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Abstract

We study the O(N)3 symmetric quantum field theory of a bosonic tensor φabc with sextic
interactions. Its large N limit is dominated by a positive-definite operator, whose index
structure has the topology of a prism. We present a large N solution of the model using
Schwinger-Dyson equations to sum the leading diagrams, finding that for 2.81 < d < 3
and for d < 1.68 the spectrum of bilinear operators has no complex scaling dimensions.
We also develop perturbation theory in 3 − ε dimensions including eight O(N)3 invariant
operators necessary for the renormalizability. For sufficiently large N , we find a “prismatic”
fixed point of the renormalization group, where all eight coupling constants are real. The
large N limit of the resulting ε expansions of various operator dimensions agrees with the
Schwinger-Dyson equations. Furthermore, the ε expansion allows us to calculate the 1/N
corrections to operator dimensions. The prismatic fixed point in 3 − ε dimensions survives
down to N ≈ 53.65, where it merges with another fixed point and becomes complex. We
also discuss the d = 1 model where our approach gives a slightly negative scaling dimension
for φ, while the spectrum of bilinear operators is free of complex dimensions.
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1 Introduction

In recent literature, there has been considerable interest in models where the degrees of

freedom transform as tensors of rank 3 or higher. Such models with appropriately chosen

interactions admit new kinds of large N limits, which are not of ’t Hooft type and are

dominated by the so-called melonic Feynman diagrams [1–5]. Much of the recent activity

(for a review see [6]) has been on the quantum mechanical models of fermionic tensors [4,5],

which have large N limits similar to that in the Sachdev-Ye-Kitaev (SYK) model [7–14].

It is also of interest to explore similar quantum theories of bosonic tensors [5, 15, 16].

In [5, 15] an O(N)3 invariant theory of the scalar fields φabc was studied:

S4 =

∫
ddx

(
1

2
(∂µφ

abc)2 +
g

4!
Otetra

)
,

Otetra = φa1b1c1φa1b2c2φa2b1c2φa2b2c1 . (1.1)
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This QFT is super-renormalizable in d < 4 and is formally solvable using the Schwinger-

Dyson equations in the large N limit where gN3/2 is held fixed. However, this model has some

instabilities. One problem is that the “tetrahedral” operator Otetra is not positive definite.

Even if we ignore this and consider the large N limit formally, we find that in d < 4 the

O(N)3 invariant operator φabcφabc has a complex dimension of the form d
2

+ iα(d) [15].1 From

the dual AdS point of view, such a complex dimension corresponds to a scalar field whose

m2 is below the Breitenlohner-Freedman stability bound [21,22]. The origin of the complex

dimensions was elucidated using perturbation theory in 4−ε dimensions: the fixed point was

found to be at complex values of the couplings for the additional O(N)3 invariant operators

required by the renormalizability [15]. In [15] a O(N)5 symmetric theory for tensor φabcde

and sextic interactions was also considered. It was found that the dimension of operator

φabcdeφabcde is real in the narrow range dcrit < d < 3, where dcrit ≈ 2.97. However, the scalar

potential of this theory is again unstable, so the theory may be defined only formally. In

spite of these problems, some interesting formal results on melonic scalar theories of this

type were found recently [23].

g1 g2 g3 g4 g5 g6 g7 g8

Figure 1: Diagrammatic representation of the eight possible O(N)3 invariant sextic interac-
tion terms.

In this paper, we continue the search for stable bosonic large N tensor models with

multiple O(N) symmetry groups. Specifically, we study the O(N)3 symmetric theory of

scalar fields φabc with a sixth-order interaction, whose Euclidean action is

S6 =

∫
ddx

(
1

2
(∂µφ

abc)2 +
g1

6!
φa1b1c1φa1b2c2φa2b1c2φa3b3c1φa3b2c3φa2b3c3

)
. (1.2)

This QFT is super-renormalizable in d < 3. When the fields φabc are represented by vertices

and index contractions by edges, this interaction term looks like a prism (see figure 11 in [5]);

it is the leftmost diagram in figure 1. Unlike with the tetrahedral quartic interaction (1.1),

the action (1.2) is positive for g1 > 0. In sections 2 and 3, we will show that there is a smooth

large N limit where g1N
3 is held fixed and derive formulae for various operator dimensions

1Such complex dimensions appear in various other large N theories; see, for example, [17–20].
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in continuous d. We will call this large N limit the “prismatic” limit: the leading Feynman

diagrams are not the same as the melonic diagrams, which appear in the O(N)5 symmetric

φ6 QFT for a tensor φabcde [15]. However, as we discuss in section 2, the prismatic interaction

may be reduced to a tetrahedral one, (2.1), by introducing an auxiliary tensor field χabc.

The theory (1.2) may be viewed as a tensor counterpart of the bosonic theory with random

couplings, which was introduced in section 6.2 of [16]. Since both theories are dominated

by the same class of diagrams in the large N limit, they have the same Schwinger-Dyson

equations for the 2-point and 4-point functions. We will confirm the conclusion of [16] that

the d = 2 theory does not have a stable IR limit; this is due to the appearance of a complex

scaling dimension. However, we find that in the ranges 2.81 < d < 3 and d < 1.68, the

large N prismatic theory does not have any complex dimensions for the bilinear operators.

In section 5 we use renormalized perturbation theory to develop the 3− ε expansion of the

prismatic QFT. We have to include all eight operators invariant under the O(N)3 symmetry

and the S3 symmetry permuting the O(N) groups; they are shown in figure 1 and written

down in (A.1). For N > Ncrit, where Ncrit ≈ 53.65, we find a prismatic RG fixed point

where all eight coupling constants are real. At this fixed point, ε expansions of various

operator dimensions agree in the large N limit with those obtained using the Schwinger-

Dyson equations. Futhermore, the 3 − ε expansion provides us with a method to calculate

the 1/N corrections to operator dimensions, as shown in (5.8), (5.9). At N = Ncrit the

prismatic fixed point merges with another fixed point, and for N < Ncrit both become

complex.

