
ar
X

iv
:1

70
8.

04
46

2v
1 

 [
m

at
h.

N
A

] 
 1

5 
A

ug
 2

01
7

A GENERAL APPROACH TO REGULARIZING INVERSE PROBLEMS

WITH REGIONAL DATA USING SLEPIAN WAVELETS

VOLKER MICHEL

Geomathematics Group
Department of Mathematics

University of Siegen
Germany

FREDERIK J. SIMONS

Department of Geosciences
Guyot Hall

Princeton University
U.S.A.

Abstract. Slepian functions are orthogonal function systems that live on subdomains
(for example, geographical regions on the Earth’s surface, or bandlimited portions of the
entire spectrum). They have been firmly established as a useful tool for the synthesis and
analysis of localized (concentrated or confined) signals, and for the modeling and inversion
of noise-contaminated data that are only regionally available or only of regional interest.
In this paper, we consider a general abstract setup for inverse problems represented
by a linear and compact operator between Hilbert spaces with a known singular-value
decomposition (svd). In practice, such an svd is often only given for the case of a global
expansion of the data (e.g. on the whole sphere) but not for regional data distributions.
We show that, in either case, Slepian functions (associated to an arbitrarily prescribed
region and the given compact operator) can be determined and applied to construct
a regularization for the ill-posed regional inverse problem. Moreover, we describe an
algorithm for constructing the Slepian basis via an algebraic eigenvalue problem. The
obtained Slepian functions can be used to derive an svd for the combination of the
regionalizing projection and the compact operator. As a result, standard regularization
techniques relying on a known svd become applicable also to those inverse problems where
the data are regionally given only. In particular, wavelet-based multiscale techniques can
be used. An example for the latter case is elaborated theoretically and tested on two
synthetic numerical examples.
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1. Introduction

In a wide range of scientific applications, concentrated in but not confined to the geo-
sciences, regional modelling from global data has become increasingly important, for a va-
riety of reasons. For example, regional phenomena like the melting of the Greenland or
Antarctica ice sheets are being studied on the basis of global satellite (potential-field, e.g.
gravity) data [14]. Alternatively, geophysical data could be of regionally varying quality, ei-
ther in terms of their measurement density, or owing to spatial variations in signal-to-noise
ratios. Finally, localization and regionalization may be part of a strategy to ‘divide and
conquer’ data domains, which is often a necessity for solving the kinds of problems that
involve the large data volumes with which the geosciences are routinely confronted.

In this general context [7], the use of localized trial functions has proven to be useful.
One among the many ways by which such Ansatz functions can be constructed, the idea
behind the “Slepian” approach is as follows. Taking R to be a subdomain, a portion of a
complete domain D (e.g. an interval on the set of real numbers, or a spherical cap on the
surface of a ball), we determine the function F that maximizes the fraction

λ :=

∫

R
[F (x)]2 dx

∫

D
[F (x)]2 dx

, (1)

the quotient of the squared L2-norms of F on R and on D. For practical purposes, the choice
of F is restricted to a finite-dimensional space. This is achieved, for example, by assuming a
bandlimit for F . The first notions of Slepian functions treated the case of the real line, and
appeared in the literature in the early 1960s, in the work by [18, 33, 34], who were concerned
with problems in communication theory. In the late 1990s, Slepian functions on the sphere
were derived for use in geodesy and planetary science [2, 3, 29, 30, 31, 38, 39]. In parallel, a
few alternative approaches, using different measures of optimality, have been developed for
constructing approximating structures on the sphere, see, for example, [16, 17, 20].

IfD is the 2-sphere, the functions F can be expanded in the well-known L2(D)-orthonormal
system of spherical harmonics Yl,m of degree l and order m (see e.g. [5, 21, 23]) up to a fixed
maximal degree L,

F (ξ) =

L
∑

l=0

l
∑

m=−l

〈F, Yl,m〉L2Yl,m(ξ), |ξ| = 1 .

The maximization problem (1) leads to an algebraic eigenvalue problem, whose eigenvectors
are vectors with the expansion coefficients of F in the chosen basis (in the above case,
the Yl,m), and whose eigenvalues are the ratios λ in (1). Since the corresponding matrix
is Gramian and, therefore, symmetric, an orthonormal basis of eigenvectors spanning the
entire space of possible expansion coefficient vectors can be found. Owing to Parseval’s
identity, the functions that correspond to the expansion coefficient vectors also constitute
an orthonormal basis for the (bandlimited) space of considered functions. As a consequence,
the previously used basis can be replaced by a new basis, the ‘Slepian’ basis, whose elements
are sorted according to their localization λ over the subdomain R. This new basis is also
orthogonal in the sense of L2(R), which simplifies the expansion of bandlimited signals that
are restricted to the subdomain R.

Recently, Slepian functions have revealed themselves to be also useful for the regulariza-
tion of inverse problems in geophysics. For example, [24] addressed the downward continua-
tion of a gravity or magnetic field from regionally given gradients of the potential at satellite
altitude. Using T F = G to represent the inverse problem, involving an operator T , a given
function G, and an unknown function F , [24] constructed Slepian basis functions via the
maximization of

λ̃ :=

∫

R
[T F (x)]2 dx

∫

D[F (x)]2 dx
. (2)
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Here, R need not be a subset of D any more, but, rather, is the domain of functions in the
range of T . In the particular case considered by [24], R is a region at satellite altitude where
data are being collected, and D represents the (spherical) Earth’s surface.

In this paper, we will show that eqs. (1) and (2) can be seen as particular examples
of a more general approach to the construction of Slepian functions for inverse problems.
In particular, in the typical application scenario, one has an inverse problem T F = G for
which an svd is known if and when G is given on a domain D̃. When G is only given on a
subdomain R ⊂ D̃, we show that Slepian functions can be used to derive an svd also for the
restricted case PT F = G|R, with a corresponding projection operator P . The knowledge
of such an svd opens the door to various established regularization methods.

To the knowledge of the authors, there are only a few other publications which use
Slepian functions for inverse problems. For example, another approach which addresses
the singular-value decomposition of the operator is developed in [13] for functions on the
real line and a particular integral operator. Moreover, in [1], the gravitational potential is
expanded in spherical Slepian functions. The result is used as the given right-hand side for
an inverse problem, where point masses are reconstructed which approximately generate the
corresponding regional gravitational potential. Examples in other application domains are
[4, 11, 22, 28].

Other systems of localized trial functions have been used for inverse problems as well.
This includes, in particular, wavelet methods [8]. It would be beyond the scope and size of
this article to give a complete survey of such papers here. Examples of other works where
wavelets have been used for inverse problems on the sphere are [10, 32, 35, 37]. In [6, 19] it
was shown that a wavelet-based regularization can be constructed if the svd of the forward
operator is known. Therefore, we use these latter papers as a motivation for establishing a
Slepian-based wavelet method for inverse problems with regional data.

