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MODIFIED SCATTERING FOR THE BOSON STAR EQUATION

FABIO PUSATERI

ABSTRACT. We consider the question of scattering for the boson staatén in three space dimensions. This
is a semi-relativistic Klein-Gordon equation with a cub@niinearity of Hartree type. We combine weighted
estimates, obtained by exploiting a special null strucpnesent in the equation, and a refined asymptotic
analysis performed in Fourier space, to obtain global 8wistevolving from small and localized Cauchy
data. We describe the behavior at infinity of such solutiopsdentifying a suitable nonlinear asymptotic
correction to scattering. As a byproduct of the weightedgnestimates alone, we also obtain global existence
and (linear) scattering for solutions of semi-relatiidtlartree equations with potentials decaying faster than
Coulomb.
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1. INTRODUCTION

1.1. The Equation. We consider the semi-relativistic Klein-Gordon equatioithva cubic Hartree-type
nonlinearity

i — V/m? — Au =\ (|:c|—1 « |u|2> u, (1.1)

with u : (t,z) € R x R* — C, andm, A € R. The operator/m? — A is defined as usual by its symbol
v/m? + |€]2 in Fourier space, anddenotes the convolution dk?. In theoretical astrophysic$, (1.1) is used
to describe the dynamics of boson stars (Chandrasekhawyjhaad it is often referred to as tth@son star
equation. In[[11], Elgart and Schlein rigorously derivedlljlvia the mean field theory for guantum many-
body systems of boson particles with Coulomb type (grdemat) interaction. In the past few years the
semi-relativistic equatiori (1.1) and has been analyzecetgral authors with regards to various aspects of
the PDE theory. We will discuss some of the most relevant ori{1.1), and on some of its generalizations,
in sectior 1.2 below. In this paper we are interested in tienpgotic behavior ag — oo of small solutions

of the Cauchy problem associated[fa{1.1), and, in particidahe question of scattering. Our main result
is the following: For any givenug(xz) = u(t = 0, ) which is small enough in a suitable weighted Sobolev
space, there exists a unigue global solution(®fl) which decays pointwise over time like a solution of the
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linear equation, but, as time goes to infinity, scatters iroalimear fashion This phenomenon of nonlinear
(modified) scattering happens similarly for the standardrda equation [16, 24]

i0u — Au = (\x]_l*\u]2>u , z€R" n>2,

and, in its essence, it is the same type of asymptotic behthat can be found in several others dispersive
equations which are scattering-critical (ot°-critical) . An additional result contained in the preseaper
concerns some generalizations [0f [1.1) with potentialayiag faster than the Coulomb potentjal‘l.

We will prove (regular) scattering for those models, clgssiome gaps in the existing literature.

1.2. Background and known results. As pointed out above, the semi-relativistic equation](tdn be
rigorously derived as the mean field limit of &*+body system of interacting boson particles. In the time
independent case, the question of convergence and exdstésolutions for the limiting equation had been
studied earlier by Lieb and Yal [22]. More recent investiya on the relation between thé-particle
system and the limiting nonlinear equatién {1.1), can bedan [27].

The conserved energy associated fol(1.1) is

E(u) := %/RS avm? — Audz + 2 /RS <\x]_1 * ]u\z) lu|? da (1.2)

and therefore the energy spaceHs/2. Solutions of [T1L) also enjoy conservation of mags(t)||,» =
|u(0)]| 2, and the nonlinearity|z| " * |u|*)u is critical with respect td.? in three dimensions.

Local existence of solutions for the Cauchy problem withadat /74 (R?), s > 1/2, was proved by
Lenzmann in[[28], also for more general models than (1.t)Juding a wide class of external potentials. In
the cited paper, using conservation of energy, globalexcs is obtained for any data in the defocusing case
A > 0. In the focusing casg < 0, one needs instead to restrict the size of ERenorm of the initial data
to be smaller than that of the ground state [12]. It was showbybFrolich and Lenzmann [13] that, in the
focusing case, any radially symmetric smooth compactiypstipd initial data with negative energy leads
to finite time blow-up. Sharp low regularity wellposednes$oty the energy space was recently proven by
Herr and Lenzmann [19], both in the radial¥ 0) and non-radial case > 1/4).

Without loss of generality we can normalize = 1, and rescale to bel or —1 depending on its sign. In
this paper we will only consider small solutions, and therefthe sign of\ will not be relevant, and will
be taken to be-1 for convenience. To better plif (1.1) into context in relatio the global well-posedness
and scattering theory for the Cauchy problem, let us consigefollowing generalized model

i@tu—\/l—Au:—(\x]_v*]u\Q)u , zeR" | 0<y<n. (1.3)

In [3, /4], Cho and Ozawa showed global existence of largetisolsi for0 < v < 2n/(n + 1) for n > 2,
and small data global existence and scatteringyfor 2 in dimensionn > 3. They also proved the non-
existence of asymptotically free solutions (i.e. solusi@onverging to a solution of the linear equation) for
the casé) < v < 1 whenn > 3, and for0 < v < n/2 whenn = 1 or 2. Our main result shows that indeed
solutions of [(1.B) withy = 1 in 3d scatter to a nonlinear profile. An additional result that wev/p, namely
Theorenf AL, closes the gap in the small data scatffog 1 < v < 2.

The large data global existence results above were subshgineproved by the same authofs [5], in the
radially symmetric case, to include< v < (2n — 1)/n. In [6] the authors obtained scattering for radially
symmetric small solutions whey2 < v < 2 andn > 3. Cho and Nakanishi[7] obtained several results in
higher dimensions: in dimension > 4 they proved global existence with radial symmetry for v < 2,
and small data scattering (also without symmetry)foe 2. We refer to[[7] for a survey of some of the
techniques employed in the above mentioned papers.

IAt least for a class of initial data in a suitable weighted @eb space.
2Notice that there seem to be no global solutions in the liteeain the intermediate rangg2 < v < 2.
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1.3. Main Result. We have seen that for certain valuesio& v < 2, large global solutions t¢ (1.3) can
be constructed combining conservation laws, and low regyblaellposedness or Strichartz estimates (and
Hardy's inequalities in order to estimate the nonlinedrityhen the question of scattering is considered,
even treating small data outside the energy space is quatiéenging. As mentioned above, in three di-
mensions, scattering is known+fis large enough+( > 3/2 in the radial casey > 2 in the general case).
Clearly, larger values of are easier to treat, since the time decay offth@orm of the nonlinearity i (1]3),
computed on a solution of the linear equationti8. Theoreni Il below shows scattering (in a modified
sense) for[(1]1), that i§ (1.3) with = 1. We refer to this as the “scattering-critical” case, beeathe
decay of the nonlinearity is (barely) non-integrable inginMoreover, our proof can be adapted to obtain
scattering in thd.>-subcritical case$ < v < 2, which were left open so far. See TheoremlA.1 for details.
This is our main result:

Theorem 1.1. Lefl N = 1000, and letu, : R? — C be given such that

ol g + 1) w0l 72 + 11 + 1€) *%o ]l oo < €0 (1.4)
Then there exists; such that for allsg < &y, the Cauchy problem
i0u — V1 — Du=—(|z| ™" * [u]*)u 1.5
’LL(t = O,l‘) = uO(x)
has a unique global solution(t, =), such that
sup (14 [¢]) >/ |[u(t)l| = < €0 (1.6)
teR

Moreover, the behavior af ast — oo can be described as follows. Let

1 o trle et ds
Bit,6) = (27T>3/0 /R GG

~ 2 —1/300
d -
[As, o) do (s~ %)==
whereyp is a smooth compactly supported function. Then, theresaisaisymptotic statg, , such that for
allt>0

(1.7)

11+ €)' [ B VTG (1, €) — £(O)]|| o0 S (1 +8) 7 (1.8)

[
for somed < p; < 1/1000. A similar statement holds far< 0.