In section 6 we discuss the d = 1 version of the model (1.2). Our large N solution gives

a slightly negative scaling dimension, ∆φ ≈ −0.09, while the spectrum of bilinear operators

is free of complex scaling dimensions.

2 Large N Limit

To study the large N limit of this theory, we will find it helpful to introduce an auxiliary

field χabc so that2

S =

∫
ddx

(
1

2
(∂µφ

abc)2 +
g

3!
φa1b1c1φa1b2c2φa2b1c2χa2b2c1 − 1

2
χabcχabc

)
. (2.1)

2If we added fermions to make the tensor model supersymmetric [5, 16, 24, 25] then χabc would be inter-
preted as the highest component of the superfield Φabc.
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where g ∼ √g
1
. Integrating out χabc gives rise to the action (1.2). The advantage of keeping

χabc explicitly is that the theory is then a theory with O(N)3 symmetry dominated by the

tetrahedral interactions, except it now involves two rank-3 fields; this shows that it has a

smooth large N limit. Thus, a prismatic large N limit for the theory with one 3-tensor φabc

may be viewed as a tetrahedral limit for two 3-tensors.

Let us define the following propagators:

〈φ(p)φ(q)〉 = (2π)dδd(p+ q)G(p), 〈χ(p)χ(q)〉 = (2π)dδd(p+ q)F (p). (2.2)

In the free theory G(p) = G0(p) = 1
p2

, and F (p) = F0 = 1. In the strong coupling limit the

self-energies of the fields are given by the inverse propagators: G(p)−1 = Σφ and F (p)−1 =

Σχ. The Schwinger-Dyson equations for the exact two-point functions can be written as:

F (p) = F0 + g2N3F0

∫
ddqddk

(2π)2d
G(p− q − k)G(q)G(k)F (p) ,

G(p) = G0(p) + 3g2N3G0(p)

∫
ddqddk

(2π)2d
G(p− q − k)F (q)G(k)G(p) , (2.3)

and represented in figure 2.

Figure 2: Diagramatic representation of the Schwinger-Dyson equations. Solid lines denote
φ propagators, and dashed lines denote χ propagators.

Multiplying the first equation by F−1
0 on the left and F (p)−1 on the right, and likewise

for the second equation we obtain:

F (p)−1 = F−1
0 − λ2

∫
ddqddk

(2π)2d
G(p− q − k)G(q)G(k) ,

G(p)−1 = G0(p)−1 − 3λ2

∫
ddqddk

(2π)2d
G(p− q − k)F (q)G(k) , (2.4)
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where λ2 = N3g2 ∼ N3g1. We have to take the large N limit keeping λ2 fixed. In the IR

limit, let us assume

G(p) =
A

p2a
, F (p) =

B

p2b
.

a is related to the scaling dimension of φ, ∆φ via a = d/2−∆φ.

For what range of a and b can we drop the free terms in the gap equations above? In the

strong coupling limit we require b < 0 and a < 1. Since b = −3a+ d, we have d/3 < a < 1.

In terms of ∆φ, we then find

3∆φ + ∆χ = d , d/2− 1 < ∆φ < d/6. (2.5)

Notice that, if we had the usual kinetic term for the χ field, the allowed range for ∆φ would

be larger. Therefore, our solution may also apply to a model with two dynamical scalar

fields interacting via the particular interaction given above.

The gap equation is finally:

F (p)−1 = −λ2

∫
ddqddk

(2π)2d
G(p− q − k)G(q)G(k) ,

G(p)−1 = −3λ2

∫
ddqddk

(2π)2d
G(p− q − k)F (q)G(k) . (2.6)

Dimensional analysis of the strong coupling fixed point actually does not fix a: we get

b = −3a + d from the first equation and a = −2a − b + d from the second equation. Let

us try to solve the above equations, in the hope that numerical factors arising from the

Feynman integrals may determine a. The overall constant A is not determined from this

procedure, but note that [λ] = 3−d, and therefore A ∼ λ
2(a−1)
3−d . This procedure is analogous

to solving an eigenvalue equation, and perhaps it is not surprising that we have to do this,

since a solution for a also determines the anomalous dimension of a composite operator φ3.

We then find

F (p) =
−1

A3λ2

(2π)2d

Ld(a, a)Ld(2a− d/2, a)

1

p2b
, (2.7)

where

Ld(a, b) = πd/2
Γ(d/2− a)Γ(d/2− b)Γ(a+ b− d/2)

Γ(a)Γ(b)Γ(d− a− b)
. (2.8)

The condition that must be satisfied by a is then:

3
Ld(2a− d/2, d− 3a)

Ld(2a− d/2, a)
= 1 . (2.9)
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In position space, the IR two-point functions take the form

G(x) =
Γ(d/2− a)

πd/222aΓ(a)

A

(x2)∆φ
, (2.10)

F (x) =
Γ(d/2− b)
πd/222bΓ(b)

(2π)2d

A3λ2Ld(a, a)Ld(2a− d/2, a)

1

(x2)d−3∆φ
. (2.11)

In terms of ∆φ, (2.9) may be written as

f(d,∆φ) ≡ 1

3

Γ(d
2
− 3∆φ)Γ(−d

2
+ 3∆φ)Γ(∆φ)Γ(d−∆φ)

Γ(d
2
−∆φ)Γ(−d

2
+ ∆φ)Γ(3∆φ)Γ(d− 3∆φ)

= 1 . (2.12)

2.1 The scaling dimension of φ

It can be verified numerically that that solutions to (2.12) within the allowed range (2.5) do

exist in d < 3. For example, for d = 2.9 we have the solution shown in Figure 3:

∆φ ≈ 0.456 , ∆χ ≈ 1.531 . (2.13)

For d = 2.99, we find ∆φ = 0.495, and d = 2.999, ∆φ = 0.4995, consistent with the 3 − ε
expansion (4.1). For d = 2, (2.9) simplifies to

3(3∆φ − 1)2 = (∆φ − 1)2 . (2.14)

The solution ∆φ = 1
13

(
4−
√

3
)

lies within the allowed range (2.5), while the one with the

other branch of the square root is outside it.