The outline of this paper is as follows: in Section 2, we introduce some basic notation.
The general setup of a linear compact operator between two Hilbert spaces is described
in Section 3. For this scenario, we explain the construction of Slepian functions in Sec-
tion 4. Since the general setting includes also infinite-dimensional spaces but numerical
implementations are only possible for finite dimensions, the practical specifics are discussed
in Section 5. Since the setting of [24] also includes an inverse problem where data originat-
ing from two different kinds of sources are being inverted, we show in Section 6 how such
coupled problems can be integrated into the general scenario. In Section 7 we describe an
algorithm for determining the Slepian functions and calculating the svd of the restricted
(projected) forward operator. Motivated by some known results for Slepian functions on
particular domains, we show in Section 8 how Slepian functions can be used to establish
Fredholm integral operators for the forward and the inverse operator. In particular, we also
show how scaling functions and wavelets can be constructed from the Slepian functions, and
we prove convergence and stability of the method. This multiscale regularization technique
is then applied to two inverse problems and tested numerically for synthetic data sets in
Section 9. Finally, in Section 10, we offer conclusions and an outlook on future research.

2. Notation

As usual, N represents the set of all positive integers, where N0 := N ∪ {0}, and R and
C stand for the fields of all real and complex numbers, respectively. A 2-sphere with radius
r > 0 in R3 and centre 0 is denoted

Ωr :=
{

ξ ∈ R
3
∣

∣ |ξ| = r
}

.

We write Ω := Ω1 for the unit sphere, r = 1. Moreover, if D ⊂ Rn is measurable, then
L2(D) is the Hilbert space of square-integrable functions, where almost everywhere equal
functions are collected in equivalence classes.
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3. Setting

As we mentioned in the Introduction, we will present a general setup for Slepian functions.
For this purpose, we introduce here an abstract setting which will serve as a starting point.
We have three non-trivial Hilbert spaces (X , 〈·, ·〉X ), (Y, 〈·, ·〉Y), and (Z, 〈·, ·〉Z), with the
following additional assumptions.

• There exists an isometric embedding (an injection) ι : Z →֒ Y, i.e.
〈ι (F1) , ι (F2)〉Y = 〈F1, F2〉Z for all F1, F2 ∈ Z . (3)

We, therefore, consider Z to be a subset of Y by associating Z with ι(Z). Since ι

is isometric and (Z, 〈·, ·〉Z) is a Hilbert space, also (ι(Z), 〈·, ·〉Y) is a Hilbert space,
namely, a Hilbert subspace of (Y, 〈·, ·〉Y).

• There exists a projection P : Y → Z, in the sense that (with ‘Z ⊂ Y’)
P(PG) = PG for all G ∈ Y,

such that P ◦ ι = IdZ , in other words, P inverts the embedding.

For a better understanding, we discuss an example of an application.

Example 3.1. A typical challenging inverse problem in the geosciences is the downward
continuation problem (see e.g. [25, 26, 36]). As considered by [24], a harmonic potential
(e.g. the gravitational or magnetic potential) is given on a sphere with radius rs (e.g. the
satellite orbit), and the task is to determine the potential on the surface of the planet (a
sphere with radius rp). In this case, we might choose

X = L2
(

Ωrp

)

, Y = L2 (Ωrs), Z = L2(R),

as spaces where R ⊂ Ωrs is a subdomain, also a 2-dimensional surface. For example, R
could be an area of limited access by measurement, or to which the analysis of the potential
is restricted. The canonical embedding would then be ι : L2(R) →֒ L2(Ωrs) with

[ι(F )] (x) :=

{

F (x), x ∈ R

0, x 6∈ R
, x ∈ Ωrs .

It is clear that, for real F1, F2 ∈ L2(R), we have

〈ι(F1), ι(F2)〉L2(Ωrs )
=

∫

Ωrs

[ι(F1)] (ξ) [ι(F2)] (ξ) dω(ξ)

=

∫

R

F1(ξ)F2(ξ) dω(ξ)

= 〈F1, F2〉L2(R) .

The projection P : L2(Ωrs) → L2(R) would simply be the restriction

P : G 7→ G|R .

It is similar to the restriction operator used in [31, their Eq. (4.22)].

Let us return to the general setting again.

Lemma 3.2. We have
ι ◦ P|ι(Z) = Idι(Z),

and ι ◦ P is a projection onto ι(Z).

This lemma easily follows from the required properties above.
We will now continue with the abstract setting for the inverse problem. For this purpose,

we also assume that we have a compact operator T : X → Y with a known svd

T F =
∑

n

σn〈F, un〉X vn, F ∈ X , (4)
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where (σn)n ⊂ C satisfies σn 6= 0 for all n. Moreover, as usual for an svd, (un)n and (vn)n
are orthonormal systems in X and Y, respectively.

Furthermore, we have an inverse problem T F = G̃, where G̃ ∈ Y is given and F ∈ X is
unknown. In our case, we assume that G̃ ∈ ι(Z), which might mean that only part of the

information, PG̃ ∈ Z, of the ‘whole’ right-hand side G̃ is given. For these reasons, we will
deal here with the inverse problem

PT F = G, G ∈ Z given, F ∈ X unknown .

Unfortunately, we have the svd for the operator T : X → Y, but not for the operator
PT : X → Z . As we will see, the basic principle of a Slepian approach is to obtain an svd
for PT , which is useful in cases where data are only obtainable from Z.

Example 3.3. We continue with the inverse problem from Example 3.1, the downward
continuation problem of [24]. The forward operator T : L2(Ωrp) → L2(Ωrs) has the svd

T F =

∞
∑

l=0

l
∑

m=−l

(

rp

rs

)l 〈

F,
1

rp
Yl,m

( ·
rp

)〉

L2(Ωrp)

1

rs
Yl,m

( ·
rs

)

,

for F ∈ L2(Ωrp), where (Yl,m)l∈N0; m=−l,...,l is the commonly used orthonormal basis of real

spherical harmonics in L2(Ω). Here, R ⊂ Ωrs is the subdomain of data availability, or of
modeling interest for the potential.

4. Slepian approach

In analogy with [24], we pursue the idea to maximize

R(F ) :=
‖PT F‖2Z
‖F‖2X

(5)

among all F ∈ X with F 6= 0. The individual terms can be represented as follows (PkerT is
the orthogonal projection onto the nullspace or kernel of T ), for F ∈ X ,

‖F‖2X =
∑

n

|〈F, un〉X |2 + ‖PkerT F‖2X ,

T F =
∑

n

σn〈F, un〉X vn , (6)

PT F =
∑

n

σn〈F, un〉X Pvn ,

‖PT F‖2Z =
∑

m,n

σmσn〈F, um〉X 〈F, un〉X 〈Pvm,Pvn〉Z .