Solutions of [1.b) will be constructed through a priori esttes in the space given by the nofm{2.2). We
refer to sectiof]2 for some explanation of the main ideashmeebthe proof of Theoreiin 1.1, and to section
[3 for a detailed description of our strategy.

It would be possible to express the asymptotic behavior aflatisn of (I.5) in physical coordinates
rather than in Fourier space. However, the asymptotic ftar@i?)-[1.8) clearly emerges from our proof,
which is performed in Fourier space, and can be seen from $mmestic considerations, see section 2.
Therefore we leavé (1.7)-(1.8) as a satisfactory desoriptf modified scattering.

Before moving on to describe the difficulties and the tool®lved in the proof of Theorein 1.1, let us
mention some known results concerning modified scattefiagnous examples of dispersive PDEs whose
solutions exhibit a behavior which is qualitatively di#et from the behavior of a linear solution are the
nonlinear Scfodinger [29[ 8] 166, 24], the Benjamin-Ongd [1] 18], and thedWwK9|, [17] equations. Besides
these one-dimensional completely integrable examplesylfiich large data results are also available, the
phenomenon of modified scattering for small solutions has lmdserved in several other equations. Exam-
ple are given by Hartree equations[L6} 24], Klein-Gordonatipns [10], and, more recently, gravity water
waves|[[21] (see also [20] for a simpler fractional Schédingedel, and[[R2] for a similar result on the water
waves system).

3For convenience, and to simplify the proof a bit, weMebe comfortably large; however, it is certainly possiblegduce the
value of N to a number betweeid and100.
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Notations. We define the Fourier transform by

Fol©) =50 = [ e nds = o) = o | oG

We fix ¢ : R — [0, 1] an even smooth function supported #8/5,8/5] and equal td in [-5/4,5/4], and
let

or(x) = p(|z]/2%) = o(je|/2*Y),  keZ,zeR’. (1.9)
For any intervall C R we define
ori= > o (1.10)
kelNZ

More generally, for anyn, k € Z, m < k, andz € R? we define

() (4) {mxr/z'f) —pllel/2), k= m,

. w(lz1/2%), if k=m. (1.12)

We let P, k € Z, denote the operator dR® defined by the Fourier multiplief — ¢, (£). We will
sometimes denotg, = Py f. For an integer. € Z we denoten; = max(0,n).

2. MAIN IDEAS
Let py = 1/1000, N = 1000 andA(V) := /1 — A. Define

f(ta) = (")t @), 2.1)
whereu(t) is a solution of[(16). We will solvé(1].5) in the space givertibe norm

sup | (1+8) ™ flu(®)ll g + A+ )7 ll2f @)z + (1 + 7Nl f ()] = + || (1 + !S\)lof(t)HLw] '
(2.2)

If fis defined as i (Z2]1), we can write Duhamel’s formula farl(In1Fourier space as follows:

e =) + /0 I(5.€)ds.

—~

I(s,€) :==ic // eIS[=MEFA(E=—n)+A(n+0)—A(0)] ‘77’—2]?(375 —7) A(s,n +0)f(s,0)dndo (2.3)
R3XxR3
¢ = 2(2m) 7"
Here we used (|z|~1)(¢) = 4n|¢| 2.

Norms and decay. When dealing with nonlinear equations which are scatteciitical in the sense ex-
plained in the introduction, one often has to resort to spadaich incorporate some strong decay infor-
mation. Even more so if modified scattering is expected. i ¢hse, one needs to extract very precise
asymptotic information, and be able to prove sabfeL’ bound on solutions.

Thanks to the decay estimale (3.3), one sees that solutieosemorm[(2]2) is bounded, decay pointwise
like a solution of the linear equation, i.e. at the rate o' 2. It is important to underline the key role played
by the F~! L>°-norm. Since the equatioh (1.5) Is*-critical, one mighinot be able to prove a bound on
weighted L2-norms of f which is uniform in time. Therefore, sharp time decay carm®bbtained as a
consequence of standard (weightéd)— LY linear estimates. The idea, already exploited in severaksvo
on other critical models, is to include a norm which guarestdecay, but is weaker thdr, and as such
can be controlled uniformly in time. Our choice is the lastm@ppearing in(2]2).
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Weighted Estimates. Weighted norms play an important role in the whole consiouactFirstly, they con-
trol remainders in the linear estimafe (3.3). Secondly,randt importantly, they are used to control remain-
ders in the asymptotic expansions which allow us to boundtheL>-norm (see the next paragraph below
for more on this). In the literature, a standard way of eshbig weighted estimates is given by the use of
vectorfields[[25 26]. In the case of the boson star equati@use of such a tool is limited by the lack of
scaling and Lorentz invariance. The quantities we shaltrobarex f andz? f in L?. These correspond to
I'u andI?w in L?, for I' = & — itA’. Despite the fact thdf does not commute properly with the equation,
we will be able to bound these weighted norms as follows. Vyidyey ¢ andV2 to f as given in[[ZB). The
worst term obtained by applying to I(s, £) is of the form

[ e A A e a2 (s, — ) 5.1+ 0) (5,0) dido
X

wherem(&,n) = Ve(—A() + A(§ —n)). Now notice thatn is a smooth function withn(£,0) = 0. This

is essentially a null condition satisfied by the equﬂjoﬁihanks to this, we can think that the multiplier
sm(&,m)|n| "2 behaves, as far as estimates are concerned, like the dx@pogomb potentialn| 2, so that
the loss of the factos can be recoverBd We can then contrak fandz?f in L?, allowing a small growth
int.

Asymptotic analysis. Let us change variables in_(2.3) and write

~ =~

I(5,6) = e // OHAEHN+AE+) A1+ |11 =2 Fs € 4 1) F(s, & + 0) [ (5, € + 1 + o) ddor
(2.4)

Our goal is to identify the leading order term of the abovereggpion in terms of powers af neglecting
all contributions that decay faster than'. Let us assume tha¢| ~ 1 and we are integrating on a region
In| < s!, with I < 0 small enough, but not so small that the integraligf? over this region ig)(s~'7).
We can then Taylor expand the oscillating phase, and appaigi/ (s, &) by

// ¢ 2 F(s, € + ) F(s.€ + 0)F (5,6 + 1+ o) dndo

wherez = z2(¢,0) := o/(0) — £/(£). Using the bounds ofif, i.e. on weighted norms, we can further
approximate the expression above by

/ / & |2 (5, ) (5,6 + 0) (s, € + 0) ddo
— e (s /f!n\ )(52) F(s, € + )" do = L (s, £)C(5,6),

for some functionC'(s, ) which is real-valued, and uniformly bounded under suitassumptions 0|f.
Thanks to the above we have obtained

Oif(t,€) =it f(t,6)C(t,€) + Ot ™),

from which we can deduce a uniform bound s, . \f(t, ¢)|. The estimates leading to this latter bound
will also show the modified scattering propeifty (1.8).

In order to make the above intuition rigorous, we need totifiea suitable scale im, says', such that
the above asymptotics are true fot < s'°, and, at the same time, the integfal{2.4) on the re@jp®, s'

“This type of generalized null condition was used’in [14] &) [ as an important aspect of the space-time resonancgsanal

SAnother alternative possibility is to proceed similarly [Z8] and [15], by exploiting an algebraic identity for the gse
o(&,m,0) = —A&) + A —n) + A(n + o) — A(o), of the formV:¢ = L(V,¢, Vo0, ¢), whereL denotes some linear
combination with coefficients given by smooth functiong&fn, o). One could use such an identity to integrate by parts in time
and frequency and recover the losssof
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is O(s~17). Lemmd5.B contains the derivation of the asymptotic ctioederm in the critical region. The
remaining contributions are estimated in secfion 5.2,gisitegration by parts in.

