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We implement Monte Carlo Renormalization Group (MCRG) in the continuous-time Monte Carlo
simulation of a quantum system. We demonstrate numerically the emergent isotropy between space
and time at large distances for the systems that exhibit Lorentz invariance at quantum criticality.
This allows us to estimate accurately the sound velocity for these quantum systems. Q-state Potts
models in one and two space dimensions are used to illustrate the method.

I. INTRODUCTION

In recent years, continuous-time quantum Monte Carlo
(QMC) has become the standard to simulate sign-free
lattice quantum spin systems [1–4]. In continuous-
time QMC, one adopts a path-integral representation,
in which the time dimension is represented by a genuine
continuous line of length equal to the inverse tempera-
ture β, whereas the space dimension is represented by a
discrete lattice. For systems that exhibit Lorentz invari-
ance at criticality, the path integral represents a statisti-
cal field theory, in which isotropy between the time and
space directions emerges at large distance. This occurs
in systems whose low-lying elementary energy excitations
depend linearly on the magnitude of the momentum of
the excitation:

E(k)− E0 = vs|k|. (1)

Here, E0 is the ground state energy, and k is the mo-
mentum of a low-lying energy eigenstate of energy E(k).
The constant of proportionality, vs, is called the sound
velocity and is a non-universal constant specific to a sys-
tem. The sound velocity is the scale factor connecting
time and length scales of a system. When Eq. 1 hap-
pens, the large-distance behavior of a lattice spin system
is described by a massless quantum field theory, invariant
under dilational coordinate transformations. The invari-
ance under dilational transformation underlies the suc-
cess of renormalization group (RG) theory [5] in treating
critical phenomena, as done in the real space Monte Carlo
Renormalization Group (MCRG) approach [6], which is
often used to estimate critical couplings and exponents
of spin systems. When implemented on a discrete lat-
tice, the dilational transformation is limited to integral
scale factors. However, non-integral scale factors are de-
sirable in many cases. For example, anisotropic coarse
graining can lead to a fixed point Hamiltonian isotropic
in the space and time directions. Then, the ratio of space
and time lengths in the anisotropic coarse graining is the
sound velocity. The value of the sound velocity is gen-
erally a real number, requiring that the coarse-graining
either along the space or the time direction be contin-
uous. We show that this can be realized, within the
MCRG framework, for quantum spin models on a lat-

tice by adopting a continuous imaginary time path in-
tegral representation. In this way, Lorentz invariance is
demonstrated numerically and accurate estimates of the
sound velocity are obtained. In addition, continuous time
MCRG allows us to compute the lattice version of the en-
ergy stress tensor of the underlying field theory.
Conformal invariance is very powerful in two-

dimensions (2D), due to the infinite dimensionality of
the local conformal algebra [7]. Conformal field theory
(CFT) yields finite sizing scaling predictions of physical
observables, such as the energy [8, 9] and the entangle-
ment entropy [10]. Sound velocity and the energy-stress
tensor are often parameters in these predictions. Thus,
assuming the validity of these predictions, the sound ve-
locity and the energy-stress tensor may be obtained by
fitting observables in a numerical simulation against the
CFT predictions. This has been carried out in many
studies, e.g. [11, 12]. With continuous-time MCRG,
we determine these quantities from their defining ex-
pressions, without recourse to CFT results. This allows
a much easier generalization to three dimensions (3D),
where CFT predictions are less available. In this paper,
we illustrate the idea of continuous-time MCRG mostly
with examples in 2D, showing that already in 2D our
approach leads to estimates of the sound velocity that
are more accurate than those obtained with alternative
methods, such as directly computing the energy spectrum
or fitting numerical observables against CFT predictions.
We also provide a 3D example, by reporting a calculation
of the sound velocity for the quantum Ising model in two
space dimensions, a system for which, to the best of our
knowledge, the sound velocity cannot be obtained with
other means. A more detailed study of systems in 3D is
deferred to future works.
The paper is organized as follows. In Sec. 2, we use

a diagrammatic expansion to obtain the path integral
representation of the partition function of the Q-state
Potts model, the system that we use here as an exam-
ple to illustrate the methodology. In Sec. III, we coarse
grain the time direction and explain the MCRG proce-
dure. In Sec. IV, we use continuous-time MCRG to
compute the sound velocity. In Sec. V, we interpret
the coarse-graining along the time direction as a continu-
ous coordinate transformation and discuss its connection
with the energy-stress tensor. In Sec. VI, we report our
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conclusions.