Note that these formulae are also valid if (vn)n is not orthonormal in Y. It suffices that (4),
which is the same as (6), is a finite sum or a (strongly) convergent series.
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Example 4.1. Let us consider again Example 3.3. In this case, the kernel is trivial, i.e.
kerT = {0}. Furthermore,

‖F‖2
L2(Ωrp)

=
∞
∑

l=0

l
∑

m=−l

〈

F,
1

rp
Yl,m

( ·
rp

)〉2

L2(Ωrp)
,

‖PT F‖2L2(R) =

∞
∑

l=0

l
∑

m=−l

∞
∑

l′=0

l′
∑

m′=−l′

(

rp

rs

)l+l′ 〈

F,
1

rp
Yl,m

( ·
rp

)〉

L2(Ωrp)

×
〈

F,
1

rp
Yl′,m′

( ·
rp

)〉

L2(Ωrp)

×
∫

R

1

rs
Yl,m

(

η

rs

)

1

rs
Yl′,m′

(

η

rs

)

dω(η) .

Lemma 4.2. The ratio R, which was defined in (5), satisfies

0 ≤ R(F ) ≤ max
n

|σn|

for all F ∈ X \ {0}.

Proof. Since P is a projection, its operator norm must satisfy ‖P‖L(Y,Z) = 1. Moreover,
the singular-value decomposition (4) yields that ‖T ‖L(X ,Y) = maxn |σn|. Note that this
maximum exists, since T is compact and, therefore, (σn)n must either be a finite sequence
or a sequence which converges to zero. Hence, ‖PT ‖L(X ,Z) ≤ maxn |σn|, where

‖PT ‖2L(X ,Z) = sup
F∈X\{0}

R(F ) .

�

Lemma 4.3. The operator PT : X → Z is compact.

Proof. T is compact and P is (as every projection) continuous. Hence, PT is compact. �

As a consequence, PT must have a singular-value decomposition

PT F =
∑

n

τn〈F, gn〉X hn, F ∈ X , (7)

where (τn)n ⊂ C is either a finite sequence or a sequence converging to zero, (gn)n is
an orthonormal system in X , and (hn)n is an orthonormal system in Z. We will assume
here that the singular values (τn)n are sorted in a way such that (|τn|)n is monotonically
decreasing. The corresponding sequence (gn)n will be called a sequence of Slepian basis

functions with a localization of descending order. This is motivated by the fact that

R (gn) =
‖PT gn‖2Z
‖gn‖2X

= |τn|2 . (8)

5. Finite-dimensional case

In numerical implementations, only finite basis systems can be used. This usually means
that the analysis is restricted to bandlimited functions. Because of its practical relevance,
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we discuss this particular case here separately. We set

f := (〈F, un〉X )n=1,...,N ∈ C
N (column vector) ,

Σ :=













σ1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 σN













∈ C
N×N ,

K := (〈Pvm,Pvn〉Z)m,n=1,...,N ∈ C
N×N .

Then the Parseval identity implies that

R(F ) = ‖f‖−2
CN · fTΣKΣ∗f .

Here, M∗ represents the complex adjoint of a matrix M = (mi,j)i,j=1,...,N , i.e. M∗ :=

(mj,i)i,j=1,...,N , M stands for the complex conjugate M := (mi,j)i,j=1,...,N , and MT :=
(mj,i)i,j=1,...,N is the transposed matrix.

Since fTΣKΣ∗f = ‖PT F‖2Z is real, Σ is a diagonal matrix, and an inner product has a
conjugate symmetry, we can also write

R(F ) = ‖f‖−2
CN · fTΣKΣ∗f = ‖f‖−2

CN · f∗Σ∗KTΣf ,

where
Σ∗KTΣ = (σm 〈Pvn,Pvm〉Z σn)m,n=1,...,N . (9)

This result corresponds to the approach for the internal-field-only case in [24].

Example 5.1. We continue with Example 3.3. In this case, the index range is set to
l = 0, . . . , L, m = −l, . . . , l. Then the entries of the diagonal matrix Σ are given by

σl,m =

(

rp

rs

)l

.

The unknown vector f contains the Fourier coefficients

fl,m =

〈

F,
1

rp
Yl,m

( ·
rp

)〉

L2(Ωrp)
.

Furthermore, the matrix K is given by its components
∫

R

1

rs
Yl,m

(

η

rs

)

1

rs
Yl′,m′

(

η

rs

)

dω(η) .

The task is, therefore, to find the eigenvectors f of the matrix

Σ∗KTΣ =

[

(

rp

rs

)l ∫

R

1

rs
Yl,m

(

η

rs

)

1

rs
Yl′,m′

(

η

rs

)

dω(η)

(

rp

rs

)l′
]

l=0,...,L; m=−l,...,l

l′=0,...,L; m′=−l′,...,l′

.

Remark 5.2. For some problems, vectorial (e.g. gradients of potential fields [24]) or tensorial
basis functions come into play, and the L2 inner products involve Euclidean dot products of
the kind

〈f, g〉Z =

∫

R

f(ξ) · g(ξ) dω(ξ), f, g ∈ L2
(

R,R3
)

.

In this case, one can make use of this Euclidean product to reduce the numerical expense
or the instability of the eigenvalue problem at hand. For example, the vector spherical

harmonics (for which we use here the notation in [5]) y
(i)
l,m can be subdivided into vector

fields which are normal to the sphere (i = 1) and fields that are tangential to the sphere
(i = 2 and i = 3). For this reason,

y
(1)
l,m(ξ) · y(i)n,j(ξ) = 0
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holds pointwise (i.e. for all ξ ∈ Ω) and all i ∈ {2; 3}, independently of the degrees l, n and or-
ders m, j. Within the tangential vector fields, such a pointwise, i.e. Euclidean, orthogonality
is only obtained for identical degree-order pairs, i.e.

y
(2)
l,m(ξ) · y(3)l,m(ξ) = 0

for all ξ ∈ Ω and all degrees l and orders m.
In [12], different linear combinations of complex tangential vector spherical harmonics are

constructed to obtain alternative basis functions, which we call here ỹ
(i)
l,m, i = 1, 2, 3, such

that1

ỹ
(2)
l,m(ξ) · ỹ(3)n,j(ξ) = 0

for all ξ ∈ Ω, all degrees l, n, and all orders m, j. This pointwise orthogonality can be
exploited, because we have

∫

R

ỹ
(i1)
l,m (ξ) · ỹ(i2)n,j (ξ) dω(ξ) = 0

whenever i1 6= i2. As a consequence, the matrix K can be rearranged into a block matrix




type i = 1 0 0
0 type i = 2 0
0 0 type i = 3





such that the algebraic eigenvalue problems can be solved separately for each type i. This has
not only the advantage that the matrices of the eigenvalue problem become smaller (which
yields the expectation of a faster and more stable computation of the eigenvectors), it also
leads to Slepian functions which are separated by type. This means that the components
of the field associated to different types can be independently analyzed by means of Slepian
functions.

