Tracking the Flow of Ideas through the
Programming Languages Literature

Michael Greenberg*!, Kathleen Fisher?, and David Walker®

1 Pomona College, US
2 Tufts University, US
3 Princeton University, US

—— Abstract

How have conferences like ICFP, OOPSLA, PLDI, and POPL evolved over the last 20 years?
Did generalizing the Call for Papers for OOPSLA in 2007 or changing the name of the umbrella
conference to SPLASH in 2010 have any effect on the kinds of papers published there? How do
POPL and PLDI papers compare, topic-wise? Is there related work that I am missing? Have
the ideas in O’Hearn’s classic paper on separation logic shifted the kinds of papers that appear
in POPL? Does a proposed program committee cover the range of submissions expected for the
conference? If we had better tools for analyzing the programming language literature, we might
be able to answer these questions and others like them in a data-driven way. In this paper, we
explore how topic modeling, a branch of machine learning, might help the programming language
community better understand our literature.

1998 ACM Subject Classification 1.2.7 Natural Language Processing — Text analysis
Keywords and phrases programming languages literature, topic models, irony

Digital Object Identifier 10.4230/LIPIcs.SNAPL.2015.140

1 Introduction

Over the past half-century, the programming language community has developed a foun-
dational new science, the science of software, that now governs much of our world. One of
the legacies of this great work is a vast literature — a literature so large no one person can
know more than the tiniest fraction of it. Unfortunately, our normal interaction with this
literature is tragically limited. At best, we read a small selection of papers in our area, look
at their related work sections and follow the citations back a level or two. Occasionally, a
friend will alert us to a neat paper that she has read. That is about it.

If we had better tools for analyzing the programming language literature, there are so
many more interesting questions we could ask and answer:

How have the topics at PL conferences evolved over the last 20 years?

Did generalizing the OOPSLA call for papers broaden the conference?

How has O’Hearn’s classic paper on separation logic influenced POPL?

Where did the themes touched by my paper appear in the past?

In addition to answering questions like these for the sake of curiosity, tools better able to
analyze the programming language literature might be of help to the chairs of programming
language conferences and the editors of programming language journals. Program chairs

* This work was done while Michael was still a postdoc at Princeton University.

© Michael Greenberg and Kathleen Fisher and David Walker;
Bv licensed under Creative Commons License CC-BY
1st Summit on Advances in Programming Languages (SNAPL’15).
Eds.: Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett; pp. 140-155

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.140
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Greenberg, K. Fisher, and D. Walker

would like to know that their PCs cover the appropriate topics effectively. Editors would like
reviewers with sufficient expertise, but, perhaps, different perspectives.

Many of these questions are deep semantic questions about the true flow of ideas through
the programming language literature and beyond. We cannot answer these questions with
perfect accuracy or certainty, but we may be able to approximate them. To investigate this
possibility, we have begun to explore an analysis technique developed in the machine learning
community, known as topic models [4]. Generally speaking, topic models are probabilistic
descriptions of the words that appear in a document or a collection of documents. Such
models provide insights into the topics that pervade a corpus and the relative weights of
those topics. We can use these models to compare individual papers or groups of papers,
and we can track the ebb and flow of topics over time. Such models have recently been used
to analyze articles from the journal Science, the Yale Law Review, and other archives of
documents [4]. They have also been used to explore the links betweeen academic literature
and funding [15].

In this paper, we describe our initial efforts to apply these models and techniques to
the programming language literature and to ask questions of interest to the programming
language community. For data, we assembled a corpus of 4,355 abstracts from four of the
top programming languages conferences (ICFP, OOPSLA, PLDI, and POPL) and the full
text of all 2,257 POPL and PLDI papers that have appeared as of February 2015. We
have generated models of this corpus as a whole and for the conferences individually and
compared them. We have also analyzed individual documents and compared papers based
on their models. We have built a web-based tool (available from tmpl.weaselhat.com) that
allows other researchers to browse the programming language literature by topic, find related
papers, and visualize the evoluation of the topics studied in PL over time. Source code for
our tools is available on github.! Although our results to date are intriguing, this paper
marks only the beginning of the project; many interesting questions remain.

The remainder of this paper is organized as follows. We first describe our methods
(Section 2). Specifically, we give a tutorial introduction to Latent Dirichlet Allocation topic
models and we describe how we curated our corpus. We next present our preliminary results
(Section 3) and discuss future work (Section 4). We end with a discussion of related work
(Section 5) and concluding thoughts (Section 6).

2 Methodology
2.1 Topic Models

To explain the ideas behind the simplest topic model, the Latent Dirichlet Allocation (LDA),
we adapt the explanation given by David Blei [4] to a programming-languages setting. In this
model, each document is considered to be a mixture of some number of topics. For example,
consider the paper “Gradual Typing for First-Class Classses” [17] shown in Figure 1, which
describes a type system for gradually converting dynamically-typed object-oriented programs
into statically typed programs in a companion language. We manually highlighted various
words occuring in the abstract: yellow for words related to components, green for words
related type systems, and blue for words related to Object-Oriented Programming (OOP). If
we highlighted the entire paper in this way, it would be apparent that the document mixes
concepts from these three topics: components, type systems, and OOP.

! See https://github.com/mgree/sigplan/.