II. THE CONTINUOUS-TIME MONTE CARLO

For concreteness, we illustrate the method with the
Q-state Potts model having Hamiltonian [13]:

ĤQ = −
∑

〈i,j〉

Q−1
∑

k=0

Ω̂k
i Ω̂

Q−k
j − g

Ld

∑

i=1

Q−1
∑

k=1

M̂k
i , (2)

where the system is in a d-dimensional hypercubic lattice
with length L. i and j label different lattice sites, and
〈i, j〉 denotes a nearest neighbor bond. The operators Ω̂i

and M̂i act on the Q states of the local Hilbert space
at site i, which we label by |0〉i, ..., |s〉i, ...|Q − 1〉i. In

this local basis, the Ω̂i is a diagonal matrix such that
Ω̂i|s〉i = ωs|s〉i, where ω = ei2π/Q and s = 0, · · · , Q − 1.

M̂i performs a cyclic permutation: |0〉i → |Q−1〉i, |1〉i →
|0〉i, · · · , |Q − 1〉i → |Q − 2〉i, and acts as a transverse-

field. When d = 1, this model is self-dual and a quantum
phase transition occurs at the critical coupling gc = 1
for all Q [13]. When Q ≤ 4, the transition is continuous
and is described by a CFT [11, 14]. When Q > 4, the
transition is first-order and has a finite latent heat at gc
[14].
To derive a path-integral representation of the system

partition function Z = Tr(e−βĤQ), one takes

Ĥ0 = −
∑

〈i,j〉

Q−1
∑

k=0

Ω̂k
i Ω̂

Q−k
j , Ĥ1 = −g

Ld

∑

i=1

Q−1
∑

k=1

M̂k
i (3)

and considers the partition function in the interaction
picture

Z = Tr[exp(−βĤ0)T̂ {exp(−

∫ β

0

Ĥ1(τ)dτ)}], (4)

where T̂ is the time-ordering operator in imaginary time

τ , and Ĥ1(τ) = eτĤ0Ĥ1e
−τĤ0 is the Ĥ1, in the interac-

tion picture. Eq. 4 can be written as a diagrammatic
expansion in the following way:

Z =
∑

σ

∞
∑

n=0

(−1)n

n!
〈σ|e−βĤ0 T̂

∫ β

0

Ĥ1(τn)dτn · · ·

∫ β

0

Ĥ1(τ1)dτ1|σ〉

=
∑

σ

∞
∑

n=0

gn
∫ β

0

dτn

∫ τn

0

dτn−1 · · ·

∫ τ2

0

dτ1〈σ|e
−(β−τn)Ĥ0

Ld

∑

i=1

Q−1
∑

k=1

M̂k
i e

−(τn−τn−1)Ĥ0 · · · e−τ1Ĥ0 |σ〉

=
∑

σ

∞
∑

n=0

gn
∑

i1···in

∫ β

0

dτn

∫ τn

0

dτn−1 · · ·

∫ τ2

0

dτ1〈σ|e
−(β−τn)Ĥ0

Q−1
∑

k=1

M̂k
ine

−(τn−τn−1)Ĥ0 · · ·

Q−1
∑

k=1

M̂k
i1e

−τ1Ĥ0 |σ〉

(5)

Here the states |σ〉 = ⊗i|σ〉i form a basis in the Hilbert

space. Each index i1, · · · , in runs from 1 to Ld. Ĥ0 is di-
agonal in the |σ〉 basis: Ĥ0|σ〉 = Q