However, one has to be aware of the fact that the type i = 2 of the y
(i)
l,m (which is a

surface gradient field and is, therefore, surface-curl-free) is not the same as the type i = 2

of the ỹ
(i)
l,m. The reason is that each tangential ỹ

(i)
l,m, i ∈ {2; 3}, is a linear combination

of complex versions of y
(2)
l,m and y

(3)
l,m. In particular, ỹ

(2)
l,m is not surface-curl-free anymore,

and ỹ
(3)
l,m is not surface-divergence-free anymore — properties which the non-tilde versions

originally possessed.
For tensor spherical harmonics, there are 9 different types of basis functions, where again

some types are orthogonal to each other in the Euclidean sense. Also here, it is possible to
define a new basis system such that the Slepian eigenvalue problem can be transformed into
9 independent eigenvalue problems, as shown in [27].

6. Coupled problems

In some applications, we may have data that originate from different causes or sources, and
we may be interested in separating them (e.g. internally and externally generated planetary
magnetic fields [24]). We will show here that such a scenario can easily be integrated into
our general setting.

We now have two operators T1 : X1 → Y and T2 : X2 → Y with svds

T1F1 =
∑

n

σ(1)
n

〈

F1, u
(1)
n

〉

X1

v(1)n , F1 ∈ X1 ,

T2F2 =
∑

n

σ(2)
n

〈

F2, u
(2)
n

〉

X2

v(2)n , F2 ∈ X2 .

The notation for the Hilbert spaces and the orthonormal systems is analogous to the previous
case. Note that T1 and T2 both map into Y, but that they may use different orthonormal

1Note that ‘·’ is here the complex dot product, i.e. w · z :=
∑

3

j=1
wjzj for w, z ∈ C3.
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systems (v
(1)
n )n ⊂ Y and (v

(2)
n )n ⊂ Y. As in the single-operator case, we have only one

Hilbert space Z, one projection P : Y → Z, and one embedding ι : Z →֒ Y.
The inverse problem is now to find F1 ∈ X1 and F2 ∈ X2 such that, for a given G ∈ Z,

PT1F1 + PT2F2 = G.

Example 6.1. In [24], it is assumed that a potential field is given which is a superposition of
potentials from an internal and an external source, where the sources could be of a magnetic
or a gravitational nature. More precisely, the case of gradients of the potential is considered.
For reasons of brevity of the formulae, we will consider here the scalar potential situation.
The inner potential corresponds to Example 3.3 and its source is assumed to be located
inside the planet (i.e. in the interior of Ωrp). The external potential originates from a radius
of at least re, where re > rs. This leads to the operators

T1F1 =

∞
∑

l=0

l
∑

m=−l

(

rp

rs

)l 〈

F1,
1

rp
Yl,m

( ·
rp

)〉

L2(Ωrp)

1

rs
Yl,m

( ·
rs

)

, (10a)

T2F2 =
∞
∑

l=0

l
∑

m=−l

(

rs

re

)l+1 〈

F2,
1

re
Yl,m

( ·
re

)〉

L2(Ωre )

1

rs
Yl,m

( ·
rs

)

, (10b)

where (10a) represents the inner field and (10b) stands for the external field. The singular
values of T1 and T2 both exponentially converge to 0, which means that both operators are
compact. However, depending on the values of rp, rs, and re, these two sequences need
not tend to zero equally fast. This means that the associated ill-posednesses need not be
equally severe. As a consequence, it can be reasonable to truncate the two series in (10)
at different degrees. The consequently different sizes of the orthonormal systems combined
with the different instabilities (and, maybe also coupled with different noise scenarios) yield
a situation which can be expected to be particularly challenging regarding the necessary
regularization.

Let us return to the general setting. For the considered problem, we construct the Hilbert
space X := X1 ⊗X2 as the Cartesian product of the individual spaces, and equip it with the
inner product, for x1, x

′
1 ∈ X1, x2, x

′
2 ∈ X2,

〈(x1, x2), (x
′
1, x

′
2)〉X := 〈x1, x

′
1〉X1

+ 〈x2, x
′
2〉X2

,

Moreover, we define the operator S : X → Y by

S (F1, F2) := T1F1 + T2F2, F1 ∈ X1, F2 ∈ X2 .

Furthermore, we set

u2n :=
(

u(1)
n , 0

)

, u2n+1 :=
(

0, u(2)
n

)

,

v2n := v(1)n , v2n+1 := v(2)n ,

σ2n := σ(1)
n , σ2n+1 := σ(2)

n .

This arrangement of the two systems into one system certainly does not necessarily have
to be done in this order. In particular, in the finite-dimensional case, where we only have

(u
(1)
n )n=1,...,N1

and (u
(2)
n )n=1,...,N2

, we could equivalently set

(u1, . . . , uN1+N2
) :=

(

u
(1)
1 , . . . , u

(1)
N1

, u
(2)
1 , . . . , u

(2)
N2

)

.

We now have
SF =

∑

n

σn〈F, un〉X vn, F ∈ X ,

where (un)n is an orthonormal system in X but (vn)n is, in general, not an orthonormal
system in Y. In Section 4 we remarked that there is no requirement that (vn)n be orthonor-
mal, hence we can proceed now like in the ‘non-coupled’ case. However, in the (theoretical)
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case where infinite systems are involved, the particular arrangement of the two systems into
one system could be of importance in the sense of the Riemann series theorem (see e.g. [15,
p. 68])

In the finite-dimensional case, the Slepian matrix,

Σ∗KTΣ = (σm 〈Pvn,Pvm〉Z σn)m,n=1,...,N

corresponds to the matrix of the eigenvalue problem for the mixed-source case in [24].
Couplings of more than two sources can be handled analogously.

7. Solving the inverse problem

7.1. The Slepian functions and the svd. The svd for the operator PT : X → Z in (7),
which we know exists, allows us to use a truncated singular-value decomposition

FJ =

J
∑

k=1

τk 6=0

τ−1
k 〈G, hk〉Z gk (11)

as an approximate solution of the inverse problem PT F = G, G ∈ Z.
To find gk, hk, and τk, in the finite-dimensional setting of Section 5, the procedure requires

us to:

• set up the matrix Σ∗KTΣ as in (9).
• determine an orthonormal system of eigenvectors2 f (1), . . . , f (N) and its associated
eigenvalues ̺1, . . . , ̺N ∈ R

+
0 .

