as well as extensions to multi-facet affinity systems and applications of our
analysis to social networks.

Algorithm 1 A generic algorithm for identifying an unknown communityS
Input: Preference system(V,Π), informationI about an unknown communityS.

(1) Using informationI to generate a listL1 of setsS1 s.t. at least one of the elements inL1 is a rough
approximation toS.

(2) Run a purification procedure to generate a listL s.t. at least one of the elements inL is identical toS.

(3) Remove from the listL all the sets that are not self-determined communities.

Output: List of self-determined communitiesL.

3 Finding Self-determined Communities

In this section we show how to instantiate the generic Algorithm 1 if the information we are given about the
unknown communityS is its size and the parametersθ, α, andβ. We show that this leads to a polynomial
time algorithm in the case whereθ, α, andβ are constant. We start with a structural result showing thatfor
any self-determined communityS there exist a small number of community members s.t. the union of their
votes contains almost allS.

Lemma 1 Let S be a(θ, α, β)-self-determined community. Letγ = α − β, M = log (16/γ)/α. There
exists a setU , |U | ≤M s.t. the setS1 = {i ∈ V |∃s ∈ U, i ∈ πs(1 : θ|S|)} satisfies|S \ S1| ≤ (γ/16)|S|.

Proof: Note that any subset̃S of S receives a total of at leastα|S̃||S| votes from elements ofS, which
implies that for any such̃S there existsiS̃ ∈ S that votes for at leastα|S̃| members of̃S. Given this, we find
the desired elementsi1, . . . , iM ∈ S greedily one by one. Formally, letS1 = S. Let i1 ∈ S be an element
that votes for at least aα|S1| elements inS1. Let S2 be the setS minus the set of elements voted byi1. In
general, at stepl ≥ 2, there existsil ∈ S that votes by at least aα fraction ofSl. Let Sl+1 be the setSl
minus the set of elements voted byil. We clearly have|Si+1| ≤ (1 − α)i|S1|, so|SM+1| ≤ (γ/16)|S1| for
M = log (16/γ)/α. By construction the setU = {i1, . . . , iM ∈ S} satisfies the desired condition.

Given Lemma 1, we can use the following procedure for generating a list that contains a rough approxima-
tion toS which covers at least a1− γ/16 fraction ofS and whose size is at mostlog (16/γ)|S|.

7

Algorithm 2 Generate rough approximations
Input: Preference system(V,Π), informationI (parametersθ, α, β, sizet).

• SetL = ∅, γ = α− β, k1(θ, α, γ) = log (16/γ)/α.

• Exhaustively search over all subsetsU of V of sizek1(θ, α, γ); for each setU add to the listL the set
S1 ⊆ V of points voted by at least an element inU (i.e.,S1 = {i ∈ V |∃s ∈ U, i ∈ πs(1 : θt)}).

Output: List of setsL.

We now describe a lemma that will be useful for analyzing the purification step, suggesting how we convert
a rough approximation toS into a list of candidate much-closer approximations toS.

Lemma 2 Fix a (θ, α, β)-self-determined communityS. Letγ = α− β, t = |S|, andS1 ⊆ V , |S1| =Mθt
s.t. |S \ S1| ≤ γt/16. Let U be a set ofk points drawn uniformly at random from̃S = S ∩ S1. Let
S2 be the subset of points inS1 that are voted by at least anα − γ/2 fraction of nodes inU , i.e.,S2 =
{i ∈ S1|vθtU (i) ≥ (α − γ/2)|U |}. If k = 8 log(32θM/δγ)/γ2, then with probability≥ 1 − δ, we have the
symmetric difference|∆(S2, S)| ≤ γt/8.

Proof: We start by showing that the points iñS are voted by at least aγ/2 larger fraction ofS̃ than the
points inS1 \ S̃. Let i ∈ S̃. SinceS is (θ, α, β)-self-determined, at leastαt points inS vote fori and since
|S \ S̃| ≤ γt/16 we get that at least(α− γ/16)t points inS̃ vote fori. Since|S̃| ≤ t, we obtain that at least
aα− γ/16 fraction of points inS̃ vote fori. Let j be a point inS1 \S. We know that at mostβt points inS̃
vote forj and since|S̃| ≥ (1− γ/16)t, we have that at most aα− 3γ/4 fraction of points inS̃ vote forj.

Fix i ∈ S1. By Hoeffding’s inequality, sinceU is a set of8 log(32θM/δγ)/γ2 points drawn uniformly at
random fromS̃ we have that with probability at least1 − γδ/(16θM) the fraction of points iñS that vote
for i is within γ/4 of the fraction of points inU that vote fori. These together with the above observations
imply that the expected size of|∆(S2, S̃)| is (γδ/(16θM))θMt = γδt/16. By Markov’s inequality we
obtain that there is at most aδ chance that|∆(S2, S̃)| ≥ γt/16. Using the fact|S̃ \ S| ≤ γt/16 we finally
get that with probability1− δ we have|∆(S2, S)| ≤ γt/8.

Algorithm 3 Purification procedure
Input: Preference system(V,Π), informationI (parametersθ, α, β, γ, k2(θ, α, γ), N2(θ, α, γ), sizet), list
of rough approximationsL1.

• For each elementS1 ∈ L1, repeatN2(θ, α, γ) times

• Sample a setU2 of k2(θ, α, γ) points at random fromS1. LetS2 = {i ∈ S1|vθtU2
(i) ≥ (α−γ/2)|U2|}.

• Let S3 = {i ∈ V |vθtS2
(i) ≥ (α− γ/2)|S2|}. AddS3 to the listL.

Output: List of setsL.

We now show how Lemmas 1 and 2 can be used to identify and enumerate communities.

Theorem 1 Fix a (θ, α, β)-self-determined communityS. Let γ = α − β, k1(θ, α, γ) = log (16/γ)/α,

k2(θ, α, γ) =
8
γ2

log
(

32θk1
γδ

)

, N2(θ, α, γ) = O((θk1)
k2 log (1/δ)). Using Algorithm 2 together with Algo-

8

rithm 3 for steps (1) and (2) of Algorithm 1, we have that with probability ≥ 1− δ one of the elements in the
list L we output isidenticalto S.

Proof: Since when running Algorithm 2 we search over all subsets ofU of V of size k1(θ, α, γ), by
Lemma 1 in one of the rounds we find a setU s.t. the set of pointsS1 that are voted by at least an element
in U cover a1− γ/16 fraction ofS. So,L1 contains a rough approximation toS.

