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MODIFIED SCATTERING FOR THE BOSON STAR EQUATION

FABIO PUSATERI

ABSTRACT. We consider the question of scattering for the boson star equation in three space dimensions. This
is a semi-relativistic Klein-Gordon equation with a cubic nonlinearity of Hartree type. We combine weighted
estimates, obtained by exploiting a special null structurepresent in the equation, and a refined asymptotic
analysis performed in Fourier space, to obtain global solutions evolving from small and localized Cauchy
data. We describe the behavior at infinity of such solutions by identifying a suitable nonlinear asymptotic
correction to scattering. As a byproduct of the weighted energy estimates alone, we also obtain global existence
and (linear) scattering for solutions of semi-relativistic Hartree equations with potentials decaying faster than
Coulomb.

CONTENTS

1. Introduction 1
2. Main ideas 4
3. Strategy of the proof 6
4. Proof of Proposition 3.2 7
5. Proof of Proposition 3.3 and 3.4 11
Appendix A. Subcritical Semi-relativistic Hartree equations 19
Appendix B. Auxiliary Estimates 21
References 24

1. INTRODUCTION

1.1. The Equation. We consider the semi-relativistic Klein-Gordon equation with a cubic Hartree-type
nonlinearity

i∂tu−
√
m2 −∆u = λ

(
|x|−1 ∗ |u|2

)
u , (1.1)

with u : (t, x) ∈ R × R3 → C, andm,λ ∈ R. The operator
√
m2 −∆ is defined as usual by its symbol√

m2 + |ξ|2 in Fourier space, and∗ denotes the convolution onR3. In theoretical astrophysics, (1.1) is used
to describe the dynamics of boson stars (Chandrasekhar theory), and it is often referred to as theboson star
equation. In [11], Elgart and Schlein rigorously derived (1.1) via the mean field theory for quantum many-
body systems of boson particles with Coulomb type (gravitational) interaction. In the past few years the
semi-relativistic equation (1.1) and has been analyzed by several authors with regards to various aspects of
the PDE theory. We will discuss some of the most relevant works on (1.1), and on some of its generalizations,
in section 1.2 below. In this paper we are interested in the asymptotic behavior ast → ∞ of small solutions
of the Cauchy problem associated to (1.1), and, in particular, in the question of scattering. Our main result
is the following: For any givenu0(x) = u(t = 0, x) which is small enough in a suitable weighted Sobolev
space, there exists a unique global solution of(1.1)which decays pointwise over time like a solution of the
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linear equation, but, as time goes to infinity, scatters in a nonlinear fashion. This phenomenon of nonlinear
(modified) scattering happens similarly for the standard Hartree equation [16, 24]

i∂tu−∆u =
(
|x|−1 ∗ |u|2

)
u , x ∈ R

n , n ≥ 2 ,

and, in its essence, it is the same type of asymptotic behavior that can be found in several others dispersive
equations which are scattering-critical (orL∞-critical) . An additional result contained in the present paper
concerns some generalizations of (1.1) with potentials decaying faster than the Coulomb potential|x|−1.
We will prove (regular) scattering for those models, closing some gaps in the existing literature.

1.2. Background and known results. As pointed out above, the semi-relativistic equation (1.1)can be
rigorously derived as the mean field limit of anN -body system of interacting boson particles. In the time
independent case, the question of convergence and existence of solutions for the limiting equation had been
studied earlier by Lieb and Yau [22]. More recent investigations on the relation between theN -particle
system and the limiting nonlinear equation (1.1), can be found in [27].

The conserved energy associated to (1.1) is

E(u) :=
1

2

∫

R3

ū
√

m2 −∆u dx+
λ

4

∫

R3

(
|x|−1 ∗ |u|2

)
|u|2 dx , (1.2)

and therefore the energy space isH1/2. Solutions of (1.1) also enjoy conservation of mass,‖u(t)‖L2 =

‖u(0)‖L2 , and the nonlinearity(|x|−1 ∗ |u|2)u is critical with respect toL2 in three dimensions.
Local existence of solutions for the Cauchy problem with data in Hs(R3), s ≥ 1/2, was proved by

Lenzmann in [23], also for more general models than (1.1), including a wide class of external potentials. In
the cited paper, using conservation of energy, global existence is obtained for any data in the defocusing case
λ ≥ 0. In the focusing caseλ < 0, one needs instead to restrict the size of theL2-norm of the initial data
to be smaller than that of the ground state [12]. It was shown by by Frölich and Lenzmann [13] that, in the
focusing case, any radially symmetric smooth compactly supported initial data with negative energy leads
to finite time blow-up. Sharp low regularity wellposedness below the energy space was recently proven by
Herr and Lenzmann [19], both in the radial (s > 0) and non-radial case (s ≥ 1/4).

Without loss of generality we can normalizem = 1, and rescaleλ to be1 or−1 depending on its sign. In
this paper we will only consider small solutions, and therefore the sign ofλ will not be relevant, andλ will
be taken to be−1 for convenience. To better put (1.1) into context in relation to the global well-posedness
and scattering theory for the Cauchy problem, let us consider the following generalized model

i∂tu−
√
1−∆u = −

(
|x|−γ ∗ |u|2

)
u , x ∈ R

n , 0 < γ < n . (1.3)

In [3, 4], Cho and Ozawa showed global existence of large solutions for0 < γ < 2n/(n + 1) for n ≥ 2,
and small data global existence and scattering forγ > 2 in dimensionn ≥ 3. They also proved the non-
existence of asymptotically free solutions (i.e. solutions converging to a solution of the linear equation) for
the case0 < γ ≤ 1 whenn ≥ 3, and for0 < γ < n/2 whenn = 1 or 2. Our main result shows that indeed
solutions of (1.3) withγ = 1 in 3d scatter to a nonlinear profile. An additional result that we prove, namely
Theorem A.1, closes the gap in the small data scattering12 for 1 < γ ≤ 2.

The large data global existence results above were subsequently improved by the same authors [5], in the
radially symmetric case, to include1 < γ < (2n − 1)/n. In [6] the authors obtained scattering for radially
symmetric small solutions when3/2 < γ < 2 andn ≥ 3. Cho and Nakanishi [7] obtained several results in
higher dimensions: in dimensionn ≥ 4 they proved global existence with radial symmetry for1 < γ < 2,
and small data scattering (also without symmetry) forγ = 2. We refer to [7] for a survey of some of the
techniques employed in the above mentioned papers.

1At least for a class of initial data in a suitable weighted Sobolev space.
2Notice that there seem to be no global solutions in the literature, in the intermediate range3/2 ≤ γ ≤ 2.
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1.3. Main Result. We have seen that for certain values of0 < γ < 2, large global solutions to (1.3) can
be constructed combining conservation laws, and low regularity wellposedness or Strichartz estimates (and
Hardy’s inequalities in order to estimate the nonlinearity). When the question of scattering is considered,
even treating small data outside the energy space is quite challenging. As mentioned above, in three di-
mensions, scattering is known ifγ is large enough (γ > 3/2 in the radial case,γ > 2 in the general case).
Clearly, larger values ofγ are easier to treat, since the time decay of theL2 norm of the nonlinearity in (1.3),
computed on a solution of the linear equation, ist−γ . Theorem 1.1 below shows scattering (in a modified
sense) for (1.1), that is (1.3) withγ = 1. We refer to this as the “scattering-critical” case, because the
decay of the nonlinearity is (barely) non-integrable in time. Moreover, our proof can be adapted to obtain
scattering in theL∞-subcritical cases1 < γ ≤ 2, which were left open so far. See Theorem A.1 for details.

This is our main result:

Theorem 1.1. Let3 N = 1000, and letu0 : R3 → C be given such that

‖u0‖HN + ‖〈x〉2u0‖H2 + ‖(1 + |ξ|)10û0‖L∞ ≤ ε0 . (1.4)

Then there exists̄ε0 such that for allε0 ≤ ε̄0, the Cauchy problem
{

i∂tu−
√
1−∆u = −

(
|x|−1 ∗ |u|2

)
u

u(t = 0, x) = u0(x)
(1.5)

has a unique global solutionu(t, x), such that

sup
t∈R

(1 + |t|)−3/2‖u(t)‖L∞ . ε0 . (1.6)

Moreover, the behavior ofu ast → ∞ can be described as follows. Let

B(t, ξ) :=
1

(2π)3

∫ t

0

∫

R3

∣∣∣∣
ξ

〈ξ〉 −
σ

〈σ〉

∣∣∣∣
−1

|û(s, σ)|2 dσ ϕ(ξs−1/300)
ds

s+ 1
, (1.7)

whereϕ is a smooth compactly supported function. Then, there exists an asymptotic statef+, such that for
all t > 0

∥∥(1 + |ξ|)10
[
eiB(t,ξ)eit

√
1+|ξ|2 û(t, ξ)− f+(ξ)

]∥∥
L∞

ξ
. ε0(1 + t)−p1 , (1.8)

for some0 < p1 < 1/1000. A similar statement holds fort < 0.

Solutions of (1.5) will be constructed through a priori estimates in the space given by the norm (2.2). We
refer to section 2 for some explanation of the main ideas involved the proof of Theorem 1.1, and to section
3 for a detailed description of our strategy.

It would be possible to express the asymptotic behavior of a solution of (1.5) in physical coordinates
rather than in Fourier space. However, the asymptotic formula (1.7)-(1.8) clearly emerges from our proof,
which is performed in Fourier space, and can be seen from someheuristic considerations, see section 2.
Therefore we leave (1.7)-(1.8) as a satisfactory description of modified scattering.

Before moving on to describe the difficulties and the tools involved in the proof of Theorem 1.1, let us
mention some known results concerning modified scattering.Famous examples of dispersive PDEs whose
solutions exhibit a behavior which is qualitatively different from the behavior of a linear solution are the
nonlinear Scḧrodinger [29, 8, 16, 24], the Benjamin-Ono [1, 18], and the mKdV [9, 17] equations. Besides
these one-dimensional completely integrable examples, for which large data results are also available, the
phenomenon of modified scattering for small solutions has been observed in several other equations. Exam-
ple are given by Hartree equations [16, 24], Klein-Gordon equations [10], and, more recently, gravity water
waves [21] (see also [20] for a simpler fractional Schödinger model, and [2] for a similar result on the water
waves system).

3For convenience, and to simplify the proof a bit, we letN be comfortably large; however, it is certainly possible to reduce the
value ofN to a number between10 and100.
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Notations. We define the Fourier transform by

Fg(ξ) = ĝ(ξ) :=

∫

R3

e−ix·ξg(x) dx =⇒ g(x) =
1

(2π)3

∫

R3

eix·ξĝ(ξ) dξ .

