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ABSTRACT

Multifocal microscopy affords fast acquisition of microscopic 3D images. This is made possible using a multifocal grating optic,
however this induces chromatic dispersion effects into the point spread function impacting image quality and single-molecule
localization precision. To minimize this effect, researchers use narrow-band emission filters. However, the choice of optimal
emission filter bandwidth in such systems is, thus far, unclear. This work presents a theoretical framework to investigate how
the localization precision of a point emitter is affected by the emission filter bandwidth. We calculate the Cramér-Rao lower
bound for the 3D position of a single emitter imaged using a chromatic multifocal microscope. Results show that the localization
precision improves with broader emission filter bandwidth due to increased photon throughput, despite a larger chromatic
dispersion. This study provides a framework for optimally designing chromatic multifocal optics and serves as a theoretical
foundation for interpretting results.

1 Introduction
Fast three dimensional (3D) imaging is crucial for investigating dynamical biological and material processes occurring at
sub-second timescales. Multifocal microscopy is a promising widefield imaging and localization tool for probing such processes
due to its high-speed 3D imaging ability over large fields of view to allow simultaneous localization of multiple particles spread
over a large 3D volume1, 2. These instruments typically use a multifocal grating in the emission path. This grating splits the
emission light into multiple diffraction orders that are imaged in a staggered manner on a single camera sensor to produce a
stack of subimages, each conjugate to a different object plane. This enables imaging speeds of hundreds of volumes per second.

Multifocal microscopy is particularly suited for single molecule/particle localization applications. In addition to high
imaging speed, a key feature of using multifocal microscopy is the long axial acquisition distance range. For example, a 9-plane
multifocal microscope with an object plane separation of 1.5 µm provides approximately 12 µm axial working depth range.
This is in contrast to other high speed localization techniques using PSF engineering which are limited to a < 3 µm axial range3.
More recently, localization algorithms utilizing deep learning have been demonstrated for localization over 4 µm axial range4

which is still relatively small compared to multifocal microscopy capabilities. Other methods including optical sectioning
techniques such as confocal are too slow (typically < 1 volume per second) compared to multifocal imaging which is capable of
hundreds of volumes per second. Therefore, multifocal microscopy offers desirable speed as well high axial depth range suited
for localization applications.

Due to the wavelength spread of the sample-emitted/scattered light, the multifocal grating in typical multifocal microscopes
induce wavelength dependent dispersion effects on the point spread function (PSF) eventually imaged on the camera sensor.
Although use of chromatic correction optics minimizes this dispersion2, these custom designed optics which include multiple
blazed gratings and a multi-faceted prism are difficult to acquire and inaccessible to most researchers. Without chromatic
corrective optics, researchers deploy narrow-band emission filters to limit deterioration of the PSF due to the multifocal grating
induced chromatic dispersion5–9. For such chromatic multifocal microscopes, it is far from clear how to choose the bandwidth
of the emission filters. For single molecule localization applications in particular, the relationship between the localization
precision and the emission filter bandwidth in a chromatic multifocal microscope has not been formally investigated yet.

In this paper, we derive Cramér-Rao lower bounds10 (CRLB) for the 3D position of a single molecule imaged under a
chromatic multifocal microscope, and use the resulting analytical expressions to numerically explore the effect of emission
filter bandwidth on the 3D localization precision in such systems. The CRLB expressions for a particle’s position for both
conventional microscopes11 and multifocal microscopes based on multiple cameras that lack chromatic dispersion12 have been
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reported previously. Here, we adapt the approach in12 and formulate CRLB expressions for a chromatic multifocal microscope.

2 CRLB theoretical framework
2.1 Conventional widefield microscope
We start with sketching the theoretical background using a conventional widefield microscope. Consider a point emitter in
the object space having a lateral center position (x0,y0) located axially a distance z0 from the microscope focal plane. Let the
function qz0(x,y) describe the image of the emitter on a detector plane at unit magnification, with (x,y) denoting the detector
coordinates. Here, qz0(x,y) is represented by the Born and Wolf13 expression for the PSF,

qz0(x,y) =
1

Cz0

[
U2

z0
(x,y)+V 2

z0
(x,y)

]
. (1)

Uz0(x,y) in (1) is expressed as, Uz0(x,y) =
∫ 1

0 J0

(
2π(NA)λ−1ρ

√
x2 + y2

)
cos(W (ρ,z0))ρdρ , where λ represents the wave-

length, NA is the system numerical aperture, J0 is the zeroth order Bessel function of the first kind and ρ is a dummy variable
for integration. W (ρ,z0) is a phase aberration term given by W (ρ,z0) = πρ2(NA)2z0/λnoil, where noil is the refractive index
of the immersion oil. Vz0(x,y) in (1) is given by, Vz0(x,y) =

∫ 1
0 J0

(
2π(NA)λ−1ρ

√
x2 + y2

)
sin(W (ρ,z0))ρdρ , whereas the

normalization term Cz0 in (1) is formulated as, Cz0 =
∫

ℜ2
[
U2

z0
(x,y)+V 2

z0
(x,y)

]
dxdy.