3. STRATEGY OF THE PROOF

Local-in-time solutions to[(1]5) can be constructed by addad fixed point argument. Given a local
solutionu on a time interval0, 7'], we assume that the following norm is a priori small:

[ullx,, == sup [(1 + )Pl v+ (L8P Yl f ()| gz + (1487 2 £ ()] 2
te[0,T) (3.1)
e o], <a
To obtain the existence of a global solution which is bounidettie spaceX it will suffice to show
lull . < €0+ Cet, (3:2)

whereg is the size of the initial datum, sde (1.4).
In order to deduce sharp pointwise decay from the above & poands we will use the following:

Proposition 3.1(Refined Linear Decay Estimateffor anyt € R one has

1 o 1
WHQ FIED Tl + e 1@ Il + 1 lgso| - 33)

Propositio 3.1 is proven in sectibn B.1. As a consequend®.8j and the a priori assumptiods (3.1) we
have fort € [0, T

™2 ) e S

[u(®) |z S er(l+1)"%2. (3.4)
The proof of [3:2) will be done in two main steps given by thikofwing Propositions.

Proposition 3.2 (Weighted Energy Estimatespssume thatf ¢ C([0,7] : H") satisfies the a priori
assumptiong3.), and letp, = 1/1000. Then,

sup (1) f(t)]| v < e0 + Ce,

te[0,7
and
sup (14)7P([(z) f(t)]| 2 < €0 + Cef,
te[0,7
sup (1+8) 27| (@) f (1) o < 0 + Ce}.
te[0,7

The proof of the above Proposition is contained in sedtlon 4.

Proposition 3.3(Estimate of thd/go—norm) Assume thaf € C([0,T] : H") satisfies the a priori bounds
(3.J). Then

sup [[(1+ €)' F(t, )| oo < 20+ C<F.
te[0,T] €

As a corollary of the proof of Propositidn 3.3 we will obtaimet main result of our paper concerning
scattering of small solution of (1.5):

Proposition 3.4(Modified Scattering) Assume that, € C ([0, 7] : HY) is a solution ofL.B)with uo smalll
enough as if{T.4). Define

B(t,¢) = (2m) /Ot /RS - _ds_

(s, 0)* dor p(gs™H %) —=., (35)

& o
© (o)



MODIFIED SCATTERING FOR THE BOSON STAR EQUATION 7

wherey is a smooth compactly supported function as the one desthieéore(I.9). Then, there exists
f+ € L, andp; > 0, such that

IL+1ED™ (PO F(1,6) = £1() o S R+ (36)

We refer to sectiofi]5 for the proof of Propositidns] 3.3 B¥particular, Proposition 5.1 implies both
Propositiong 313 arld 3.4, through the estimiatd (5.5).

4. PROOF OFPROPOSITIONZ.Z
Let us define
N (b1, ho,hg) = (|2 ™" % hiho)hs . (4.1)

A priori energy estimates for the Sobolev norms of solutimn@.8) are straightforward. In particular, using
the Hardy-Littlewood-Sobolev inequality, it is not hardsieow that, given a solution : [0, 7] x R3, for all
t € [0,T] one has

t
[ g < lluoll g~ +C/0 [l g2 ()l o lluls) | g ds (4.2)

for all integersN > 0, and some constadt > 0. Interpolating the a priori decay assumption[in{3.1) and
the bounds on th&2°-norm (which controls the.2-norm), one hagu(s)|| ;s < e1(1+s)~'. Using the a
priori assumptlonslf(zll) it follows frond (4.2) that

u(®)]| gv < 0+ CeF(1+ ). (4.3)

To obtain Proposition 312, we then aim to prove that undeathgori assumption$ (3.1) one has
(2 f (@)l g2 < €0+ CeF(L+ 1), (4.4)
1@)? F ()l g2 < 0+ Ced(1 + 1) . (4.5)

4.1. Proof of (@.4). Since we already have control on thé-norm of f we just need to estimatef in H?.
Recall the integral equation satisfied py

. t
7€) = w(e) + /0 I(s,€) ds
= (4.6)

I(s,€) = ic; / / € =2 (s, ¢ — ) F(s,m + 0) [ (s, 0) dndo ,
R3xR3

P(&,m,0) == —AE) + A —n) + Aln+ o) = Alo).
For (4.4) it suffices to prove that under the a priori assuomst{3.1) we have

[@aer(s)| , s el s, (4.7)
Applying 0t to I we have
aﬁl(s 6) =iy ([1(376) + [2(376)) ’ (48)
Ii(s,€) = / e59&m) 1 20 f(5,€ — ) F(s,n + 0) f(s,0)dndo (4.9)
o(s.€) = is [ [ 0 el 25,6 ) Fsn + ) F(s.0)dndo, (410
where we have denoted
/ § / §—n
= —A A€ — =—-A(& N(E—n)——-. 411
m(&,n) = O~ MO+ AE —m) = N + M€~ (4.11)
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We will crucially use the fact that:(¢, ) ~ n, for small|n|. In particular, this will allow us to cancel part
of the singularity given by the transform of the Coulomb pti || ~2, so to compensate for the growing
factor s present inls.

4.1.1. Estimate of(4.9). This term can be directly estimated using the Hardy-Litded-Sobolev inequal-
ity and the a priori assumptions (8.1):

Y ()]l L2 S IV (uls), uls), e e f ()l o S 12 f ()] g llu() | prallus)ll o S P14+ )77

4.1.2. Estimate of(4.10) With the notation[(1.111), we perform dyadic decompositiothie variableg, n
and¢ — n, and write

(€)1 h(s,8) = Y (OIFMF(s,¢)

k,k1,ko€Z
B9 (5,) i s [ [ @ a6 n) (5,6 — ) Prlul?(.m) . (4.12)
(€)= (€ = M)+ NE == )l O tra-2nrar(n)-

In what follows we shall always work under the assumptiort tha integral above is not zero, and, in
particular the sums are taken over those inde*eg;, ko) satisfying eithefk — max{k;, k2}| < 10 or
|k — ko| < 10.

Using|m1(&,1)| < 27%2, we see that

11552 ()12 S 5 2572 i () 12272 | Pag ()P 2 (4.13)

From the a priori assumptiorls (B.1) we know that
ey ()]l S 23172271004 (4.14)
| Prafu(s) Pl 2 S min {232/2, 2752 2. (4.15)

Using [2.1%) and(4.15) if{4.1.3), we see that the sum ovesetidexes: such thak* < (1 + s)~2 can be
easily dealt with:

koK1 k -
S M) St 457

K,k ko€Z
2k <(145) 72

From the definition in[{4.12) one can verify thay, satisfies the hypothesis of LemmaB.1 withs 2752,
Applying (B.13) we obtain

@B e S5 Y PGSO PP . (416)
k,k ko€Z k,k ko€Z
2k >(145)~2 2k>(145)72
Using [3.4) we see that
|Peafu(s)Pl e S min {2%2, (14 2%2) 7' (1 + )70 |3 (4.17)

Therefore, in view of[(Z.14) an@{4117), we can bound the Su@iI®) for2"> < (1 + )" by

Z 2k2+23k21/22—10(k21)+ 22]@25? S E{{)(l + S)-Z-HUO .

2F>(145)72
2k2 <(145)7!



MODIFIED SCATTERING FOR THE BOSON STAR EQUATION
To estimate the sum ii{4116) faF> > (1 + s) ! we use agairi{4.14) and (4117) to obtain
Y ohegdhi/2gm100k) s ghe (1 4 92y (1 4 g) T < (14 ) HI,
2F>(145)72
2k2>(1+s) 7!

The last two inequalities imply the desired bouhd|(4.7) & terml,, and give us[(414).