141

SNAPL 2015

tmpl.weaselhat.com
https://github.com/mgree/sigplan/

142 Tracking the Flow of Ideas through the Programming Languages Literature

Gradual Typing for First-Class Classes *

Abstract

Dynamic type-checking and object-oriented pmgramming&oﬂ\

often go hand-in-hand; scripting languages such as Python,

Ruby, and JavaScript all embrace object-oriented (OO) pro- ¢ c .
amponents

gramming. When scripts written in such l.anguagcﬁ grow ;m.d Type Systems
cvulvc into ldr"c program i : QOP

tion wnh untyped -::cde.
In this paper. we present thg
system that supports s

ins from typcd to unty ped components. mploys a
novel form of contracts that partially seal classes. The design
comes with a theorem that guarantees the soundios:
type system even in the presence of untyped components.

|a.\l'\|_ l-ul o 2002, Tecson, Adizons, LISA
wpryright () 201 2 \I‘--‘I AR03-1 361471200, 1000

Figure 1 LDA topic modeling is based on the generative process illustrated here. It works over a
fixed collection of topics assumed to be shared by all documents in the corpus (top right). First,
we select a probabilty distribution over the topics (histogram). Then, to produce each word in the
document, we first choose a topic from the distribution (the colored circles) and then we choose the
actual word from the word distribution associated with the topic (the highlighted words).

LDA models this intuition that a document is a mixture of different topics. In the LDA
framework, each “topic” is represented as a probability distribution over a fixed collection of
words. The probability associated with each word indicates how strongly the word belongs
to the topic. For example, words like ‘type’ and ‘polymorphism’ have high probabilities in
the “Type System” topic, while ‘component’ and ‘contract’ have high probabilities in the
“Components” topic. In contrast, words like ‘cpu’ and ‘register’ have low probabilities in
both topics. A document is, in turn, modelled as a distribution over such topics.

In the paper in Figure 1, the probability distribution over topics would assign weights to
the topics “Components,” “Type Systems,” and “OOP.” The chart at the right of the figure
shows this distribution, with “Type Systems” carrying slightly greater weight than either
“Components” or “OOP.” The words in the paper are drawn from the probability distributions
associated with these topics. To put it another way, if we wanted to generate this document,
or one similar to it, we would pick each word for the document independently according to
the following generative process: (1) pick a topic (according to the topic distribution) and
then (2) pick a word from that topic (according to its distribution over words). Other papers
in the SIGPLAN corpus would exhibit a different mix of topics. A key point is that all the
documents in an LDA framework share the same collection of topics, just mixed in different
proportions (including nearly zero).

M. Greenberg, K. Fisher, and D. Walker

0.4 Components Type Systems 00°P Language Design

java type class language
> 0.3 code system pattern programming
= module language inheritance programmer

g 02 component calculus programming code
QF:’ contract inference language implementation

0.1 framework typed data system

interface polymorphic structure feature

1] system ml object construct

0 2 4 6 8 1012141618 class term objectoriented design

Topics program function method program

Figure 2 LDA inference for 20 topics run on a corpus of 4,355 titles and abstracts from SIGPLAN
conferences and applied to the example paper “Gradual Typing.” The probability distribution at
the left shows the inferred topic mixture for the paper. The boxes at the right show the 10 most
probable words for the four topics present in the paper.

Of course the purpose of topic modeling is not to generate random documents but rather
to automatically discover the topics present in a corpus. We observe the documents, but the
topic structure is hidden, including the set of topics, the topic distribution for each document,
and the per-document, per-word topic assignment. The challenge of this area of research is
to reconstruct the hidden topic structure from an observed corpus, essentially running the
generative process backward, attempting to answer the question: What fully-defined topic
model most likely explains the given corpus?

We ran David Blei’'s LDA-C? over a corpus of 4,355 titles and abstracts from ICFP,
OOPSLA, PLDI, and POPL papers that are available in the ACM Digital Library, having
set the number of topics at 20.3> This process produced a topic model M, judged to be
the most likely 20-topic model to explain the SIGPLAN corpus given a set of 20 “seed”
papers, randomly selected by LDA. We then applied M to the “Gradual Typing” paper
to impute the topic distribution that best explains the content of that paper. The results
appear in Figure 2. This histogram on the left shows that although M could have assigned
any probability distribution to the twenty topics, it selected only four. The right side of
the figure shows the most likely words associated with those four topics. Looking at these
words, we can see that three of the topics correspond to the ones we higlighted in Figure 1:
Components, Type Systems, and OOP. LDA identified a fourth topic, whose words suggest it
might be called “Language Design.” Note that LDA does not produce the titles for the topics;
we manually came up with names for them based on the most likely words (see Section 2.4).
Automatically inferring such titles is an open research problem.

2.2 The corpora

We used the SIGPLAN research papers stored in the ACM Digital Library (DL)* to build
two distinct corpora for this project. Our abstract corpus contains one “document” for
every paper from every available year of ICFP (1996-2014), OOPSLA (1986-89,1991-2014),
PLDI (1988-2014), and POPL (1973,1975-2015). Each such document is comprised of the
concantenation of the paper title, its author list, and its abstract. The scraping process we
used to build this corpus is imperfect — it doesn’t find every paper listed in the DL (see

2 http://www.cs.princeton.edu/~blei/lda-c/

3 One of the limitations of LDA is that it will not help decide how many topics appear in a corpus. The
user must decide in advance and seed the inference mechanism with the chosen number.