For d < 2 we find multiple solutions within the allowed range (2.5), as shown for d = 1

in figure 4. One of the solutions gives ∆φ = 0; this produces singularities in the large N

dimensions of scalar bilinears, and we will not use it. The other solution,

∆φ ≈ −0.09055 , ∆χ ≈ 1.2717 , (2.15)

appears to be acceptable. Although ∆φ is negative, it lies above the unitarity bound. We

note that there is also a positive solution ∆φ ≈ 0.225, which lies outside of the allowed range

(although it would be allowed if the χ field was dynamical).

There is an interesting transition in behavior which happens at d = dc where there is a
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0.455 0.460 0.465 0.470 0.475 0.480
Δϕ

-2

-1

1

2

3

f 2.9, Δϕ

Figure 3: Solving (2.12) for d = 2.9.

-0.5 -0.4 -0.3 -0.2 -0.1 0.1
Δϕ

-2

-1

1

2

3

f 1, Δϕ

Figure 4: Solving (2.12) for d = 1.

double root at ∆φ = 0. The critical dimension dc is the solution of

2 + dcπ cot(dcπ/2) + dc(γ + ψ(dc)) = 0 . (2.16)

Its numerical value is dc = 1.35287. For d slightly above dc one of the solutions for ∆φ is

zero, while the other is positive; we have to pick the positive one. However, for d slightly

below dc one of the solutions for ∆φ is zero, while the other is negative. Special care may be

needed for continuation to d < dc; in particular, for studying the d = 1 case.
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Figure 5: The integration kernel for type B bilinears.

3 Bilinear Operators

There are three types of scalar bilinears one can consider, which are of the schematic form:

A = φ(ξ · ∂)s(∂2)nφ, B = φ(ξ · ∂)s(∂2)nχ and C = χ(ξ · ∂)s(∂2)nχ, where ξµ is an auxiliary

null vector introduced to encode the spin of the operators, ξ · ∂ = ξµ∂µ, and ∂2 = ∂µ∂µ. We

note that there is mixing of operators of type A and C. It is easy to convince oneself that

there is no mixing with the B operators by drawing a few diagrams.

3.1 Bilinears of type B

Let us consider a bilinear of type B, of spin s and scaling dimension ∆, for which there is

no mixing. The three-point functions take the form [26,27]:

〈φabc(x1)χabc(x2)Bs(x3; ξ)〉 = v(B)(x1, x2, x3) =
Qs

3

x
τ+∆φ−∆χ

31 x
τ+∆χ−∆φ

32 x
∆φ+∆χ−τ
12

→ v(B)
s,τ (x1, x2) = (x12 · ξ)sx

τ−∆φ−∆χ

12 ,

(3.1)

where τ = ∆ − s is the twist of the bilinear, ξ is the null polarization vector, Q3 is the

conformally invariant tensor structure defined in [26, 27] and we took the limit x3 →∞ in

the second line. The eigenvalue equation, obtained using the integration kernel depicted

schematically in figure 5, is

vs,τ (x1, x2) = 3λ2

∫
ddyddzF (x2, y)G(y, z)2G(z, x1)vs,τ (y, z) (3.2)

When s = 0, we have:

|x1 − x2|−∆φ−∆χ+∆ = 3Ã3B̃λ2

∫
ddyddz

1

|x2 − y|2∆χ|y − z|5∆φ+∆χ−∆|z − x1|2∆φ
(3.3)

which translates into

g(B)(d,∆) ≡ −3
Γ(3∆φ) sin

(
1
2
π(d− 6∆φ)

)
Γ
(
d
2
−∆φ

)
Γ
(
−d

2
+ 3∆φ + 1

)
Γ
(

∆
2
−∆φ

)
Γ
(

1
2
(d−∆− 2∆φ)

)
πΓ(∆φ)Γ

(
∆
2

+ ∆φ

)
Γ
(
d−∆

2
+ ∆φ

)
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= 1 . (3.4)

2 4 6 8
Δ

-1

1

2

g(B)(2.9, Δ)

Figure 6: The spectrum of type B bilinears in d = 2.9. The red lines correspond to asympotes
at 2n+ ∆φ + ∆χ = 2n+ 1.98747.

We can solve equation (3.4) numerically to find the allowed scaling dimensions for type

B operators in various dimensions. In d = 2.9 the type B scaling dimensions are

∆B = 2.30120; 4.00173; 5.99214; 7.98983; 9.98891; . . . , (3.5)

as shown in figure 6. In the pure φ language, the first one can be identified with the

tetrahedral operator. The type B scaling approach the asymptotic formula

∆B → 2n+ ∆φ + ∆χ = 2n+ 1.98747 . (3.6)

For example, for n = 54 we numerically find ∆ = 109.98749, which is very close to (3.6).

For spin s > 0 the eigenvalue equation is:

(x12·ξ)s|x1−x2|−∆φ−∆χ+∆ = 3Ã3B̃λ2

∫
ddyddz

((y − z) · ξ)s

|x2 − y|2∆χ|y − z|5∆φ+∆χ−∆|z − x1|2∆φ
(3.7)

Note that the spectrum of type B bilinears does not contain the stress tensor, which is of

type A/C.

Processing the equation we have the following condition for the allowed twists of higher

9



spin bilinears:

g(B)(d, τ, s) ≡

−3
Γ(3∆φ) sin

(
1
2
π(d− 6∆φ)

)
Γ
(
d
2
−∆φ

)
Γ
(
−d

2
+ 3∆φ + 1

)
Γ
(

1
2
(d− 2∆φ − τ)

)
Γ
(
s−∆φ + τ

2

)
πΓ(∆φ)Γ

(
d
2

+ ∆φ − τ
2

)
Γ
(
s+ ∆φ + τ

2

)
= 1 . (3.8)

Using this equation one can find the allowed twists of spin-s type B bilinears. For example,

the spectrum when s = 2 and d = 2.9 is found from figure 7 to be τ = 2.08, 3.99, 5.99, 7.99, . . .,

which approach ∆χ + ∆φ + 2n = 1.99 + 2n from above.