4.2. Proof of (4.3). In order to estimatéx>2f in H? we compute the contributions froﬁgl. Applying 0
to the terms/; and I, as they appear in(4.8)-(4]11), and with a slight abuse cftiwot, we can write

O (I1(5,8) + Ix(s,8)) = Ji(s,€) + 2J2(s,&) + J3(s,€) + Ju(s,€) (4.18)
(:8): // #9En ) 1 202 (s, & — ) f(s,1 + 0) (s, 0)dndo (4.19)
Jo(s,8) :=is // ei50(6m0) m(&, 77)|77|_28§f(8,£ -n) A(s, n+ 0')7\(8, o)dndo , (4.20)
Js(s,€) = is / / €N dem (€, n)|nl 2 F(s,€ = n) F(s.m + 0) f(s,0) dndo (4.21)
—s [[[ e i il 2 (s, = ) F s + o) s, )ndr (4.22)
wherem is defined in[(4.111). To obtaif (4.5) it is then enough to shieat for: = 1,...,4, one has
1€)2Ti(s)|| 12 S €11 4 8) 7120 (4.23)

4.2.1. Estimate of(@.19) This is the easiest term and can be directly estimated asvsll
1662 T1(5)ll 2 S N (u(s), uls), € 2 £(5)) | e

SN2 £ ()| ggollu(s) | o lluls) |l s S €31+ )71 20
4.2.2. Estimate of(@20) Similarly to what has been done above ferin (#12), we can write

© (9 =is 3 © [[ s PE ¢ - PP dn, @2

k,k1,k2€Z
where

ma(&,n) = (§)mi(§,m) = <§>(—A’(§) é‘ + A€ —n) é ‘>\n! Ok (E)Plhy—2,ka+2/(n) - (4.25)

It is not hard to verify thain, satisfies the hypothesis of LemiaB.1 with< 22, We can then apply
(B.13) and obtain

K2R S Y. 2 Pyaf(s)ll 1227 )| Pro lu(s) Pl oo (4.26)
2k >(145) 72

ts 3 PP f(s)ll e 270 Py u(s) P o - (4.27)
2k<(145) 72

Using Bernstein’s inequality and interpolating weightedms we can estimate

1/2
[Pz f(8)ll 2 S 2822 f(s)]| e S 2k1/2||$f(8)\|i/22||332f( Mz ;
< 2k1/2(1 + 3)37’0/251
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This and the a priori bounds (3.1) give us
| Poyaf ()l 2 S min { (14 22) 7 (14 570, 280/2(1 4 5)%0/2 ey (4.28)

~

~

Bfu(s) e S min {292, (14 22%2) 7 (1 4 )7 )2, (4.29)
Using [2.28) and{4.29), we can estimate the suriin{4.26)%oK (1 + s) " as follows:

S min{(1420) 14 L) PR S 1)L (430)

2k>(145) 7?2
2k2<(14s)

Using again[(4.28) and (4.P9) we see that
S 2% min { (14227 (1 4 s)7, 25/2(1 4 8)3?’0/2}2—’@(1 +5) 3 < B(1 4 5) 20

2k>(145)72
k2> (145) 7!

Eventually, we estimate similarly the sum [in(4.27):
Z 23k/2 1nin { (1 + 2%1) (1 + s)P°, 21‘“/2(1 + 3)3p°/2} min{2~ k2 2%2}6‘1’ < &?1(1 +s)” 2
2k < (145)
The last three inequalities give us the desired bolndl(4c23he term./;.

4.2.3. Estimate of(4.21) We write
© (O =is 3 © [[ e e (o6 - PR dr. @3

k khszZ
where

ma(€m) = (06 = N ()5 + N = n e Il O tps-asasa ().

Proceeding analogously to the estimates in the above tvegpgshs, we can easily bound 8§(1 + s)
the summation in{4.31) ovér € Z such tha2* < (1 + s)~2. For the remaining contribution we apply
once again LemniaB.1 to the symbnk, with A < 27*2, and use the a priori bounds to deduce

166)% T3(s) | .2
Ss ) 2P F9) 2 Pluls) Pl e el (14 s)7
2k>(14s) 2
<s Y 2begdh/2gm100) gmke i f9%k (1 4 92%R2) TN (1 4 5) e} 4 ed(1 4 5) 7
2k>(145) 72
Sed+s) 7.
The last inequality has been deduced once again by sepyaaatizing the two case¥? < (1 + s)
ok2 > (14 5)7 1,

-2

~!and

4.2.4. Estimate of(4.22) We can write
O = =5 3 (@) [[ Nyl )T (s, mPTal (s, .

k kl,k2ez
where

£
i

+ A€ - )5 ) 01~ 201(€) s —2,53+21 (0) -

ma(&,m) = (= N (€)= -
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For k with 28 < (1 + s)2 a bound ofs3(1 + s)~* can be obtained as before. To estimate the remaining
contribution we notice that we can apply LemmalB.btpwith A < 1, and obtain

14€)? Ta(s)|l .2

—1
S5t D 2P F)ll e P fu() Pl poe +£3(1 4 5)
26> (145) 72
Sty 2kt 2gm 100 pmin {93 (14 222) (1 4 )P L} 4 (14 5) 7
2k>(145) "2
Sef(l+s)7Hr.

This concludes the proof df (4.23), which together with)f4jives us Proposition 3.2.

5. PROOF OFPROPOSITIONB.3AND [3.4
The aim of this section is to control uniformly in time the kegrm

I+ 1€D"F () oo
and show, as a byproduct of the proof, modified scatteringadsdin [3.6) in Proposition 3.4.

Given a solution, of (I8), satisfying the a priori bounds(B.1), we define foy ac [0, 7] and¢ € R3

oo | [ |- -

|a<s,a>|2dws<£>ﬁ, co = (2m) 7%, (5.1)

& o
© (o)
where

0s(€) = (€730 (5.2)

for a smooth compactly supported functigras the one described before {1.9). We also define the modified
profile

g(&,t) == ePEOf(2.¢). (5.3)

Notice thatB is a well-defined and real-valued function. In particufaandg have the saméz°-norm.
We are going to prove the following:

Proposition 5.1. Assume thaf € C([0,T] : H") satisfies the a priori bound@.1), that is

sup | (1487 fJu(®)]| g + 1L+ )7z f (@) gr + (1+ )72 F ()]
te[0,7) (5_4)

A+ IED T ] <21

Then, for some; > 0,

sup  (L+ )P [|(1+ (€)™ (g(t2. &) — 9(t1,€)) || poo S €3 (5.5)
t1<t2€[0,T] ¢
In particular
sup [|(1+ €)' F(t, )| oo < 0+ e} (5.6)
te[0,T7] §

It is clear that the above statement implies PropositioBsaBd[3.#4: [(5.6) gives Propositibn B.3, while
(5.8) implies [3.6) once we define

f+(€) = lim g(2,€),

where the limit is taken irfi1 + |¢[) ™" Lg.
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For (55) it suffices to prove that if; < ¢, € 2™ — 2,2 N[0, T], for somem € {1,2...}, then
H(l + |£|)10(g(t27 tl) HLoo ,S 532 prm (57)

To prove this we start by looking at the nonlinear tefim (2.3), and after a change of variables we write it
as

~

I(s,€) :2'01//]1@ y ¢ |12 F (s € 4+ + 0) (5,6 + n)F(5,€ + o) dndo

(5.8)
P(€m,0) = —-AE + AN+ + Ao +& —AE+n+o).
Letly be the smallest integer larger tha29m /40,
lo = [— %m] +1, (5.9)

using the notatiori (1.11), we write
1(875) 210(57£)+i61 Z Il1(s7£)7

LW EZ ,11>1g

Io(s,€) = icy / / ey 20 ) s, € + ) f (5.6 4+ 0)f(5.§ 4+ o) dndor, (5.10)
R3 xR

I, (5,€) - ei#9En) |y =2000) (1) Fls & 4 ) (5,6 + 0) [ (s, & + 0+ 0) dndor .
R3 xR3

The termli is the one responsible for the correction to the scatteritgreas/ — I, is a remainder term,
under the a priori assumptioris (5.4).
The profilef verifies