4 http://dl.acm.org/; SIGPLAN conferences are available from http: //dl.acm.org/sig. cfm?id=SP946

143

SNAPL 2015

http://www.cs.princeton.edu/~blei/lda-c/
http://dl.acm.org/
http://dl.acm.org/sig.cfm?id=SP946

144

Tracking the Flow of Ideas through the Programming Languages Literature

Section 2.6). Our full-text corpus contains one document for each of the 2,257 POPL and
PLDI papers that have appeared as of February 2015. We used pdftotext from the Xpdf
tool suite® to convert the pdf files from the ACM DL to raw text. For each document in
both corpora, we separately store metadata, recording its author list along with when and
where it was published.

Once we had compiled the raw data for the two corpora, we converted it into a form that
LDA-C can read: a document file that represents each document as a “bag of words.” Parsing
forces us to decide which words are interesting and how to count those words. For example,
the word ‘we’ appears many times in academic writing, but it isn’t a meaningful topic word in
the way that ‘type’ or ‘flow’ or ‘register’ are. So that we may focus on meaningful words, we
drop all words on a stopword list from the document. We started with a standard stopword
list for English,® amending it with two lists of words. First, we added words which appeared
in more than 25% of the documents in our corpus. We also added words that felt irrelevant,
such as ‘easily’, ‘sophisticated’, ‘interesting’, and ‘via’.

Once we winnowed out the stopwords, we had to turn each text into a bag of words: a
list pairing words with the number of times they occur. This process raises more questions
requiring judgment: Are ‘type’ and ‘types’ different words? What about ‘typing’ and
‘typical’? To answer such questions, we counted words as the same when they reduced to
the same uninflected word via NLTK’s” WordNet [19] lemmatizer. In this case, ‘type’ and
‘types’ both reduce to the uninflected word ‘type’, but ‘typing’ and ‘typical’ are left alone.
Finally, we coalesced hyphenated words into single words, e.g., ‘object-oriented’ became
‘objectoriented’ and ‘call-by-value’ became ‘callbyvalue’.

2.3 Our topic models

Topic models are parameterized by a number k, which represents the desired number of
topics; at the moment, no machine learning techniques exist to automatically determine the
appropriate number of topics. To explore this space, we used LDA-C to build topic models
for both corpora for k equal to 20, 50, 100, and 200.

On the abstract corpus, a typical run of LDA-C with 20 topics takes about 2 minutes on a
four-core 2.8Ghz Intel i7 with 16GB of RAM and a solid-state hard drive; simultaneous runs
with 200, 300, and 400 topics take just shy of two hours. On the full-text corpus, generating
the topic model for k=50 requires under an hour. It takes roughly 8 hours to generate the
topic model for £=200.

Once LDA-C has processed our corpus, it produces files indicating how much each word
belongs to a topic and how much each document belongs to each topic. We translate LDA-C’s
output to three files:

a human-readable listing of the top 10 words and top 10 papers for each topic;

a spreadsheet collating the metadata for each document (title, authors, year, and confer-

ence) with that document’s topic weights; and

a spreadsheet aggregating the total topic weights for each year of each conference.

The human-readable listing of top words and papers for each topic was a vital check on
the sanity of LDA-C’s output as we debugged our process; we also used it to assign names to
the topics when we made graphs.

5 http://www.foolabs.com/xpdf/download.html
5 https://pypi.python.org/pypi/stop-words/2014.5.26
" http://www.nltk.org/

http://www.foolabs.com/xpdf/download.html
https://pypi.python.org/pypi/stop-words/2014.5.26
http://www.nltk.org/

M. Greenberg, K. Fisher, and D. Walker

of topics per document # of topics per document (weight > 20)

ents.

number of documents
number of docurn

number of topics in document

number of topics in document

Figure 3 Number of topics per paper (left: normalized per topic, right: normalized per topic,
minimum topic weight of 20).

Register Allocation | Program Transformation Concurrency Parsing
register (-3.6) program (-4.0) thread (-3.5) grammar (-3.9)
instruction (-4.4) loop (-4.5) lock (-4.4) attribute (-4.0)
code (-4.5) variable (-4.6) operation (-4.5) string (-4.6)
variable (-4.7) statement (-4.8) memory (-4.6) tree (-4.6)
graph (-4.9) assertion (-4.9) read (-4.6) set (-4.6)
figure (-4.9) value (-5.0) execution (-4.7) symbol (-4.7)
value (-5.0) expression (-5.1) program (-4.9) language (-4.7)
loop (-5.0) procedure (-5.2) access (-5.0) production (-4.7)
node (-5.0) true (-5.3) data (-5.0) pattern (-4.8)
range (-5.0) condition (-5.3) concurrent (-5.0) parser (-4.8)

Figure 4 Consensus topic names and top ten keywords (with log-likelihood for that word in that
topic) for selected topics from the k=20 topic model on the full-text PLDI-POPL corpus.

2.4 \Validating the topic models

Our topic models are sane: every paper is assigned some topic weights (Figure 3). On the left,
we see that every document has non-minimal (0.03189) weight in some topic; on the right,
we see that nearly one in five papers (869 out of 4,355) doesn’t have a weight higher than
20 in any topic. Running with more topics reduces the number of indeterminate, topic-less
documents. However, more topics can also lead to over-fitting and difficulty in distinguishing
the underlying concepts. For comparison, Blei’s analysis of the journal Science used 100
topics; Analysis of the Yale Law Review used 20 topics. We have experimented with up to
400 topics, but elected to present 20 for simplicity here.