1 2 3 4 5 6
τ

-1

1

2

g(B)(2.9, τ, 2)

Figure 7: Solving equation (3.8) in d = 2.9 for the allowed twists of spin-2 type B bilinears.

We find that the spectrum of type B bilinear appears to be real for all d < 3. How-

ever, there are ranges of d where the spectrum of type A/C operators do contain complex

eigenvalues, as we discuss in the next section.

3.2 Mixing of bilinears of type A and C

Let us now study the spectrum of bilinear operators of type A and C. As mentioned earlier,

by drawing a few diagrams (see figure 8) one can see that these operators mix, in the sense

that the two-point function 〈AsCs〉 6= 0. Let τ = ∆ − s be the twist of mixture of A and

C operators, which we denote as Ãs. As in the previous subsection, from the three-point

10



Figure 8: The integration kernels KAA, KCA and KAC respectively for mixtures of type A
and C bilinears.

functions 〈φabc(x1)φabc(x2)Ãs(x3; ξ)〉 and 〈χabc(x1)χabc(x2)Ãs(x3; ξ)〉, we define

v(A)
s,τ (x, y) =

((x− y) · ξ)s

(x− y)2∆φ−τ
, v(C)

s,τ (x, y) =
((x− y) · ξ)s

(x− y)2∆χ−τ
. (3.9)

We now define the following kernels, depicted schematically in figure 8:

KAA[v(A)] = 3

∫
ddxddyG(x1, x)G(x2, y)G(x, y)F (x, y)v(A)

s,τ (x, y) (3.10)

KCA[v(A)] = 3

∫
ddxddyF (x1, x)F (x2, y)G(x, y)2v(A)

s,τ (x, y) (3.11)

KAC [v(C)] = 3

∫
ddxddyG(x1, x)G(x2, y)G(x, y)2v(C)

s,τ (x, y) (3.12)

Note the factor of 3, which appears from a careful counting of the Wick contractions.

The integration kernel gives rise to the following matrix(
2KAA[v(A)]/v(A) KAC [v(C)]/v(A)

KCA[v(A)]/v(C) 0

)
≡

(
2K1 K3

K2 0

)
. (3.13)

The condition for it to have eigenvalue 1, which determines the allowed values of τ , is

g(A)(d, τ, s) ≡ 2K1 +K3K2 = 1 . (3.14)

Luckily, this condition is independent of the constant A, as one can see from the following

expressions,

K1 =
3(d− 6∆φ)Γ(3∆φ) sin

(
1
2
π(d− 6∆φ)

)
Γ(d− 3∆φ)Γ

(
d
2
−∆φ

)2
Γ
(
∆φ − τ

2

)
Γ
(
−d

2
+ s+ ∆φ + τ

2

)
2πΓ(∆φ)2Γ

(
d−∆φ − τ

2

)
Γ
(

1
2
(d+ 2s− 2∆φ + τ)

) ,

K2 =
3πd24(d−2∆φ)Γ(3∆φ)2Γ

(
d
2
−∆φ

)4
Γ
(
d− 3∆φ − τ

2

)
Γ
(

1
2
(d+ 2s− 6∆φ + τ)

)
A4λ2Γ(∆φ)4Γ

(
d
2
− 3∆φ

)2
Γ
(
3∆φ − τ

2

)
Γ
(
−d

2
+ s+ 3∆φ + τ

2

) ,

K3 =
3A4π−dλ228∆φ−4dΓ(∆φ)2Γ

(
∆φ − τ

2

)
Γ
(
−d

2
+ s+ ∆φ + τ

2

)
Γ
(
d
2
−∆φ

)2
Γ
(
d−∆φ − τ

2

)
Γ
(

1
2
(d+ 2s− 2∆φ + τ)

) . (3.15)

11



Thus, the equation we need to solve is:

Γ(∆φ)2Γ
(
d
2 − 3∆φ

)2
Γ
(
3∆φ − d

2

)
Γ
(
3∆φ − τ

2

)
Γ
(
d−∆φ − τ

2

)
Γ
(
−d

2 + s+ 3∆φ + τ
2

)
Γ
(

1
2(d+ 2s− 2∆φ + τ)

)
3Γ(3∆φ)Γ

(
d
2 −∆φ

)2
Γ
(
∆φ − τ

2

)
Γ
(
−d

2 + s+ ∆φ + τ
2

)
= 3Γ(3∆φ)Γ

(
3∆φ −

d

2

)
Γ
(
d− 3∆φ −

τ

2

)
Γ

(
1

2
(d+ 2s− 6∆φ + τ)

)
−

− 2Γ

(
d

2
− 3∆φ

)
Γ(d− 3∆φ)Γ

(
3∆φ −

τ

2

)
Γ

(
−d

2
+ s+ 3∆φ +

τ

2

)
.

(3.16)

One can check that the stress-tensor, which has s = 2 and τ = d − 2, appears in this

spectrum for any d.

2 4 6 8
Δ

-1

1

2

g(A)(2.9, Δ, 0)

Figure 9: The spectrum of type A/C scalar bilinears in d = 2.9. The green lines correspond
to the 2∆χ + 2n asymptotics and the red ones to 2∆φ + 2n asymptotics. We see that the
solutions are real, and approach the expected values as n→∞.

The Schwinger-Dyson equations have a symmetry under ∆→ d−∆. In a given CFT, only

one of this pair of solutions corresponds to a primary operator dimension, while the other

one is its “shadow.” The s = 0 spectrum contains complex modes for 1.6799 < d < 2.8056.