Since|S| = t,U2 is a set ofk2 elements drawn at random from̃S = S∩S1 with probability≥ (t/(2tθk1))
k2 .

Therefore forN2 = O((2θk1)
k2 log(1/δ)), with probability≥ 1 − δ/2 in one of the rounds the setU2 is a

set ofk2 elements drawn at random from̃S. In such a round, by Lemma 2, with probability≥ 1 − δ/2 we
get a setS2 such that|∆(S2, S)| ≤ γt/8. A simple calculation shows thatS3 = S.

Corollary 1 The number of(θ, α, β)-self-determined communities in an affinity system(V,Π) satisfies

B(n) = nO(log (1/γ)/α)
(

θ log (1/γ)
α

)O
(

1
γ2

log
(

θ log (1/γ)
αγ

))

and with probability≥ 1 − 1/n we can find all

of them in timeB(n)poly(n).

We note that Theorem 1 and Corollary 1 apply even if some nodesdo not list all members ofV in their
preference lists, and then some nodes in a communityS have fewer thanθ|S| votes in total. Ifθ, α, andβ
are constant, then Corollary 1 shows that the number of communities isO

(

nlog (1/γ)/α
)

which ispolynomial
in n and they can be found in polynomial time. We can show that the dependence onn1/α is necessary:

Theorem 2 For any constantθ ≥ 1, for anyα ≥ 2
√
θ/n1/4, there exists an instance such that the number

of (θ, α, β)-self-determined communities withα− β = γ = α/2 is nΩ(1/α).

PROOF SKETCH: ConsiderL =
√
n blobsB1, ...,BL each of size

√
n. Assume that each point ranks the

points inside its blob first (in an arbitrary order) and it then ranks the points outside its blob randomly. One
can show that with non-zero probability forl ≤ n1/4/(2

√
θ) any union ofl blobs satisfies the(θ, α, β)-self-

stability property with parametersα = 1/l andγ = α/2. Full details appear in Appendix A.1.

3.1 Self-determined Communities in Weighted Affinity Systems

We provide here a simple efficient reduction from the weighted case to the non-weighted case.

Theorem 3 Given a weighted affinity system(V,A), θ, α, β, ǫ < α, and a community sizet, there is an
efficient procedure that constructs a non-weighted instance (V ′,Π) along with a mappingf from V ′ to V ,
s.t. for any(θ, α, β) communityS in V there exists a(θ, α− ǫ, β) communityS′ in (V ′,Π) with f(S′) = S.

Proof: Given the original weighted instance(V,A), we construct a non-weighted instance(V ′,Π) as fol-
lows. For eachs ∈ V , we create a blobBs of k nodes inV ′. For anys, s̃ ∈ V , if p is the weightaθts,s̃ with
which s votes fors̃, we connectBs toBs̃ with Gk,k,⌊pk⌋, whereGk,k,⌊pk⌋ is a bipartite graph withk nodes
on the left andk nodes on the right such that each edge on the left has out-degree⌊pk⌋ and each node on the
right has in-degree⌊pk⌋. Clearly all nodes inV ′ rank at mostk|S|θ other nodes (and do not have an opinion
about the rest). Letk = 1/ǫ. Consider a communityS in (V,A). For anys ∈ S and for each node ini ∈ Bs
the total vote from nodes inBs̃ for s̃ ∈ S (when evaluating whether∪s̃∈SBs̃ is a good community or not)

9

is at leastα|S|k − |S| ≥ k|S|(α − ǫ). Moreover, fors /∈ S and for each node inBs we have the total vote
from the nodes inBs̃ for s̃ ∈ S is at mostβ|S|k. Therefore∪s̃∈SBs̃ is a legal(θ, α− ǫ, β)-self-determined
community of sizekt in the non-weighted instance(V ′,A).

Using this reduction we immediately get the following result:

Theorem 4 For anyθ, α, β, γ = α − β, the number of weighted(θ, α, β)-self-determined communities is

B(n) = (n/γ)O(log (1/γ)/α)
(

2θ log (1/γ)
α

)O
(

1
γ2

log
(

θ log (1/γ)
αγ

))

and we can find them in timeB(n)poly(n).

Proof: We perform the reduction in Theorem 3 withǫ = γ/2 and use the algorithm in Theorem 1 and the
bound in Corollary 1. The proof follows from the fact that thenumber of vertices in the new instance has
increased by only a factor of2/γ. We also note that each set output on the reduced instance canthen be
examined on the original weighted affinity system, and kept iff it satisfies the community definition with
original parameters.

3.2 Self-determined Communities in Multi-faceted Affinity Systems

A multi-faceted affinity system is a system where each node may have more than one rankings of other
nodes. Suppose that each elementi is allowed to have at mostf different rankingsπ1i , . . . , π

f
i . We say

that the pair(S,ψ) is a multi-faceted community whereψ : S → {1, . . . , f}, if S is a community where
ψ(i) specifies which ranking facet should be used by elementi. In other words, as before, letφθS,ψ(i) :=

|{s ∈ S|i ∈ π
ψ(s)
s (1 : ⌈θ|S|⌉)}|. Then (S,ψ) is a (α, β, θ)-multifaceted community if for alli ∈ S,

φθS,ψ(i) ≥ α|S|, and for allj /∈ S, φθS,ψ(j) < β|S|.
We show that for a boundedf , even though there may be exponentially many functionsψ, it is not harder
to find multifaceted communities than to find regular communities. Note that all our sampling algorithms
can be adapted as follows. Once a representative sample{i1, . . . , ik} of the communityS is obtained, we
can guess the facetsψ(i1), . . . , ψ(ik) while adding a multiplicativefk factor to the running time. We can
thus get the setS2 approximatingS in the same way as it is found in Algorithms 2 and 3 while adding
a multiplicative factor offk1+k2 to the running time. We thus obtain a listL that for each multi-faceted
community(S,ψ) contains a setS2 such that∆(S2, S) < γt/8. GivenS2 we can outputS with probability
> f−8 logn/γ2/2: guess a setU2 of m = 8 log n/γ2 points inS2; guess a functionψ2 onU2; outputS = the
set of points that receive at least(α− γ/2)t votes according to(U2, ψ2). Moreover, a facet structureψ′ can
be recovered onS so that(S,ψ′) is an(α− γ/4, β + γ/4, θ)-multifaceted community using a combination
of linear programming and sampling. Details appear in Appendix A.3.