We fixϕ : R → [0, 1] an even smooth function supported in[−8/5, 8/5] and equal to1 in [−5/4, 5/4], and
let

ϕk(x) := ϕ(|x|/2k)− ϕ(|x|/2k−1) , k ∈ Z , x ∈ R
3 . (1.9)

For any intervalI ⊆ R we define

ϕI :=
∑

k∈I∩Z
ϕk . (1.10)

More generally, for anym,k ∈ Z, m ≤ k, andx ∈ R3 we define

ϕ
(m)
k (x) :=

{
ϕ(|x|/2k)− ϕ(|x|/2k−1), if k ≥ m+ 1 ,

ϕ(|x|/2k), if k = m.
(1.11)

We let Pk, k ∈ Z, denote the operator onR3 defined by the Fourier multiplierξ → ϕk(ξ). We will
sometimes denotefk = Pkf . For an integern ∈ Z we denoten+ = max(0, n).

2. MAIN IDEAS

Let p0 = 1/1000, N = 1000 andΛ(∇) :=
√
1−∆. Define

f(t, x) := (eitΛu)(t, x) , (2.1)

whereu(t) is a solution of (1.5). We will solve (1.5) in the space given by the norm

sup
t

[
(1 + t)−p0‖u(t)‖HN + (1 + t)−p0‖xf(t)‖H2 + (1 + t)−2p0‖xf(t)‖H2 +

∥∥(1 + |ξ|)10f̂(t)
∥∥
L∞

]
.

(2.2)

If f is defined as in (2.1), we can write Duhamel’s formula for (1.1) in Fourier space as follows:

f̂(t, ξ) = û0(ξ) +

∫ t

0
I(s, ξ) ds ,

I(s, ξ) := ic1

∫∫

R3×R3

eis[−Λ(ξ)+Λ(ξ−η)+Λ(η+σ)−Λ(σ)] |η|−2f̂(s, ξ − η)f̂(s, η + σ)f̂(s, σ) dηdσ ,

c1 := 2(2π)−5 .

(2.3)

Here we usedF(|x|−1)(ξ) = 4π|ξ|−2.

Norms and decay. When dealing with nonlinear equations which are scattering-critical in the sense ex-
plained in the introduction, one often has to resort to spaces which incorporate some strong decay infor-
mation. Even more so if modified scattering is expected. In this case, one needs to extract very precise
asymptotic information, and be able to prove someL∞

t Lp
x bound on solutions.

Thanks to the decay estimate (3.3), one sees that solutions whose norm (2.2) is bounded, decay pointwise
like a solution of the linear equation, i.e. at the rate oft−3/2. It is important to underline the key role played
by theF−1L∞-norm. Since the equation (1.5) isL∞-critical, one mightnot be able to prove a bound on
weightedL2-norms off which is uniform in time. Therefore, sharp time decay cannotbe obtained as a
consequence of standard (weighted)Lp − Lq linear estimates. The idea, already exploited in several works
on other critical models, is to include a norm which guarantees decay, but is weaker thanL1, and as such
can be controlled uniformly in time. Our choice is the last norm appearing in (2.2).
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Weighted Estimates. Weighted norms play an important role in the whole construction. Firstly, they con-
trol remainders in the linear estimate (3.3). Secondly, andmost importantly, they are used to control remain-
ders in the asymptotic expansions which allow us to bound theF−1L∞-norm (see the next paragraph below
for more on this). In the literature, a standard way of establishing weighted estimates is given by the use of
vectorfields [25, 26]. In the case of the boson star equation,the use of such a tool is limited by the lack of
scaling and Lorentz invariance. The quantities we shall control arexf andx2f in L2. These correspond to
Γu andΓ2u in L2, for Γ = x− itΛ′. Despite the fact thatΓ does not commute properly with the equation,
we will be able to bound these weighted norms as follows. We apply ∇ξ and∇2

ξ to f̂ as given in (2.3). The
worst term obtained by applying∇ξ to I(s, ξ) is of the form

∫∫

R3×R3

eis[−Λ(ξ)+Λ(ξ−η)+Λ(η+σ)−Λ(σ)] sm(ξ, η)|η|−2f̂(s, ξ − η)f̂(s, η + σ)f̂(s, σ) dηdσ ,

wherem(ξ, η) = ∇ξ(−Λ(ξ) + Λ(ξ − η)). Now notice thatm is a smooth function withm(ξ, 0) = 0. This
is essentially a null condition satisfied by the equation4. Thanks to this, we can think that the multiplier
sm(ξ, η)|η|−2 behaves, as far as estimates are concerned, like the original Coulomb potential|η|−2, so that
the loss of the factors can be recovered5. We can then controlxf andx2f in L2, allowing a small growth
in t.

Asymptotic analysis. Let us change variables in (2.3) and write

I(s, ξ) := ic1

∫∫
eis[−Λ(ξ)+Λ(ξ+η)+Λ(ξ+σ)+Λ(ξ+η+σ)]|η|−2f̂(s, ξ + η)f̂(s, ξ + σ)f̂(s, ξ + η + σ) dηdσ .

(2.4)

Our goal is to identify the leading order term of the above expression in terms of powers ofs, neglecting
all contributions that decay faster thans−1. Let us assume that|ξ| ∼ 1 and we are integrating on a region
|η| . sl, with l < 0 small enough, but not so small that the integral of|η|−2 over this region isO(s−1−).
We can then Taylor expand the oscillating phase, and approximateI(s, ξ) by

ic1

∫∫
eisη·z|η|−2f̂(s, ξ + η)f̂(s, ξ + σ)f̂(s, ξ + η + σ) dηdσ ,

wherez = z(ξ, σ) := σ/〈σ〉 − ξ/〈ξ〉. Using the bounds on∂f̂ , i.e. on weighted norms, we can further
approximate the expression above by

ic1

∫∫
eisη·z|η|−2f̂(s, ξ)f̂(s, ξ + σ)f̂(s, ξ + σ) dηdσ

= ic1f̂(s, ξ)

∫
F(|η|−2)(sz) |f̂ (s, ξ + σ)|2 dσ =

i

s
f̂(s, ξ)C(s, ξ) ,

for some functionC(s, ξ) which is real-valued, and uniformly bounded under suitableassumptions on̂f .
Thanks to the above we have obtained

∂tf̂(t, ξ) = it−1f̂(t, ξ)C(t, ξ) +O(t−1−) ,

from which we can deduce a uniform bound onsupt,ξ |f̂(t, ξ)|. The estimates leading to this latter bound
will also show the modified scattering property (1.8).

In order to make the above intuition rigorous, we need to identify a suitable scale inη, saysl0, such that
the above asymptotics are true for|η| . sl0, and, at the same time, the integral (2.4) on the region|η| & sl0

4This type of generalized null condition was used in [14] and [28], as an important aspect of the space-time resonance analysis.
5Another alternative possibility is to proceed similarly to[28] and [15], by exploiting an algebraic identity for the phase

φ(ξ, η, σ) = −Λ(ξ) + Λ(ξ − η) + Λ(η + σ) − Λ(σ), of the form∇ξφ = L(∇ηφ,∇σφ,φ), whereL denotes some linear
combination with coefficients given by smooth functions of(ξ, η, σ). One could use such an identity to integrate by parts in time
and frequency and recover the loss ofs.
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isO(s−1−). Lemma 5.3 contains the derivation of the asymptotic correction term in the critical region. The
remaining contributions are estimated in section 5.2, using integration by parts inη.

3. STRATEGY OF THE PROOF

Local-in-time solutions to (1.5) can be constructed by a standard fixed point argument. Given a local
solutionu on a time interval[0, T ], we assume that the following norm is a priori small:

‖u‖XT
:= sup

t∈[0,T ]

[
(1 + t)−p0‖u(t)‖HN + (1 + t)−p0‖xf(t)‖H2 + (1 + t)−2p0

∥∥x2f(t)
∥∥
H2

+
∥∥(1 + |ξ|)10f̂(t, ξ)

∥∥
L∞

ξ

]
≤ ε1 .

(3.1)

To obtain the existence of a global solution which is boundedin the spaceXT it will suffice to show

‖u‖XT
≤ ε0 + Cε31 , (3.2)

whereε0 is the size of the initial datum, see (1.4).
In order to deduce sharp pointwise decay from the above a priori bounds we will use the following:

Proposition 3.1(Refined Linear Decay Estimate). For anyt ∈ R one has
∥∥eit

√
1−∆f

∥∥
L∞

.
1

(1 + |t|)3/2
∥∥(1 + |ξ|)6f̂(ξ)

∥∥
L∞

ξ
+

1

(1 + |t|)31/20
[∥∥〈x〉2f

∥∥
L2 + ‖f‖H50

]
. (3.3)

Proposition 3.1 is proven in section B.1. As a consequence of(3.3) and the a priori assumptions (3.1) we
have fort ∈ [0, T ]

‖u(t)‖W 2,∞ . ε1(1 + t)−3/2 . (3.4)

The proof of (3.2) will be done in two main steps given by the following Propositions.

Proposition 3.2 (Weighted Energy Estimates). Assume thatf ∈ C([0, T ] : HN ) satisfies the a priori
assumptions(3.1), and letp0 = 1/1000. Then,

sup
t∈[0,T ]

(1 + t)−p0‖f(t)‖HN ≤ ε0 + Cε31 ,

and

sup
t∈[0,T ]

(1 + t)−p0‖〈x〉f(t)‖H2 ≤ ε0 + Cε31 ,

sup
t∈[0,T ]

(1 + t)−2p0
∥∥〈x〉2f(t)

∥∥
H2 ≤ ε0 + Cε31 .

The proof of the above Proposition is contained in section 4.

Proposition 3.3(Estimate of theL∞
ξ -norm). Assume thatf ∈ C([0, T ] : HN ) satisfies the a priori bounds

(3.1). Then

sup
t∈[0,T ]

∥∥(1 + |ξ|)10f̂(t, ξ)
∥∥
L∞

ξ
≤ ε0 + Cε31 .

As a corollary of the proof of Proposition 3.3 we will obtain the main result of our paper concerning
scattering of small solution of (1.5):

Proposition 3.4(Modified Scattering). Assume thatu ∈ C([0, T ] : HN ) is a solution of(1.5)withu0 small
enough as in(1.4). Define

B(t, ξ) := (2π)−3
∫ t

0

∫

R3

∣∣∣∣
ξ

〈ξ〉 −
σ

〈σ〉

∣∣∣∣
−1

|û(s, σ)|2 dσ ϕ(ξs−1/300)
ds

s + 1
, (3.5)
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whereϕ is a smooth compactly supported function as the one described before(1.9). Then, there exists
f+ ∈ L∞

ξ , andp1 > 0, such that
∥∥(1 + |ξ|)10

(
eiB(t,ξ)f̂(t, ξ)− f+(ξ)

)∥∥
L∞

ξ
. ε31(1 + t)−p1 . (3.6)

We refer to section 5 for the proof of Propositions 3.3 and 3.4. In particular, Proposition 5.1 implies both
Propositions 3.3 and 3.4, through the estimate (5.5).