In d = 2.9 the graphical solution for the scaling dimensions in the type A/C sector is shown

in figure 9. The lowest few are

∆ = 1.064, 1.836, 2.9, 3.114, 4.912, 5.063, 6.913, 7.063, . . . (3.17)

The eigenvalue at ∆ = 2.9 is exact, and in general ∆ = d is an eigenvalue for any d. The

solution 1.836 corresponds to the shadow of 1.064. As d is further lowered, the part of the

graph between 1 and 2 moves up so that the two solutions become closer. In d = dcrit, where
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2 4 6 8
Δ

-1

1

2

g(A)(2.75, Δ, 0)

Figure 10: The spectrum of type A/C scalar bilinears in d = 2.75. The green lines correspond
to the 2∆χ + 2n asymptotics and the red ones to 2∆φ + 2n asymptotics. We see that two
real solutions are no longer present; they are now complex.

dcrit ≈ 2.8056, the two solutions merge into a single one at d/2 (for discussions of mergers

of fixed points, see [28–30]). For d < dcrit, the solutions become complex d
2
± iα(d) and the

prismatic model becomes unstable. The plot for d = 2.75 is shown in figure 10.

2 4 6 8
Δ

-1.0

-0.5

0.5

1.0

1.5

2.0

2.5
g(A)(1.68, Δ, 0)

Figure 11: The spectrum of type A/C scalar bilinears in d = 1.68. The green vertical lines
correspond to the 2∆χ + 2n asymptotics; the red ones to the 2∆φ + 2n asymptotics.

For d ≤ 1.68, the spectrum of bilinears is again real. The plot for d = 1.68, where

∆φ ≈ 0.0867, is shown in figure 11. At this critical value of d there are two solutions at d/2;

one is the shadow of the other.
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4 Large N results in 3− ε dimensions

Let us solve the Schwinger-Dyson equations in d = 3− ε. The results will be compared with

renormalized perturbation theory in the following section. The scaling dimension of φabc is

found to be

∆φ =
1

2
− ε

2
+ ε2 − 20ε3

3
+

(
472

9
+
π2

3

)
ε4 +

(
7ζ(3)− 12692

27
− 56π2

9

)
ε5 +O

(
ε6
)
. (4.1)

This is within the allowed range (2.5) and is close to its upper boundary. The scaling

dimension of χabc is

∆χ = d−3∆φ =
3

2
+
ε

2
−3ε2+20ε3−

(
472

3
+ π2

)
ε4−3

(
7ζ(3)− 12692

27
− 56π2

9

)
ε5+O

(
ε6
)
.

(4.2)

Let us consider the s = 0 type A/C bilinears. For the first eigenvalue we find,

∆φ2 = 1− ε+ 32ε2 − 976ε3

3
+

(
30320

9
+

32π2

3

)
ε4 +O

(
ε5
)
. (4.3)

It corresponds to the scaling dimension of operator φabcφabc, as we will show in the next

section. The next eigenvalue is the shadow dimension d−∆φ2 .

The next solution of the S-D equation is ∆ = d = 3 − ε for all d. While this seems to

correspond to an exactly marginal operator, we believe that the corresponding operator is

redundant: it is a linear combination of φabc∂2φabc and χabcχabc. Similar redundant operators

with h = 1 showed up in the Schwinger-Dyson analysis of multi-flavor models [12, 31].

They decouple in correlation functions [12] and were shown to vanish by the equations of

motion [31]. The next eigenvalue is

∆prism = 3+ε+6ε2−84ε3+

(
1532

3
+ 10π2

)
ε4+

(
18ζ(3)− 6392

3
− 452π2

3

)
ε5+O

(
ε6
)
. (4.4)

It should correspond to the sextic prism operator (1.2), which is related by the equations of

motion to a linear combination of φabc∂2φabc and χabcχabc.

The subsequent eigenvalues may be separated into two sets. One of them has the form,

14



for integer n ≥ 0,

∆−
n =5 + 2n− ε+ 2ε2 − 40ε3

3
+

+
(2 (472 + 3π2)n(2n+ 7)(n(2n+ 7) + 11) + 180π2 + 28212) ε4

9(n+ 1)(n+ 2)(2n+ 3)(2n+ 5)
+O

(
ε5
)
. (4.5)

For large n this approaches 4+2n+2∆φ, as expected for an operator of the form φabc(∂2)2+nφabc.

The other set of eigenvalues has the form, for integer n ≥ 0,

∆+
n = 5 + 2n+ ε− 6ε2 + 4

(
9

n+ 2
− 18

2n+ 3
− 6

2n+ 5
+

3

n+ 1
+ 10

)
ε3 +O

(
ε4
)
. (4.6)

For large n this approaches 2+2n+2∆χ, as expected for an operator of the form χabc(∂2)1+nχabc.

These simple asymptotic forms suggest that for large n the mixing between operators

φabc(∂2)2+nφabc and χabc(∂2)1+nχabc approaches zero.

We can also use (3.4) to derive the 3−ε expansions of the dimensions of type B operators,

OB,n = χabc(∂µ∂
µ)nφabc + . . . , (4.7)

where the additional terms are there to make them conformal primaries. For n = 0 we find

∆B,0 = 2 + 6ε− 68ε2 +
2848 + 24π2

3
ε3 +O

(
ε4
)
. (4.8)

This scaling dimension corresponds to the operator φabcχabc, which in the original φ language

is the tetrahedron operator Otetra. For the higher operators we get

∆B,1 = 4 + 4ε3 − 44ε4 +O
(
ε5
)
, (4.9)

∆B,2 = 6− 7

5
ε2 +

331

30
ε3 −

(
199547

2250
+

7π2

15

)
ε4 +O

(
ε5
)
, (4.10)

∆B,3 = 8− 12

7
ε2 +

9139

735
ε3 −

(
7581556

77175
+

4π2

7

)
ε4 +O

(
ε5
)
, etc. (4.11)

Using the equations of motion, we can write OB,1, up to a total derivative, as a sum of the

three 8-particle operators shown in the leftmost column of figure 9 in [31]. In general, for

n > 0,

∆B,n = 2n+ 2− 2

(
1− 3

n(2n+ 1)

)
ε2 +O

(
ε3
)
, (4.12)
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which agrees for large n with the expected asymptotic behavior

∆B,n → 2n+ ∆φ + ∆χ = 2n+ 2− 2ε2 +O
(
ε3
)
. (4.13)

4.1 Higher Spin Spectrum

Let us also present the ε expansions for the higher spin bilinear operators which are mixtures

of type A and C. The lowest eigenvalue of twist τ = ∆− s for spin s is

τ0 =1− ε+
8 (s2 − 4) ε2

4s2 − 1

+
4ε3
(

27 (1− 4s2)Hs− 1
2
− 2s (80s3 + s(54 log(4)− 508) + 45)− 244 + 27 log(4)

)
3 (1− 4s2)2 +O

(
ε4
)

(4.14)

where Hn is the harmonic number and the last two terms (as well as all higher-order terms)

vanish when s = 2 as expected. In the large s limit, this becomes:

τ0 → 1− ε+ ε2
(

2− 15

2s2
+O(s−3)

)
+ ε3

(
−40

3
+
−9 log(4s)− 9γ + 78

s2
+O(s−3)

)
+O

(
ε4
)
.