∑

〈i,j〉 δσi,σj
|σ〉 ≡

h0(σ)|σ〉. Eq. 5 suggests the following Monte Carlo
(MC) scheme to sample the partition function. For each
i = 1, · · · , Ld and each τ ∈ [0, β], a Potts spin, σi(τ),
ranging from 0 to Q − 1, is assigned to an MC config-
uration. As the state |σ〉 is propagated in imaginary
time, spin flips can happen at any lattice site and at any
time. Let τl and il denote the lth flip time and its as-
sociated lattice site. Here l could be equal to 1, 2, · · · ,
or n. In addition, let τ−l and τ+l respectively denote the
time immediately before and after the flip time τl. If
a spin flip occurs at τl on site il, σil(τ

−
l ) will be made

to switch to any σil(τ
+
l ) different from σil (τ

−
l ) by the

action of
∑Q−1

k=1 M̂k
il
. In Eq. 5, the earliest spin flip oc-

curs at τ1 on site i1; the second one occurs at τ2 on site
i2, etc.. The total number of spin flips, n, contributes
a weight gn to the sampling of the diagrammatic expan-
sion. In addition, the weight includes factors equal to

e−(τl+1−τl)h0(σ(τ+
l
)) between two consecutive spin flips at

τl ad τl+1. Finally, the periodicity of the trace requires
σ(β) = σ(0), which in turn implies that n should be
even. Thus, MC sampling does not have a sign problem
even if g is negative.

The partition function in Eq. 5 is given by a sum
of terms (diagrams) that entail summation over discrete
variables and integration over continuous ones. The con-
tribution of the different terms, which are associated to
the weights detailed above, is evaluated stochastically
with a MC algorithm that follows the protocols discussed
in Refs. [1–3]. For the Q-state Potts model diagram-
matic MC can use a continuous time cluster algorithm
[2], based on the Wolff algorithm [15], which significantly
reduces equilibration time. We will use both local and
cluster MC algorithms in the following.
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III. THE MCRG PROCEDURE

Eq. 5 indicates that the thermodynamics of a d-
dimensional quantum Potts model is described by a sta-
tistical field theory in (d+ 1) dimensions, where on each
lattice site i there is a worldline of length β described
by the function σi(τ). We can coarse grain this world-
line by placing P lattice points along the time direction
through the majority-rule. That is, we partition the

worldline into P intervals: [0, Pβ ], [
P
β ,

2β
P ], · · · , [ (P−1)β

P , β].

In each MC configuration, to each interval, we assign
the Potts spin which appears most often on that inter-
val. By discretizing time in this way we represent each
worldline with P discrete Potts spins and we end up with
a (d+1)-dimensional hypercubic lattice that hosts PLd

Potts spin. Each MC snapshot corresponds to a configu-
ration of those spins. The probability distribution of the
spin configurations on the discrete lattice is not known
explicitly, but can be sampled by coarse-graining the con-
figurations generated in the diagrammatic MC simula-
tion [2]. We can then perform MCRG on the (d + 1)-
dimensional hypercubic lattice. We designate the n-th
RG iteration with a subscript (n), where n = 0, 1, 2, ...
In the 0-th iteration the spin configuration, σ(0), is the
one obtained from coarse graining the time direction of
diagrammatic MC. The probability distribution of σ(0)

is described by the (unknown) lattice Hamiltonian H(0).
The subsequent levels of coarse graining are generated by
successive block spin RG transformations and are char-
acterized by spin configurations σ

(n) and Hamiltonians
H(n).

In all of the above coarse-graining transformations we
use short-ranged coupling terms Sα(σ) to parametrize
the probability distribution P (σ) of the spin configura-
tions σ:

P (σ) ∝ e−H(σ), where H(σ) = −
∑

α

KαSα(σ), (6)

with coupling constants Kα. The terms Sα(σ) in-
clude nearest neighbor (nn), next nearest neighbor (nnn),
smallest plaquette (�), etc., interactions.