Theorem 5 LetS be anf -faceted(α, β, θ)-community. Then there is an algorithm that runs inO(n2) time
and outputsS, as well as a facet structureψ′ onS such that(S,ψ′) is an(α−γ/4, β+γ/4, θ)-multifaceted

community with probability≥ (f · n)−O(log (1/γ)/α)
(

f ·θ log (1/γ)
α

)−O
(

1
γ2

log
(

θ log (1/γ)
αγ

))

f−O(logn/γ2).

4 A Local Algorithm for Finding Self-determined Communitie s

In this section we describe a local algorithm for finding a community. Given a single elementv and the
target community sizet, the goal of the algorithm is to output a communityS of sizet containingv. Let us

10

fix a target communityS that we are trying to uncover this way.

We note that we needα > 1/2 for a local algorithm that uses only one seed to succeed. Ifα ≤ 1/2 then one
may have a valid(θ, α, β)-community that is comprised of two disjoint cliques of vertices. In this case, no
local algorithm that starts with just one vertex as a seed mayuncoverbothcliques, however we can extend
the construction below if we start withO(1/α) seeds. Below, we focus on providing a local algorithm for
α > 1/2. Our local algorithm will follow the structure of the generic Algorithm 1. The main technical
challenge is to provide a local procedure for producing rough approximations. In general, it is not possible
to do so starting fromany seed vertexv ∈ S. For example, ifv is a super-popular vertex that is voted
first by everyonein V , thenv will belong to all communities includingS, butv would contain no “special
information” that would allow one to identifyS. However, we will show thata constant fractionof the
nodes inS are sufficiently “representative” ofS to enable one to recoverS.

Let us fix t andθ. For an elementv, we letR(v) be a uniformly random element which receivesv’s vote
with these parameters. In other words,R(v) := uniform element ofπv(1 : θ · t). We start with the main
technical claim that enables a local procedure for producing rough approximations.

Lemma 3 LetS be any(θ, α, β)-community of sizet. Letη := 2α − 1 > 0. Then there is a subsetT ⊆ S

such that|T | ≥ ηt and for each pairv ∈ T andu ∈ S, we havePr[R(R(v)) = u] ≥ (α−1/2)/θ2

t .

Proof: For each elementv ∈ S denote byOS(v) := πv(1 : θ · t) ∩ S – the elements ofS thatv votes for,
and byIS(v) := {u ∈ S : v ∈ πu(1 : θ · t)} – the elements ofS that vote forv. By the community property
we know that|IS(v)| ≥ αt for all v ∈ S. Observe that

∑

v∈S
|OS(v)| =

∑

v∈S
|IS(v)| ≥ αt2.

Hence at least anη-fraction of v’s in S must satisfy|OS(v)| ≥ t/2, whereη = 2α − 1. Let T :=
{v : |OS(v)| ≥ t/2} ⊆ S. For anyv ∈ T and anyu ∈ S, we have

|OS(v) ∩ IS(u)| ≥ |OS(v)|+ |IS(u)| − t ≥ (α− 1/2) · t.

To finish the proof note that

Pr[R(R(v)) = u] ≥ Pr[R(v) ∈ OS(v) ∩ IS(u)] ·
1

θ · t ≥
(α− 1/2) · t

θ · t · 1

θ · t =
(α− 1/2)/θ2

t
.

We call any vertexv in the setT in Lemma 3 a “good seed vertex” forS. Lemma 3 suggests a natural
procedure (Algorithm 4) for generating a rough approximation in a local way given a good seed vertex.

Algorithm 4 Generate rough approximations
Input: Preference system(V,Π), informationI (parametersθ, α, β, γ, vertexv, sizet).

• SetS1 =
{

u : Pr[u = R(R(v))] ≥ (α−1/2)/θ2

t

}

.

Output: List of setsL = {S1}.

11

Theorem 6 Assumeα > 1/2. Letk2(θ, α, γ) = O
(

log(θ/δγ(α−1/2))
γ2

)

,N2(θ, α, γ) =
(

θ2

α−1/2

)k2(θ,α,γ)
log(1/δ).

Assumingv is a good seed element for a communityS, then by using Algorithm 4 together with Algorithm 3
for steps (1) and (2) of Algorithm 1, we have that with probability ≥ 1− δ we will outputS.

Proof: It is enough to show that each iteration of the purification algorithm (Algorithm 3) has a probability

≥
(

α−1/2
θ2

)k2
to outputS. Sincev is a good seed element ofS, the setS1 produced by Algorithm 4 must

containS. It is easy to see that|S1| ≤ tθ2/(α − 1/2). Thus, applying Lemma 2 withM = θ/(α − 1/2)
we see that if the points ofU2 are drawn uniformly fromS, then with high probabilityS2 is γ/8-close toS,
andS3 = S. Since conditioned onU2 ⊆ S, U2 is uniform inS, our probability of success is given by the

probability thatU2 ⊆ S, which is equal to
(

|S|
|S1|

)k2 ≥
(

α−1/2
θ2

)k2
, which completes the proof.

Note that whenα > 1/2, β, andθ are constants, the purification procedure will run in a constant number of
iterations. Our main result of this section is the following:

Theorem 7 Supposeα > 1/2. Assumeα, β, θ, andδ are constants. Ifv is chosen uniformly at random
fromS, then with probability at least(2α − 1)(1 − δ) we can findS in timeO(t log t).

Proof: First, by Lemma 3, with probability at least2α − 1, elementv is such that for allu ∈ S, we

havePr[R(R(v)) = u] ≥ α−1/2
θ2t

. We now implement Algorithm 4 by performing
(

8θ2t
α−1/2

)

log(2t/δ)

random draws fromR(R(v)) and lettingS1 be the set of pointsu hit at least4 log(2t/δ) times. By Chernoff
bounds, for eachu ∈ S, we have includedu in S1 with probability at least1 − e−8 log(2t/δ)/8 = 1 −
δ/(2t), so with probability at least1 − δ/2 we haveS1 ⊇ S. Furthermore, since we only include points

hit at least4 log(2t/δ) times, we have|S1| ≤
(

2θ2t
α−1/2

)

. Thus, the analysis in Theorem 3 implies that

the purification step (Algorithm 3) will succeed with probability at least 1 − δ/2 for a choice ofN2 =
(

2θ2

α−1/2

)k2(θ,α,γ)
log(2/δ). Putting these together yields the desired success probability. Furthermore, since

α, β, θ, δ are constants, the overall time isO(t log t).