(4.15)

Comparing with (5.8), we see that

τ0 = 2∆φ +O(
1

s2
) (4.16)

This is the expected large spin limit [32–35] for an operator bilinear in φ, indicating that for

large spin the mixing with χ bilinears is suppressed.

The next two twists are

τ1 =3− ε+
8s(s+ 2)ε2

4s(s+ 2) + 3

+
4ε3

3(4s(s+ 2) + 3)2

(
− 4(40s(s+ 4) + 157)s2 + 6(s+ 27)− 27γ(4s(s+ 2) + 3)

− 27(4s(s+ 2) + 3) log(4)− 27(4s(s+ 2) + 3)ψ(s+
3

2
)

)
+O

(
ε4
)
, (4.17)
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and

τ2 =3 + ε+

(
36

4s(s+ 2) + 3
− 6

)
ε2

+
4ε3

(4s(s+ 2) + 3)2

(
4s(2s(20s(s+ 4) + 56 + 9 log 4)− 105 + 36 log 4)

+ 18γ(4s(s+ 2) + 3) + 18(4s(s+ 2) + 3)ψ(s+
3

2
)− 297 + 54 log 4

)
+O

(
ε4
)
, (4.18)

where ψ(x) is the digamma function. In the large s limit, these take the form,

τ1 → 3− ε+ ε2
(

2− 3

2s2
+O(s−3)

)
+ ε3

(
−40

3
− 3(3 log(s) + log(64) + 3γ − 7)

s2
+O(s−3)

)
+O

(
ε4
)

= 2∆φ + 2 +O(
1

s2
) ,

(4.19)

and

τ2 → 3 + ε+ ε2
(
−6 +

9

s2
+O(s−3)

)
+ ε3

(
40 +

18(log(s) + log(4) + γ − 6)

s2
+O(s−3)

)
+O

(
ε4
)

= 2∆χ +O(
1

s2
) ,

(4.20)

In general, for large spin we find the two towers of twists labelled by an integer n

τAn = 2n+ 1− ε+ 2ε2 − 40ε3

3
+O(ε4) = 2∆φ + 2n+ . . .

τCn = 2n+ 3 + ε− 6ε2 +O(ε3) = 2∆χ + 2n+ . . .

(4.21)

again in agreement with the expected asymptotics and suppression of mixing at large spin.

We can similarly derive explicit results for spinning operators in the type B sector using
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(3.8). For the lowest two twists, we find

τ0 = 2 +
6ε

2s+ 1
+

2ε2
(

3(2s+ 1)2
(
Hs− 1

2
+ log(4)

)
− 8s3 − 84s2 − 72s− 34

)
(2s+ 1)3

+O(ε3)

=
(
2− 2ε2 +O(ε3)

)
+O(

1

s
) ,

τ1 = 4− 4sε2

2s+ 3
+

2ε3
(

9(2s+ 3)Hs+ 1
2

+ 80s2 + 12s(8 + log(8)) + 54 log(2)
)

3(2s+ 3)2
+O(ε4)

=

(
4− 2ε2 +

40ε3

3
+O(ε4)

)
+O(

1

s
) ,

(4.22)

and higher twists may be analyzed similarly. One can see that these results are also in

agreement with the expected large spin limit τn → ∆φ + ∆χ + 2n for fixed n.

5 Renormalized perturbation theory

In this section we use the renormalized perturbation theory to carry out the 3− ε expansion

for finite N . We will find a fixed point with real couplings, whose large N limit reproduces

the results found using the 3− ε expansion of the Schwinger-Dyson solution in the previous

section. This is an excellent check of the Schwinger-Dyson approach to the prismatic theory.

To carry out the beta function calculation at finite N we need to include all the O(N)3

invariant sextic terms in the action (as usual in such calculations, we ignore the quartic

and quadratic operators which are relevant in d = 3). The 11 such single-sum terms are

shown diagrammatically in figure 5 of [31]. We will impose the additional constraint that the

action is invariant under the permutation group S3 which acts on the three O(N) symmetry

groups. This leaves us with 8 operators: 5 single-sum, 2 double-sum and 1 triple-sum. They

are written down explicitly in (A.1) and shown schematically in figure 1. The first one and

the most essential one for achieving the solvable large N limit is the “prism” term (1.2); it

is positive definite and symmetric under the interchanges of the three O(N) groups.

Our action is a special case of a general multi-field φ6 tensor theory:

S =

∫
ddx

(
1

2
∂µφ

abc∂µφabc +
1

6!
gκ1κ2κ3κ4κ5κ6φ

κ1φκ2φκ3φκ4φκ5φκ6
)
. (5.1)

The beta-functions and anomalous dimensions for such a general sextic coupling were calcu-

lated in [36, 37]; see also [38, 39] for earlier results on the O(n) invariant sextic theory. The
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Figure 12: The two-loop contribution to the beta-function.

diagram topology contributing to the leading two-loop beta function is shown in figure 12.

In our case each index κ1, κ2 . . . , κ6 has three sub indices κi = (aibici). The coupling

gκ1κ2κ3κ4κ5κ6 contains 8 different types of interactions

gκ1κ2κ3κ4κ5κ6 = g1T
(1)
κ1κ2κ3κ4κ5κ6

+ g2T
(2)
κ1κ2κ3κ4κ5κ6

+ · · ·+ g8T
(8)
κ1κ2κ3κ4κ5κ6

, (5.2)

which can be graphically represented as in figure 1. Each tensor structure T
(k)
κ1κ2κ3κ4κ5κ6

consists of a sum of product of δ functions, which are symmetrized over the colors (abc) and

over the indices κ1, . . . , κ6.