On the hypercubic lattice, a dilation transformation
with scale factor b is realized through a block spin trans-
formation by a conditional probability, T (µ|σ), of the
renormalized spin µ given unrenormalized spins σ. For
example, in the majority-rule coarse-graining that we
use, σ is partitioned into hypercubic blocks with side b.
When there is a unique spin σmax that appears the most
often in the block, the renormalized spin µ for that block
is assigned to σmax with probability one. When p σ-spins
tie for the most appearances in the block, µ is assigned
to one of these p spins with probability 1

p . Assuming

the lattice is large enough, the spin configurations may
be iteratively coarse-grained n times, from σ

(0) to σ
(n),

giving rise to a renormalized Hamiltionian at the nth RG

level:

H(n)(σ(n)) ≡ − ln
∑

σ
(0)

T (n)(σ(n)|σ(0))e−H(0)(σ(0))

= −
∑

α

K(n)
α Sα(σ

(n))
(7)

where T (n)(σ(n)|σ(0)) is the conditional probability of
σ

(n) given σ
(0). T (n)(σ(n)|σ(0)) implements coarse-

graining from σ
(0) to σ

(n), realizing a dilation transfor-
mation with scale factor bn. It is obtained by iterating
the single-level coarse-graining n times:

T (n)(σ(n)|σ(0))

=
∑

σ
(n−1)

..
∑

σ
(1)

T (σ(n)|σ(n−1)) · · ·T (σ(1)|σ(0)) (8)

In principle, an infinite number of coupling terms
Sα(σ

(n)) is required to exactly parametrize H(n). In
practice, this is not possible, and we only use a few cou-
pling terms, such as those listed in Table I. Given a set of
coupling terms, we use Variational Monte Carlo Renor-
malization Group (VMCRG) [16] to compute the corre-

sponding coupling constants K
(n)
α . VMCRG allows us to

compute the renormalized coupling constants in a way
that greatly alleviates the critical slowing down and has
very little finite-size effect [17]. Its implementation de-
tails are explained in [16–18]. Here by finite-size effect,
we mean the effect of different system size, L, with the
same RG level, n. Our result, however, necessarily de-
pends on what n one uses to approach the fixed-point
Hamiltonian. Using only a finite number of coupling
terms in the Hamiltonian in Eq. 6 introduces a trunca-
tion errors. However, because the truncation scheme re-
spects isotropy, i.e. the truncation of an isotropic Hamil-
tonian is still isotropic, we can estimate the sound veloc-
ity without truncation errors.

IV. THE SOUND VELOCITY

The sound velocity vs is an important property of a
quantum system whose low lying excited states show lin-
ear momentum dispersion. In particular, this quantity
is required to compare the predictions from CFT with
observables of a lattice model. When d = 1, one can
compute the sound velocity with finite size scaling of the
ground state energy or entanglement entropy, assuming
validity of the CFT prediction [8–10], or one can directly
compute the excitation spectrum of the system. The lat-
ter calculation can be done by exact diagonalization of
the system Hamiltonian, which is limited to small lattice
sizes, or it can be done with density matrix renormal-
ization group (DMRG) techniques [19], which introduce
truncation errors due to finite bond dimension. When
d > 1, neither method works reliably, and one has to
resort to QMC. In fact, the sound velocity has been cal-
culated with continuous-time QMC by looking for a scale
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factor vs such that the coorelation function C(x,vsτ) be-
comes isotropic along the time and space directions at
large distances [20, 21]. In the following, we will use di-
rectly RG to compute the sound velocity and show that
VMCRG can deal with rather large lattice sizes, up to at
least L = 256, leading to very accurate estimates of the
sound velocity.
To compute the sound velocity, we perform a dilation

transformation with b = 2 using the majority rule. In the
VMCRG calculation, we take couplings along space and
time directions to be independent, as the system is nec-
essarily anisotropic between space and time. However,
in the presence of Lorentz invariance, isotropy between
space and time is recovered at large distances up to a
scale factor vs. One can thus vary P

β until the couplings

along the space direction and those along the time direc-
tion become equal for a large n. The P

β so determined is

the sound velocity, vs.