It is not hard to see that the algorithm in Theorem 6 will work even if t is given to it only up to some small
multiplicative error. As a corollary of Theorem 6, we see that the number of communities is actually linear
and we can find all of them in quasilinear time.

Theorem 8 Suppose thatα > 1/2. The total number of(θ, α, β)-self-determined communities is bounded

byO

(

n · 1
min(γ,1/2−α) ·

(

θ2

α−1/2

)O
(

log(θ/δγ(α−1/2))

γ2

)
)

, which isO(n) if α, β, andθ are constants.

Proof: It is easy to see that executing the Algorithm in Theorem 7 where we only do one iteration of the
purification step (i.e., of Algorithm 3) with inputst′ ∈ ((1 − ε)t, (1 + ε)t), α′ = α − 4ε, β′ = β + 4ε,
θ′ = θ(1 + ε), and an appropriate seed vertexv ∈ S will lead to a discovery of an(θ, α, β)-community

of size |S| = t with probability ≥ p :=
(

α−1/2
θ2

)k2(θ,α,γ)
, as long asε is sufficiently small. Here it is

enough to takeε = min(γ, α − 1/2)/100. Thus a pair(v, t′), wherev is a vertex andt′ is the target size
corresponds to at most1/p distinct communities. Moreover, each communityS of size t corresponds to
more thant(2α − 1)/2 such pairs. Sincet′ needs only to be within a multiplicative(1 + ε) from t, we can
always selectt′ from the set of values{(1+ε)i : i = 0, 1, . . . , ⌈log1+ε n⌉}. For each valuet′, the number of

12

communities of size betweent′ andt′(1 + ε) is thus bounded by the number of possible pairs(t′, v) (= n),
times1/p and divided byt′(2α − 1)/2:

#{communities of size betweent′ andt′(1 + ε)} ≤ n

t′
· 1/p

(2α− 1)/2
.

Summing over the possible values oft′ we obtain the upper bound:

n · 2

ε(2α − 1)
·
(

θ2

α− 1/2

)k2(θ,α,γ)

,

which leads to the bound in the statement of the theorem.

Note: We can extend our local approach to weighted and multi-faceted affinity systems. See Appendix A.4.

4.1 An Alternative Non-local Algorithm

The analysis in this section suggests an alternative way forgenerating rough approximations in the non-local
model which leads to an algorithm that provides asymptotically better bounds than Theorem 1 in interesting
cases, in particular whenθ, α, andγ are constants and there is a large gap betweenα andγ. This leads to
an improved polynomial bound ofnO(log(1/α)/α) on the number of(θ, α, β)-self-determined communities
whenθ, α, andγ are constants using Algorithm 5:

Algorithm 5 Generate rough approximations
Input: Preference system(V,Π), informationI (parametersθ, α, β, sizet).

• SetL = ∅; γ = β − α.

• Exhaustively search over all subsetsU0 of V of size⌈(log 1/α)/α⌉ + 1; for eachU0 to theL the set

S1 :=
{

x :
∑

y∈U0
Pr[x = R(R(y))] ≥ α

2θ2t

}

.

Output: List of setsL.

Theorem 9 Fix a (θ, α, β)-self-determined communityS. Letγ = α − β, k1(θ, α, γ) = O (log (1/α)/α),

k2(θ, α, γ) = O
(

1
γ2

log
(

θk1
γδ

))

, N2(θ, α, γ) = O((θ2/α3)
k2 log (1/δ)). Using Algorithm 5 together with

Algorithm 3 for steps (1) and (2) of Algorithm 1, then with probability ≥ 1 − δ one of the elements in the
list L we output isidenticalto S.

PROOF SKETCH: By using a reasoning similar to the one in Lemma 2 we can show that there exist a set
U0 of ⌈(log 1/α)/α⌉ + 1 points such that the subsetU1 of points voted by at least a member inU0 contains
≥ 1 − α/2 fraction ofS. We show in the following that the corresponding setS1 indeed coversS. Fix a
vertexx ∈ S. We need to show that

∑

y∈U0

Pr[x = R(R(y))] ≥ α

2θ2t
.

LetQ ⊆ S be the set of elements that vote forx. We know that|Q| ≥ αt, sincex ∈ S. Thus

|U1 ∩Q| ≥ |U1|+ |Q| − |S| > αt/2.

13

Eachz ∈ U1 ∩Q contributes at least1/θ2t2 to the sum
∑

y∈U0
Pr[x = R(R(y))]. Thus this sum is at least

(αt/2) · (1/θ2t2) = α/(2θ2t). Hencex ∈ S1, as required. Moreover, by observing that

∑

x

∑

y∈U0

Pr[x = R(R(y))] =
∑

y∈U0

∑

x

Pr[x = R(R(y))] < 1/α2,

we obtain|S1| < 2θ2t
α3 .

Since when running Algorithm 5 we exhaustively search over all subsets ofU1 of V of sizek1(θ, α, γ), in
one of the rounds we find a setU1 s.t. |S1| < 2θ2t

α3 , S ⊆ S1. So,L1 contains a rough approximation toS.
Finally, using a reasoning similar to the one in Theorem 1 we get the desired conclusion.

Theorem 9 gives asymptotically better bounds than Theorem 1whenN1 = nk1(θ,α,γ) is the dominant term
in the bound (e.g., whenθ, α, andγ are constants) and especially when there is a large gap betweenα and
γ – sincek1 is reduced fromlog(16/γ)/α to ⌈log(1/α)/α⌉ + 1. On the other hand, Theorem 9 has worse
dependence onθ andα in N2, so for certain parameter settings, Theorem 1 can be preferable especially if
one optimizes the constants in Lemmas 1 and 2 based on the given parameters.

5 Self-determined Communities in Social Networks

In this section we present a natural notion of self-determined communities in social networks and discuss
how our analysis sheds light on the notion of(α, β)-clusters [16, 17, 12]. We assume that the input is a
directed graphG = (V,E) and for a vertexi we denote bydi its out-degree. As discussed in Section 1,
given a social network we can consider the affinity system induced by direct lifting and then consider self-
determined communities in that affinity system. This leads to the following very natural notion:

Definition 3 LetG = (V,E) be a directed graph and letθ, α, β ≥ 0 with β < α ≤ 1. Consider the affinity
system(V, a1, . . . , an) whereai,j = wi,j if (i, j) ∈ E andai,j = 0 otherwise. A subsetS ⊆ V is a (θ, α, β)
self-determined community inG if it is a (θ, α, β) weighted self-determined community in(V, a1, . . . , an).