The two-loop beta functions and anomalous dimensions for general N are given in the

Appendix. Let us use the large N scaling

g1 = 180 · (8π)2ε
g̃1

N3
, g2,4,6,7 = 180 · (8π)2ε

g̃2,4,6,7

N5
,

g3,5 = 180 · (8π)2ε
g̃3,5

N4
, g8 = 180 · (8π)2ε

g̃8

N7
, (5.3)

which is chosen in such a way that all beta functions retain non-vanishing quadratic terms

in the large N limit:

β̃1 = −2g̃1 + 2g̃2
1 , β̃2 = −2g̃2 + 4g̃1 (3g̃1 + 2g̃5) , β̃3 = −2g̃3 + 12g̃2

1 ,

β̃4 = −2g̃4 +
2

3

(
2 (3g̃1 + g̃3)2 + g̃2

5 + 12g̃1g̃5

)
, β̃5 = −2g̃5 + 4g̃1 (6g̃1 + g̃5) ,

β̃6 = −2g̃6 + 4g̃1 (3g̃1 + g̃5 + 2g̃6) , β̃7 = −2g̃7 + 6g̃2
1 ,

β̃8 = −2g̃8 +
4

3

(
g̃2

3 + 4g̃7g̃3 + g̃2
5 + 6g̃2

6 + 2g̃2
7 + 6g̃5g̃6 + 3g̃1 (g̃5 + 6g̃6)

)
. (5.4)

19



The unique non-trivial fixed point of these scaled beta functions is at

g̃∗1 = 1, g̃∗2 = −42, g̃∗3 = 6, g̃∗4 = 54,

g̃∗5 = −12, g̃∗6 = 6, g̃∗7 = 3, g̃∗8 = 84. (5.5)

For this fixed point, the eigenvalues of the matrix ∂β̃i
∂g̃j

are

λi = 6, 2, 2, − 2, − 2, − 2, − 2, − 2 . (5.6)

That there are unstable directions at the “prismatic” fixed point also follows from the solution

of the Schwinger-Dyson equations.3 Using (4.3) we see that the large N dimension of the

triple-trace operator (φabcφabc)3 is 3(1 − ε) + O(ε2), which means that it is relevant in d =

3 − ε and is one of the operators corresponding to eigenvalue −2. On the other hand, the

prism operator is irrelevant and corresponds to eigenvalue 2. Another irrelevant operator

is Otetraφ
abcφabc; from (4.8) it follows that its large N dimension is 3 + 5ε + O(ε2), so it

corresponds to eigenvalue 6.

We have also calculated the 1/N corrections to the fixed point (5.5):

g̃∗1 = 1− 6

N
+

18

N2
+ . . . ,

g̃∗2 = −42 +
384

N
+

8592

N2
+ . . . ,

g̃∗3 = 6 +
1848

N2
+ . . . ,

g̃∗4 = 54− 132

N
+

16392

N2
+ . . . ,

g̃∗5 = −12 +
30

N
+

2340

N2
+ . . . ,

g̃∗6 = 6 +
36

N
− 1320

N2
+ . . . ,

g̃∗7 = 3 +
174

N
+

7080

N2
+ . . . ,

g̃∗8 = 84 +
6732

N
+

309204

N2
+ . . . (5.7)

3 At finite N , using the beta functions given in the Appendix, we are able to find and study additional
fixed points numerically. The analysis of behavior of the beta-functions shows that they are all saddle points
and, therefore, neither stable in the IR nor in the UV.
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For the scaling dimension of φ, we find from (A.10):

∆φ =
d− 2

2
+ γφ =

1

2
− ε

2
+ ε2

(
1− 12

N
+

75

N2
+ . . .

)
+O(ε3) . (5.8)

In the large N limit, (5.8) is in agreement with the solution of the S-D equation (4.1). For

the scaling dimension of φabcφabc, we find

∆φ2 = d− 2 + γφ2 = 1− ε+ 32ε2
(

1− 12

N
+

75

N2
+ . . .

)
+O(ε3) . (5.9)

In the large N limit this is in agreement with (4.3). In general, calculating the 1/N cor-

rections in tensor models seems to be quite difficult [40], but it is nice to see that in the

prismatic QFT the 3− ε expansion provides us with explicit results for the 1/N corrections

to scaling dimensions of various operators.

The scaling dimension of the marginal prism operator is

∆prism = d+
dβ̃1

dg̃1

= 3− ε− 2ε+ 4εg̃∗1 + . . . = 3 + ε+O(ε2) , (5.10)

which is in agreement with (4.4).

We have also performed two-loop calculations of the scaling dimensions of the tetrahedron

and pillow operators; see the appendix for the anomalous dimension matrix. In the large N

limit, we find

∆tetra = 2(d− 2) + γtetra = 2 + 6ε+O(ε2) ,

∆pillow = 2(d− 2) + γpillow = 2− 2ε+O(ε2) , (5.11)

which is in agreement with the S-D result (4.8). Thus, we see that the large N 3 − ε

expansions from the Schwinger-Dyson approach have passed a number of 2-loop consistency

checks.