Topic models do not provide names for the inferred topics, just lists of key words and
the strength of the association between each paper and the topic. As another validity check,
each of us independently named each topic for k=20 by looking at the keywords and highest
ranking papers. Each of the lists were very similar; for most topics, it was a straightforward
process to produce a consensus name for each topic. Figure 4 shows these consensus names
and the associated top ten keywords for the k=20 topic model of the PLDI-POPL full-text

corpus. We found topic 12 (given the title Program Transformation) from this list puzzling.

At first glance, the keywords seem like a plausible if generic grouping, but the papers seem
unrelated. A closer inspection of the top-ranked papers reveals that they all involve program
transformations, particularly transformations related to numeric programs. This topic seems
to be an example of a topic type that we had hypothesized but not previously seen: one

where the papers are grouped by approach rather than the problem they are trying to solve.

145

SNAPL 2015

146 Tracking the Flow of Ideas through the Programming Languages Literature

Data-driven optimization Data-structure correctness Garbage collection Low-level systems Register allocation
50 - ° ° °
) L] .
40 - P P Yol ° LIPS
° ° ° ° °
) () o ° °
- U) [} o .)
30) o . .
d o -0 L) .
. ®2n e (L} o *° o S L) e o
20 - 7 P® o (] o ® . .
o (4 ° o % . L]
10-4 ° e % S % PO §
0- o %o ° o o ° ® 9 ° o °*
—
8 Abstract interpretation Languages and control Parallelization Design Types
50 - . . ®
Qo ° o ° =
Q40 -] J .
+— o ~ ° (] ° o °
S 30 - ® o ® o9 °
=20~ e . > o °° o -
3 O . L% 4
o 10 - ° °
N—r Y
~ 0- ° = o ©
c
Object-orientation Security and bugfinding Program transformation Program analysis Concurrency
[0} bj i i i d bugfindi f i lysi:
pa
w50 - I ° . °
ga4o- ‘e T T . s °
- o L] [} L]
8_30 ° e ° L] - Y o > L]]
L] °
4+ 20 - - o o, o
Q ° o o o ° ® ° g o
© 10 - 4 5 G O O
=~ o o o L)
3 0- ° o o ©) ° s ® .
Q
< Code ion P and passing Dynamic analysis Proofs and models Parsing
50 - ° ° . ° . . °®
o o
40 - . e - *
O . [}
30 - . s ©° . .
(] S hd O (]
- °
20 ° e °? o x °
. o . o &
10 - J . o o
° ° " o o o ° e ©
O = | [} [o

1 1
0 10 20 30 40 500 10 20 30 40 500 10 20 30 40 500 10 20 30 40 500 10 20 30 40 50
Fulltext paper rank (out of top 50)

Figure 5 Common papers in the top 50 papers of LDA models built using abstracts and full text,
by topic.

2.5 Abstract vs full-text models

What documents should we feed to LDA? We have two corpora at our disposal: the abstracts
from ICFP, OOPSLA, PLDI and POPL (with some omissions — see Section 2.6); and the
full text of PLDI and POPL. Once a topic model has been built, it can be used to classify
documents of any size. So how should we build our models?

We ran LDA with k=20 on two corpora drawn from PLDI and POPL: one used abstracts,
one used full text. In general, both models produced similar paper rankings in each topic
(Figure 5). Each dot in Figure 5 represents a paper that appears in the top 50 papers in
both models for a given topic. The x-axis is the paper’s rank in the full-text model; the
y-axis is the paper’s rank in the abstract model. Prefect agreement would be a diagonal line
of dots. Most topics show a fair to high agree of general agreement, though some show very
little. Hearteningly, every topic shows some agreement.

We haven’t yet answered the methodological question — perhaps existing research in
machine learning can guide us. We use both models to explore the data in this paper.

2.6 Limitations and impediments

One limitation of our current work is that our corpora include only data from four program-
ming language conferences. There are many other high-quality venues that publish relevant
work, including ASPLOS, CC, CONCUR, ECOOP, ESOP, SAS, etc. We have omitted them
only because adding more data sources is labor intensive. We felt that the data from the
four conferences we have chosen was sufficient for an initial exploration.

M. Greenberg, K. Fisher, and D. Walker

Problems with data quality begin at the ACM. The ACM DL is missing data. The
abstracts for ICFP, OOPSLA, PLDI, or POPL are missing for 1991. POPL is missing
abstracts from 1996 through 1999. The ACM DL listings don’t obviously differentiate
hour-long invited keynote talks and the shorter talks in the sessions. We chose to include
abstract-less keynotes as “documents” ...but is that the right decision?

Scraping the DL for abstracts is not completely straightforward. Some papers are clearly
in the HTML but our scraper doesn’t detect them. Ideally, we would have access to the
database underlying the DL, with programmatic access to metadata and the full text of
each paper. Even then, extracting full text from PDFs isn’t foolproof: math can show up as
garbage characters that confuse LDA, or whole sections can fail to appear.

3 Results

While topic models can be used to analyze the programming languages literature in several
different ways, we have focused primarily on two broad questions. The first question concerns
how the topics present in the various programming languages conferences have evolved over
time. The second involves the use of topic models to search for related work.