Continuing, let N be the mean total number of photons striking the full detector area in an exposure time t. The number of
signal photons striking a given pixel area Ck of the detector in time t is independently Poisson distributed with mean µθ (k, t),
where k is the pixel number. This is given by14, µθ (k, t) = N

[
M−2 ∫

Ck
qz0 (x/M− x0,y/M− y0)dxdy

]
, where θ = (x0,y0,z0)

denotes the parameter to be estimated and M is the lateral magnification. Note that the argument of qz0 in the above equation
accounts for scaling due to M 6= 1 and offset due to non-zero center location (x0,y0) of the emitter. Given the Poisson nature of
this process, the Fisher information matrix element for a pixelated detector is expressed as15,

Ii j =
P

∑
k=1

1
µθ (k, t)

(
∂ µθ (k, t)

∂θi

)(
∂ µθ (k, t)

∂θ j

)
, (2)

where P is the total number of pixels in the detector. Let I be the Fisher information matrix whose elements are Ii j, and T be
the inverse of I. The Cramér-Rao lower bound for a parameter θi is simply,

σ(θi)≡ T−1/2
ii , (3)

where Tii are the elements of T. Therefore, the image function qz0 in (1) maps the photon distribution of an emitter (located in
object space at (x0,y0,z0)) onto a detector plane (x,y) and is used to express the number of photons striking each detector pixel
k in time t as a Poisson process with mean µθ (k, t). Subsequently, the Fisher information matrix expression for this Poisson
process in (2) summing over all P detector pixels is used to compute the CRLB for parameters (x0,y0,z0). Note that in practice,
when the off-diagnoal terms are very small compared to the diagonal elements, σ(θi) can be computed as σ(θi) = I−1/2

ii , which
produces indistinguishable numerical results (yet computationally much faster). Also note that (2) assumes absence of any
noise in the detection process. The Fisher information matrix for a noisy image detection process is given in the Appendix,
which comprises β (k, t) the mean background photon count in time t at the kth pixel, and ηk and σω,k which denote the mean
and standard deviation of the readout noise at the kth pixel, respectively.

2.2 CRLB for single emission wavelength multifocal microscope
We next generalize the above results to monochromatic multifocal imaging. To make the theoretical discussion more concrete,
Fig. 1a shows a representative optical layout for a 9-plane configuration, where ∆z is the plane separation in object space. Let
Imon

mfm be the Fisher information matrix for a multifocal microscope having monochromatic wavelength emission. To compute
Imon

mfm, one needs to calculate the Fisher information matrices for each of the total Ns subimages and sum them up since Fisher
information is additive. This is expressed as, Imon

mfm = ∑
Ns
j=1 I j, where I j represents I computed for subimage j with j = 1,2, ...,Ns.

Each I j is computed via Eqs. (1) and (2) using the appropriate z0 values for each plane.

2.3 CRLB for chromatic multifocal microscope
In a multifocal microscope with a multi-wavelength emission bandwidth, the multifocal grating induces chromatic dispersion
which affects the PSF in the multifocal subimages. Simulated multifocal images of a point source in the object plane focused at
the z = 0 plane for emission filter bandwidth values of 3 nm and 13 nm are shown in Fig. 1b and Fig. 1c, respectively. These
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Figure 1. (a) Optical diagram of typical multifocal microscope. L1 focuses the laser onto the objective back focal plane. The
rectangular aperture placed at primary image plane, formed by L2, controls the imaging field of view to avoid overlapping
subimages at the camera. L3 forms a Fourier transform of the primary image at the multifocal grating. Diffractive patterns on
the multifocal grating enable multiple diffraction orders which are captured by lens L4 and imaged onto a camera. Inset shows
subimage arrangement on camera sensor with each subimage labeled with its conjugate object plane location relative to the
z = 0 plane, (b–c) Simulated multifocal images of a point source at ∆z = 0 nm showing chromatic dispersion on the PSF at
different bandwidths (Bw).

images illustrate how the spreading increases with increased emission filter bandwidth while the PSF spread varies across the
subimages, due to the direction of the grating lines forming each of these diffraction orders. Figs. 1b and 1c are obtained using
∆z = 0 nm for clear visual comparison between the different subimages by keeping them at the same focus plane.