Oif(t,€) =To(s,) + Y I, (5,€) (5.11)
11 >1g
and, according to the definition gfabove, we have

8tg(t7§) = 6iB(t§ |:IO t 5 Z [l1 s 5 — 0B (t 5) A(t7§):| . (512)

11>

Therefore, to prove (5l7) it suffices to show that it Z, m € {1,2,...}, |¢| € [2F, 28], andt; <ty €
[2™ — 1,2m*1] " [0, T] the following two bounds are true:

~

/t2 £iB(5.6) [[o(s,f) — i0,B(s,€) (375)] ds

t1

/t (5:6) ZII ds

l1>lp

From the definition ofB(s, ¢) in (5.1), we see thal(5.13) can be reduced to the followingtaunds
‘10(375)(1 — gos(f))‘ < 551”2—(1+p1)m2—10k+ 7

S efarimoTiok (5.13)

< gdgpimg—10ky (5.14)

-1 7 (5.15)
‘Io(s,f)%(f) —z‘co/ % . % 7l )\2d0% < edg(Itp1)mo—10k;
R3 g
For (5.13%) instead, it suffices to show
> 1, (5,€) ds| < ef2m(FPImo 10k (5.16)

11>l
The estimate§(5.15) are proven in the next section, whilE§j3s proven in section 5.2.
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5.1. Proof of (5.18) In view of the definition ofp, in (5.2) , the first estimate in(5.1L5) is a consequence of
the following Lemma:

Lemma 5.2 (High frequency output) Assume thaf3.1) holds. Then, for alin € {0,1,...}, k € Z N
[m/300,00), s € [2™ — 1,2™] and [¢] € [2F, 2FF1]

[Io(s,€)| < ef2—3m/22710k, (5.17)
Proof. We decompose

10(375) = ’iCl Z I(l]l (375)

11 <lp+10
.= [[[| el o, ()l s €+ .6+ 0)F(5.6 + 0+ ) dndor

Using the a priori bound$ (53.4) on th[@o-norm and on Sobolev norms, we can estimate

115 (5, )1 S 2727 % f 130 | (1 + [N Fll o S 2127mP02710kE], (5.18)

On the other hand, using only the bounds on high Sobolev nonagan see that
ot (5, €) S 271/227 | [y S 27N /203mopm e (5.19)
Using [5.I8) in the cask < —2m, and [5.1I8) fori; > —2m, together withk > m /300 and N = 1000,
we obtain the desired conclusion. O

The next Lemma shows how to derive the correction term to¢htering, and proves the validity of the
second inequality if (5.15).
Lemma 5.3(Critical frequencies) Assume tha@3.1) holds. Then, for alln € {0,1,...}, s € [2" —1,2™],
andk € Z N (—oo,m/300], |¢] € [2*,2F+1], we have
—1 N
§ _i‘ 17(s,0)[ do J;( §) < gdg=21m/20 (5.20)

‘IO(S’O ~ ico /Rg © (o) 1
Proof. Let us recall the definition ofy:
—icy / [ el ) F(s, 4 T €+ 0)F(s.6 -+ ) o
qb(é’ n,0) = —=AE) + AN +&) + Ao+ —AE+n+o0),
wherey”) is defined in[LI1), angfo < 2-29m/40,

(5.21)

Phase approximationin the support of the integral il (5.21) we can approximaeepthasep by a simpler
expression. Defining

o i_ ¢4 o
we compute
P42 P -2p-(E+0) & —n-(E40) 2
W) =t erm T Er s ernte) - © T Eray TOW)
and conclude
[6(&,m,0) = do(&,m,0)] S Il (5.23)

Thus, if we let

Lo (s,€) = icy / / is60(&1.0) | 2 0{00) (1) F(s, & + ) F(5,€ + 0) F(5,€ + 1 + 0) dindos
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it follows that fors € [2™ — 1,2™]
[Lo(s,€) — Lo (s, €)

//wm — do(&, 7, 0) Il 26 )1 Fls, & + )| F (5, € + )] [F (s, + 1 + )| dndo

< 2m 23| £ ()22 F(5)] oo S 327 HM/0
having usedl, < —21m/10.

Profiles approximation.We now want to further approximatg ; by the expression

loa(s§) = icr [ [ Ry 20 0)Fls, ) F(s.¢ + 0)F (o6 + o) dndo. (529
In order to do this letp and;, be given be as i (1l.9), and define
fer(@) =Y (@) fx)  for J>1
f>a(@) = f(z) = f<y(z).

The functionf< ; is the restriction off to a ball centered at the origin and radiu2” in real spacef- ; is
the portion off which lies at a distance greater thzthfrom the origin. Using the a priori weighted bounds
on f, we see that foy| < 2 one has

1F(o+nm) = FI S 100 +1) = Foa (o)l + 1 f<s(p + 1) = F<s(p)|
SIFoall e + 10F<sll o2 < 277222 £l o + 277222 £ 22"
< g122mpo (277/2 4 97/29l0)
ChoosingJ = —Iy we obtain
[Flp+m) — fp)| S eg22mpoglo/2

From this, for|n| < 2/, we see that

~ ~

/Rg [F(s.6 ) f (5.6 + o) F(s.6 40+ 0) = Fl5.) F(s.€ +0) f(5.€ +0)] do < ef2or22mm.
As a consequence, for alle [2 — 1,2™], we obtain
To,1(5,€) — To2(s, €)| < 2%0/2cda2mpo < cdo=21m/10
sincepy < 1,/1000.

Final approximation. To conclude the proof we need to show

-1
ats.0) i [ | &~ 2] s otanl @) <

wherel - is given by [5.21) and(5.22). After a change of variableqcan be reduced to

32—21m/20 (525)

isn-z Y 2 C -1\ 7 2 —21m
o [ 2o I Fs o) dndo ~ < [ Fls, o) do| S22 (5.26)
where we have defined
& o
Zi= = — . (5.27)
& (o)

Observe that sinc& (|n|~2)(x) = 272|x|~!, the following general formula holds far € R3:

\ [ el 2oty dn = oxlel | S ol 22 (5.28)
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Applying this withz = sz, s € 2" — 1,2™1], andl = [y = —29m /40, gives us

1 / el 2ol () dn — 22l 7| S [s2| P27 S 27T 2,

sincecy = (2r) " ande; = 2(27) ~°. Using this we can see that the left-hand sidd of {5.26) isded by

/|z| sa|da

wherez is defined in[(5.27). Since| > min{1, |0, |¢ — o|(c) >}, and|(1 + [¢])'°f| is a priori bounded

in L°°, we see that
/|z| (s,0 | do

9—bm/4 , (5.29)

2

Ser.
Plugging this bound intd (5.29) we obtaln (5.26) and coreltiet proof of the Lemma. O
5.2. Proof of (5.18) We aim to prove:

Y I (s,8) ds| S efom MmOk (5.30)

L1 EZ1>1o

for I;, defined in[(5ID)s € [2™ — 1,27 with m € {0,1,...}, |¢| =~ 2F with k& € Z, andl, given by
(5.9). We decompose in dyadic pieces all the profiles anawrit

k1,ko .k
Il1 = Z Illl 2 3(875)

k1,ko,k3€Z
Ikt (s 6) = //3 D 20 (1) Fi (3, 4+ ) (5, € + 1+ 0) i (5, € + ) e
R3xR (5.31)
We then aim to show
Z ‘[il7k27k3 (S, 5) ds S €§2—(1+p1)m2—10k+ ) (532)

l1>lo,k1,k2,ks€Z
Foralls € 2™ — 1,2™*1], we can estimate
k1 ko, K - = — —
’Illl ? 3(376)‘ 5 2 ll/z”fklHLQkazuLQkas”LQ . (533)
Using the a priori bound$ (3.4) we know that
1 fxll 2 < min {238/29710ks oNkygmpo} (5.34)