4. PROOF OFPROPOSITION3.2

Let us define

N (h1, h2, h3) :=
(
|x|−1 ∗ h1h2

)
h3 . (4.1)

A priori energy estimates for the Sobolev norms of solutionsto (1.5) are straightforward. In particular, using
the Hardy-Littlewood-Sobolev inequality, it is not hard toshow that, given a solutionu : [0, T ]×R3, for all
t ∈ [0, T ] one has

‖u(t)‖HN ≤ ‖u0‖HN + C

∫ t

0
‖u(s)‖L2‖u(s)‖L6‖u(s)‖HN ds (4.2)

for all integersN ≥ 0, and some constantC > 0. Interpolating the a priori decay assumption in (3.1) and
the bounds on theL∞

ξ -norm (which controls theL2
x-norm), one has‖u(s)‖L6 . ε1(1 + s)−1. Using the a

priori assumptions (3.1) it follows from (4.2) that

‖u(t)‖HN ≤ ε0 + Cε31(1 + t)p0 . (4.3)

To obtain Proposition 3.2, we then aim to prove that under thea priori assumptions (3.1) one has

‖〈x〉f(t)‖H2 ≤ ε0 + Cε31(1 + t)p0 , (4.4)

‖〈x〉2f(t)‖H2 ≤ ε0 + Cε31(1 + t)2p0 . (4.5)

4.1. Proof of (4.4). Since we already have control on theL2-norm off we just need to estimatexf in H2.
Recall the integral equation satisfied byf :

f̂(t, ξ) = û0(ξ) +

∫ t

0
I(s, ξ) ds ,

I(s, ξ) := ic1

∫∫

R3×R3

eisφ(ξ,η,σ)|η|−2f̂(s, ξ − η)f̂(s, η + σ)f̂(s, σ) dηdσ ,

φ(ξ, η, σ) := −Λ(ξ) + Λ(ξ − η) + Λ(η + σ)− Λ(σ) .

(4.6)

For (4.4) it suffices to prove that under the a priori assumptions (3.1) we have∥∥∥〈ξ〉∂ξI(s)
∥∥∥
L2

. ε31(1 + s)−1+p0 . (4.7)

Applying ∂ξ to I we have

∂ξI(s, ξ) = ic1
(
I1(s, ξ) + I2(s, ξ)

)
, (4.8)

I1(s, ξ) =

∫∫
eisφ(ξ,η,σ)|η|−2∂ξ f̂(s, ξ − η)f̂(s, η + σ)f̂(s, σ)dηdσ , (4.9)

I2(s, ξ) = is

∫∫
eisφ(ξ,η,σ)m(ξ, η)|η|−2f̂(s, ξ − η)f̂(s, η + σ)f̂(s, σ) dηdσ , (4.10)

where we have denoted

m(ξ, η) := ∂ξ

(
− Λ(ξ) + Λ(ξ − η)

)
= −Λ′(ξ)

ξ

|ξ| + Λ′(ξ − η)
ξ − η

|ξ − η| . (4.11)
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We will crucially use the fact thatm(ξ, η) ∼ η, for small|η|. In particular, this will allow us to cancel part
of the singularity given by the transform of the Coulomb potential |η|−2, so to compensate for the growing
factors present inI2.

4.1.1. Estimate of(4.9). This term can be directly estimated using the Hardy-Littlewood-Sobolev inequal-
ity and the a priori assumptions (3.1):

‖〈ξ〉2I1(s)‖L2 . ‖N
(
u(s), u(s), eisΛxf(s)

)
‖
H2 . ‖xf(s)‖H2‖u(s)‖H2‖u(s)‖L6 . ε31(1 + s)−1+p0 .

4.1.2. Estimate of(4.10). With the notation (1.11), we perform dyadic decomposition in the variablesξ, η
andξ − η, and write

〈ξ〉2I2(s, ξ) =
∑

k,k1,k2∈Z
〈ξ〉Ik,k1,k22 (s, ξ)

Ik,k1,k22 (s, ξ) := is

∫∫
eisφ(ξ,η,σ)m1(ξ, η)f̂k1(s, ξ − η)P̂k2 |u|2(s, η) dη ,

m1(ξ, η) := 〈ξ〉
(
− Λ′(ξ)

ξ

|ξ| + Λ′(ξ − η)
ξ − η

|ξ − η|
)
|η|−2ϕk(ξ)ϕ[k2−2,k2+2](η) .

(4.12)

In what follows we shall always work under the assumption that the integral above is not zero, and, in
particular the sums are taken over those indexes(k, k1, k2) satisfying either|k − max{k1, k2}| ≤ 10 or
|k1 − k2| ≤ 10.

Using |m1(ξ, η)| . 2−k2 , we see that

‖Ik,k1,k22 (s)‖L2 . s 23k/2‖fk1(s)‖L22
−k2‖Pk2 |u(s)|2‖L2 . (4.13)

From the a priori assumptions (3.1) we know that

‖fk1(s)‖L2 . 23k1/22−10(k1)+ε1 . (4.14)

‖Pk2 |u(s)|2‖L2 . min
{
23k2/2, 2−5k2

}
ε21 . (4.15)

Using (4.14) and (4.15) in (4.13), we see that the sum over those indexesk such that2k ≤ (1 + s)−2 can be
easily dealt with:

∑

k,k,k2∈Z
2k≤(1+s)−2

‖Ik,k1,k22 (s)‖L2 . ε31(1 + s)−2 .

From the definition in (4.12) one can verify thatm1 satisfies the hypothesis of Lemma B.1 withA . 2−k2 .
Applying (B.13) we obtain

∥∥∥
∑

k,k,k2∈Z
2k≥(1+s)−2

〈ξ〉Ik,k1,k22 (s)
∥∥∥
L2

. s
∑

k,k,k2∈Z
2k≥(1+s)−2

2k+‖Pk1f(s)‖L22
−k2‖Pk2 |u(s)|2‖L∞ . (4.16)

Using (3.4) we see that

‖Pk2 |u(s)|2‖L∞ . min
{
23k2 ,

(
1 + 22k2

)−1
(1 + s)−3

}
ε21 . (4.17)

Therefore, in view of (4.14) and (4.17), we can bound the sum in (4.16) for2k2 ≤ (1 + s)−1 by
∑

2k≥(1+s)−2

2k2≤(1+s)−1

2k+23k1/22−10(k1)+ 22k2ε31 . ε31(1 + s)−2+p0 .
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To estimate the sum in (4.16) for2k2 ≥ (1 + s)−1 we use again (4.14) and (4.17) to obtain
∑

2k≥(1+s)−2

2k2≥(1+s)−1

2k+23k1/22−10(k1)+ 2−k2
(
1 + 22k2

)−1
(1 + s)−3ε31 . ε31(1 + s)−2+p0 .

The last two inequalities imply the desired bound (4.7) for the termI2, and give us (4.4).

4.2. Proof of (4.5). In order to estimate〈x〉2f in H2 we compute the contributions from∂2
ξ I. Applying ∂ξ

to the termsI1 andI2 as they appear in (4.8)-(4.11), and with a slight abuse of notation, we can write

∂ξ
(
I1(s, ξ) + I2(s, ξ)

)
= J1(s, ξ) + 2J2(s, ξ) + J3(s, ξ) + J4(s, ξ) , (4.18)

J1(s, ξ) :=

∫∫
eisφ(ξ,η,σ)|η|−2∂2

ξ f̂(s, ξ − η)f̂(s, η + σ)f̂(s, σ)dηdσ , (4.19)

J2(s, ξ) := is

∫∫
eisφ(ξ,η,σ)m(ξ, η)|η|−2∂ξ f̂(s, ξ − η)f̂(s, η + σ)f̂(s, σ) dηdσ , (4.20)

J3(s, ξ) := is

∫∫
eisφ(ξ,η,σ)∂ξm(ξ, η)|η|−2f̂(s, ξ − η)f̂(s, η + σ)f̂(s, σ) dηdσ , (4.21)

J4(s, ξ) := −s2
∫∫

eisφ(ξ,η,σ)[m(ξ, η)]2|η|−2f̂(s, ξ − η)f̂(s, η + σ)f̂(s, σ)dηdσ , (4.22)

wherem is defined in (4.11). To obtain (4.5) it is then enough to show that fori = 1, . . . , 4, one has
∥∥〈ξ〉2Ji(s)

∥∥
L2 . ε31(1 + s)−1+2p0 . (4.23)

4.2.1. Estimate of(4.19). This is the easiest term and can be directly estimated as follows:

‖〈ξ〉2J1(s)‖L2 . ‖N
(
u(s), u(s), eisΛx2f(s)

)
‖
H2

. ‖x2f(s)‖H2‖u(s)‖H2‖u(s)‖L6 . ε31(1 + s)−1+2p0 .

4.2.2. Estimate of(4.20). Similarly to what has been done above forI2 in (4.12), we can write

〈ξ〉2J2(s, ξ) = is
∑

k,k1,k2∈Z
〈ξ〉

∫∫
eisφ(ξ,η,σ)m2(ξ, η)P̂k1xf(s, ξ − η)P̂k2 |u|2(s, η) dη , (4.24)

where

m2(ξ, η) := 〈ξ〉m1(ξ, η) = 〈ξ〉
(
− Λ′(ξ)

ξ

|ξ| + Λ′(ξ − η)
ξ − η

|ξ − η|
)
|η|−2ϕk(ξ)ϕ[k2−2,k2+2](η) . (4.25)

It is not hard to verify thatm2 satisfies the hypothesis of Lemma B.1 withA . 2−k2 . We can then apply
(B.13) and obtain

‖〈ξ〉2J2(s)‖L2 . s
∑

2k≥(1+s)−2

2k+‖Pk1xf(s)‖L22
−k2‖Pk2 |u(s)|2‖L∞ (4.26)

+ s
∑

2k≤(1+s)−2

23k/2‖Pk1xf(s)‖L2 2
−k2‖Pk2 |u(s)|2‖L2 . (4.27)

Using Bernstein’s inequality and interpolating weighted norms we can estimate

‖Pk1xf(s)‖L2 . 2k1/2‖xf(s)‖L3/2 . 2k1/2‖xf(s)‖1/2
L2 ‖x2f(s)‖1/2L2

. 2k1/2(1 + s)3p0/2ε1
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This and the a priori bounds (3.1) give us

‖Pk1xf(s)‖L2 . min
{(

1 + 22k1
)−1

(1 + s)p0 , 2k1/2(1 + s)3p0/2
}
ε1 (4.28)

‖Pk2 |u(s)|2‖L∞ . min
{
23k2 ,

(
1 + 22k2

)−1
(1 + s)−3

}
ε21 . (4.29)

Using (4.28) and (4.29), we can estimate the sum in (4.26) for2k2 ≤ (1 + s)−1 as follows:
∑

2k≥(1+s)−2

2k2≤(1+s)−1

2k+ min
{(

1 + 22k1
)−1

(1 + s)p0 , 2k1/2(1 + s)3p0/2
}
22k2ε31 . ε31(1 + s)−2+2p0 . (4.30)

Using again (4.28) and (4.29) we see that
∑

2k≥(1+s)−2

2k2≥(1+s)−1

2k+ min
{(

1 + 22k1
)−1

(1 + s)p0 , 2k1/2(1 + s)3p0/2
}
2−k2(1 + s)−3ε31 . ε31(1 + s)−2+2p0 .