3.1 Characterizing the conferences

The prevailing wisdom is that each of the four major SIGPLAN conferences has its own
character. Topic models highlight some of the distinctions between conferences as well as
some of the similarities. They also provide insight into some of the major changes in research
focus that have occurred over the last 40 years.

The four conferences, holistically

In our first experiment, we separated papers into collections according to conference (ICFP,
OOPSLA, PLDI and POPL) and year (1973-2015). In each conference, in each year, we can
apply a topic model to determine the topics and weight at which they appear in that year.

Figure 6 presents the results for our 20-topic model generated from the abstracts drawn
from the 4 conferences. The top chart represents research presented at POPL between 1973
and 2015. Each column represents a year; the length of a colored line represents the weight
of the corresponding topic in the given year. The three smaller charts present data for ICFP,
OOPSLA and PLDI respectively. When viewing these charts online, we recommend zooming
in to inspect the details.

Analysis of these charts confirms many broad intuitions about the topics that dominate
certain conferences — the longer the line of a particular color, the more content from the
corresponding topic appears in the conference. For instance, ICFP and POPL are both home
to many papers on type systems, the bright orange topic that runs through the middle of
the diagrams. OOPSLA and PLDI contain less content on these topics. PLDI is best known
for its focus on classic compiler optimizations (the dark blue at the bottom of each chart) or
low-level compiler optimization (the dark green 4th from the bottom). None of the other
conferences contain such an emphasis on those topics. And as we will see in more detail
later, there has been a dramatic reduction in the number of publications in the area, even at
PLDI. OOPSLA, unsurprisingly, is best known for its papers on object-oriented software
development, the light green dominating the top of the OOPSLA chart (and displayed
in minute quantities at the other conferences). Interestingly, even at OOPSLA, we see a
remarkable decrease in the prevalence of this topic beginning in the early 2000s through to
2015.

147

SNAPL 2015

148

Tracking the Flow of Ideas through the Programming Languages Literature

100% -
B =p§_ I I [] I L I g
I L CHEL TR ERELEERE
90% I I I I I I
80% I I |
Object-oriented software development
W Models and Modeling
70% Language Design
= Parallelism
M Program Logics
Applications (mobile, systems, networking, web)
60% ™ Analysis of Concurrent Programs
W Object-Oriented Programming
H Test generation
® Verification
50% » Type Systems
I Program Analysis
B Components and APls
m Garbage Collection
0% B Array Processing
l 1 m Semantics of concurrent programs
I [} ® Low-level compiler optimizations
Parsing
30% I I [| W Resource management
m Compiler optimization
|| | | ||

O%Illlll || I" IIIIlIlIII I||I|.||| ilialls

1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015
1973 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

(POPL)

H

(ICFP) (OOPS.I;A) (PLDI)

Figure 6 Holistic, year-by-year topic model plots for four programming languages conferences.
Topic model uses abstracts.

The four conferences, by topic

The previous charts present the big picture at each major conference and provide a means
to compare the weights of different topics against one another. However, we also found it
interesting to isolate the topics and to compare the conferences to each other on a topic-by-
topic basis. Figure 7 presents a series of 20 graphs, one for each topic that we learned from
the abstracts of the four conferences. The title we chose for each topic is presented at the
top of each graph. The x-axis represents the year (ranging from 1973-2015) and the y-axis
represents the weight of the topic. Each line represents a different conference: ICFP (red),
OOPSLA (green), PLDI (turquoise) and POPL (pink). The grey shadow surrounding each
line provides an estimate of the error involved in drawing the curve (the tighter the band,
the better the estimate).®

8 Each curve is generated using Loess smoothing over the set of points generated from that topic
for each paper in the conference in question. We used the smoothing package from R’s graphical
library (stat_smooth(method=loess)). See http://rgm3.lab.nig.ac.jp/RGM/R_rdfile?f=ggplot2/
man/stat_smooth.Rd&d=R_CC for details.

http://rgm3.lab.nig.ac.jp/RGM/R_rdfile?f=ggplot2/man/stat_smooth.Rd&d=R_CC
http://rgm3.lab.nig.ac.jp/RGM/R_rdfile?f=ggplot2/man/stat_smooth.Rd&d=R_CC

M. Greenberg, K. Fisher, and D. Walker

Compiler optimization Resource management Parsing Low-level compiler optimizations ‘Semantics of concurrent programs
30-
3

20-

10- /\
e

N

0- ~

§

e e N N

Array Processing Garbage Collection Components and APIs. Program Analysis Type Systems

IR -TERV— A,

0- = = : /\/ — \CEP
=
=) —— OOPSLA
] 20 Verification Test generation Object-Oriented Programming Analysis of Concurrent Programs Applications

30 -
= —— PLDI
POPL

|
&N

Program Logics Parallelism Language Design Models and Modeling Object-oriented software development

= g N\

T T

| | | | | | | | | | o | | | | o | |
1980199020002010 1980199020002010 1980199020002010 1980199020002010 1980 199020002010
Year

|
K

Figure 7 Topic-by-topic plots comparing four programming languages conferences. Topic model
uses k=20 and abstracts.