Sincel; > lp > —3m/4, and N = 1000, the last two estimates above suffice to show that the sum in
(5.32) over those indexd#, k2, k3) with max{ky, ko, ks} > m/300 or min{ky, ko, k3} < —m, satisfies

the desired bound. Sinde < max{ki,ko}, the remaining indexes in the sum avém*). The bound
(5:32) can then be reduced to showing thatfar 2™ — 1,2™+] with m € {0,1,... }, and|¢| ~ 2F with

k € Z N (—o0,m/300 + 10], one has

IR (s, )] S ez (tr2mmo 1ok (5.35)
for fixed triples(k, k2, k3) with
—m < kl,kg,kg < m/300
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Let us further decompose

[lkl1,k27k3 (37 6) _ Ik1,k2,ks( 76)

l1,l2
12 €Z

I (s, € // 99 12010 (1), () o (5, € + 1) Fra (5, € + 1 + ) oy (5, € + @) ddor .
(5.36)

The above terms are zeralif > m /300 + 10. Moreover, we can estimate

k ko, k: — — x _
‘ 1, 2, 3( )‘ <9 2112 10 max(k1,k2,k3) +” HLOO // (Pll ‘Pl2( )dnda < 532l123l22 10k+

l1,l2
This shows that

k1,k2,k3 39— (142p1)mo—10k
> ‘Ill A CRY ds‘ S e (im0
I : 3l2<—101m,/100—1

We are then left again with a summation ovgwith only O(m) terms. Therefore, we see thai(3.30), and
hence[(5.16), will be a consequence of the following:

Proposition 5.4. Let Iﬁf;fQ’kS be defined as if5.38) and assumg5.4) holds. Then, for alls € [2™ —
1,27 withm € {0,1,... }, ¢ € [2F, 25 with k € Z N (—o00,m/300 + 10], one has
IR (s, )| S e 10mI00, (5.37)
whenever
—m < ki, ko, k3 < m/300 , 11> —29m/40 and Iy + 3y > —101m/100. (538)

The above Proposition is proven in a few steps, through LeBB&.6 and 517 below. We will always
be under the assumption thai {5.4) holds, and all the indexefy (5.38).

Lemma 5.5. The bound.37)holds if
max{kl, kz} < ll . (539)

Proof. We write

I (5,) = [ [ @40 my0,0) 5 (516 4 T2 1+ )i (5.6 4+ 0) o
where
mi(n.0) == 0l 20 (D)1, (0)0m 211491 (€ + 1) Pks—2.5p 12 (€ + 71+ 0) . (5.40)

Sincem; verifies the assumption of LemiaB.1 with= 221, we can estimate

E1kak ol -~
153,27 (5, )] S 27 fry ()11 22 o () 2 s ()] oo

5 2_2112k1€12k2€12_3m/261 5 6?2—3771/2’

having used the a priori bounds on th& norm offand the hypothesik;, ko < 17 . O

Lemma 5.6. Under the same assumptions of Proposifiod 5.4, the bd&E#)holds if
max{kl, kg} >N and ’kl — kg’ > 10. (541)
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Proof. In this case we want to integrate by partsjiin the expressior(5.36) fai"** (s, £), using the
identity

, 1 ,
eise(Em.0) — ;mo(fﬂlﬂ) . Vneszb(&n,O) 7

Vo€ m,0)
o 0) = e T

In particular, up to irrelevant constants, and with a slgjiise of notation, we can write
k1, ka2, k:
L3 (5.€) = Ii(s,€) + Ia(s,€)

Ii(s,6) = / / eis‘b(f’"’a)%mg(n, o)V, (El (5,64 n)fTQ(s,g +n+ a)) Fra(s, &+ 0)dndo,  (5.43)

(5.42)

. 1 — —_— —
12(87 é) = // eZSd)(&n’o)gvan(n’ J)flﬂ (875 + 77)sz (876 +n+ U)fk:; (876 + U) dndo* ) (544)
where (omitting the variabl€) we have denoted
!
sol(f)(n)

ma(n, o) = mo(n, o) P15 ()Pl —2,k1 42 (§ + 1) Plky—2,kp 121 (E + 11+ ). (5.45)

One can then verify thah,, satisfies the hypothesis of LemmaB.1 with= 2-2112— max{ki.k2} g0 that we
can apply[(B.1IP) to estimate the term|in (3.43) as follows:

—me—2l1 09— k1,k e ra ra ra
T1(s,€)| S 2 me 2otk 19 f (s)l] ol Fro ()] 2 + kal(S)HmHafkg(S)HLz] [ty (81| 00
5 2—m2—2l12mp02—3m/26§> 5 6?2_1017”/100,

having used-2[; < 29m /20, andp, < 1/1000
For I, in (5.44) we perform an additional integration by parts amiler(again up to irrelevant constants)

Iy(s,€) = Ji(s §)+J2(s £)
& = [[ 419 Sma, 009, (T (5.6 + )Fia(ss6 4 1+ 0)) iy (s.6 + o) dndor . (5.46)

To(s.8) = [ [ €460 S0 im0 5.6 4 T, 40+ )i (6 4 o) dndo . (5.47)
where
m3(777 U) = mO(n7 U)van (777 U) : (548)

From the definition ofng andms in (5.42) and[(5.45), we see that; satisfies the hypothesis (Bl11) in
LemmdB.1 withA = 231 2-2max{ki.k2} \We then obtain

(s, 6)] S 272ma a2 maxtiuheh 1 f ()] el fra ()]l 2 + i ()11 2 10a ()] 2 | ks ()] o
< 92mg—3h 9= max{ky ka}/29mpo9—3m/2 3
From the hypothesi$ (5.B8) we see thal; < 9m/4, andl; > —2m/5. This latter implies
—max{ky, ka}/2 < —l3/2+ 10 <m/5+ 10,
and therefore
‘Jl(s,f)‘ < om/49— max{kl,kz}/z2mp02—3m/2gzlz < 2—101m/100€§>7

as desired.
To estimate/; in (5.47) we only use the pointwise bound

IV ,yma(n, o)| < 27 4g=2max{kika} (5.49)
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and the a priori bound§(5.4) to deduce

| J2(5,6)] S 272m2 a2 matiuh b B ()] oo 20| iy () poll s () 22702
S 2—2m2—l1 92— max{kl,kg}/2g? S 2—101m/100€§7

having used once againl; < 3m/4, and— max{ki,k2}/2 < m/5+ 10. O

Lemma 5.7. The bound’.37)holds if
|k — ko| <10 and max{ky, ka} > 1y . (5.50)

Proof. The frequency configuratioky ~ k- is the most delicate. Recdll (5]42) and the notations

Vyo(€,n,0)

= 1S BT 5.51
o) = ot )P 551
ma(n, o) == mo(n, J)sol(fO)(n)lnl_z% ()Pl —2,k1+2 (§ + M) Pry—2,kp12) (€ + 1+ 0). (5.52)
m3(777 U) = m0(777 O-)Vnm2(777 J) . (553)

Integrating by parts twice in the expression Iﬁjl’f?’kf" in (5.38), or once more i (5.43)-(5144), we can
write

IEGE R (5,6) = Ko (s,€) + Ka(s,€) + Ka(s.,€)

Ka(s.6) = [[[ @609 Zar€on. )V (Fu(os€ 4 mFia(ou€ ot ) (5.6 + 0) o, (5.54)

Ko(s.€) = [ [ €60 Zan(on )V, (T, mFia(o.€ -t ) .6+ 0) o, (5.55)

K(s,€) = / / N 4y (6,7,0) T, (5,6 + 1) a5, + 1+ 0) i (5, + ) dindr (5.56)
where

Q1(§7777U) = mO(Sana U)mQ(Sana U) ’ (557)

q2(§7 7, U) = van (57 7, U) + mO(S? 7, U)Van (57 7, U) ) (558)

q3(§77]70) = Vnm3(§7777‘7) . (559)