Eventually, we estimate similarly the sum in (4.27):
∑

2k≤(1+s)−2

23k/2 min
{(

1 + 22k1
)−1

(1 + s)p0 , 2k1/2(1 + s)3p0/2
}
min{2−k2 , 22k2}ε31 . ε31(1 + s)−2 .

The last three inequalities give us the desired bound (4.23)for the termJ2.

4.2.3. Estimate of(4.21). We write

〈ξ〉2J3(s, ξ) = is
∑

k,k1,k2∈Z
〈ξ〉

∫∫
eisφ(ξ,η,σ)m3(ξ, η)f̂k1(s, ξ − η)P̂k2 |u|2(s, η) dη , (4.31)

where

m3(ξ, η) = 〈ξ〉∂ξ
(
− Λ′(ξ)

ξ

|ξ| +Λ′(ξ − η)
ξ − η

|ξ − η|
)
|η|−2ϕk(ξ)ϕ[k2−2,k2+2](η) .

Proceeding analogously to the estimates in the above two paragraphs, we can easily bound byε31(1 + s)−2

the summation in (4.31) overk ∈ Z such that2k ≤ (1 + s)−2. For the remaining contribution we apply
once again Lemma B.1 to the symbolm3, with A . 2−k2 , and use the a priori bounds to deduce

‖〈ξ〉2J3(s)‖L2

. s
∑

2k≥(1+s)−2

2k+‖Pk1f(s)‖L22
−k2‖Pk2 |u(s)|2‖L∞ + ε31(1 + s)−2

. s
∑

2k≥(1+s)−2

2k+23k1/22−10(k1)+2−k2 min
{
23k2 ,

(
1 + 22k2

)−1
(1 + s)−3}ε31 + ε31(1 + s)−2

. ε31(1 + s)−1+p0 .

The last inequality has been deduced once again by separately analyzing the two cases2k2 ≤ (1 + s)−1 and
2k2 ≥ (1 + s)−1.

4.2.4. Estimate of(4.22). We can write

〈ξ〉2J4(s, ξ) = −s2
∑

k,k1,k2∈Z
〈ξ〉

∫∫
eisφ(ξ,η,σ)m3(ξ, η)f̂k1(s, ξ − η)P̂k2 |u|2(s, η) dη ,

where

m4(ξ, η) :=
(
− Λ′(ξ)

ξ

|ξ| + Λ′(ξ − η)
ξ − η

|ξ − η|
)2

|η|−2ϕk(ξ)ϕ[k2−2,k2+2](η) .
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For k with 2k ≤ (1 + s)−2 a bound ofε31(1 + s)−1 can be obtained as before. To estimate the remaining
contribution we notice that we can apply Lemma B.1 tom4 with A . 1, and obtain

‖〈ξ〉2J4(s)‖L2

. s2
∑

2k≥(1+s)−2

2k+‖Pk1f(s)‖L2‖Pk2 |u(s)|2‖L∞ + ε31(1 + s)−1

. s2
∑

2k≥(1+s)−2

2k+23k1/22−10(k1)+ min
{
23k2 ,

(
1 + 22k2

)−1
(1 + s)−3}ε31 + ε31(1 + s)−1

. ε31(1 + s)−1+p0 .

This concludes the proof of (4.23), which together with (4.7) gives us Proposition 3.2.

5. PROOF OFPROPOSITION3.3 AND 3.4

The aim of this section is to control uniformly in time the keynorm

‖(1 + |ξ|)10f̂(t)‖∞
and show, as a byproduct of the proof, modified scattering as stated in (3.6) in Proposition 3.4.

Given a solutionu of (1.5), satisfying the a priori bounds (3.1), we define for any t ∈ [0, T ] andξ ∈ R3

B(t, ξ) := c0

∫ t

0

∫

R3

∣∣∣∣
ξ

〈ξ〉 −
σ

〈σ〉

∣∣∣∣
−1

|û(s, σ)|2 dσ ϕs(ξ)
ds

s + 1
, c0 := (2π)−3 , (5.1)

where

ϕs(ξ) := ϕ(ξs−1/300) , (5.2)

for a smooth compactly supported functionϕ as the one described before (1.9). We also define the modified
profile

g(ξ, t) := eiB(t,ξ)f̂(t, ξ) . (5.3)

Notice thatB is a well-defined and real-valued function. In particularf̂ andg have the sameL∞
ξ -norm.

We are going to prove the following:

Proposition 5.1. Assume thatf ∈ C([0, T ] : HN ) satisfies the a priori bounds(3.1), that is

sup
t∈[0,T ]

[
(1 + t)−p0‖u(t)‖HN + (1 + t)−p0‖xf(t)‖H1 + (1 + t)−2p0

∥∥x2f(t)
∥∥
H2

+
∥∥(1 + |ξ|)10f̂(t)

∥∥
L∞

]
≤ ε1 .

(5.4)

Then, for somep1 > 0,

sup
t1≤t2∈[0,T ]

(1 + t1)
p1
∥∥(1 + |ξ|)10

(
g(t2, ξ)− g(t1, ξ)

)∥∥
L∞

ξ
. ε31 . (5.5)

In particular

sup
t∈[0,T ]

∥∥(1 + |ξ|)10f̂(t, ξ)
∥∥
L∞

ξ
≤ ε0 + Cε31 . (5.6)

It is clear that the above statement implies Propositions 3.3 and 3.4: (5.6) gives Proposition 3.3, while
(5.5) implies (3.6) once we define

f+(ξ) := lim
t→∞

g(t, ξ) ,

where the limit is taken in(1 + |ξ|)−10L∞
ξ .
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For (5.5) it suffices to prove that ift1 ≤ t2 ∈ [2m − 2, 2m+1] ∩ [0, T ], for somem ∈ {1, 2 . . .}, then
∥∥(1 + |ξ|)10(g(t2, ξ)− g(t1, ξ))

∥∥
L∞

ξ
. ε312

−p1m . (5.7)

To prove this we start by looking at the nonlinear termI in (2.3), and after a change of variables we write it
as

I(s, ξ) := ic1

∫∫

R3×R3

eisφ(ξ,η,σ)|η|−2f̂(s, ξ + η + σ)f̂(s, ξ + η)f̂(s, ξ + σ) dηdσ

φ(ξ, η, σ) := −Λ(ξ) + Λ(η + ξ) + Λ(σ + ξ)− Λ(ξ + η + σ) .

(5.8)

Let l0 be the smallest integer larger than−29m/40,

l0 :=
[
− 29

40
m
]
+ 1 , (5.9)

using the notation (1.11), we write

I(s, ξ) = I0(s, ξ) + ic1
∑

l1∈Z , l1>l0

Il1(s, ξ) ,

I0(s, ξ) := ic1

∫∫

R3×R3

eisφ(ξ,η,σ)|η|−2ϕ
(l0)
l0

(η)f̂(s, ξ + η)f̂(s, ξ + σ)f̂(s, ξ + η + σ) dηdσ ,

Il1(s, ξ) :=

∫∫

R3×R3

eisφ(ξ,η,σ)|η|−2ϕ
(l0)
l1

(η)f̂(s, ξ + η)f̂(s, ξ + σ)f̂(s, ξ + η + σ) dηdσ .

(5.10)

The termI0 is the one responsible for the correction to the scattering,whereasI − I0 is a remainder term,
under the a priori assumptions (5.4).

The profilef verifies

∂tf(t, ξ) = I0(s, ξ) +
∑

l1>l0

Il1(s, ξ) (5.11)

and, according to the definition ofg above, we have

∂tg(t, ξ) = eiB(t,ξ)


I0(t, ξ) +

∑

l1>l0

Il1(s, ξ)− i∂tB(t, ξ) f̂(t, ξ)


 . (5.12)

Therefore, to prove (5.7) it suffices to show that ifk ∈ Z, m ∈ {1, 2, . . .}, |ξ| ∈ [2k, 2k+1], andt1 ≤ t2 ∈
[2m − 1, 2m+1] ∩ [0, T ] the following two bounds are true:

∣∣∣∣
∫ t2

t1

eiB(s,ξ)
[
I0(s, ξ)− i∂sB(s, ξ) f̂(s, ξ)

]
ds

∣∣∣∣ . ε312
−p1m2−10k+ , (5.13)

∣∣∣∣∣∣

∫ t2

t1

eiB(s,ξ)
∑

l1>l0

Il1(s, ξ) ds

∣∣∣∣∣∣
. ε312

−p1m2−10k+ . (5.14)

From the definition ofB(s, ξ) in (5.1), we see that (5.13) can be reduced to the following two bounds
∣∣∣I0(s, ξ)

(
1− ϕs(ξ))

∣∣∣ . ε312
−(1+p1)m2−10k+ ,

∣∣∣I0(s, ξ)ϕs(ξ)− ic0

∫

R3

∣∣∣∣
ξ

〈ξ〉 −
σ

〈σ〉

∣∣∣∣
−1

|f̂(s, σ)|2 dσϕs(ξ)f̂(s, ξ)

s+ 1

∣∣∣ . ε312
−(1+p1)m2−10k+ .

(5.15)

For (5.14) instead, it suffices to show
∑

l1>l0

|Il1,l2(s, ξ) ds| . ε312
−(1+p1)m2−10k+ . (5.16)

The estimates (5.15) are proven in the next section, while (5.16) is proven in section 5.2.
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5.1. Proof of (5.15). In view of the definition ofϕs in (5.2) , the first estimate in (5.15) is a consequence of
the following Lemma:

Lemma 5.2 (High frequency output). Assume that(3.1) holds. Then, for allm ∈ {0, 1, . . . }, k ∈ Z ∩
[m/300,∞), s ∈ [2m − 1, 2m] and |ξ| ∈ [2k, 2k+1]

∣∣I0(s, ξ)
∣∣ . ε312

−3m/22−10k . (5.17)

Proof. We decompose

I0(s, ξ) = ic1
∑

l1≤l0+10

I l10 (s, ξ)

I l10 (s, ξ) :=

∫∫

R3×R3

eisφ(ξ,η,σ)|η|−2ϕl1(η)ϕ
(l0)
l0

(η)f̂(s, ξ + η)f̂(s, ξ + σ)f̂(s, ξ + η + σ) dηdσ .