Note that when evaluating a community of sizet each nodei is allowed a total vote of at mostθt. One
natural way to achieve this is to only fractionally count edges from high-degree nodesi, giving them weight
min(θt/di, 1) when evaluating a community of sizet in the induced weighted affinity system.

The community notion introduced in [16, 17] is as follows:

Definition 4 Letα, β with β < α ≤ 1 be two positive parameters. Given an undirected graph,G = (V,E),
where every vertex has a self-loop, a subsetS ⊆ V is an(α, β)-cluster ifS is:

(1) Internally Dense:∀i ∈ S, |E(i, S)| ≥ α|S|.

(2) Externally Sparse:∀i /∈ S, |E(i, S)| ≤ β|S|.

The(α, β)-cluster notion resembles our community notion in Definition 3. In particular, in the case where
the graph is undirected, Definition 3 is similar to Definition4, except that in the case of our Definition 3
each nodei is allowed a total vote of at mostθt. As discussed above one way to achieve this is to only
fractionally count edges from high-degree nodesi, giving them weightmin(θ|S|/di, 1). This distinction is

14

crucial for getting polynomial time algorithms. From our results in the previous sections we have that every
graph has only a polynomial number of communities satisfying Definition 3 and moreover, we can find all
of them in polynomial time. In contrast, as we show, there exist graphs with a superpolynomial number of
(α, β)-clusters.

Theorem 10 For any constantǫ,α = 1,α−β = 1/2−ǫ, there exist instances withnΩ(logn) (α, β)-clusters.

Proof: Consider the graphGn,p with p = 1/2l. Consider all
(

n
k

)

sets of sizek = 2 logn
l (1− δ), whereδ is a

constant (determined later). For each such setS, the probability it is a clique is

p(
k
2) ≥ (1/2)ℓk

2/2 = (1/2)2 log
2 n(1−δ)2/ℓ = n−k(1−δ).

We now want to show that conditioned onS being a clique, it is also an(α, β)-cluster with probability at
least1/2. This will imply that theexpectednumber of(α, β)-clusters is at least

0.5

(

n

k

)

n−k(1−δ) = nΩ(logn).

Fix such set of sizek = 2 logn
l (1 − δ). The probability that a node outside is connected to more than a

(1/2 + ǫ)-fraction of the set is upper bounded by

2k
(

1

2l

)
k
2
(1+ǫ)

≤ n
2
l 2−

lk
2
(1+ǫ) = n

2
l n−(1+ǫ)(1−δ).

By imposing2
l − (1 + ǫ)(1− δ) < −1 + logn(2), we get that this probability is upper bounded by1/(2n).

So by union bound over all nodes we then get the desired result. We need to impose(1 + ǫ)(1 − δ) − 2
l >

1 + logn(2). This is true forδ ≤ ǫ/4 andl > 12/ǫ andn large enough.

We note that for certain range of parameters our bounds in Theorem 13 this improves over the general upper
bound given in [16, 17]. Moreover, we show that even in graphswith only one(α, β)-cluster, we show that
finding this cluster is at least as hard solving theplanted clique problemfor planted cliques of sizeO(log n),
which is believed to be hard (see, e.g., Hazan and Krauthgamer [11]).

The Hidden Clique Problem: In this problem, the input is a graph on n vertices drawn at random from the
following distributionGn,1/2,k pick a random graph fromGn,1/2 and plant in it a clique of sizek = k(n).
The goal is to recover the planted clique (in polynomial time), with probability at least (say)1/2 over the
input distribution. The clique is hidden in the sense that its location is adversarial and not known to the
algorithm. The hidden clique problem becomes only easier ask gets larger, and the best polynomial-time
algorithm to date [1], solves the problem wheneverk = Ω(

√
n). Finding a hidden clique fork = c log n for

anyc is believed to be hard. The decision version of this problem is also believed to be hard.

We begin with a simpler result that finding theapproximately-largest(α, β)-cluster is at least as hard as the
hidden clique problem.

Theorem 11 Suppose that forα = 1 andβ − α = 1/4, there was an algorithm that for some constant
c could find an(α, β)-cluster of size at leastMAX/c, whereMAX is size of the largest community with
those parameters. Then, that algorithm could be used to distinguish (1) a random graphGn,1/2 from (2) a
random graphGn,1/2 in which a clique of size2c log2(n) has been planted.

15

Proof: We can show that with probability at least1− 1/n the largest clique inGn,1/2 largest clique has size
2 log(n), which implies the largest(α, β) cluster (withα = 1 andβ − α = 1/4) has size atmost2 log(n).
On the other hand we can also show that with probability at least 1− 1/n, for c ≥ 8 ln 2 the planted clique
of size2c log2(n) is a cluster with these parameters. Thus, under the assumptionthat distinguishing these
two cases is hard, the problem of finding the approximately-largest(α, β)-cluster is hard.

We now show that in fact, even finding a single(α, β)-cluster is as hard as the hidden clique problem. Here,
instead ofGn,1/2 we will useGn,p for constantp > 1/2. Note that the hidden clique problem remains hard
in this setting as well.3

Theorem 12 For sufficiently small (constant)γ andǫ, with probability at least1 − 3/n, we have that: (1)
the graphGn,1−γ−ǫ has no(1, 1−γ) clusters; and (2) a hidden clique of size1ǫ2 log n is an(1, 1−γ) cluster.
Therefore, finding even one such cluster is as hard as the hidden clique problem.

Proof: ConsiderGn,p for p = 1− γ − ǫ. We start by showing that with probability at least1− 1/n the size
of the largest clique is at most−2 lnn

ln(1−γ−ǫ) . For anyk, the probability that there exists a clique of sizek is at
most

(

n

k

)

p(
k
2) ≤ nk

k!
pk

2/2p−k/2.

Fork = −2 lnn
ln(1−γ−ǫ) = −2 logp n, this is

p−k/2

k!
n−2 logp np2(logp n)

2
=
p−k/2

k!
=
n

k!
= o(

1

n
).