Before beginning the experiment, one question we had was whether the change in the
Call For Papers for OOPSLA in 2007 and the subsequent rebranding in 2010 of the umbrella
event as SPLASH correlated with any changes in OOPSLA content. One of the goals of
the Call for Papers changes was to broaden OOPSLA and deemphasive object-oriented
programming. To consider this question, two topics, object-oriented programming (3rd row,
3rd column in Figure 7) and object-oriented software development (4th row, 5th column) are
particularly relevant. Object-oriented programming pertains to analysis of object-oriented
programming language features and the use of those features. It is characterized by keywords
(in order of relevance) class (significantly more relevant than the others), pattern, inheritance,
programming, language, data, structure, object, object-oriented, and method. Object-oriented
software development pertains to software engineering methods and program design. It is
characterized by the words design, software, object-oriented, development, programming,
object, system, process, tool and project. The two most relevant documents are both panels:
The OO software development process, a panel from OOPSLA 1992 [6] and Agile management
— an oxymoron?: Who needs managers anyway?, a panel from OOPSLA 2003 [1]. Both panels

have abstracts that were included in the OOPSLA proceedings in their respective years.

When it comes to object-oriented programming, the charts show there was a steady decline
in content at OOPSLA beginning in around the year 2000, when it was at a local maximum
at the end of the dot-com boom. This decline persisted through the changes to OOPSLA’s
rebranding with little apparent dip. When it comes to object-oriented software development,

149

SNAPL 2015

150

Tracking the Flow of Ideas through the Programming Languages Literature

there was a peak in the mid-2000s near the time of the rebranding, and a rather preciptious
drop-off thereafter. One other topic that shows a similar trend is the topic on applications,
which includes mobile, systems, web and network programming.

Since investigation of elements of object-oriented programming and software development
have been on the decline at OOPSLA over the past decade or so, a natural question to ask is
what topics have been taking their place? The answer includes topics such as test generation,
analysis of concurrent programming, parallelism, and verification. Each of those topics
show a significant spike at OOPSLA since the mid-2000s. It may well be that OOPSLA’s
rebranding encouraged more submissions along these lines.

Another trend that emerges from these graphs involves topics surrounding program
optimizaton. The compiler optimization topic (row 1, column 1) and the low-level compiler
optimization topic (row 1, column 4) both show spikes through the 90s and strong downward
trend through the 2000s. OOPSLA has seen a slight uptick in low-level compiler optimization
since roughly 2010, but across all four programming languages conferences, research in
optimization appears down significantly.

PLDI vs POPL, by topic

PLDI and POPL are broadly perceived as the two most prestigious conferences in program-
ming languages. At any given time, the topics they support heavily are bound to be at the
center of programming languages research.

Figure 8 presents a series of charts similar to those we just studied in Figure 7. However,
here we focus strictly on POPL and PLDI, and we generated a model using the full text of
each paper in each conference.

To begin, there are many interesting similarities between the two conferences. For instance,
on topics such as abstract interpretation, design, object orientation, program transformation,
program analysis, code generation, and parsing, PLDI and POPL have followed very similar
trends. Some of those trends are unsurprising: POPL had a substantial presence in parsing in
the 70s, which has continuously decreased. PLDI followed suit shortly after its inauguration.
Both PLDI and POPL had a larger presence in code generation that has dropped off. On the
other hand, algorithmic and symbolic techniques for static program analysis (titled abstract
interpretation) have steadily increased in both conferences since the mid-nineties. Here, one
might speculate that the advent of practical SAT and SMT tools may have helped push this
topic forward.

On the other hand, there are some substantial differences between the conferences. When
it comes to types, PLDI has been relatively stable over the course of its existence. POPL’s
weight in this topic has steadily increased over the years. Another interesting trend involves
language definition and control structures (row 2, column 2), which involves analysis of
topics such as continuations, partial evaluation and lazy execution. At POPL, there was
a huge spike during the 90s, which has since waned. At PLDI, these topics never really
made much of an appearance. POPL also sees a lot of activity in highly theoretical topics
involving proofs and semantic models for programs. On the other hand, at PLDI, topics
such as parallelization and dynamic analysis are persistently higher than at POPL.

3.2 Finding your friends

Topic models offer a similarity measure, allowing us to compare documents or collections of
documents to one another. When two documents (or sets of documents) are assigned topic
vectors that are close in a geometric sense, they contain similar topic distributions. To study

M. Greenberg, K. Fisher, and D. Walker

Data-dri imizati D Garbage collection Low-level systems Register allocation

1000 -
750 -

500 -

252\—/\\/\\—/\//\

Abstract interpretation Languages and control Parallelization Design Types
1000 -
750 =
500 -
250 -
—_— Conference
- 0-
ey
R PLDI
] Object-orientation Security and bugfinding Program transformation Program analysis Concurrency
= 1000 ~—— POPL
750 =
500 -
2507 //\ _/ A //_‘/
0-
Code generation Processes and message passing Dynamic analysis Proofs and models Parsing

1000 -
750 -
500 -
250 - \/ /,_/\
0- e
1980199020002010 1980199020002010 1980 19‘30 20002010 1980199020002010 1980199020002010
ear

Figure 8 Topic-by-topic plots comparing PLDI and POPL. Topic model uses k=20 and full text.

the similarity measure generated by the topic models, we compared work cited by a paper to
a random selection of POPL and PLDI papers. Our hypothesis was that models for related
work would usually be closer to the model for a given paper than randomly selected papers
would be.