Using the a priori bounds (5.4) on theL∞
ξ -norm and on Sobolev norms, we can estimate

|I l10 (s, ξ)| . 2l12−10k‖f‖2H10‖(1 + |ξ|)10f̂‖L∞ . 2l122mp02−10kε31 . (5.18)

On the other hand, using only the bounds on high Sobolev normsone can see that

|I l10 (s, ξ)| . 2−l1/22−Nk‖f‖3HN . 2−l1/223mp02−Nkε31 . (5.19)

Using (5.18) in the casel1 ≤ −2m, and (5.18) forl1 ≥ −2m, together withk ≥ m/300 andN = 1000,
we obtain the desired conclusion. �

The next Lemma shows how to derive the correction term to the scattering, and proves the validity of the
second inequality in (5.15).

Lemma 5.3(Critical frequencies). Assume that(3.1)holds. Then, for allm ∈ {0, 1, . . . }, s ∈ [2m−1, 2m],
andk ∈ Z ∩ (−∞,m/300], |ξ| ∈ [2k, 2k+1], we have

∣∣∣I0(s, ξ)− ic0

∫

R3

∣∣∣ ξ

〈ξ〉 −
σ

〈σ〉
∣∣∣
−1

|f̂(s, σ)|2 dσ f̂(s, ξ)

s+ 1

∣∣∣ . ε312
−21m/20 . (5.20)

Proof. Let us recall the definition ofI0:

I0(s, ξ) := ic1

∫∫
eisφ|η|−2ϕ

(l0)
l0

(η)f̂(s, ξ + η)f̂(s, ξ + σ)f̂(s, ξ + η + σ) dηdσ ,

φ(ξ, η, σ) := −Λ(ξ) + Λ(η + ξ) + Λ(σ + ξ)− Λ(ξ + η + σ) ,
(5.21)

whereϕ(l0)
l0

is defined in (1.11), and2l0 . 2−29m/40.

Phase approximation.In the support of the integral in (5.21) we can approximate the phaseφ by a simpler
expression. Defining

φ0(ξ, η, σ) := η ·
(

ξ

〈ξ〉 −
ξ + σ

〈ξ + σ〉

)
, (5.22)

we compute

φ(ξ, η, σ) =
|η|2 + 2η · ξ
〈ξ〉+ 〈ξ + η〉 +

−|η|2 − 2η · (ξ + σ)

〈ξ + σ〉+ 〈ξ + η + σ〉 =
η · ξ
〈ξ〉 +

−η · (ξ + σ)

〈ξ + σ〉 +O
(
|η|2

)
,

and conclude

|φ(ξ, η, σ) − φ0(ξ, η, σ)| . |η|2 . (5.23)

Thus, if we let

I0,1(s, ξ) := ic1

∫∫
eisφ0(ξ,η,σ)|η|−2ϕ

(l0)
l0

(η)f̂(s, ξ + η)f̂(s, ξ + σ)f̂(s, ξ + η + σ) dηdσ
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it follows that fors ∈ [2m − 1, 2m]

|I0(s, ξ)− I0,1(s, ξ)|

.

∫∫
s|φ(ξ, η, σ) − φ0(ξ, η, σ)||η|−2ϕ

(l0)
l0

(η)|f̂(s, ξ + η)| |f̂ (s, ξ + σ)| |f̂ (s, ξ + η + σ)| dηdσ

. 2m23l0‖f(s)‖2L2‖f̂(s)‖L∞ . ε312
−11m/10 ,

having used3l0 . −21m/10.

Profiles approximation.We now want to further approximateI0,1 by the expression

I0,2(s, ξ) := ic1

∫∫
eisφ0(ξ,η,σ)|η|−2ϕ

(l0)
l0

(η)f̂(s, ξ)f̂(s, ξ + σ)f̂(s, ξ + σ) dηdσ . (5.24)

In order to do this letϕ andϕk be given be as in (1.9), and define

f≤J(x) := ϕ
(J)
J (x)f(x) for J ≥ 1

f≥J(x) := f(x)− f≤J(x) .

The functionf≤J is the restriction off to a ball centered at the origin and radius∼ 2J in real space.f≥J is
the portion off which lies at a distance greater than2J from the origin. Using the a priori weighted bounds
on f , we see that for|η| . 2l0 one has

|f̂(ρ+ η)− f̂(ρ)| . |f̂≥J(ρ+ η)− f̂≥J(ρ)|+ |f̂≤J(ρ+ η)− f̂≤J(ρ)|
. ‖f̂≥J‖L∞ + ‖∂f̂≤J‖L∞2l0 . 2−J/2‖x2f‖L2 + 2J/2‖x2f‖L22

l0

. ε12
2mp0

(
2−J/2 + 2J/22l0

)
.

ChoosingJ = −l0 we obtain

|f̂(ρ+ η)− f̂(ρ)| . ε12
2mp02l0/2 .

From this, for|η| . 2l0 , we see that
∫

R3

∣∣f̂(s, ξ + η)f̂(s, ξ + σ)f̂(s, ξ + η + σ)− f̂(s, ξ)f̂(s, ξ + σ)f̂(s, ξ + σ)
∣∣ dσ . ε312

l0/222mp0 .

As a consequence, for alls ∈ [2m − 1, 2m], we obtain

|I0,1(s, ξ)− I0,2(s, ξ)| . 23l0/2ε312
2mp0 . ε312

−21m/10 ,

sincep0 ≤ 1/1000.

Final approximation.To conclude the proof we need to show∣∣∣∣∣I0,2(s, ξ)− ic0

∫

R3

∣∣∣∣
ξ

〈ξ〉 −
σ

〈σ〉

∣∣∣∣
−1

|û(s, σ)|2 dσ f̂(s, ξ)
s+ 1

∣∣∣∣∣ . ε312
−21m/20 , (5.25)

whereI0,2 is given by (5.24) and (5.22). After a change of variables, (5.25) can be reduced to
∣∣∣∣c1

∫∫
eisη·z|η|−2ϕ

(l0)
l0

(η)|f̂(s, σ)|2 dηdσ − c0
s

∫
|z|−1|f̂(s, σ)|2 dσ

∣∣∣∣ . ε212
−21m/20 (5.26)

where we have defined

z :=
ξ

〈ξ〉 −
σ

〈σ〉 . (5.27)

Observe that sinceF(|η|−2)(x) = 2π2|x|−1, the following general formula holds forx ∈ R3:
∣∣∣∣
∫

R3

eiη·x|η|−2ϕ(η2−l) dη − 2π2|x|−1

∣∣∣∣ . |x|−22−l . (5.28)
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Applying this withx = sz, s ∈ [2m − 1, 2m+1], andl = l0 & −29m/40, gives us
∣∣∣∣c1

∫
eisη·z |η|−2ϕ

(l0)
l0

(η) dη − c0
s
|z|−1

∣∣∣∣ . |sz|−22−l0 . 2−5m/4|z|−2 ,

sincec0 = (2π)−3 andc1 = 2(2π)−5. Using this we can see that the left-hand side of (5.26) is bounded by

2−5m/4

∣∣∣∣
∫

|z|−2|f̂(s, σ)|2 dσ
∣∣∣∣ , (5.29)

wherez is defined in (5.27). Since|z| & min{1, |σ|, |ξ − σ|〈σ〉−3}, and|(1 + |ξ|)10f̂ | is a priori bounded
in L∞, we see that

∣∣∣∣
∫

|z|−2|f̂(s, σ)|2 dσ
∣∣∣∣ . ε21 .

Plugging this bound into (5.29) we obtain (5.26) and conclude the proof of the Lemma. �

5.2. Proof of (5.16). We aim to prove:
∑

l1∈Z,l1>l0

|Il1(s, ξ) ds| . ε312
−(1+p1)m2−10k+ . (5.30)

for Il1 defined in (5.10),s ∈ [2m − 1, 2m+1] with m ∈ {0, 1, . . . }, |ξ| ≈ 2k with k ∈ Z, andl0 given by
(5.9). We decompose in dyadic pieces all the profiles and write

Il1 =
∑

k1,k2,k3∈Z
Ik1,k2,k3l1

(s, ξ)

Ik1,k2,k3l1
(s, ξ) :=

∫∫

R3×R3

eisφ(ξ,η,σ)|η|−2ϕ
(l0)
l1

(η)f̂k1(s, ξ + η)f̂k2(s, ξ + η + σ)f̂k3(s, ξ + σ) dηdσ .

(5.31)

We then aim to show
∑

l1>l0,k1,k2,k3∈Z

∣∣∣Ik1,k2,k3l1
(s, ξ) ds

∣∣∣ . ε312
−(1+p1)m2−10k+ . (5.32)

For all s ∈ [2m − 1, 2m+1], we can estimate

|Ik1,k2,k3l1
(s, ξ)| . 2−l1/2‖f̂k1‖L2‖f̂k2‖L2‖f̂k3‖L2 . (5.33)

Using the a priori bounds (5.4) we know that

‖f̂k‖L2 . min
{
23k/22−10k+ , 2Nk+2mp0

}
. (5.34)

Sincel1 > l0 ≥ −3m/4, andN = 1000, the last two estimates above suffice to show that the sum in
(5.32) over those indexes(k1, k2, k3) with max{k1, k2, k3} ≥ m/300 or min{k1, k2, k3} ≤ −m, satisfies
the desired bound. Sincel1 . max{k1, k2}, the remaining indexes in the sum areO(m4). The bound
(5.32) can then be reduced to showing that fors ∈ [2m − 1, 2m+1] with m ∈ {0, 1, . . . }, and|ξ| ≈ 2k with
k ∈ Z ∩ (−∞,m/300 + 10], one has

|Ik1,k2,k3l1
(s, ξ)| . ε312

−(1+2p1)m2−10k+ . (5.35)

for fixed triples(k1, k2, k3) with

−m ≤ k1, k2, k3 ≤ m/300 .
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Let us further decompose

Ik1,k2,k3l1
(s, ξ) =

∑

l2∈Z
Ik1,k2,k3l1,l2

(s, ξ)

Ik1,k2,k3l1,l2
(s, ξ) :=

∫∫
eisφ(ξ,η,σ)|η|−2ϕ

(l0)
l1

(η)ϕl2(σ)f̂k1(s, ξ + η)f̂k2(s, ξ + η + σ)f̂k3(s, ξ + σ) dηdσ .