• sort the eigenvalues (and the associated eigenvectors) such that ̺1 ≥ ̺2 ≥ · · · ≥ ̺N .
• construct

gk =
N
∑

n=1

f (k)
n un ∈ X , k = 1, . . . , N ,

with the Parseval identity yielding

〈gk, gl〉X =

N
∑

n=1

f (k)
n f

(l)
n =

〈

f (k), f (l)
〉

CN
= δkl .

We now use the gk as basis functions to expand the solution F , that is, we determine

coefficients γk such that F =
∑N

k=1 γkgk solves PT F = G. In keeping with the common
philosophy of Slepian functions, we may truncate our expansions by taking only these Slepian
functions gk for which ̺k ≥ ˜̺ for a chosen threshold ˜̺.

In our case, we determine the γk from the svd of PT , proceeding as follows. From (4),
we know

T gk =
N
∑

n=1

σnf
(k)
n vn, k = 1, . . . , N ,

and therefore also

PT gk =

N
∑

n=1

σnf
(k)
n Pvn, k = 1, . . . , N.

2Since Σ∗KTΣ is self-adjoint, such an orthonormal basis must exist and all eigenvalues are real. Moreover,
since it is a Gramian matrix, all eigenvalues must be non-negative.



REGULARIZING INVERSE PROBLEMS WITH SLEPIAN WAVELETS 11

Furthermore, with (9), an interchanging of m and n, and the fact that the f (k) are orthonor-
mal eigenvectors of Σ∗KTΣ, we get

〈PT gk,PT gl〉Z =
N
∑

m,n=1

σmσnf
(k)
m f

(l)
n 〈Pvm,Pvn〉Z

= f (l)∗Σ∗KTΣ f (k)

= ̺k
〈

f (l), f (k)
〉

CN

= ̺kδk,l .

We set

hk := ̺
−1/2
k PT gk, k = 1, . . . , N , if ̺k 6= 0 ,

τk := ̺
1/2
k , k = 1, . . . , N, if ̺k 6= 0 .

If ̺k = 0, then PT gk = 0 such that we set Ñ := max{k | ̺k 6= 0} and consider (uk)k=1,...,Ñ

as an orthonormal basis of (kerPT )⊥X , the 〈·, ·〉X -orthogonal complement of the nullspace
of PT .

Then,

PT F = PT
Ñ
∑

k=1

〈F, gk〉X gk

=

Ñ
∑

k=1

〈F, gk〉X τk hk , F ∈ X .

This is the required svd of PT : X → Z, see (7).
The determination of the truncation parameter J in (11) can be accomplished with any

one of the known parameter choice methods for the regularization of inverse problems (see
e.g. [9, 40] and the references therein). Furthermore, (hk)k=1,··· ,Ñ is an orthonormal system

in Z. Moreover, (3) implies that

δkl = 〈hk, hl〉Z = 〈ι(hk), ι(hl)〉Y

such that (ι(hk))k=1,...,Ñ is also orthonormal in Y. In our example of function spaces, this

means that the ι(hk) are spacelimited functions, which are orthogonal in L2(Ωrs).

Example 7.1. We continue with Example 5.1, reverting to the degree and order indices
l = 0, . . . , L, m = −l, . . . , l. After having obtained the eigenvectors f (k) and eigenvalues ̺k
for the matrix Σ∗KTΣ, we can calculate the following functions:

gk(ξ) =

L
∑

l=0

l
∑

m=−l

f
(k)
l,m

1

rp
Yl,m

(

ξ

rp

)

, ξ ∈ Ωrp ,

hk(ζ) = ̺
−1/2
k

L
∑

l=0

l
∑

m=−l

f
(k)
l,m

(

rp

rs

)l
1

rs
Yl,m

(

ζ

rs

)

, ζ ∈ R ,

[ι (hk)] (η) =







̺
−1/2
k

∑L
l=0

∑l
m=−lf

(k)
l,m

(

rp
rs

)l
1
rs
Yl,m

(

η
rs

)

, η ∈ R

0, η ∈ Ωrs \R
, η ∈ Ωrs .
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We obtain then the following orthogonalities
∫

Ωrp

gk(ξ) gl(ξ) dω(ξ) = δkl,

∫

R

hk(ζ)hl(ζ) dω(ζ) =

∫

Ωrs

[ι (hk)] (η) [ι (hl)] (η) dω(η) = δkl .

The example and the considerations above show one of the advantages of Slepian functions
applied to inverse problems with regional data. We are able to obtain a singular-value
decomposition for the projected operator PT : X → Z, that is, for the case where only
regional data are available. We have orthonormal function systems (gk)k in X and (hk)k
in Z which can be calculated explicitly.

7.2. Construction of a scaling function as a filter. Moreover, alternative methods like
wavelet-based multiscale methods are applicable, where we introduce a filter ϕJ , such that

F̃J =

Ñ
∑

k=1

ϕJ (k)τ
−1
k 〈G, hk〉Z gk .

In the case of functions, this could be

F̃J(x) = 〈G,ΦJ (x, ·)〉Z ,

where the scaling function ΦJ is given by

ΦJ(x, z) =

Ñ
∑

k=1

ϕJ (k) τ
−1
k gk(x) hk(z) . (12)

We will further elaborate this in Section 8.

7.3. Infinite-dimensional case. Putting numerical considerations aside for a moment, we
can observe that the considerations here are not restricted to the finite-dimensional case.
With the (initially unknown but definitely existing) singular-value decomposition (7) and
with (8), we could also proceed with an infinite (e.g. non-bandlimited) setting. We would

get a (possibly infinite, but countable) system of non-negative values (τk)k∈κ = (̺
1/2
k )k∈κ,

where κ ⊂ N stands here for the index range which counts all such singular values. Due to
the nature of an svd, the gk, k ∈ κ, would represent an orthonormal system in X . More
precisely, we would have an orthonormal basis of (kerPT )⊥X . Then

hk = τ−1
k PT gk, k ∈ κ ,

is an orthonormal system such that imPT ⊂ span{hk | k ∈ κ}‖·‖Z

(the closure of the span
of hk, i.e. every element in the image of PT can be expanded into the basis hk, possibly
with an infinite number of summands). Furthermore, we would also get that (ι(hk))k∈κ is
orthonormal in Y due to ι being an isometry.