For such chromatic multifocal microscopes, the monochromatic qz0 no longer represents the image function. Therefore, a
new image function qchr

z0 which accounts for chromatic dispersion is formulated by summing up the qz0 expressions over the
wavelengths of operation. First, the diffraction angle φ for a given λ , multifocal grating period dg and diffraction order m
is found using the grating equation, φ = sin−1 (mλ/dg

)
13. Note that chromatic dispersion only affects non-zero diffraction

orders. Let the emission filter have a central wavelength λc and a bandwidth of Bw such that the filter is fully transparent for the
wavelength range λc−Bw/2 to λc +Bw/2. For a given λ within the emission filter’s transmission range, the relative distance
on the detector δd from the striking location of λc can be found using the grating equation and trigonometry,

δd(λ ) = f4

[
tan
(

sin−1
[

mλ

dg

])
− tan

(
sin−1

[
mλc

dg

])]
, (4)

where f4 is the focal length of L4 (Fig. 1a). Assuming that when λ = λc, the image is located at the center of our cho-
sen detector region (x = 0,y = 0), qchr

z0 can be found by summing over all the spatially shifted versions of qz0, qchr
z0 =

∑i qz0 (x/M− x0−δdx(λi)/M,y/M− y0−δdy(λi)/M), where i denotes all values of λ , δdx and δdy are δd values in x and y
detector coordinates, respectively. This distinction in δdx and δdy accounts for the varying subimage chromatic dispersions
(Figs. 1b and 1c). Ichr

mfm, the Fisher information matrix for a chromatic multifocal microscope, can now be formulated as,
Ichr

mfm = ∑
Ns
j=1 Ichr

j , where Ichr
j represents I j calculated using Eqs. (1) and (2) where qz0 is replaced by qchr

z0 .

3 Results
The numerical results of σ for a 9-plane chromatic multifocal microscope are displayed in Figs. 2a. These plots show improved
localization precision (smaller σ ) in all three dimensions using Bw = 13 nm versus Bw = 3 nm. Although the axial σ(z0) is
expected to be different from the lateral σ ’s, σ(x0) and σ(y0) are also different from each other across the emitter defocus range
due to the varying chromatic dispersion in x and y directions across the multifocal subimages. For Bw = 13 nm in particular, a
minima for σ(x0) occurs at a defocus distance of 1800 nm coinciding with the emitter being in focus at the +3∆z subimage.
The corresponding multifocal image for this point, displayed in the top-panel inset of Fig. 2a, shows no dispersion in the x
direction for this in-focus subimage leading the low σ(x0). The same reasoning explains the minima locations of the σ(y0),
Bw = 13 nm data where for a defocus distance of 600 nm, there is no dispersion in the y direction in the +∆z subimage indicated
by the magenta box in the mid-panel inset. Therefore, the varying PSF asymmetry arising from chromatic dispersion affects the
3D localization precision, differently in each axis.

To investigate how the multifocal subimages contribute to the overall localization precision, we study the information content
carried by each detected photon (Fig. 2b) since individual photons are the most basic information carrier in single-molecule
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Figure 2. Numerical results of Cramér-Rao lower bound (CRLB) and Fisher information for multifocal systems. (a) CRLB of
a point emitter imaged in a noise-free 9-plane chromatic multifocal microscope. The inset in top panel represents the Bw=
13 nm multifocal image for an emitter at defocus distance of 1800 nm with the in-focus subimage boxed by magenta. Similarly,
the mid-panel inset is for a defocus distance of 600 nm. (b) The single-photon Fisher information for each multifocal subimage.
Notice the zero single-photon Fisher information when the emitter is in focus with z0 = 0. (c) CRLB of a point emitter imaged
in a 9-plane chromatic multifocal microscope with background and measurement noise. (d) Similar to (c) but for a 5-plane
chromatic multifocal microscope, where the bottom-panel inset illustrates this 5-plane arrangement. The top-panel inset shows
the multifocal image for an emitter at 0-nm defocus distance, while the mid-panel inset shows the multifocal image for an
emitter at 600-nm defocus distance. For these calculations, a 15 × 15 pixels2 detector with a pixel size of 8 µm is used with
x0 = 0, y0 = 0, λc = 520 nm, M = 100, NA = 1.4, noil = 1.515, t = 100 ms, f4 = 200 mm, dg = 32 µm, and ℜ2 spans
300×300 µm2. N for Bw = 13 nm is empirically found to be 4 times more versus Bw = 3 nm. Assuming N = 500 counts for
the Bw = 13 nm system, we use N = 125 counts for Bw = 3 nm simulation. The oscillatory feature in the CRLB curves is due to
the integrands in calculating the Fisher information. The combination of Bessel functions in (x,y) and trigonometric functions
in z0, coupled with the finite camera region, becomes increasingly oscillatory with increasing defocus distance. The noise
parameters used in (c–d) are β (k, t) = 20 photons/pixel, ηk = 0 and σω,k = 6 e−1/pixel rms (see Appendix for noise model).