(5.36)

The above terms are zero ifl2 ≥ m/300 + 10. Moreover, we can estimate

|Ik1,k2,k3l1,l2
(s, ξ)| . 2−2l12−10max(k1,k2,k3)+‖f̂(s)‖3L∞

∫∫
ϕl1(η)ϕl2(σ) dηdσ . ε312

l123l22−10k+ .

This shows that
∑

l2 : 3l2≤−101m/100−l1

∣∣∣Ik1,k2,k3l1,l2
(s, ξ) ds

∣∣∣ . ε312
−(1+2p1)m2−10k+ .

We are then left again with a summation overl2 with only O(m) terms. Therefore, we see that (5.30), and
hence (5.16), will be a consequence of the following:

Proposition 5.4. Let Ik1,k2,k3l1,l2
be defined as in(5.36), and assume(5.4) holds. Then, for alls ∈ [2m −

1, 2m+1] withm ∈ {0, 1, . . . }, |ξ| ∈ [2k, 2k+1] with k ∈ Z ∩ (−∞,m/300 + 10], one has
∣∣∣Ik1,k2,k3l1,l2

(s, ξ)
∣∣∣ . ε312

−101m/100 , (5.37)

whenever

−m ≤ k1, k2, k3 ≤ m/300 , l1 ≥ −29m/40 and l1 + 3l2 ≥ −101m/100 . (5.38)

The above Proposition is proven in a few steps, through Lemma5.5, 5.6 and 5.7 below. We will always
be under the assumption that (5.4) holds, and all the indexesverify (5.38).

Lemma 5.5. The bound(5.37)holds if

max{k1, k2} ≤ l1 . (5.39)

Proof. We write

Ik1,k2,k3l1,l2
(s, ξ) =

∫∫
eisφ(ξ,η,σ)m1(η, σ)f̂k1(s, ξ + η)f̂k2(s, ξ + η + σ)f̂k3(s, ξ + σ) dηdσ ,

where

m1(η.σ) := |η|−2ϕ
(l0)
l1

(η)ϕl2(σ)ϕ[k1−2,k1+2](ξ + η)ϕ[k2−2,k2+2](ξ + η + σ) . (5.40)

Sincem1 verifies the assumption of Lemma B.1 withA = 2−2l1 , we can estimate
∣∣Ik1,k2,k3l1,l2

(s, ξ)
∣∣ . 2−2l1‖f̂k1(s)‖L2‖f̂k2(s)‖L2‖uk3(s)‖L∞

. 2−2l12k1ε12
k2ε12

−3m/2ε1 . ε312
−3m/2 ,

having used the a priori bounds on theL∞ norm of f̂ and the hypothesisk1, k2 ≤ l1 . �

Lemma 5.6. Under the same assumptions of Proposition 5.4, the bound(5.37)holds if

max{k1, k2} ≥ l1 and |k1 − k2| ≥ 10 . (5.41)
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Proof. In this case we want to integrate by parts inη in the expression (5.36) forIk1,k2,k3l1,l2
(s, ξ), using the

identity

eisφ(ξ,η,σ) =
1

s
m0(ξ, η, σ) · ∇ηe

isφ(ξ,η,σ) ,

m0(η, σ) :=
∇ηφ(ξ, η, σ)

i|∇ηφ(ξ, η, σ)|2
.

(5.42)

In particular, up to irrelevant constants, and with a slightabuse of notation, we can write

Ik1,k2,k3l1,l2
(s, ξ) = I1(s, ξ) + I2(s, ξ)

I1(s, ξ) =

∫∫
eisφ(ξ,η,σ)

1

s
m2(η, σ)∇η

(
f̂k1(s, ξ + η)f̂k2(s, ξ + η + σ)

)
f̂k3(s, ξ + σ) dηdσ , (5.43)

I2(s, ξ) =

∫∫
eisφ(ξ,η,σ)

1

s
∇ηm2(η, σ)f̂k1(s, ξ + η)f̂k2(s, ξ + η + σ)f̂k3(s, ξ + σ) dηdσ , (5.44)

where (omitting the variableξ) we have denoted

m2(η, σ) := m0(η, σ)
ϕ
(l0)
l1

(η)

|η|2
ϕl2(σ)ϕ[k1−2,k1+2](ξ + η)ϕ[k2−2,k2+2](ξ + η + σ) . (5.45)

One can then verify thatm2 satisfies the hypothesis of Lemma B.1 withA = 2−2l12−max{k1,k2}, so that we
can apply (B.12) to estimate the term in (5.43) as follows:
∣∣I1(s, ξ)

∣∣ . 2−m2−2l12−max{k1,k2}
[
‖∂f̂k1(s)‖L2‖f̂k2(s)‖L2 + ‖f̂k1(s)‖L2‖∂f̂k2(s)‖L2

]
‖uk3(s)‖L∞

. 2−m2−2l12mp02−3m/2ε31 . ε312
−101m/100 ,

having used−2l1 ≤ 29m/20, andp0 ≤ 1/1000
ForI2 in (5.44) we perform an additional integration by parts and write (again up to irrelevant constants)

I2(s, ξ) = J1(s, ξ) + J2(s, ξ)

J1(s, ξ) =

∫∫
eisφ(ξ,η,σ)

1

s2
m3(η, σ)∇η

(
f̂k1(s, ξ + η)f̂k2(s, ξ + η + σ)

)
f̂k3(s, ξ + σ) dηdσ , (5.46)

J2(s, ξ) =

∫∫
eisφ(ξ,η,σ)

1

s2
∇ηm3(η, σ)f̂k1(s, ξ + η)f̂k2(s, ξ + η + σ)f̂k3(s, ξ + σ) dηdσ , (5.47)

where

m3(η, σ) := m0(η, σ)∇ηm2(η, σ) . (5.48)

From the definition ofm0 andm2 in (5.42) and (5.45), we see thatm3 satisfies the hypothesis (B.11) in
Lemma B.1 withA = 2−3l12−2max{k1,k2}. We then obtain
∣∣J1(s, ξ)

∣∣ . 2−2m2−3l12−2max{k1,k2}
[
‖∂f̂k1(s)‖L2‖f̂k2(s)‖L2 + ‖f̂k1(s)‖L2‖∂f̂k2(s)‖L2

]
‖uk3(s)‖L∞

. 2−2m2−3l12−max{k1,k2}/22mp02−3m/2ε31

From the hypothesis (5.38) we see that−3l1 ≤ 9m/4, andl2 ≥ −2m/5. This latter implies

−max{k1, k2}/2 ≤ −l2/2 + 10 ≤ m/5 + 10 ,

and therefore
∣∣J1(s, ξ)

∣∣ . 2m/42−max{k1,k2}/22mp02−3m/2ε31 . 2−101m/100ε31 ,

as desired.
To estimateJ2 in (5.47) we only use the pointwise bound

|∇ηm3(η, σ)| . 2−4l12−2max{k1,k2} (5.49)
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and the a priori bounds (5.4) to deduce
∣∣J2(s, ξ)

∣∣ . 2−2m2−4l12−2max{k1,k2}‖f̂k1(s)‖L∞23l1‖f̂k2(s)‖L2‖f̂k3(s)‖L22
3l123l3

. 2−2m2−l12−max{k1,k2}/2ε31 . 2−101m/100ε31 ,

having used once again−l1 ≤ 3m/4, and−max{k1, k2}/2 ≤ m/5 + 10. �

Lemma 5.7. The bound(5.37)holds if

|k1 − k2| ≤ 10 and max{k1, k2} ≥ l1 . (5.50)

Proof. The frequency configurationk1 ∼ k2 is the most delicate. Recall (5.42) and the notations

m0(η, σ) :=
∇ηφ(ξ, η, σ)

i|∇ηφ(ξ, η, σ)|2
(5.51)

m2(η, σ) := m0(η, σ)ϕ
(l0)
l1

(η)|η|−2ϕl2(σ)ϕ[k1−2,k1+2](ξ + η)ϕ[k2−2,k2+2](ξ + η + σ) . (5.52)

m3(η, σ) := m0(η, σ)∇ηm2(η, σ) . (5.53)

Integrating by parts twice in the expression forIk1,k2,k3l1,l2
in (5.36), or once more in (5.43)-(5.44), we can

write

Ik1,k2,k3l1,l2
(s, ξ) = K1(s, ξ) +K2(s, ξ) +K3(s, ξ)

K1(s, ξ) =

∫∫
eisφ(ξ,η,σ)

1

s2
q1(ξ, η, σ)∇2

η

(
f̂k1(s, ξ + η)f̂k2(s, ξ + η + σ)

)
f̂k3(s, ξ + σ) dηdσ , (5.54)

K2(s, ξ) =

∫∫
eisφ(ξ,η,σ)

1

s2
q2(ξ, η, σ)∇η

(
f̂k1(s, ξ + η)f̂k2(s, ξ + η + σ)

)
f̂k3(s, ξ + σ) dηdσ , (5.55)

K3(s, ξ) =

∫∫
eisφ(ξ,η,σ)

1

s2
q3(ξ, η, σ)f̂k1(s, ξ + η)f̂k2(s, ξ + η + σ)f̂k3(s, ξ + σ) dηdσ , (5.56)

where

q1(ξ, η, σ) := m0(ξ, η, σ)m2(ξ, η, σ) , (5.57)

q2(ξ, η, σ) := ∇ηq1(ξ, η, σ) +m0(ξ, η, σ)∇ηm2(ξ, η, σ) , (5.58)

q3(ξ, η, σ) := ∇ηm3(ξ, η, σ) . (5.59)

We now proceed to estimate the three integrals above. First let us notice that for|ξ + η| ≈ 2k1 and
|ξ + η + σ| ≈ 2k2 with k1 ∼ k2, |η| ≈ 2l1 and|σ| ≈ 2l2 , one has

|∂a
η∂

b
σm0(η, σ)| . 2−l223max{k1,k2}2−|a|l12−|b|l2 , (5.60)

for a, b ∈ Z3
+ with |a|, |b| ≤ 10. As a consequence

|∂a
η∂

b
σm2(η, σ)| . 2−2l12−l223max{k1,k2}2−|a|l12−|b|l2 , (5.61)

for a, b ∈ Z3
+ with |a|, |b| ≤ 10. It then follows that

‖F−1q1‖L1 . 2−2l12−2l226max{k1,k2} . (5.62)

We then apply Lemma B.1 and obtain
∣∣K1(s, ξ)

∣∣ . 2−2m2−2l12−2l226max{k1,k2}‖〈x〉2fk1(s)‖L2‖〈x〉2fk2(s)‖L2‖uk3(s)‖L∞

. 2−2m2−2l12−2l224mp022k12−3m/2ε31 . 2−101m/100ε31 ,

having used−2l1 ≤ 29m/20, −2l2 ≤ 4m/5, k1 ≤ m/300 andp0 ≤ 1/1000.
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We can estimate similarly the termK2 in (5.56). From the definition ofq2 in (5.57)-(5.58), and the
estimates (5.60) and (5.61) form0 andm2, we see that

‖F−1q2‖L1 . 2−3l12−2l226max{k1,k2} . (5.63)

Using (5.63) and Lemma B.1 we can obtain the bound
∣∣K2(s, ξ)

∣∣ . 2−2m2−3l12−2l226max{k1,k2}‖〈x〉fk1(s)‖L2‖〈x〉fk2(s)‖L2‖uk3(s)‖L∞

. 2−2m2−3l12−2l224mp022k12−3m/2ε31 .