A. Q = 2: The Ising model

When Q = 2, ĤQ=2 coincides up to an additive con-
stant with the Hamiltonian of the transverse-field Ising
model (TFIM),

ĤIsing = −
∑

〈i,j〉
σ̂z
i σ̂

z
j − g

Ld

∑

i=1

σ̂x
i , (9)

where σ̂z,x
i are the Pauli matrices at site i. We carry out

the discussion using the terminology of the Ising model,
i.e. instead of Potts spin σ = 0, 1, we will speak of Ising
spin σ = −1, 1.
The sound velocity for the one-dimensional TFIM is

known exactly from its fermionic solution, and is vs = 2
[22] :

E(k) = 2
√

1− 2gc cos k + g2c = 2|k|+ o(|k|), (10)

where gc = 1. Note that sometimes the Ising Hamilto-
nian is written with spin operators Ŝ = 1

2 σ̂, in which case

vs would be 1
2 . The K(n)s calculated with VMCRG for

the d = 1 TFIM, simulated at gc, are presented in Table
II, for the coupling terms listed in Table I. We present
the data for all the RG iterations from n = 0 to 5 to
illustrate the method. As clearly seen, the convergence
to isotropy occurs with increasing n when P

β = vs. Note

that the relative magnitude of K
(n)
1,x and K

(n)
1,y switches

when P
β crosses 2.0. This gives an estimation of vs in

the interval (1.997, 2.003), to be compared, for example,
with the DMRG result of 2.04 found in [23].
For d = 2 TFIM model, we look for the value of P/β

where switching of the renormalized constants in space
and time occurs at large n. The comparison is only done
for the nearest neighbor coupling, which has the small-
est statistical uncertainty. Thus, we present in the ta-
bles only the nearest neighbor coupling constants that

α Coupling term
1, x nearest neighbor product along the time direction
1, y nearest neighbor product along the space direction
2 2nd neighbor product
3 product of spins in the smallest plaquette
4, x 3rd neighbor product along the time direction
4, y 3rd neighbor product along the space direction

Table I: The couplings used for d = 1 TFIM. Note that
when α = 2 and 3, the couplings are themselves

isotropic between space and time.

n K
(n)
1,x K

(n)
1,y K

(n)
4,x K

(n)
4,y

0 0.46708(6) 0.30104(7) -0.0360(1) 0.0179(1)
1 0.3593(1) 0.32367(5) -0.01224(3) -0.0027(1)
2 0.34310(5) 0.33548(4) -0.01065(5) -0.0089(1)
3 0.3411(2) 0.33906(8) -0.0109(1) -0.0106(1)
4 0.3411(3) 0.3401(1) -0.0111(2) -0.0112(2)
5 0.3411(2) 0.3402(1) -0.0112(1) -0.0114(2)

(a) P
β
= 2.0031299

n K
(n)
1,x K

(n)
1,y K

(n)
4,x K

(n)
4,y

0 0.46681(5) 0.30126(8) -0.0362(1) 0.0180(1)
1 0.3590(1) 0.3242(1) -0.0123(1) -0.0027(1)
2 0.3430(1) 0.33586(6) -0.01074(5) -0.0088(1)
3 0.3407(2) 0.3394(3) -0.0110(1) -0.0106(1)
4 0.3408(3) 0.3406(2) -0.0112(2) -0.0110(2)
5 0.3410(3) 0.3408(2) -0.0112(1) -0.0112(1)

(b) P
β
= 2

n K1,x K1,y K4,x K4,y

0 0.46579(6) 0.30175(7) -0.0361(1) 0.0179(1)
1 0.3584(1) 0.3245(1) -0.0124(1) -0.0026(1)
2 0.3423(1) 0.3366(1) -0.0107(1) -0.0088(1)
3 0.3405(2) 0.3398(2) -0.0110(1) -0.0105(1)
4 0.3404(2) 0.3409(2) -0.0113(2) -0.0110(2)
5 0.3402(3) 0.3409(2) -0.0113(2) -0.0111(2)

(c) P
β
= 1.99688

Table II: The renormalized constants for the d = 1
TFIM. For each n, L = P = 8× 2n. VMCRG is done
with 4000 variational steps. During each variaional

step, the MC sampling is done on 16 cores in parallel,
where each core does MC sampling of 20000 Wolff

steps. The optimization step is µ = 0.001. The number
in the paranthesis is the uncertainty on the last digit.

correspond to the last RG iteration. The K(n)s calcu-
lated by VMCRG for the d = 2 TFIM, simulated at
g = gc = 3.04438 [2], are reported in Table III. They
lead to an estimate of the sound velocity in the interval
(3.40, 3.42).
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P
β

K
(4)
1,x K

(4)
1,yz

3.42246 0.1603(3) 0.1597(2)
3.40426 0.1594(3) 0.1602(2)

Table III: The renormalized constants for the d = 2
TFIM. L = P = 128. K

(4)
1,x and K

(4)
1,yz are respectively

the renormalized nearest neighbor spin constants along
the time and the space direction at n = 4.