8. Scaling functions, wavelets, reproducing kernels and Fredholm integral

operators

In this section, we assume that the Hilbert spaces X , Y, and Z are spaces of functions
with domains X , Y , and Z, respectively. The example of downward continuation which has
been discussed throughout this paper fits this assumption.
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For an F ∈ X , a G ∈ Z, we use the svd of the problem PT F = G,

(PT F )(z) =
∑

k∈κ

τk〈F, gk〉X hk(z)

=

〈

F (·),
∑

k∈κ

τk gk(·)hk(z)

〉

X

=
〈

F (·), D↑(z, ·)
〉

X
,

to define now the following functions

D↑(z, x) :=
∑

k∈κ

τk hk(z) gk(x), z ∈ Z, x ∈ X ,

D↓(x, z) :=
∑

k∈κ

τ−1
k gk(x) hk(z), x ∈ X, z ∈ Z ,

assuming appropriate convergence3 in the case of an infinite number of summands. Similarly,
(

[PT ]+G
)

(x) =
∑

k∈κ

τ−1
k 〈G, hk〉Z gk(x)

=

〈

G(·),
∑

k∈κ

τ−1
k hk(·) gk(x)

〉

Z

=
〈

G(·), D↓(x, ·)
〉

Z
, x ∈ X ,

where (PT )+ = (PT |(ker(PT ))⊥X )−1 is the Moore-Penrose inverse of PT .

The kernel D↓ probably will not exist in the infinite-dimensional case, because (τ−1
k )

diverges to +∞. This represents the ill-posedness of the problem, because (PT )+G cannot
so easily be computed. For this reason, a regularization is needed.

This can be done in manifold ways, where a truncation of the series, which would be the
classical Slepian function approach discussed above in (11), is one out of these possibilities.
The more general Ansatz corresponds to the scaling function approach described above
in (12), where we replace D↓ by the kernel

ΦJ (x, z) =
∑

k∈κ

ϕJ(k) τ
−1
k gk(x) hk(z) , x ∈ X, z ∈ Z .

By choosing a sequence (ϕJ (k))k, which tends to zero ‘sufficiently’ fast, we can control
the rising inverse singular values τ−1

k and obtain a stable solution. Such wavelet-based
regularization methods have already been discussed for such general Hilbert space settings
in [6, 19]. We will show here the most important properties of such a multiscale regularization
for the considered Slepian-function approach.

Theorem 8.1. Let the assumptions from above hold true. Moreover, let the family of
functions ϕJ : R

+
0 → R

+
0 , J ∈ N0, satisfy the following conditions4:

(i) for all J ∈ N0 and all x ∈ X, the following series converges pointwise:

∑

k∈κ

∣

∣

∣ϕJ(k) gk(x) τ
−1
k

∣

∣

∣

2

< +∞ , (13)

(ii) for all J ∈ N0,

sup
k∈κ

(

ϕJ(k)τ
−1
k

)

< +∞ , (14)

3We need that, for each fixed z ∈ Z, the series corresponding to D↑(z, ·) converges strongly in the sense
of ‖·‖X . Analogously, for each fixed x ∈ X , the series corresponding to D↓(x, ·) must be strongly convergent
in the sense of ‖ · ‖Z .

4If κ is a finite set, then conditions (i) and (ii) are trivially satisfied.
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(iii) for all k ∈ κ,

lim
J→∞

ϕJ (k) = 1 , (15)

(iv) for all J ∈ N0 and all k ∈ κ,

0 ≤ ϕJ (k) ≤ 1 , (16)

Furthermore, the sequence of functions ΦJ ∗G ∈ X , J ∈ N0, is defined by

(ΦJ ∗G) (x) :=

〈

G(·),
∑

k∈κ

ϕ(k) τ−1
k gk(x)hk(·)

〉

Z

, x ∈ X, G ∈ Z . (17)

Then

lim
J→∞

∥

∥[PT ]+G− ΦJ ∗G
∥

∥

X
= 0

for all G ∈ im(PT ). Moreover, each mapping

Z → X
G 7→ ΦJ ∗G ,

J ∈ N0, is continuous.

Before we prove this theorem, let us state what it means for the inverse problem. The
sequence (ΦJ ∗G)J converges strongly (in the ‖ ·‖X -sense) to the solution F ∈ (ker(PT ))⊥X

of the inverse problem PT F = G, provided that a solution exists (i.e. G ∈ im(PT )).
Hence, we can construct approximate solutions which are arbitrarily close to the exact
solution. However, in contrast to the exact solution F , which discontinuously depends on
G in the infinite-dimensional case (remember that PT is compact), the approximations are
stable, that is they continuously depend on the data G. This also yields the expectation of
numerically stable approximate inversions in the finite-dimensional case.

Let us now prove the theorem.

Proof. From the condition in (13), we obtain that the series
∑

k∈κ

ϕJ(k) τ
−1
k gk(x) hk(·) ,

with arbitrary but fixed J ∈ N and x ∈ X , converges strongly in Z. Hence, we are allowed
to interchange the inner product with the series in (17) and get

(ΦJ ∗G) (x) =
∑

k∈κ

ϕJ(k) τ
−1
k 〈G, hk〉Z gk(x)

for all J ∈ N0 and all x ∈ X . Furthermore, the solvability of the inverse problem PT F = G

yields a unique (minimum-norm) solution F ∈ (ker(PT ))⊥X , which is given by

F =
∑

k∈κ

τ−1
k 〈G, hk〉Z gk

in the sense of ‖ · ‖X . Hence, the well-known Picard condition
∑

k∈κ

∣

∣τ−1
k 〈G, hk〉Z

∣

∣

2
< +∞

must hold. This Picard condition in combination with (16) implies that the series

‖F − ΦJ ∗G‖2X =
∑

k∈κ

∣

∣(1− ϕJ (k)) τ
−1
k 〈G, hk〉Z

∣

∣

2
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uniformly converges with respect to all J ∈ N. Hence,

lim
J→∞

‖F − ΦJ ∗G‖2X = lim
J→∞

∑

k∈κ

∣

∣(1− ϕJ (k)) τ
−1
k 〈G, hk〉Z

∣

∣

2

=
∑

k∈κ

∣

∣

∣

(

1− lim
J→∞

ϕJ(k)
)

τ−1
k 〈G, hk〉Z

∣

∣

∣

2

= 0

due to (15).
For proving the stability of the approximations ΦJ ∗G, we have a look at

‖ΦJ ∗G‖2X =
∑

k∈κ

∣

∣ϕJ (k) τ
−1
k 〈G, hk〉Z

∣

∣

2

≤ sup
k∈κ

(

ϕJ (k) τ
−1
k

)2 ∑

k∈κ

|〈G, hk〉Z |
2

= sup
k∈κ

(

ϕJ (k) τ
−1
k

)2 ‖G‖2Z , G ∈ Z . (18)

According to (14), the supremum in (18) is finite. This proves the continuity of the mapping.
�

Examples for the choice of ϕJ can be constructed out of generators of scaling functions
as they are known, for instance, from the theory of spherical wavelets (see e.g. [5, Sections
11.3 and 11.4], [19, Example 2.3.7], and [21, Example 7.20]). However, the critical part is
represented by conditions (i) and (ii). They can be trivially satisfied by taking generators
of bandlimited scaling functions, that is functions ϕJ with compact support suppϕJ for
each J ∈ N0. In the non-bandlimited case, where the support is unbounded for an infinite
number of scales J , the particular properties of the computed Slepian functions gk and the
rate of divergence of the inverse singular values (τ−1

k ) have to be taken into account. On the
one hand, this yields an interesting challenge for future research, because these requirements
implicitly also include the geometry of the region R (as well as the degree of the ill-posedness
of the original inverse problem T F = G) into the conditions on ϕJ . On the other hand, in
practice, one either always has to restrict the calculations to finite dimensional spaces, that
is, to the bandlimited case, or κ is a finite set to begin with.