To test our hypothesis, we selected four papers (one involving each of the authors, and
one more) — Concurrent Data Representation Synthesis by Hawkins et al. [10] (CDRS), Proof-
Carrying Code by George Necula [12] (PCC); From System F to Typed Assembly Language
by Morrisett et al. [11] (TAL); and Space-Efficient Manifest Contracts by Greenberg [9]
(SEMC). For each paper, we inferred a topic vector using LDA with k=20 and a corpus built
on abstracts. We then inferred topic vectors for each paper’s citations.? Figure 9 displays
the results of our analysis. More specifically, for each paper (CDRS, PCC, SEMC, TAL),
the left-most boxplot (in red) shows the distribution of Euclidean distance between each
paper and its citations. In such boxplots, the third quartile, the top of the boxplot contains
75% of cited papers below it, while the bottom of the boxplot demarcates the 25% boundary.
The height of the box is the interquartile range (IQR) and the vertical lines stretch 1.5*IQR

9 We excluded one citation from Greenberg — his thesis. Since it’s much longer than a conventional
conference paper, the thesis is ‘far’ from the paper only because all of its topic weights are larger in an
absolute sense, even though the topic vector is largely in a similar direction. From the other papers,
we also excluded several cited books, theses or other documents that were either vastly longer than a
conference paper or unobtainable.

151

SNAPL 2015

152

Tracking the Flow of Ideas through the Programming Languages Literature

6000 -

Paper set
4000 - Citations
Random 1

E Random 2
L]
E Random 3

Random 4

Distance
[]

2000 -
Random 5

| i
CDRS pPCC SEMC TAL
Paper

Figure 9 Are citations closer in topic space than random papers? Topic model uses abstracts.

from the top or the bottom of the box. Dots beyond those lines are outliers. The papers
CDRS, SEMC, TAL have low medians and third quartiles, indicating that the bulk of their
related is relatively close to the paper. In all these cases, 75% of cited papers are closer to
the original paper than 75% of the random papers.

We included the PCC paper to illustrate that not all papers in our data set have
particularly useful models. The PCC paper is one such paper. According to our model, it is
relatively “topic-less” — its topic vector is quite short and close to the origin — so it’s hard to
use its topic vector to classify related work. Indeed, its related work overlaps a little more
with the randomly generated papers.

Having established that papers are relatively close to their related work in topic space,
we can flip this idea on its head: given a paper, we can find papers in our corpus that are
close to it — these may be related work! We’ve implemented a prototype tool for finding
related work at http://tmpl.weaselhat.com. You can upload a PDF and we will identify
the twenty most related papers from PLDI and POPL.

At present, our related work tool is simple: it runs a single model on a fixed corpus. With
more data, we could offer more potential suggestions. With more computational power and
engineering, we could use a suite of models (with different document seeds, number of topics,
or data sources) to “boost” our related work search.

Even in this most primitive form, our tool has produced useful and surprising results.
On his first test of the system, David Walker put in some of his collaborators’ recent work —
Osera and Zdancewic’s Type-and-Example-Directed Program Synthesis [14] — and found a
related paper by Nix entitled Editing by ezample (POPL 1984) that Osera and Zdancewic
were unaware of [13]. Older papers like this one may be difficult to find via conventional
search.!? Michael Greenberg put in a recent networking workshop paper [8] and found some

10 Google keyword searches including “program synthesis from examples” and “synthesizing string trans-
formations from examples” do not display this result in the first three pages of links returned. More
recent research floats to the top.

http://tmpl.weaselhat.com

M. Greenberg, K. Fisher, and D. Walker

interesting work that solves a related problem in a different area [7]. We find these early
anecdotal results encouraging. We hope that topic modeling can provide help with automated
related work search driven by documents rather than keywords.

4 Future Work

One goal of this work is to build a website offering programming language researchers
access to the tools and/or analysis results we find are most interesting or effective. Our
prototype is up at http://tmpl.weaselat.com/. The source is freely available at https:
//github.com/mgree/sigplan/, allowing other communities to reuse our work.

Understanding the conferences

There are a number of ways we can paint a more detailed picture of our programming
languages conferences. First, we can simply try running LDA with more topics. Second, we
can investigate richer topic models. For instance, dynamic LDA [3] models the shift of topic
content over time, and has been used for lead/lag analysis: When new topics appear, do they
appear in one conference and spread to others? One very interesting study looked at the

relationship between the topics funded and the reearch that appeared at conferences [15].

We could obtain the summaries of funded NSF proposals (and possibly other institutions) to
determine if we can identify relationships between funded topics and conference content.

Understanding the researchers

We can also use topic models to learn topics for researchers, not just documents. There
are many ways to do this — from collating all of a researcher’s oeuvre to using time-aware
techniques, like dynamic LDA [3]. Given a topic model for each researcher, it is possible to
construct several additional tools. For instance, to help ensure a program committee has
interests distributed similarly to the expected distribution of papers for a conference, we
could check that the aggregated topic weights of the PC’s publications are similar to the
aggregated topic weights of the papers from the past year’s submissions. To chose which
papers to review, PC or ERC members can find papers with topics similar to their own — an
idea that has already been explored in the Toronto Paper Matching System [5].

We may also be able to use models of PL researchers to answer questions about how
researchers change over time. Do they stay in one topic, or work in many topics? Are there
researchers who lead their conferences? Can we apply social network models to co-authorship
graphs to understand how people share interest in topics? Can this help in assembling
workshops or Dagstuhl-like seminars?