α Coupling term
1, x δσiσj

for 1st neighobor i, j along the time direction
1, y δσiσj

for 1st neighobor i, j along the space direction
2 δσiσj

for 2nd neighbor i, j
3, x δσiσj

for 3rd neighobor i, j along the time direction
3, y δσiσj

for 3rd neighobor i, j along the space direction

Table IV: The couplings used for d = 1, Q = 3 and 4
Potts model. Note that when α = 2, the coupling is

itself isotropic between space and time.

B. Q = 3 and 4

When d = 1, and Q = 3 or 4, the Potts model experi-
ences a continuous phase transition at gc = 1, exhibiting
conformal invariance [14]. A sound velocity is thus well-
defined at criticality. The spin variable is σ = 0 or 1, and
we use coupling terms listed in Table IV. We report the
calculated renormalized constants K(n)s in Table V and
VI. The sound velocity is determined with the nearest
neighbor coupling at the last RG iteration.

This estimates vs in the interval (2.594, 2.600) for
Q = 3, and (3.137, 3.146) for Q = 4, to be compared
with the analytical result vs = π when Q = 4 [24]. For
comparison, fitting the finite size behavior of the critical
free energy against the CFT prediction [8, 9] leads to vs
= 2.598 for Q = 3 and vs = 3.156 for Q = 4 [11]. Fitting
the finite size behavior of the critical entanglement en-
tropy against the CFT prediction [10] leads to vs = 2.513
for Q = 3 and vs = 2.765 for Q = 4 [12].

We observe that the (approximate) space-time isotropy
occurs before the fixed-point Hamiltonian is reached. For
example, in the Q = 4 Potts model, it is known that a
logarithmic scaling operator is present around the fixed-
point Hamiltonian, which makes the approach to the
fixed-point Hamiltonian very slow. This is indeed what
one sees in Table VI. However, as along as this scaling
operator is isotropic, one expects that the slow approach
to the fixed-point Hamiltonian should not affect the con-
vergence to isotropy. This is also what one sees. The
sound velocity can therefore be obtained with less RG
iterations than requried for computing, say, the critical
exponents of the model.

n K
(n)
1,x K

(n)
1,y K

(n)
3,x K

(n)
3,y

0 1.068(2) 0.6701(4) -0.0651(6) 0.0343(9)
1 0.8158(4) 0.7323(5) -0.0267(1) -0.0076(4)
2 0.766(1) 0.749(2) -0.0260(8) -0.022(1)
3 0.754(1) 0.750(1) -0.025(1) -0.025(1)
4 0.7477(4) 0.7468(4) -0.0255(6) -0.0251(6)
5 0.7452(2) 0.7446(2) -0.0252(4) -0.0250(4)

(a) P
β
= 2.5995

n K
(n)
1,x K

(n)
1,y K

(n)
3,x K

(n)
3,y

0 1.067(2) 0.6714(5) -0.0653(5) 0.0350(8)
1 0.8150(4) 0.7350(5) -0.0278(2) -0.0079(5)
2 0.765(1) 0.751(2) -0.0252(7) -0.022(1)
3 0.752(1) 0.750(1) -0.025(1) -0.024(1)
4 0.7469(4) 0.7479(5) -0.0250(6) -0.0248(3)
5 0.7441(3) 0.7456(3) -0.0253(4) -0.0251(2)

(b) P
β
= 2.5942

Table V: The renormalized constants for the d = 1,
Q = 3 Potts model. For each n, L = P = 8× 2n. When
n = 0 to 3, the simulations are done with Metropolis
local updates with 1000 variational steps. When

n = 0, 1, 2, each variational step uses 100 sweeps of MC
averaging in parallel on 8 cores. When n = 3, each

variational step uses 500 sweeps. For n = 4 and 5, the
simulation details are the same as in Table II.