This immediately implies that with probability at least1−1/n,Gn,p does not contains any(1, 1−γ) clusters
of size greater than−2 lnn

ln(1−γ−ǫ) .

We now show that with probability at least1 − 1/n, Gn,p does not contain any(1, 1 − γ) clusters of size
≤ −2 lnn

ln(1−γ−ǫ) . For this, we will show that for any setS of size≤ −2 lnn
ln(1−γ−ǫ) and any nodev not in S, the

probability thatv connects to at least(1 − γ)|S| nodes insideS is at least1/
√
n. Because these events are

independent over the different nodesv, this implies that the probability that no nodev outsideS connects

to at least(1 − γ)|S| nodes insideS is at most
(

1− 1√
n

)n−k
≤ e−

√
n/2. By union bound over all setsS

of size at most −2 lnn
ln(1−γ−ǫ) , this will imply that the probability there exits a(1, 1 − γ) cluster of size at most

−2 lnn
ln(1−γ−ǫ) is at most1/n.

Consider a setS of sizek and a nodev outsideS. The probability thatv connects to more than(1 − γ)k
nodes insideS is at least

(

k

γk

)

(1− γ − ǫ)(1−γ)k(γ + ǫ)γk ≥ 1

k

(

(1− γ)ke

γk

)γk

(1− γ − ǫ)(1−γ)k(γ + ǫ)γk.

This follows from the fact that
(

k

γk

)

=
k(k − 1) . . . (k − γk + 1)

(γk)!
≥ ((1 − γ)k)γk

k(γk/e)γk
=

1

k

(

(1− γ)ke

γk

)γk

,

3In particular, if it were easy, then one could solve the decision version of the hidden clique problem forGn,1/2 by first adding
additional random edges and then solving the problem forGn,p. We assume here that the planted clique has size greater thanthe
largest clique that would be found inG(n, p).

16

where we use the fact that(γk)! < 2
√
2πγk(γk/e)γk < k(γk/e)γk .

So, the probability thatv connects to more than(1− γ)k nodes insideS is at least

1

k
(1− γ − ǫ)k

[

1− γ

γ
· γ + ǫ

1− γ − ǫ
e

]γk

≥ [(1− γ − ǫ)eγ]k
1

k
.

This is decreasing withk and thus it suffices to considerk = −2 lnn
ln(1−γ−ǫ) . For thisk, we get that the probability

thatv connects to more than(1− γ)k nodes insideS is at least

1

k
e−2 lnne

− 2γ lnn
ln(1−γ−ǫ) =

1

k
n
−2− 2γ

ln(1−γ−ǫ) .

We want this to be greater than1/
√
n, and thus it suffices to have−2 − 2γ

ln(1−γ) > −0.4. This holds for
γ = 0.1, ǫ = 0.01.

Finally, it is easy to show that with probability at least1 − 1/n, a hidden clique of sizek = 1
ǫ2
lnn

is a (1, 1 − γ) cluster. This follows by noticing that every vertex outsidethe clique has in expectation
k(1 − γ − ǫ) connections insides the clique, so by Hoeffding bounds, theprobability it has more than
k(1− γ− ǫ)+ ǫk = k(1− γ) neighbors inside the clique is at most1/n2. By union bound, we get that with
probability at least1− 1/n every vertex outside the clique has at mostk(1− γ) neighbors inside the clique
so the planted clique is a community as desired.

References

[1] N. Alon, M. Krivelevich, and B. Sudakov. Finding a large hidden clique in a random graph.Random
Structures Algorithms, 1998.

[2] R. Andersen, F. Chung, and K. Lang. Local graph partitioning using pagerank vectors. In47th Annual
Symposium on Foundations of Computer Science, 2006.

[3] A. Arora, T. Ge, S. Sachdeva, and G. Schoenebeck. Findingoverlapping communities in social net-
works: Toward a rigorous approach. Manuscript, 2011.

[4] M.-F. Balcan, A. Blum, and S. Vempala. A discriminative framework for clustering via similarity
functions. InProceedings of the 40th ACM Symposium on Theory of Computing, 2008.

[5] L. M. Busse, P. Orbanz, and J. M. Buhmann. Cluster analysis of heterogeneous rank data. InProceed-
ings of the 24th Annual International Conference on MachineLearning, 2007.

[6] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys. A constant-factor approximation algorithm
for the k-median problem. InProceedings of the Thirty-First Annual ACM Symposium on Theory of
Computing, 1999.

[7] W. Chen, Z. Liu, X. Sun, and Y. Wang. A game-theoretic framework to identify overlapping com-
munities in social networks.Data Mining and Knowledge Discovery Journal, special issueon ECML
PKDD, 2010.

[8] D. Cheng, R. Kannan, S. Vempala, and G. Wang. A divide-and-merge methodology for clustering. In
Proceedings of the ACM Symposium on Principles of Database Systems, 2005.

17

[9] P. Doyle and J. Snell.Random walks and electric networks. Mathematical Assoc. of America, 1984.

[10] R. Duda, P. E. Hart, and D. G. Stork.Pattern classification. Wiley, 2001.

[11] E. Hazan and R. Krauthgamer. How hard is it to approximate the best nash equilibrium.SIAM Journal
on Computing, 2011.

[12] J. He, J. E. Hopcroft, H. Liang, S. Suwajanakorn, and L. Wang. Detecting the structure of social
networks using (α, β)-communities. In8th International Conference on Algorithms and Models for
the Web-graph, 2011.

[13] K. Jain, M. Mahdian, and A. Saberi. A new greedy approachfor facility location problems. InPro-
ceedings of the 34th Annual ACM Symposium on Theory of Computing, 2002.

[14] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. Community structure in large networks: Natural
cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 2009.

[15] J. Leskovec, K. Lang, and M. Mahoney. Empirical comparison of algorithms for network community
detection. InACM WWW International conference on World Wide Web, 2010.

[16] N. Mishra, R. Schreiber, I. Stanton, and R. Tarjan. Clustering social networks. In5th International
Conference on Algorithms and Models for the Web-graph, 2007.

[17] N. Mishra, R. Schreiber, I. Stanton, and R. Tarjan. Finding strongly-knit clusters in social networks.
Internet Mathematics, 2009.

[18] G. Narasimhan and M. Smid.Geometric Spanning Networks. Cambridge University Press, 2007.