Now observe that the second constraint in (5.38) gives−2l1 − 3m/2 ≤ −m/20. Moreover, the second and
third inequalities in (5.38) imply−l1 − 2l2 ≤ m, as it can be seen, for instance, by considering the two
casesl2 ≥ −m/16 andl2 ≤ −m/16. From the chain of inequalities above we can then conclude that

∣∣K2(s, ξ)
∣∣ . 2−101m/100ε31 .

Eventually we come toK3. In this case we only use the pointwise bound forq3

|∇ηq3(η.σ)| . 2−4l12−2l226max{k1,k2} ,

and estimate
∣∣K3(s, ξ)

∣∣ . 2−2m2−4l12−2l226max{k1,k2}‖f̂k1(s)‖L∞‖f̂k2(s)‖L∞‖f̂k3(s)‖L∞23l123l2

. 2−2m2−l12l226max{k1,k2}ε31

. 2−101m/100ε31 ,

having used once again the lower bound onl1 in (5.38), andl2, k1, k2 ≤ m/300 + 10. �

APPENDIX A. SUBCRITICAL SEMI-RELATIVISTIC HARTREE EQUATIONS

As already discussed in the introduction, some generalizedmodels related to the boson star equation (1.1)
have also been studied recently, and, in particular, the class of semi-relativistic Hartree equations

i∂tu− Λu = −
(
|x|−γ ∗ |u|2

)
u , Λ =

√
1−∆ , x ∈ R

n , 0 < γ < n . (A.1)

We are interested here in constructing small scattering solutions whenγ > 1. For γ > 2, andγ > 3/2
in the radial case, such solutions have been obtained in [3] and [6]. Our proof of the weighted bounds in
Proposition 3.2, done for the caseγ = 1, can be adapted to prove the following:

Theorem A.1. Letu0 : R3 → C be given such that

‖u0‖H10 + ‖〈x〉2u0‖H3 ≤ ε0 .

There exists̄ε0 such that for allε0 ≤ ε̄0, the Cauchy problem associated to(A.1) with 1 < γ < 3, with
initial datumu(t = 0, x) = u0(x), has a unique global solution satisfying

sup
t

[
‖u(t)‖H10 +

∥∥〈x〉2eitΛu(t)
∥∥
H3

]
. ε0 . (A.2)

Furthermore, there existp1 > 0, andf+ ∈ L2(〈x〉4dx), such that
∥∥eitΛu(t, x) − f+

∥∥
L2(〈x〉4dx) . ε0(1 + t)−p1 , (A.3)

for all t > 0. A similar statement holds fort < 0.

Since the above result follows from arguments similar to those in section 4, we will just provide some
ideas of its proof below.
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Sketch of the proof of Theorem A.1.Let us start by defining

Nγ(h1, h2, h3) :=
(
|x|−γ ∗ h1h2

)
h3 , (A.4)

for 1 < γ < 3. The Hausdorff-Young inequality then gives

‖Nγ(h1, h2, h3)‖L2 . ‖h1‖Lp1‖h2‖Lp2‖h3‖Lp3 , (A.5)

for anyp1, p2, p3 ∈ [2,∞] and

1/p1 + 1/p2 + 1/p3 = 3/2 − γ/3 . (A.6)

We want to construct a global solution such that (A.2) holds.Let us assume that we are given a local
solution on[0, T ] which is a priori bounded as follows:

sup
t∈[0,T ]

[
‖u(t)‖H10 +

∥∥〈x〉2eitΛu(t)
∥∥
H3

]
. ε1 , (A.7)

for someε1 > 0. Duhamel’s formula forf(t) = eitΛu(t) reads:

u(t) = e−itΛu0 + e−itΛN(t) , N(t) :=

∫ t

0
eiΛsNγ(u(s), u(s), u(s)) ds . (A.8)

To obtain a global solution it suffices to show that under the apriori assumptions (A.7) one has

sup
t∈[0,T ]

[
‖N(t)‖H10 +

∥∥〈x〉2N(t)
∥∥
H3

]
. ε31 , (A.9)

for someC > 0.
Notice that (A.7) implies, via the standardLp − Lq estimates

sup
t∈[0,T ]

(1 + t)3/2−3/p‖u(t)‖Lp . ε1 , (A.10)

for all p ≥ 2. Also notice than any global solutionu(t) which is bounded as in (A.2), automatically scatters
to a linear solution inL2, because

‖Nγ(u(t), u(t), u(t))‖L2 . ‖u(t)‖2L6/(3−γ)‖u(t)‖L2 . ε30(1 + t)−γ ,

which is an integrable function of time.
The first term in (A.9) can be bounded directly by (A.5) and (A.10):

‖N(t)‖H10 .

∫ t

0
‖u‖2L6/(3−γ)‖u‖H10 ds . ε31

∫ t

0
(1 + s)−γ ds . ε31 .

To bound the second norm in the right-hand side of (A.9) let uswrite N(t) in Fourier space as

N̂(t, ξ) = ic

∫ t

0
I(s, ξ) ds ,

I(s, ξ) =

∫∫

R3×R3

eisφ(ξ,η,σ)|η|−3+γ f̂(s, ξ − η)f̂(s, η + σ)f̂(s, σ) dηdσ ,

φ(ξ, η, σ) := −Λ(ξ) + Λ(ξ − η) + Λ(η + σ)− Λ(σ) .

(A.11)

Herec = c(γ) denotes an appropriate positive constant which is irrelevant for the proof. Then the idea is to
proceed as in section 4.2, applying〈ξ〉3∇2

ξ to I and estimating the resulting terms inL2. Applying ∇2
ξ to I
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we obtain four terms

∂2
ξ I(s, ξ) = Jγ

1 (s, ξ) + 2Jγ
2 (s, ξ) + Jγ

3 (s, ξ) + Jγ
4 (s, ξ) ,

Jγ
1 (s, ξ) :=

∫∫
eisφ(ξ,η,σ)|η|−3+γ∂2

ξ f̂(s, ξ − η)f̂(s, η + σ)f̂(s, σ)dηdσ , (A.12)

Jγ
2 (s, ξ) := is

∫∫
eisφ(ξ,η,σ)m(ξ, η)|η|−3+γ∂ξ f̂(s, ξ − η)f̂(s, η + σ)f̂(s, σ) dηdσ , (A.13)

Jγ
3 (s, ξ) := is

∫∫
eisφ(ξ,η,σ)∂ξm(ξ, η)|η|−3+γ f̂(s, ξ − η)f̂(s, η + σ)f̂(s, σ) dηdσ , (A.14)

Jγ
4 (s, ξ) := −s2

∫∫
eisφ(ξ,η,σ)[m(ξ, η)]2|η|−3+γ f̂(s, ξ − η)f̂(s, η + σ)f̂(s, σ)dηdσ , (A.15)

where the symbolm is defined as in (4.11):

m(ξ, η) := ∂ξ

(
− Λ(ξ) + Λ(ξ − η)

)
.

The termsJγ
i in (A.12)-(A.15), for i = 1, . . . , 4, look exactly like the termsJi, in (4.19)-(4.22), with the

exception that the power on|η| is now−3 + γ > −2.
To obtain (A.9), it would be sufficient to prove

∥∥〈ξ〉3Jγ
i (s)

∥∥
L2 . ε31(1 + s)−1−(γ−1)/4 . (A.16)

To see this, one should proceed as in sections 4.2.1-4.2.4 and use the following two facts:
1) Under the a priori assumptions (A.7) one can setp0 = 0 in all the estimates in 4.2.1-4.2.4.
2) Let2k2 denote the size of|η| as in the estimates of sections 4.2.1-4.2.4. Since (A.12)-(A.15) have a factor
|η|−3+γ instead of|η|−2 as in (4.19)-(4.22), one can obtain estimates for (A.12)-(A.15) which are a factor
2(γ−1)k2 better than those for (4.19)-(4.22).
Thanks to these observations, one can verify that the bounds(4.23) for theL2 norms ofJ1, . . . , J4, can be
improved to the bounds (A.16) forJγ

1 , . . . , J
γ
4 . This gives (A.9). The scattering statement (A.3) follows

from the bounds (A.16) and the integrable time decay ofNγ . This concludes the proof the Theorem. �

APPENDIX B. AUXILIARY ESTIMATES

B.1. Proof of Proposition 3.1: Refined Linear Estimates.In this section we give the proof of Proposition
3.1 by showing

∥∥∥eit
√
1−∆f

∥∥∥
L∞

.
1

(1 + |t|)3/2
∥∥(1 + |ξ|)6f̂(ξ)

∥∥
L∞

ξ
+

1

(1 + |t|)31/20
[∥∥〈x〉2f

∥∥
L2 + ‖f‖H50

]
. (B.1)

for anyt ∈ R. Estimate (B.1) is a simple but crucial ingredient in deriving the modified scattering behavior
for solutions of (1.1). It identifies the leading order norm that needs to be controlled in order to obtain the
necessary sharp pointwise decay oft−3/2, and dictates what expression needs to be analyzed in order to
capture the asymptotic behavior of solution of (1.1). Similar estimates, as well as some variants, have been
used when dealing with otherL∞ critical equations (and not only), see for example [16, 10, 17, 18, 24, 20].

Our proof is in the same spirit of the proof of Lemma 2.3 of [20], where the author and Ionescu treated
the linear propagatorexp(it|∂x|1/2). The analogous estimate for this propagator was then used toobtain
global solutions to the gravity water waves problem in the case of one dimensional interfaces [21].