studies16. The Fisher information is maximum around subimages where the emitter is in-focus, but it decreases as the emitter
becomes more defocused. The information content per photon for estimating z0 is seen to be consistently lower than those for
estimating x0 and y0, not surprisingly, to result in an overall lower localization precision along the axial direction. Although the
single-photon Fisher information for Bw = 3 nm and 13 nm could be greater or smaller relative to each other across subimages,
their cumulative effect seen in the corresponding CRLB plots (Fig. 2a) consistently show lower σ values for the Bw = 13 nm
due to its greater photon throughput.

In the presence of noise, the localization precision degrades as expected (Fig. 2c). It is important to note, however, that the
quantitative values of localization precision depend significantly on the noise model and the parameters used in the model;
for practical applications, one may construct an experimentally realistic noise model which our framework allows. When
fewer multifocal subimages are used, e.g., a 5-plane multifocal microscope, the localization precision (Fig. 2d) is seen to be
consistently better that of a 9-plane microscope (cf. Fig. 2c). This is because in a 5-plane microscope, emission photons are
divided into 5 planes to result in increased number of per-subimage photons. On the other hand, for the same ∆z subimage
offset, a 9-plane system affords a greater dynamic particle defocus range ((9−1)×600 = 4800 nm) compared to a 5-plane
system ((5−1)×600 = 2400 nm).

Our results indicate that wider bandwidth emission filters having higher signal throughput provide better localization. This
is true irrespective of the emitted photon number. Thus our analysis is directly applicable to single-molecule localization
applications such as multifocal-based Stochastic Optical Reconstruction Microscopy (STORM)17. The increased photon
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throughput also enables higher time resolution volume imaging data acquisition for investigating fast dynamics, without needing
customized chromatic correction optics. It ought be noted, however, that localization precision depends on other factors as
well. In dense particle populations, for example, broadening of the chromatic PSF with increased bandwidth could result in
overlap of single molecules in the image, leading to signal crosstalk which reduces localization precision. Note that for imaging
applications involving larger structures, chromatic dispersion decreases image quality. In such cases, post-processing methods
including image deconvolution using the measured PSF for each subimage is one way to minimize this limitation18. It remains
to be explored how such image deconvolution techniques are impacted by emission filter bandwidth. Furthermore, note that for
the chromatic PSF modeling in these simulations, we assumed a constant emission intensity profile across the wavelengths
within the bandwidth values considered. For larger bandwidth analysis, the varying emission profile across the wavelengths
within a given bandwidth should be taken into account in the PSF modeling step of the simulations for precise localization
results. Future work also involves modeling aberrations originating from other optics in the system.

4 Conclusion
In summary, this paper presents a theoretical framework to investigate the effect of chromatic dispersion arising from multifocal
gratings, in multifocal microscopes, on the 3D localization precision. Simulation results show that increased filter bandwidth
improves the localization in the lateral and axial position estimation despite the increased PSF distortion due to the grating
induced chromatic dispersion. This indicates that the increased photon throughput at higher emission filter bandwidths has a
larger effect on the localization precision, compared to the distorted image function. This study serves as a guide for researchers
to help optimize existing chromatic multifocal microscopes, making these instruments increasingly useful for dynamical
imaging applications.
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Appendix

To account for noise due to background and detector readout, the Fisher information matrix elements in (2) is modified to11,

Inoise
i j (θ) =

P

∑
k=1

(
∂ µθ (k, t)

∂θi

)(
∂ µθ (k, t)

∂θ j

)
[ζ (k, t)−1] .

Here, ζ (k, t) is expressed as,

ζ (k, t) =
∫

ℜ

∑
∞
l=1

[vθ (k, t)]l−1e−vθ (k,t)

(l−1)!
e
−

1
2

( z− l−ηk

σω,k

)2

√
2πσω,k


2

1√
2πσω,k

∑
∞
l=0

[vθ (k, t)]le−vθ (k,t)

l!
e
−

1
2

( z− l−ηk

σω,k

)2 dz, (5)

where vθ (k, t) = µθ (k, t)+β (k, t),k = 1, ...,P.
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