[19] M. E. J. Newman. Modularity and community structure in networks. Proceedings of the National
Academy of Sciences, 2006.

[20] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partitioning, graph sparsifica-
tion, and solving linear systems. InProceedings of the thirty-sixth annual ACM Symposium on Theory
of Computing, 2004.

[21] D. A. Spielman and S.-H. Teng. A local clustering algorithm for massive graphs and its ap-
plication to nearly-linear time graph partitioning.CoRR, abs/0809.3232, 2008. Available at
http://arxiv.org/abs/0809.3232. Submitted to SICOMP.

[22] K. Voevodski, S. Teng, and Y. Xia. Finding local communities in protein networks.BMC Bioinfor-
matics, 2009.

A Additional Proofs

A.1 Finding Self-determined Communities in Quasi-Polynomial Time

We present here a simple quasi-polynomial algorithm for enumerating all the self-determined communities.

18

Theorem 13 For any θ, α, β, γ = α − β, there arenO(logn/γ2) sets which are(θ, α, β) (weighted) self-
determined communities. All such communities can be found by using Algorithm 6 with parametersθ, α, β,
γ = α− β andk(γ) = 2 log (4n)/γ2.

Proof: Fix a (θ, α, β) (weighted) self-determined communityS. We show that there exists a multisetU of
sizek(γ) = 2 log (4n)/γ2 such that the setSU of points inV that receive at least(α− γ/2)|U | amount of
vote from points inU is identical toS. The proof follows simply by the probabilistic method. Let us fix
a pointi ∈ V . By Hoeffding, if we draw a setU of 2 log (4n)/γ2 uniformly at random fromS, then with
probability 1 − 1/(2n), the average amount of vote thati receives from points inU is within γ/2 of the
average amount of vote thati receives from points inS. By union bound, we get that with probability at
least1/2, for all points inV the average amount of vote that they receive from points inU is within γ/2 of
the average amount of vote that they receive from points inS. Using this together with the definition of a
self-determined community, we get that with probability1/2 we obtainSU = S for U of size2 log (4n)/γ2

drawn uniformly at random fromS. This then implies that there must exist a multisetU of sizek(γ) such
thatSU = S.

Since in Algorithm 6 we exhaustively search over all multisetsU (of point fromV) of sizek(γ), we clearly
get the listLwe output contains all the(θ, α, β) (weighted) self-determined communities. Moreover, clearly,
nO(logn/γ2) is an upper bound on the number of(θ, α, β) (weighted) self-determined communities.

Algorithm 6 Algorithm for enumerating self-determined communities
Input: Affinity system(V,Π), parametersθ, α, β, γ; k(γ);

• SetL = ∅.

• Exhaustively search over all multisetsU with elements fromV of sizek(γ).

• For t = 1 to n (determining the meaning of “vote for”) do:

• Let SU be the subset of points inV that receive at least(α− γ/2)|U | amount of vote from
points inU . AddSU to the listL.

• Remove from the listL all the sets that are not(θ, α, β) weighted self-determined communities.

Output: List of self-determined communitiesL.

A.2 Additional Proofs in Section 3

THEOREM 2 For any constantθ ≥ 1, for anyα ≥ 2
√
θ/n1/4, there exists an instance such that the number

of (θ, α, β)-self-determined communities withβ − α = γ = α/2 is nΩ(1/α).

Proof: ConsiderL =
√
n blobsB1, ...,BL each of size

√
n. Assume that each point ranks the points inside

its blob first (in an arbitrary order) and it then ranks the points outside its blob randomly. We claim that with
non-zero probability forl ≤ n1/4/(2

√
θ) any union ofl blobs satisfies the(θ, α, β)-self-stability property

with parametersα = 1/l andγ = α/2.

Let us fix a setS which is a union ofl blobs. Note that for each pointi in S, the expected number of points

19

in S voting for i is
√
n+ (l

√
n−√

n)
θl
√
n−√

n

n−√
n

.

Also, for a pointj not inS the expected number of points inS voting for j is

l
√
n
θl
√
n−√

n

n−√
n

≤ l
√
n
θl
√
n

n
≤ √

n/4,

for l ≤ n1/4/(2
√
θ). By Chernoff, we have that the probability thatj is voted by more than

√
n/2 is at most

e−
√
n/48.

By union bound, we get that the probability that there existsa setS which is a union ofl blobs that does not
satisfy the(θ, α, β)-self-stability property withα = 1/l, γ = θ/2 is at most

n · nl/2 · e−
√
n/48 < 1,

for l ≤ n1/4/(2
√
θ).

COROLLARY 1 The number of(θ, α, β)-self-determined communities in an affinity system(V,Π) satisfies

B(n) = nO(log (1/γ)/α)
(

θ log (1/γ)
α

)O
(

1
γ2

log
(

θ log (1/γ)
αγ

))

and with probability≥ 1 − 1/n we can find all of

them in timeB(n)poly(n).

Proof: Consider a community sizet. For any(θ, α, β)-self-determined communityS and letpS be the
probability thatS is in the list output by Algorithm in Theorem 1 with parameters θ, α, β, t. By Theorem 1
we have thatpS ≥ 1 − δ. By linearly of expectation we have that

∑

S pS is the expected number of
(θ, α, β)-self-determined communities in the list output by our algorithm. Combining these, we obtain that

B(n)(1 − δ) ≤ ∑S pS ≤ N1(δ)N2(δ) wherek1 = log (16/γ)/α, k2(δ) = 8
γ2

log
(

32θk1
γδ

)

, N1(δ) = nk1

andN2(δ) = O((2θk1)
k2(δ) log(1/δ)). By settingδ = 1/2, we get the desired bound,

B(n) = nO(log (1/γ)/α)

(

θ log (1/γ)

α

)O
(

1
γ2

log
(

θ log (1/γ)
αγ

))

.

LetN = N1(1/2)N2(1/2)n. By running the algorithm in Theorem 12 log[N] times we have that for each
(θ, α, β)-self-determined communityS, the probability thatS is not output in any of the runs is at most
(1/2)2 log(N) ≤ 1/N2. By union bound, with probability at least1− 1/n, we output all of them.