5 Related work

There is much work in the machine learning community aimed at understanding large
collections of documents. David Blei’s web page [2] on topic modeling contains pointers
to several survey papers, talks and software packages. We were also inspired by the work
of Charlin et al. [5], the architects of the Toronto Paper Matching System, which aims to
match reviewers to papers using topic models. This prior work is all quite general; we aim to
use topic-modeling software to study the flow of ideas across the programming languages
literature specifically, something which has not be done before using similar methods.

153

SNAPL 2015

http://tmpl.weaselat.com/
https://github.com/mgree/sigplan/
https://github.com/mgree/sigplan/

154

Tracking the Flow of Ideas through the Programming Languages Literature

There are various other ways one might analyze the programming languages literature.
For instance, in a recent article for CACM [16], Singh et. al. studied research in hardware
architecture between 1997 and 2011 on the basis of occurrences of keywords. Measuring
keyword occurrences has the benefit of simplicity, but it does not identify collections of
words — themes, as Blei would call them — that find themselves colocated in documents.
These themes may help us characterize papers and researchers succinctly and may suggest
interesting measures to compare them. Moreover, the LDA algorithm identifies these themes
for us without anyone having to specify them.

TMVE [18] is a topic model visualization engine that offers a baseline expectation of
how users might interact with a topic model. It produces a static website for a single topic
model, while we envision more dynamic interactions on our website, like our prototype of
related-work search.

6 Conclusion

Topic models offer the potential to give us a new lens on the programming languages literature.
We already have some interesting results analyzing the content of our major conferences
through this lens and we believe there are many more interesting questions to attempt to
answer with these techniques.

Acknowledgments. This work is supported in part by the NSF under grant CNS-1111520.
Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF.

—— References

1 Lougie Anderson, Glen B. Alleman, Kent Beck, Joe Blotner, Ward Cunningham, Mary
Poppendieck, and Rebecca Wirfs-Brock. Agile management - an oxymoron?: Who needs
managers anyway? In OOPSLA, pages 275-277, 2003.

2 David Blei. Topic modelling. http://www.cs.princeton.edu/~blei/topicmodeling.
html, 2015.

3 David Blei and John Lafferty. Dynamic topic models. In International Conference on
Machine Learning, 2006.

4 David M Blei. Probabilistic topic models. Communications of the ACM, 55(4):77-84, 2012.

5 Laurent Charlin and Richard Zemel. The Toronto Paper Matching System: An auto-
mated paper-reviewer assignment system. In ICML Workshop on Peer Reviewing and
Publishing Models, June 2013. See also http://papermatching.cs.toronto.edu/webapp/
profileBrowser/about_us/.

6 Dennis de Champeaux, Robert Balzer, Dave Bulman, Kathleen Culver-Lozo, Ivar Jacobson,
and Stephen J. Mellor. The OO software development process (panel). In OOPSLA, pages
484489, 1992.

7 Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and Damien
Zufferey. P: Safe asynchronous event-driven programming. In Programming Language
Design and Implementation (PLDI), 2013.

8 Marco Gaboardi, Michael Greenberg, and David Walker. Type systems for SDN controllers,
2015. PLVNET.

9 Michael Greenberg. Space-efficient manifest contracts. In Principles of Programming Lan-
guages (POPL), 2015.

http://www.cs.princeton.edu/~blei/topicmodeling.html
http://www.cs.princeton.edu/~blei/topicmodeling.html
http://papermatching.cs.toronto.edu/webapp/profileBrowser/about_us/
http://papermatching.cs.toronto.edu/webapp/profileBrowser/about_us/

M

10

11

12

13
14

15

16

17

18
19

. Greenberg, K. Fisher, and D. Walker

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv. Concur-
rent data representation synthesis. In Programming Language Design and Implementation
(PLDI), 2012.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to Typed
Assembly Language. In Principles of Programming Languages (POPL), 1998.

George C. Necula. Proof-carrying code. In Principles of Programming Languages (POPL),
1997.

Robert Nix. Editing by example. In Principles of Programming Languages (POPL), 1984.
Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis.
In Programming Language Design and Implementation (PLDI), 2015.

Xiaolin Shi, Ramesh Nallapati, Jure Leskovec, Dan McFarland, and Dan Jurafsky. Who
leads whom: Topical lead-lag analysis across corpora. In NIPS Workshop, 2010.

Virender Singh, Alicia Perdigones, and Fernando R. Mazarrén José Luis Garcia, Igna-
cio Canas-Guerroro. Analyzing worldwide research in hardware architecture, 1997-2011.
CACM, 58(1):76-85, 2015.

Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and
Matthias Felleisen. Gradual typing for first-class classes. In Proceedings of the ACM Inter-
national Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA’12, pages 793-810, New York, NY, USA, 2012. ACM.

TMVE: Topic model visualization engine. https://code.google.com/p/tmve/, 2015.
Princeton University. Wordnet. http://wordnet.princeton.edu, 2010.

155

SNAPL 2015

https://code.google.com/p/tmve/
http://wordnet.princeton.edu

	Introduction
	Methodology
	Topic Models
	The corpora
	Our topic models
	Validating the topic models
	Abstract vs full-text models
	Limitations and impediments

	Results
	Characterizing the conferences
	Finding your friends

	Future Work
	Related work
	Conclusion