Note also that, in the particular case of L2-inner products in X and Z, we can, indeed,
write the inverse problem as a Fredholm integral equation of the first kind

(PT F )(z) =

∫

X

F (x)D↑(z, x) dx, z ∈ Z .

Let us discuss now a special case: T = I (identity) and X = Y, i.e. we ‘simply’ want to
interpolate/approximate a function. In this case, un = vn for all n and σn = 1 for all n.
The singular-value decomposition of T would be representable as

T F =
∑

n

〈F, un〉X un, F ∈ X .

The task is still to find a new singular-value decomposition for the projected equation, but
this time it is only the projection itself which needs the svd. We, therefore, look for a
representation of the form

PF =
∑

k

τk〈F, gk〉X hk

which originates in the same way from the eigenvalue- or singular-value-problem discussed

above, where now hk = ̺
−1/2
k Pgk = τ−1

k Pgk. If P is the restriction operator P : F 7→ F |Z ,
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then

D↑(z, x) =
∑

k∈κ

gk(z) gk(x), z ∈ Z, x ∈ X ,

D↓(x, z) =
∑

k∈κ

τ−2
k gk(x) gk(z), x ∈ X, z ∈ Z .

In other words, using again L2-inner products, we see that
∫

X

F (x)D↑(z, x) dx = (PF )(z) = F (z), z ∈ Z ,

reproduces F on the subset Z ⊂ Y = X . In particular,
∫

X

gk(x)D↑(z, x) dx = (Pgk)(z) = gk(z), z ∈ Z .

Vice versa,
∫

Z

F (z)D↓(x, z) dz =
(

P+F
)

(x), x ∈ X ,

reconstructs F on the whole set X from knowledge of F on the subset Z. The latter sounds
confusing at the first sight. How could the continuation of F to a larger set be unique?
Indeed, there is a catch: the series of D↓ must converge. This can be satisfied in two cases:

• either κ is finite: then the function spaces under investigation have finite dimensions
and the functions in it are, indeed, uniquely determined by their values on a subset
(like it is e.g. the case for polynomials up to a fixed degree),

• or κ is infinite but the series converges nevertheless: then this implies certain regu-
larity conditions on the functions in the space for which D↓ is a reproducing kernel.

Note that experience with Slepian functions shows that the eigenvalues often separate into
a set of values close to 1 and some others which are almost 0. This also demonstrates the
difficulty of finding a numerically stable kernel D↓, since then some τ−2

k are very large.

Remark 8.2. Since the scaling functions ΦJ provide us with different approximations ΦJ ∗F
to F , it also appears to be useful to look at differences ΨJ := ΦJ+1 − ΦJ such that

ΦJ+1 ∗G = ΦJ ∗G+ ΨJ ∗G .

Here, ΨJ ∗G can be regarded as the detail information with is added to the approximation
ΦJ ∗ G at scale J to obtain the approximation ΦJ+1 ∗ G at the next scale. In analogy to
common wavelet theories, where such scale-step properties also exist, the kernels ΨJ can be
called wavelets here.

9. Some numerical tests

This paper generalizes an approach presented in [24] for the downward continuation of
geophysically relevant potentials. Their application has served as a thread in this paper
to show that the general setup, indeed, includes this particular example. Rather than
experimenting with the same examples again, we demonstrate the applicability of the general
Ansatz to other inverse problems by discussing some enlightening problems on the 1-sphere.
All numerical calculations were done with MatlabR2015b.

9.1. Identity. We start with an approximation problem. The Hilbert spaces and the oper-
ator (which is the identity operator for an approximation problem) are chosen as follows:

X := L2[0, 2π], Y := X , Z := L2

[

π

2
,
3π

2

]

,

T := Id, σn := 1 for all n .

Note that L2[0, 2π] is isometric and isomorphic to L2(S1), where S1 is the 1-sphere.



REGULARIZING INVERSE PROBLEMS WITH SLEPIAN WAVELETS 17

Moreover, we need orthonormal basis systems for the Hilbert spaces involved. We take
here a common system, for x ∈ [0, 2π],

u0,1(x) :=
1√
2π

,

un,1(x) :=
1√
π

cos(nx), un,2(x) :=
1√
π

sin(nx), n ≥ 1 ,

vn,j(x) := un,j(x) for all n, j .

For calculating the Slepian functions, the bandlimit is set to N := 50. Moreover, we use the
transformation

k(n, j) =

{

2(n− 1) + j + 1, if n ≥ 1

1, if n = 0

to have a single index only. A selection of the Slepian functions on the 1-sphere S1 with
largest and lowest eigenvalues is shown in Figure 1. It can be seen that the set of Slepian
functions can be subdivided into functions with a strong localization in R = [0.5π, 1.5π] and
other functions which concentrate on the complement D \R = [0, 0.5π[∪ ]1.5π, 2π]. This is
also confirmed by the eigenvalues, which are shown in Figure 2. For numerical reasons, we
only consider Slepian functions for which τk ≥ 0.1% · τ1 in all our calculations.

The Fourier coefficients of the contrived solution F are chosen by

〈F, uk〉X := (1 + εk)
1

k
, k = 1, . . . , 2N + 1 .

The εk are standard normally distributed random numbers. The corresponding function
is represented by the red graphs in Figures 4 and 5. The right-hand side is calculated as
G = PT F = F |[0.5π,1.5π] on an equidistant grid of 1001 points in [0.5π, 1.5π]. This right-

hand side is contaminated with noise by replacing G with G+ 0.01 ε̃k (see Figure 3), where
the ε̃k are standard normally distributed random variables (εk and ε̃k were obtained with
the MATLAB function randn). Moreover, the functions ϕJ are chosen as the generators of the
Shannon scaling function (see e.g. [5]) such that

ϕJ (k) =

{

1, if k < 2J

0, else
, J, k ∈ N0 .

For the convolution 〈ΦJ(x, ·), G〉Z , a composite Simpson’s rule was used. The points xi used
for plotting 〈ΦJ (x, ·), G〉Z are on an equidistant grid of 401 points in [0, 2π].