Proof of (B.1). SetΛ(∇) :=
√
1−∆ = 〈∇〉. Using the notation (1.11), we write

eitΛ(∇)f(x, t) =
∑

k∈Z

∫

R3

eitφ(ξ)f̂(ξ)ϕk(ξ) dξ , φ(ξ;x, t) := Λ(ξ) + ξ · x
t
. (B.2)
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For (B.1) it then suffices to prove that
∑

k∈Z

∣∣∣
∫

R3

eitφ(ξ)f̂(ξ)ϕk(ξ) dξ
∣∣∣ . 1 , (B.3)

for anyt ∈ R, x ∈ R3, and any functionf satisfying

(1 + |t|)−3/2‖(1 + |ξ|)6f̂‖L∞

ξ
+ (1 + |t|)−31/20

[∥∥〈x〉2f
∥∥
L2 + ‖f‖H50

]
≤ 1 . (B.4)

High and low frequencies.Using only the bound‖f̂‖L∞ ≤ (1 + |t|)3/2, we estimate first the contribution
of small frequencies,

∑

2k.(1+|t|)−1/2

∣∣∣
∫

R3

eitφ(ξ)f̂(ξ)ϕk(ξ) dξ
∣∣∣ .

∑

2k.(1+|t|)−1/2

23k‖P̂kf‖L∞ . 1 .

Using instead the bound‖f‖H50 ≤ (1 + |t|)31/20, we can control the contribution of large frequencies:
∑

2k&(1+|t|)1/30

∣∣∣
∫

R3

eitφ(ξ)f̂(ξ)ϕk(ξ) dξ
∣∣∣ .

∑

2k&(1+|t|)1/30
23k/2‖P̂kf‖L2 .

∑

2k&(1+|t|)1/30
2−48k‖f‖H50 . 1 .

Non-stationary frequencies.From above we see that for (B.3) it suffices to prove
∑

(1+|t|)−1/2.2k.(1+|t|)1/30

∣∣∣
∫

R3

eitφ(ξ)f̂(ξ)ϕk(ξ) dξ
∣∣∣ . 1 . (B.5)

In proving (B.5) we may assume thatt ≥ 1. Notice that for|x| < t

∇ξφ(ξ) = 0 ⇐⇒ ξ = ξ0 :=
x√

t2 − |x|2
, (B.6)

while |∇ξφ| & Λ(ξ)−2, for |x| ≥ t.
We estimate first the non-stationary contributions whenξ is away fromξ0, and more precisely when

2k ≥ 24|ξ0| or 2k ≤ 2−4|ξ0|. In these cases we have|∂rφ| & |ξ − ξ0|(1 + 23k)
−1

, where∂r = ξ/|ξ| · ∇ξφ
denotes the radial derivative. We can integrate by parts twice in (B.2) and write:∫

R3

eitφ(ξ)f̂(ξ)ϕk(ξ) dξ = I
(1)
k + I

(2)
k + I

(3)
k ,

I
(1)
k := − 1

t2

∫

R3

eitφ(ξ)(∂rφ)
−2∂2

r

(
f̂(ξ)ϕk(ξ)

)
dξ ,

I
(2)
k := −3

1

t2

∫

R3

eitφ(ξ)(∂rφ)
−1∂r(∂rφ)

−1∂r
(
f̂(ξ)ϕk(ξ)

)
dξ ,

I
(3)
k :=

1

t2

∫

R3

eitφ(ξ)∂r
(
(∂rφ)

−1∂r(∂rφ)
−1

)
f̂(ξ)ϕk(ξ) dξ .

(B.7)

For |ξ| ∈ [2k−2, 2k+2] with 2k ≥ 24|ξ0| or 2k ≤ 2−4|ξ0|, one has|∂rφ| & 2k(1 + 23k)
−1

. Therefore,
using (B.4) we can estimate

∣∣I(1)k

∣∣ . t−22−2k(1 + 23k)
2‖∂2

r

(
f̂ϕk

)
‖
L1 . t−22−2k(1 + 26k)

(
23k/2‖x2f‖L2 + 2−2k‖f̂k‖L1

)

. t−2
(
(1 + 23k)

2
2−k/2t31/20 + 2−kt3/2

)
,

and deduce that
∑

k |I
(1)
k | . 1, from the fact that we are only summing over thosek such thatt−1/2 . 2k .

t1/30,
To estimateI(2)k in (B.7), we first notice that|(∂rφ)−1∂r(∂rφ)

−1| . 2−3k(1 + 23k)
2
. Moreover one has

‖∂r
(
f̂ϕk

)
‖
L1 . 22k‖f̂k‖L∞ + 25k/2‖∂r f̂‖L6 . 22k‖f̂k‖L∞ + 25k/2‖x2f‖L2 .
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Therefore, we see that
∣∣I(2)k

∣∣ . t−22−3k(1 + 23k)
2‖∂r

(
f̂ϕk

)
‖
L1 . t−2

(
2−k‖f̂‖L∞ + (1 + 26k)2−k/2‖x2f‖L2

)
.

Using again (B.4) and the restrictionst−1/2 . 2k . t1/30, we get
∑

k |I
(2)
k | . 1.

We can deal similarly withI3. Since|∂r
(
(∂rφ)

−1∂r(∂rφ)
−1

)
| . 2−4k(1 + 23k)

2
, we obtain

∑

k

∣∣I(3)k

∣∣ . t−2
∑

2k&t−1/2

2−4k(1 + 23k)
2‖f̂ϕk‖L1 . t−2

∑

2k&t−1/2

2−k(1 + 26k)‖f̂k‖L∞ . 1 .

Stationary contributions.To eventually conclude the proof of (B.5) it suffices to show
∣∣∣
∫

R3

eitφ(ξ)f̂(ξ)ϕk(ξ) dξ
∣∣∣ . 1, (B.8)

provided that|t| ≥ 1, (1 + |t|)−1/2 . 2k . (1 + |t|)1/30, and2k ∈ [2−4|ξ0|, 24|ξ0|]. Let l0 denote the
smallest integer with the property that2l0 ≥ |t|−1/2 and estimate the left-hand side of (B.8) by

∣∣∣
∫

R3

eitφ(ξ)f̂(ξ)ϕk(ξ) dξ
∣∣∣ ≤

k+100∑

l=l0

|Jl| , (B.9)

where, with the notation (1.9), for anyl ≥ l0 we have defined

Jl :=

∫

R3

eitφ(ξ)f̂k(ξ)ϕ
(l0)
l (ξ − ξ0) dξ .

From (B.4) it immediately follows

|Jl0 | . 23l0‖f̂k‖L∞ . t−3/2‖f̂‖L∞ . 1 .

For l > l0 we integrate by parts in the expression forJl above, relying on the fact that|ξ − ξ0| &

2l & t−1/2 on the support of the integral. Two integration by parts likethe ones performed in the previous
paragraph, give

Jl = J
(1)
l + J

(2)
l + J

(3)
l ,

J
(1)
l := − 1

t2

∫

R3

eitφ(ξ)(∂rφ)
−2∂2

r

(
f̂k(ξ)ϕ

(l0)
l (ξ − ξ0)

)
dξ ,

J
(2)
l := −3

1

t2

∫

R3

eitφ(ξ)(∂rφ)
−1∂r(∂rφ)

−1∂r
(
f̂k(ξ)ϕ

(l0)
l (ξ − ξ0)

)
dξ ,

J
(3)
l :=

1

t2

∫

R3

eitφ(ξ)∂r
(
(∂rφ)

−1∂r(∂rφ)
−1

)
f̂k(ξ)ϕ

(l0)
l (ξ − ξ0) dξ .

(B.10)

Most of the above contributions can be estimated in exactly the same way as we have estimated the terms
in (B.7), using the fact that|∂2

rφ(ξ)| ≈ (1 + 2k)
−3

and |ξ − ξ0| ≈ 2l ≥ t−1/2, which imply |∂rφ(ξ)| &
(1 + 2k)

−3
2l in the support ofJl. The termJ

(3)
l , for example, verifies the exact same bound asI

(3)
k :

∣∣J (3)
l

∣∣ . t−22−4l(1 + 23k)
2‖f̂k(·)ϕl(· − ξ0)‖L1 . t−2(1 + 26k)‖f̂k‖L∞2−l . 1 ,

Using again (B.4),2l ≥ t−1/2, and2k . t1/30, we estimate
∣∣J (1)

l

∣∣ . t−22−2l(1 + 23k)
2‖∂2

r

(
f̂(·)ϕl(· − ξ0)

)
‖
L1

. t−22−2l(1 + 26k)
(
23l/2‖∂2

r f̂‖L2 + 2−2l‖f̂k1[0,2l+4](|ξ − ξ0|)‖L1

)

. t−22−2l(1 + 26k)
(
23l/2‖x2f‖L2 + 2l‖f̂k‖L∞

)

. t−2
(
(1 + 23k)

2
2−l/2t31/20 + 2−lt3/2

)
. 1 .
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Similarly
∣∣J (2)

l

∣∣ . t−22−3l(1 + 23k)
2‖∂r

(
f̂(·)ϕl(· − ξ0)

)
‖
L1

. t−2(1 + 26k)
(
2−l‖f̂k‖L∞ + 2−l/2‖x2f‖L2

)
. 1 .

The desired bound (B.8) follows from (B.9),(B.10) and the last three estimates. This completes the proof of
(B.3) and the Proposition. �

B.2. Bounds on pseudo-product operators.Below we state a Lemma about pseudo-product operators
which is used several times in the course of weighted energy estimates (section 4) and remainder estimates
(section 5.2).

Lemma B.1. Assume thatm ∈ L1(R3 × R3) satisfies
∥∥∥∥
∫

R3×R3

m(η, σ)eixηeiyσ dηdσ

∥∥∥∥
L1
x,y

≤ A , (B.11)

for someA ∈ (0,∞). Then, for any(p, q, r) with 1/p + 1/q + 1/r = 1,
∣∣∣∣
∫

R3×R3

f̂(η)ĝ(σ)ĥ(η + σ)m(η, σ) dηdσ

∣∣∣∣ . A‖f‖Lp‖g‖Lq‖h‖Lr . (B.12)

Moreover, for allp, q with 1/p + 1/q = 1/2, one has
∥∥∥∥
∫

R3

m(ξ, η)f̂ (ξ − η)ĝ(η) dη

∥∥∥∥
L2
ξ

. A‖f‖Lp‖g‖Lq . (B.13)

Proof. We rewrite
∣∣∣
∫

R×R

f̂(η)ĝ(σ)ĥ(−η − σ)m(η, σ) dηdσ
∣∣∣ = C

∣∣∣
∫

R3

f(x)g(y)h(z)K(z − x, z − y) dxdydz
∣∣∣

.

∫

R3

|f(z − x)g(z − y)h(z)| |K(x, y)| dxdydz ,

where

K(x, y) :=

∫

R×R

m(η, σ)eixηeiyσ dηdσ .

The desired bound (B.12) follows easily from (B.11) which saysK ∈ L1
x,y. (B.13) follows from (B.12) by

duality. �
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