We now proceed to estimate the three integrals above. [Eirstsl notice that fot¢ + n| ~ 2 and
|€ + 1+ o] = 2F2 with k; ~ ko, || = 2 and|o| =~ 22, one has

[0505mo(n, 0)] 5 27 2P mextinkalgmielhg =z, (5.60)
for a,b € Z3 with |a|, |b] < 10. As a consequence
|080bma(n, o)| < 27 2o legdmaxthkadg=lalbig=lbll> (5.61)
for a,b € Z3 with |al,|b| < 10. It then follows that
||]_——1q1 ||L1 5 2—2l1 2—2l2 26 max{ki,k2} ] (562)
We then apply LemmaBl.1 and obtain

| K (s,)] < 272 egbmaxtbuial (2 £ (s)|] ol ()2 Fia (9)] 2 0tk (9) ] oo
5 2—2m2—2l12—21224mp022k12—3m/26i{> 5 2—101m/100€£{>’

having used-2[; < 29m,/20, —2l, < 4m/5, ki < m/300 andp, < 1,/1000.
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We can estimate similarly the terds, in (5.58). From the definition of, in (5.57)-[5.58), and the
estimates[(5.60) anf (5161) fory andm., we see that

”f_quHLl S 2—3l1 2—2[2 26 max{ki,k2} ) (563)
Using [5.68) and LemniaB.1 we can obtain the bound

| Ko (s, €)] < 272m23ham2hobmaxtbuil) () £ ()] o () o (9)] 2|ty ()] oo
5 2—2m2—3l1 2—2l224mp022k1 2—3m/252f )

Now observe that the second constrain{in (b.38) giveg§ — 3m /2 < —m/20. Moreover, the second and
third inequalities in[{5.38) imply-1; — 2, < m, as it can be seen, for instance, by considering the two
cased, > —m/16 andly < —m/16. From the chain of inequalities above we can then concluale th

|[Ka(s,€)| < 2710110
Eventually we come td(s. In this case we only use the pointwise boundder
|vnq3(770.)| < 2—4l1 2—2l2 26 max{ki,k2} ,
and estimate

|Ka(s,€)] S 2-2ma-thg-2hagomaxtiokad | £ ()] || ()] o | g (5) e 21 2%
5 2—2m2—l1 2l2 26 max{ki ,kQ}EE{

5 2—101m/100€§> ,

having used once again the lower boundpm (5.38), ands, k1, k2 < m/300 + 10. O

APPENDIXA. SUBCRITICAL SEMI-RELATIVISTIC HARTREE EQUATIONS

As already discussed in the introduction, some generatiradels related to the boson star equation| (1.1)
have also been studied recently, and, in particular, tresadasemi-relativistic Hartree equations

i@tu—Au:—<|x|_7*|u|2>u , A=v1-A |, zeR" | 0<y<n. (A.1)

We are interested here in constructing small scatteringtisals whermy > 1. Fory > 2, andy > 3/2
in the radial case, such solutions have been obtaineéd im@]&]. Our proof of the weighted bounds in
Propositio 3.2, done for the case= 1, can be adapted to prove the following:

Theorem A.1. Letug : R? — C be given such that
uoll 10 + () *uoll s < €0

There existg, such that for alleg < &g, the Cauchy problem associated @.1I) with 1 < v < 3, with
initial datumu(t = 0, 2) = up(x), has a unique global solution satisfying

sup | [fu(t) 0 + |2 u(t) | | < 0. (A2)
Furthermore, there exigi; > 0, and f; € L?((x)*dz), such that

HeitAu(t7 x) - f+|’L2((x>4dx) 5 50(1 + t)_pl ’ (A3)
for all ¢ > 0. A similar statement holds far< 0.

Since the above result follows from arguments similar tséhim section 4, we will just provide some
ideas of its proof below.
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Sketch of the proof of Theorém Allet us start by defining
Ny (hi, o, hg) = (|z| 77 % hiha)hs, (A.4)
for 1 < v < 3. The Hausdorff-Young inequality then gives
N5 (Reas by hg)l| e S Al o 1h2 | oz (| P3| e (A.5)
for anypy, p2, ps € [2, 00| and
1/p1+1/p2+1/p3 =3/2—~/3. (A.6)

We want to construct a global solution such that {A.2) holdst us assume that we are given a local
solution on[0, 7] which is a priori bounded as follows:

sup | [u(®) |0 + || @)™ u(®)]| s | S (A7)
te[0,T

for somes; > 0. Duhamel’s formula forf (t) = " u(t) reads:

t
u(t) = e g + TN, N(t) == / NN (u(s), u(s), u(s)) ds . (A.8)
0
To obtain a global solution it suffices to show that under tipei@ri assumptiond (Al7) one has
sup ([N ()l g0 + @) N (1) o] < <1 (A.9)
te[0,T

for someC' > 0.
Notice that[[A.Y) implies, via the standafd — L7 estimates

sup (1+ )73/ |lu(t)]| 1p S e, (A.10)
te[0,7)

for all p > 2. Also notice than any global solutiarn(¢) which is bounded as i (Al.2), automatically scatters
to a linear solution in.2, because

NG Calt), () wlt)) | 2 S Tu®)7ore—m lu®l 2 S ef@+ 077,

which is an integrable function of time.
The first term in[(A.D) can be bounded directly by (A.5) andi@):

t t
IN Ol S [ Tullfoo o ds St [ (1 +9)7 ds 5 et
To bound the second norm in the right-hand sidé of|(A.9) lewrie N (¢) in Fourier space as
t
Nto =ic [ 1s.€)ds.
0

I(s,6) = //RS RS s0Eno) |y =3 Fs € — ) fls,n + o) s, 0) dndo, (A.11)
(&, m,0) = —AE) + A —n)+A(n+0)—Ao).

Herec = ¢(ry) denotes an appropriate positive constant which is irrelefea the proof. Then the idea is to
proceed as in sectidn 4.2, applyifg®V7 to I and estimating the resulting termsin. Applying V7 to I
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we obtain four terms

OF1(s,€) = J(5,6) + 2J5 (5,€) + JJ (5,€) + J] (s,€)
R .8 = [ [ Xm0 f(s,¢ ) s, -+ ) Fls, o) (A12)
Bis.€) = is [ [ @4 me a7 0ef 5.6 < Fls.n 4 ) fls.o) dndo . (A3)
H@f%zw[/wwm”%m@mWﬁ&”ﬂ&E—m7&n+®7&®mﬂm (A.14)
[ (s,8) = =5’ // € (e, )P 0|~ F(s, & — ) f(s,n + 0) f(s,0)dndo (A.15)

where the symbal is defined as if{4.11):
mig,n) = O~ A©) + Al ).

The termsJ; in (A12)-(A18), fori = 1,...,4, look exactly like the termg;, in (4.19)-[4.22), with the
exception that the power dn| is now—3 + v > —2.
To obtain [[A.9), it would be sufficient to prove

1427 (5)|| 1 S b+ )7 07D/ (A.16)
To see this, one should proceed as in secfions]#.2.1}-4.8.dsanthe following two facts:
1) Under the a priori assumptioris (A.7) one camget 0 in all the estimates in4.2[1-4.2.4.
2) Let2"*2 denote the size df)| as in the estimates of sectidns 41P.1-4.2.4. Since (AA2)8) have a factor
In|~*™ instead ofiy| 2 as in [ZI9){{Z.22), one can obtain estimates[for (A.LZEB\ which are a factor
20v=1k2 petter than those fof (AN 9)-(4]22).
Thanks to these observations, one can verify that the bo@aB) for theL? norms of.Jy,. .., J4, can be
improved to the bound§(AL6) fof/, ..., .J;. This gives[(A®). The scattering statemednf{A.3) follows
from the bounds(A.16) and the integrable time decay/of This concludes the proof the Theorem. O

APPENDIX B. AUXILIARY ESTIMATES

B.1. Proof of Proposition[3.1: Refined Linear Estimates. In this section we give the proof of Proposition
[3.7 by showing

w3, 1

1 2

WH A )P [H<33> fll 2 + ||f||H50:| . (B.1)
for anyt € R. Estimate[(B.l1) is a simple but crucial ingredient in deriythe modified scattering behavior
for solutions of [(1.11). It identifies the leading order nofmattneeds to be controlled in order to obtain the
necessary sharp pointwise decaytof/2, and dictates what expression needs to be analyzed in arder t
capture the asymptotic behavior of solution[of [1.1). Saméstimates, as well as some variants, have been
used when dealing with othér™> critical equations (and not only), see for example [16] 70).18 24| 20].