n K
(n)
1,x K

(n)
1,y K

(n)
3,x K

(n)
3,y

0 1.171(2) 0.7188(5) -0.0615(4) 0.033(1)
1 0.872(2) 0.777(1) -0.027(1) -0.0084(4)
2 0.801(1) 0.781(2) -0.024(1) -0.021(1)
3 0.770(1) 0.765(1) -0.023(1) -0.023(1)
4 0.7519(5) 0.7498(4) -0.0225(2) -0.0225(2)
5 0.7374(3) 0.7355(5) -0.0217(3) -0.0215(3)

(a) P
β
= 3.146

n K
(n)
1,x K

(n)
1,y K

(n)
3,x K

(n)
3,y

0 1.167(2) 0.7206(4) -0.0612(4) 0.033(2)
1 0.872(2) 0.779(1) -0.0255(9) -0.0081(4)
2 0.800(1) 0.782(2) -0.022(1) -0.019(1)
3 0.769(1) 0.765(1) -0.022(1) -0.024(1)
4 0.7500(4) 0.7508(3) -0.0226(2) -0.0221(2)
5 0.7355(3) 0.7372(3) -0.0217(4) -0.0216(4)

(b) P
β
= 3.137

Table VI: The renormalized constants for the d = 1,
Q = 4 Potts model. For each n, L = P = 8× 2n. The

simulation details are the same as in Table V.

V. THE ENERGY-STRESS TENSOR

As one changes the parameter P
β in the zeroth RG

iteration, one also changes the fixed-point Hamiltonian
reached by the RG procedure, as shown, for example,
in Table I. Since dilational transformations are isotropic,
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there is a line of fixed-point Hamiltonians reflecting the
different extent of anisotropy in the system [25]. A
change of P

β generates a movement along this line of fixed-

point Hamiltonians. In fact, fixing P , the change β →
β + δβ induces a coordinate transformation: x0 → x′

0 =

(1− δβ
β )x0, x1 → x′

1 = x1, where x0 and x1 are time and

space coordinates, respectively. Here we have taken the
coordinate transformation to be passive, i.e. x = (x0, x1)
and x

′ = (x′
0, x

′
1) denote the number of lattice spacings

needed to describe the same physical length, before and
after the transformation. Thus, a time dilation generates
a change in the system Hamiltonian. In field theory, the
response of the system Hamiltonian to a generic coordi-
nate transformation, xµ → x′µ = xµ+ǫµ(x), is described
by the energy-stress tensor, T µν , defined by

δH = −
1

(2π)D−1

∫

∂ǫµ

∂xν
Tµνd

Dx (11)

where D is the space-time dimension of the system. As
β is conjugate to Ĥ in the action, we identify T00 as the
energy operator in the path integral.
To appreciate the novelty brought by VMCRG in this

context, let us consider, for example, the two-dimensional
classical Ising model with the Hamiltonian

HIsing(σ) = −K0

∑

〈i,j〉0

σiσj −K1

∑

〈i,j〉1

σiσj (12)

where 〈i, j〉0 and 〈i, j〉1 are nearest neighbor spins along
the x0 and the x1 direction, respectively. The sys-
tem is isotropic and critical when K0 = K1 = Kc =
arcsinh(1)/2 = 0.4407 · · · [26]. An infinitesimal change in
the coupling constant, K0 = Kc− δJ and K1 = Kc+ δJ ,
turns on anisotropy yet the system still maintains its crit-
icality. That is, the deviation from the isotropic Hamil-
tonian,

δH(σ) =
∑

m,n

Am,n(σ)δJ

≡
∑

m,n

(σm,nσm+1,n − σm,nσm,n+1)δJ
(13)

generates a length scale transformation x0 → x′
0 = (1 −

δλ)x0 and x1 → x′
1 = (1+δλ)x1, where δλ = 1

γ δJ with an

unknown proportionality constant γ. Continuous-time
VMCRG provides a way to determine γ directly, and in
that sense, it is a ruler of anisotropy.
To determine γ, we invoke the universality of the

fixed-point Hamiltonians. Let H∗(µ) be the fixed-point
Hamiltonian that VMCRG eventually reaches, start-
ing from the critical d = 1 TFIM with P