The root mean square error ( 1
M

∑M
i=1(F (xi) − (ΦJ ∗ G)(xi))

2)1/2 is calculated only for
points xi in R = [0.5π, 1.5π] and is shown in Table 1. The approximation error clearly
decreases and then stagnates at a low level (note that the truncation condition τk < 0.1% ·τ1
is achieved in this example for k = 60; hence, we have here that ϕJ1

(k) = ϕJ2
(k) for all

k = 1, . . . , 101, if J1, J2 ≥ 6). Note that the values of F vary within R between −0.5 and
0.5. The obtained approximations are shown in Figures 4 and 5. We can see that the
chosen function F is well approximated on the interval R. For the larger scale J = 6, some
boundary effects5 occur, which shows that, in some cases, smoother approximations at lower
scales (like here for J = 5), which are still close to the exact solution but do not show such
boundary effects, might be preferred.

5We experienced in our experiments that a finer quadrature grid of 10, 001 points for the Simpson rule
reduces these effects in their amplitude such that they can partially also occur due to inaccuracies in the
numerical integration; however, also with this finer grid, the effects were still clearly visible.



18 REGULARIZING INVERSE PROBLEMS WITH SLEPIAN WAVELETS

−1.6−1.4−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1. Eigenfunctions g1, . . . , g6 corresponding to the largest eigenval-
ues and g96, . . . , g101 corresponding to the smallest eigenvalues, the subdo-
main R is shown in red; note that each Slepian function was multiplied with
the same factor to scale the amplitudes for better visibility.
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Figure 2. Eigenvalues (sorted) for the Slepian localization problem: there
is a sharp transition from strong to weak localization.

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 3. Right-hand side G for the approximation problem without noise
(left) and after adding the noise (right)
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scale error
1 0.23846
2 0.23566
3 0.21851
4 0.18388
5 0.12127
6 0.0024189
7 0.0024189

Table 1. Errors (rms) for the pure approximation problem depending on
the scale J for the Shannon scaling function ΦJ .
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Figure 4. Solution (red) and multi-scale approximations (blue) at differ-
ent scales J , shown on the whole domain D: at a sufficiently large scale,
we obtain a very good approximation to the projection PF of F to the
subinterval R.
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Figure 5. Solution (red) and multi-scale approximations (blue) at different
scales J , shown on the subdomain R: at scale J = 6, the projection PF

can hardly be distinguished from the approximation ΦJ ∗G.
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Figure 6. Eigenfunctions g1, . . . , g6 and g96, . . . , g101 for the case of the
chosen inverse problem, the subdomain R is shown in red; note that each
Slepian function was multiplied with the same factor to scale the amplitudes
for better visibility.
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Figure 7. Eigenvalues (sorted) for the Slepian localization problem and
the case of the chosen inverse problem: the ill-posedness is also reflected in
the eigenvalues.

9.2. An inverse problem. We now consider an ill-posed inverse problem. The spaces X ,
Y, and Z as well as their orthonormal basis systems are chosen like above. However, the
singular values are now given by

σn,j =
1

n+ 1
for all n, j .

In Figures 6 and 7, we can see that the Slepian functions and their eigenvalues are indeed
influenced by the ill-posed nature of the problem.

Again, the bandlimit is set to N := 50. We also take the same function F as the solution
of PT F = G. The right-hand side G is shown in Figure 8.

The rest of the numerical calculations is performed like above. The results are shown in
Table 2 and Figures 9 and 10 (here, the truncation condition τk < 0.1% · τ1 is reached for
k = 58 such that the approximations again stagnate from scale J = 6). Clearly, the noise has
much more influence on the solution of the ill-posed problem. However, the approximations
at sufficiently large scales are still rather close to the exact (noise-free) solution.

We can also see that the multiscale approach is appropriate for smoothing the solution.
For example, scales J = 3 and J = 4 reveal trends in the solution which are smooth and
coarse (i.e. associated to a low frequency). This is, for example, useful, if a very noisy signal
can be expected or if one is interested in separating the phenomena of different ‘wavelengths’
(in a more abstract sense) in the solution.
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Figure 8. Right-hand side G for the inverse problem without noise (left)
and after adding the noise (right): due to the decreasing singular values,
the amplitude of G is smaller than the amplitude of F such that the noise
has a stronger influence than in the approximation problem above.

scale error
1 0.30531
2 0.32736
3 0.28118
4 0.27993
5 0.28808
6 0.16788
7 0.16788

Table 2. Errors (rms) depending on the scale for the Shannon scaling
function for the inverse problem
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Figure 9. Solution of the inverse problem (red) and multi-scale approxi-
mations (blue) at different scales J , shown on the whole domain D: in view
of the ill-posed nature of the problem, the approximations are still rather
close to the solution F on the subdomain R.
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Figure 10. Solution of the inverse problem (red) and multi-scale approx-
imations (blue) at different scales J , shown on the subdomain R: the ap-
proximations are relatively close to the exact solution. Depending on the
scale, the approximations are more or less filtered as the varying smoothness
shows.

10. Conclusions

We presented a method for the regularization of linear ill-posed problems as they arise
in the geosciences and numerous other disciplines, where the data are only regionally given,
and where the singular-value decomposition (svd) of the corresponding compact operator T
needs to be known only for the global case. To treat the case of regional data, we introduced
a projection operator P , which could be the restriction of functions on the global domain D̃

to a regional subdomain R. The idea of the methodology is based on the interpretation of the
quotient of the norm of the range of PT and the norm of the preimage as analogous to the
energy ratio as used for the construction of Slepian functions. The supremum of this quotient
is also the operator norm of PT . Orthonormal “Slepian” basis functions are found for the
preimage which eventually leads to the calculation of an svd of the restricted operator PT .
This also provides us with basis functions which are orthogonal in the image spaces of PT
as well as T . The singular values of PT are linked to the maximized norm quotient, and are
diagnostic of the numerical stability and ill-posedness of the inverse problem. We presented
an algorithm for determining the Slepian functions and the corresponding svd. We showed
how a wavelet multi-scale regularization can be constructed for a variety of different filter
functions. Two numerical examples yielded promising results. Our paper is an abstract
generalization and an illumination of the fundamental mathematical principles underlying
the method introduced in [24]. In particular, we show how complicated problems with
coupled sources can be integrated into our conceptual framework.

Practical examples where data are only regionally available or where the analysis is only
of interest in a particular subdomain are abundant. In addition, we are often confronted with
the situation that the function of interest cannot be measured directly but is only available
via the solution of an ill-posed inverse problem. The combination of both challenges (regional
analysis and ill-posed inverse problem) occurs rather often. We are now in the position to
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further investigate the various possibilities that Slepian functions provide for such inverse
problems.
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