Our proof is in the same spirit of the proof of Lemma 2.3[ofl [20here the author and lonescu treated
the linear propagatoaxp(it\c‘)x\l/ 2). The analogous estimate for this propagator was then usebtain
global solutions to the gravity water waves problem in theecaf one dimensional interfacés [21].

Proof of (B.)). SetA(V) := 1 — A = (V). Using the notation (1.11), we write

@) =3 [ OO ot = MO +E- T (8.2)

keZ

+1€D)° Ol +
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For (B.1) it then suffices to prove that
S| [ e f e a <1, ®.3)
kez R

for anyt € R,z € R3, and any functiory satisfying
(L 1)+ 1D Fll e + (L4 )20 @) £ o+ 11F 1l 0] <1 (B.4)

High and low frequenciesUsing only the bouncﬂ!ﬂ!m < (1 + |t[)*/?, we estimate first the contribution
of small frequencies,

> | ofoaods S IR <
2R S(1+[t]) 1/ 2R S(1+[t]) 71/
Using instead the bounlf || ;50 < (1 + [¢[)'/2°, we can control the contribution of large frequencies:
> / OF e de| s Y PRI S Y 2w S 1
AR+ 262 (1+]t]) 1/ 262 (1+t]) 1/
Non-stationary frequencieszrom above we see that fér (B.3) it suffices to prove
> | [ e Ofeae | 1. ©5)
(L) 72 g2RS (1) V2

In proving [B.3) we may assume thiat- 1. Notice that forjz| < ¢
Vep(§) =0 = (=§ =

xT

JEE
while [Vep| = A(E)72, for |z| > ¢t.

We estimate first the non-stationary contributions wiieis away fromé,, and more precisely when

2k > 24|¢y| or 28 < 274|¢y]. In these cases we hai@ ¢| > [¢ — &|(1 + 23%) ", whered, = ¢/|¢] - Ve
denotes the radial derivative. We can integrate by partsetini [B.2) and write:

/ O F(&)pp(€) de = 1V + 1P + 1)
R3
1= =g [ 000 5 (Foene) de.

o~

1= 3 /R O (0,6)719,(0,6) 70, (FO2n(6) e

(B.6)

(B.7)

1= /R 00, ((9,0) 7 01(0r0) ) T €) e

For |¢| € [26=2,26+2] with 2% > 2%|¢o| or 28 < 27%|¢y], one hagd,¢| > 2¢(1 + 23%)~". Therefore,
using [B.4) we can estimate

—_— —_ 2 N - - n 7
0] 5 4722720+ 2290 (Fon)ll o S 4722721+ 2%) (2222 1o + 2 fall o)
SR04 R0 k),

and deduce th3t, |I,§1)| < 1, from the fact that we are only summing over thésguch that /2 < 2+ <
£1/30.

To estlmatel )in B27), we first notice thal(d, )19, (9,¢)~!| < 273k(1 + 2%%)*. Moreover one has
18: (For)ll e € 251 full oo + 2221100 Fll o < 2% 1 full oo + 22212 £ 12
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Therefore, we see that
2 9. 2 -~ _ _ I~ _
112 S 17227301+ 22970, (For) oy S 67227 I Fll e + (14 259)275/2 )22 ]| ) .
Using again[(B¥) and the restrictions!/? < 28 < ¢1/30, we get ", |I,§2)| <1
We can deal similarly withs. Since|d, ((9,¢) 8, (9,¢)~1)| < 27 (1 + 23)?, we obtain
_ _ 2, _ _ -~
SrP s S 2@ 2 forllp S20Y) 2R 21 fll e S 1
k ok >—1/2 ok >—1/2

Stationary contributions.To eventually conclude the proof ¢f (B.5) it suffices to show
| /R O FlE)pn(€) | S 1, (B.8)

provided thatit| > 1, (1 + [¢t))~1/2 < 2F < (1 4 [¢))V/3°, and2F € [27%[&0|, 2%(&|]. Letly denote the
smallest integer with the property thzlt > |¢|~1/2 and estimate the left-hand side Bf (B.8) by
k+100

| [ e O feerd| < 3 1. ©9)

1=lo
where, with the notatior_(11.9), for arly> [, we have defined

Toi= [0 fuenefc - o) de.
From [B.4) it immediately follows

[Tl S 250 frll e S22\ fll oo S 1.

Forl > [y we integrate by parts in the expression fhrabove, relying on the fact thag — &| =
2l > ¢=1/2 on the support of the integral. Two integration by parts tike ones performed in the previous
paragraph, give

Ji=J" w1+ g

I = =g [ 0002 (ROl € - ) e

. . (B.10)
g2 = _31% /R e (0,6) 710, (9:6) ' 0 (Ful©)pl”) (€ — &0)) dE
= /R 109, ((0,6) 710 (0:0) ) Ful©)f" (€ — o) de

Most of the above contributions can be estimated in exaleysime way as we have estimated the terms
in (B-7), using the fact thap2¢(¢)| ~ (1+2%) " and|¢ — &| ~ 2! > ¢+~1/2, which imply |3, 6(¢)| >
(1+ 2’“)_321 in the support ofJ;. The termJl(g), for example, verifies the exact same bound,ié%

DY 2, = _ -~ _
7] S 72271+ 2 Il — o)l S 20+ 2| fall g2 S 1
Using again[(BK)2! > ¢t~1/2, and2* < /30, we estimate
9o 2 -~
[V S 12272+ 2022 (FOwil =€)l
S 72272 (1 4 2%) (28721107 £ 1o + 27 | i jp ey (1€ — EoDI )
S22 (L 2%) (20222 f | o + 2N Fill o)
< t_2((1 + 23k)22—l/2t31/20 + 2—lt3/2) <1.
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Similarly
7] < 722731+ 25110, (F (- — &)l
S+ 29 (27 fll poo + 27222 f)l2) S 1.

The desired bound (B.8) follows frorh (B.9).(Bl10) and thet karee estimates. This completes the proof of
(B.3) and the Proposition. O

B.2. Bounds on pseudo-product operators.Below we state a Lemma about pseudo-product operators
which is used several times in the course of weighted enestyates (sectionl 4) and remainder estimates
(sectior{5.R).

Lemma B.1. Assume thatn € L!(R? x R3) satisfies

/ m(n, 0)e™" e dndo <A, (B.11)
R3xR3

1
Lzy

for someA € (0,00). Then, for any(p, ¢,7) with1/p +1/q¢ + 1/r =1,

L. Fa(@htn + oym(n.) dndo| < Al ool (8.12)
-
Moreover, for allp, g with1/p +1/q = 1/2, one has
| [ mcnfie—nama| < ALl (6.13)
L

€
Proof. We rewrite

| [ Fmg@)h(=n —oymin0)dndo| = C| [ f@)g)h()K (=~ w,z — y) dedyd
RxR R3

S [ = 0tz = ()| K o) dedy
where
K(z,y) = / m(n, a)eimeiyo dndo .
RxR

The desired bound(B.12) follows easily from (B.11) whichs& ¢ L}c,y. (B.13) follows from [B.12) by
duality. O
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