β = vs and

from the critical isotropic d = 2 classical Ising model.
In practice, we approximate H∗(µ) with H(n)(µ) for
some large n. For the TFIM, the change in the action
βĤ → (β + δβ)Ĥ generates a change in the fixed-point

Hamiltonian δH(n)(µ) = −
∑

α
∂K(n)

α

∂β Sα(µ)δβ with an

anisotropy of the extent δ(x1

x0
) =

x′

1

x′

0
− x1

x0
= δβ

β
x1

x0
. For the

classical d = 2 Ising model, the change in the unrenormal-
ized Hamiltonian HIsing → HIsing +

∑

m,n Am,nδJ gener-

ates a change in the fixed-point Hamiltonian δH(n)(µ) =

−
∑

α
∂K(n)

α

∂J Sα(µ)δJ , with an anisotropy of the extent

δ(x1

x0
) = 2δλx1

x0
. The δH(n)(µ) for the TFIM and for

the d = 2 classical Ising model should be multiples of
each other, because the line of fixed-point Hamiltoni-
ans is universal. In particular, when they are equal, the
anisotropies that they represent should coincide. This
means that

γ =
δJ

δλ
= 2

β ∂K
(n)
α /∂β

∂K
(n)
α /∂J

(14)

for all α. The Jacobians of the RG transformation,
∂K(n)

α

∂J

and
∂K(n)

α

∂β , can be readily computed with VMCRG [16],

where the first Jacobian is calculated for the TFIM, and
the second one for the classical Ising model. For the
operator A(σ) defined in Eq. 13, γ is analytically known

and is
√
2
2 = 0.7071 · · · . A VMCRG calculation using Eq.

14 with n = 4 gives γ = 0.708±0.001, so the ruler works.
With the coordinate transformation x0 → x′

0 = (1 −
δλ)x0 and x1 → x′

1 = (1 + δλ)x1, a part of the energy-
stress tensor can now be read off from Eq. 11:

∑

m,n

Am,n(σ)δJ = δH(σ) = −
1

2π

∫

(−δλT00+δλT11)d
2x.

(15)
We take the lattice spacing to be 1, and

∑

m,n is equiv-

alent to
∫

d2x. This gives

γA =
1

π
(T + T̄ ), (16)

where, in 2D, T and T̄ are respectively the holomorphic
and the antiholomorphic component of the energy-stress
tensor, and are defined as T = 1

4 (T00 − 2iT01 − T11) and

T̄ = 1
4 (T00 + 2iT01 − T11). While the argument is devel-

oped for the Ising model, it also generalizes to other 2D
systems.
A consequence of Eq. 16 is that one obtains a pre-

diction of the finite-size dependence of 〈A〉, due to CFT.
For example, if one simulates a critical system infinitely
long along the x0 direction but periodic of size L along
x1, CFT predicts that 〈T 〉 = 〈T̄ 〉 = −(2πL )2 c

24 , and thus

〈A〉 = − 1
γπ (

2π
L )2 c

12 , where c is the central charge of the

underlying CFT. This prediction on A has been verified
in [27].

VI. CONCLUSION

In this paper, we have shown how to perform MCRG
with continuous-time Monte Carlo simulations, and
demonstrated that space-time isotropy is explicitly recov-
ered at large distances. This yields a practical method to
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determine the sound velocity and the energy-stress tensor
from their defining expressions. This should allow gen-
eralizations to systems in three dimensions, which could
be studied in the future.
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[13] J. Sólyom and P. Pfeuty, Phys. Rev. B 24, 218 (1981).

[14] R. J. Baxter, Journal of Physics C: Solid State Physics
6, L445 (1973).

[15] U. Wolff, Phys. Rev. Lett. 62, 361 (1989).
[16] Y. Wu and R. Car, Phys. Rev. Lett. 119, 220602 (2017).
[17] Y. Wu and R. Car, Phys. Rev. E 100, 022138 (2019).
[18] Y. Wu, Phys. Rev. E 100, 023306 (2019).
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