A.3 Self-determined Communities in Multi-faceted Affinity Systems

Recall that a multi-faceted affinity system is a system whereeach node may have more than one rankings
of other nodes. This may reflect, for example, that a person may have two rankings of other people, one
corresponding to personal friends (in descending order of affinity), and one of co-workers. Suppose that each
elementi is allowed to have at mostf different rankingsπ1i , . . . , π

f
i . We say that the pair(S,ψ) is a multi-

faceted community whereψ : S → {1, . . . , f}, if S is a community whereψ(i) specifies which ranking

facet should be used by elementi. In other words, as before, letφθS,ψ(i) := |{s ∈ S|i ∈ π
ψ(s)
s (1 : ⌈θ|S|⌉)}|.

Then(S,ψ) is an(α, β, θ)-multifaceted community if for alli ∈ S, φθS,ψ(i) ≥ α|S|, and for allj /∈ S,

φθS,ψ(j) < β|S|.

20

For a boundedf , it is not harder to find multifaceted communities than to findregular communities. Note
that in all our sampling algorithms can be adapted as follows. Once a representative sample{i1, . . . , ik}
of the communityS is obtained, we can guess the facetsψ(i1), . . . , ψ(ik) while adding a multiplicativefk

factor to the running time. We can thus get the setS2 approximatingS in the same way as it is found in
Algorithms 2 and 3 while adding a multiplicative factor offk1+k2 to the running time. We thus obtain a list
L that for each multi-faceted community(S,ψ) contains setS2 such that∆(S2, S) < γt/8:

Claim 1 We can output a listL of (f · n)O(log (1/γ)/α)
(

f ·θ log (1/γ)
α

)O
(

1
γ2

log
(

θ log (1/γ)
αγ

))

sets, such that for

each multi-faceted communityS there is anS2 ∈ L such that∆(S2, S) < γt/8.

It remains to show that:

Lemma 4 Suppose that(S,ψ) is a valid (α, β, θ)-multifaceted community of sizet. Givent and a setS2
such that∆(S2, S) < γt/8, there is an algorithm that outputsS with probability> f−8 logn/γ2/2.

Moreover, a facet structureψ′ can be recovered onS so that(S,ψ′) is an(α−γ/4, β+γ/4, θ)-multifaceted
community.

Together with Claim 1, Lemma 4 shows that multifaceted communities can indeed be recovered in polyno-
mial time.

THEOREM 5 LetS be anf -faceted(α, β, θ)-community. Then there is an algorithm that runs inO(n2) time
and outputsS, as well as a facet structureψ′ onS such that(S,ψ′) is an(α− γ/4, β+ γ/4, θ)-multifaceted
community with probability at least

(f · n)−O(log (1/γ)/α)

(

f · θ log (1/γ)
α

)−O
(

1
γ2

log
(

θ log (1/γ)
αγ

))

f−O(logn/γ2).

Proof:(of Lemma 4). The algorithm is very simple. Guess a setU2 of m = 8 log n/γ2 points inS2; guess a
functionψ2 onU2; outputS = the set of points that receive at least(α− γ/2)t votes according to(U2, ψ2).

Note that in the non-faceted case, by Hoeffding’s inequality, with probability> 1/2 selecting a setU2 as
above and then selecting those points that receive at least(α − γ/2)t votes fromU2 would have yieldedS.
This is because each element ofS receives at least(α−γ/8)t votes from elements ofS2, while each element
of the complementSc receives at most(β + γ/8)t votes from elements ofS2. This reasoning extends to
the multifaceted setting,provided, the functionψ2 coincides with the functionψ on the elements ofU2 ∩ S.
This indeed happens with probability≥ f−|U2| = f−8 logn/γ2 , completing the proof of the first part of the
lemma.

For the second part of the lemma we assume that the setS is known and we need to recover the facetsψ′

that makeS a community. Note that this step is necessary in order to verify thatS is indeed a multifaceted
community. There are two cases to consider.

Case 1: t ≤ 8 log n/γ2. In this case we can findψ by exhaustively checking all possibilities in time
O(q8 logn/γ

2
), which is the same as the probability of success of the first step.

Case 2: t > 8 log n/γ2. In this case we use linear programming to find a fractional version ψf of the
functionψ first. In other words, we find a functionψf : S × {1, . . . , q} → [0, 1] such that(S,ψf) is a
“community” on average:

21

1. for all s ∈ S,
∑f

i=1 ψf (s, i) = 1;

2. for all x ∈ S,
∑

s∈S
∑f

i=1 ψf (s, i) · χx∈πi
s(1:θt)

≥ αt;

3. for all y /∈ S,
∑

s∈S
∑f

i=1 ψf (s, i) · χy∈πi
s(1:θt)

< βt;

This linear program is feasible, since the originalψ is an integral solution to it. As a result, we obtain a
fractional solutionψf satisfying the three conditions. To obtainψ′ we roundψf by sampling. In other
words, we setψ′(s) = i with probability ψf (s, i). By Hoeffding’s inequality, sincet > 8 log n/γ2, the
sampling will preserve conditions 2 and 3 that were imposed onψf up to an additive error ofγ/4. Thus, by
definition,(S,ψ′) will be an(α− γ/4, β + γ/4, θ)-multifaceted community.

A.4 Extensions to weighted affinity systems and to the local model

We note that that Algorithm 4 can be combined with our reduction from weighted to unweighted communi-
ties to obtain a local algorithm for finding communities in the weighted case.

Extending the local approach to the multi-faceted setting is more involved, since the definition ofR(v)
would need to be adapted to this setting. Indeed, the multi-faceted versionRf (v) ofR(v) can be taken to be
a random element voted by a random faceti of v. Then Algorithm 4 can be adapted by taking the threshold

to be (α−1/2)/(θ2f2)
t , wheref is the number of facets. Note that while an approximation to any community

S can be found locally in near-linear time, finding the exact communityS as well as the facet structure on
S as in Lemma 4 will still takefO(logn/γ2) time.

22

	1 Introduction
	2 Preliminaries and Notation
	3 Finding Self-determined Communities
	3.1 Self-determined Communities in Weighted Affinity Systems
	3.2 Self-determined Communities in Multi-faceted Affinity Systems

	4 A Local Algorithm for Finding Self-determined Communities
	4.1 An Alternative Non-local Algorithm

	5 Self-determined Communities in Social Networks
	A Additional Proofs
	A.1 Finding Self-determined Communities in Quasi-Polynomial Time
	A.2 Additional Proofs in Section ??
	A.3 Self-determined Communities in Multi-faceted Affinity Systems
	A.4 Extensions to weighted affinity systems and to the local model