We have also solved the equations for the fixed points of two-loop beta functions numer-

ically for finite N . The results for the prismatic fixed point are shown in table 1. These

results are in good agreement with the analytic 1/N expansions (5.7) for N ≥ 200. At

N = Ncrit, where Ncrit ≈ 53.65, the prismatic fixed point in 3 − ε dimensions merges with
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N g̃∗1 g̃∗2 g̃∗3 g̃∗4 g̃∗5 g̃∗6 g̃∗7 g̃∗8 γφ/ε
2

54 0.89 -33.06 7.87 83.69 -11.13 6.86 27.37 2047.16 0.80
100 0.94 -37.56 6.23 55.35 -11.53 6.28 5.98 212.08 0.89
200 0.97 -39.90 6.05 53.8 -11.80 6.15 4.09 127.90 0.94
400 0.99 -40.99 6.01 53.78 -11.91 6.08 3.48 103.03 0.97
2000 1.00 -41.81 6.00 53.94 -11.98 6.02 3.09 87.45 0.99
5000 1.00 -41.92 6.00 53.97 -11.99 6.01 3.04 85.36 0.998
10000 1.00 -41.96 6.00 53.99 -12.00 6.00 3.02 84.68 0.999
100000 1.00 -42.00 6.00 54.00 -12.00 6.00 3.00 84.07 1.00

Table 1: The numerical solutions for the coupling constants defined in (5.3)

another fixed point;4 they are located at

g̃∗1 = 0.89, g̃∗2 = −32.90, g̃∗3 = 8.24, g̃∗4 = 92.01,

g̃∗5 = −11.15, g̃∗6 = 7.00, g̃∗7 = 35.33, g̃∗8 = 3155.29 . (5.12)

For N < Ncrit both of them become complex. For example, for N = 53.6 the two complex

fixed points are at

g̃∗1 = 0.89− 0.0002i, g̃∗2 = −32.89 + 0.04i, g̃∗3 = 8.24 + 0.15i, g̃∗4 = 91.98 + 3.51i,

g̃∗5 = −11.15− 0.01i, g̃∗6 = 7.00 + 0.06i, g̃∗7 = 35.19 + 3.61i, g̃∗8 = 3107.77 + 554.01i

(5.13)

and at the complex conjugate values.

6 Bosonic Quantum Mechanics

The action (1.2) for d = 1 describes the quantum mechanics of a particle moving in N3

dimensions with a non-negative sextic potential which vanishes at the origin.5 Such a problem

should exhibit a discrete spectrum with positive energy levels, and it is conceivable that in the

large N limit the gaps become exponentially small, leading to a nearly conformal behavior.

4 This is similar, for example, to the situation in theO(N) invariant cubic theory in 6−ε dimensions [41,42],
where Ncrit ≈ 1038.266. For general discussions of mergers of fixed points, see [28,30].

5 A very similar d = 1 model with a stable sextic potential was studied in [43,44] using the formulation [45]
where a rank-3 tensor is viewed as D matrices. It was argued [43, 44] that the sextic bosonic model does
not have a good IR limit. We, however, don’t find an obvious problem with the prismatic d = 1 model
because the complex scaling dimensions are absent for the bilinear operators. We note that the negative
scaling dimension (2.15), which we find for φ, is quite far from the 1/6 mentioned in [43,44].

22



For moderate values of N , this quantum mechanics problem may even be accessible to

numerical studies.

Solving for the scaling dimensions of type A/C bilinears in d = 1, we find that the

low-lying eigenvalues are

∆ = 1, 1.57, 2, 3.29, 4.12, 5.36, 6.14, 7.38, 8.15, 9.39, 10.15, 11.40, . . . (6.1)

The plot for the eigenvalues is shown in figure 13.

2 4 6 8
Δ

-1

1

2

3

4

g(A)(1, Δ)

Figure 13: The spectrum of scalar type A/C bilinears in 1d. Red vertical lines are asymptotes
corresponding to −2∆φ+2n and green vertical lines are asymptotes corresponding to −2∆χ+
2n.

The smallest positive eigenvalue, ∆ = 1, is the continuation of the solution ∆ = d

present for any d. As discussed in section (4), it may correspond to a redundant operator.

The next scaling dimension, ∆ = 1.57317, may correspond to a mixture involving φabcφabc.

The appearance of scaling dimension 2, which was also seen for the fermionic SYK and tensor

models, means that the its dual6 should involve dilaton gravity in AdS2 [47–50].

Let us also list the type B scaling dimensions, i.e. the ones corresponding to operators

φabc∂2n
t χ

abc. Here we find real solutions ∆ = 1.01, 2.96, 4.94, 6.93, . . ..

For large excitation numbers n, the type A/C scaling dimensions appear to (slowly)

approach −2∆φ+ 2n and −2∆χ+ 2n rather than 2∆φ+ 2n and 2∆χ+ 2n, as shown in figure

4. The type B scaling dimensions also appear to slowly approach −∆φ − ∆χ + 2n rather

than ∆φ+∆χ+2n. This is likely due to the fact that ∆φ is negative. Further work is needed

6Of course, as observed in [31,46], there are important differences between the holographic duals of tensor
models and SYK models.
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to understand better the new features of the large N solution in the regime where d < 1.35

and ∆φ < 0.

7 Discussion

In this paper we presented exact results for the O(N)3 invariant theory (1.2) in the prismatic

large N limit where g1N
3 is held fixed. This approach may be generalized to an O(N)p

invariant theory of a rank-p bosonic tensor φa1...ap , with odd p ≥ 3. It has a positive

potential of order 2p:

S2p =

∫
ddx

(
1

2
(∂µφ

abc)2 +
g1

(2p)!
(φp)a1...ap(φp)a1...ap

)
. (7.1)

To solve these models in the large N limit where g1N
p is held fixed, we may rewrite the

action with the help of an additional tensor field χ:

S =

∫
ddx

(
1

2
(∂µφ

abc)2 +
g

p!
(φp)a1...apχa1...ap − 1

2
χa1...apχa1...ap

)
. (7.2)

For discussions of the structure of the interaction vertex with odd p > 3, see [5,51,52]. The

models (7.1) are tensor counter-parts of the SYK-like models introduced in [16]; therefore,

the Schwinger-Dyson equations derived there should be applicable to the tensor models. It

would be interesting to study the large N solution of theories with p > 3 in more detail using

methods analogous to the ones used for p = 3.

In this paper we analyzed the renormalization of the prismatic theory at the two-loop

order, using the beta functions in [36,37]. The general four-loop terms are also given there,

and it would be interesting to study the effects they produce. It should be possible to extend

the calculations to even higher loops by modifying the calculations in [39] to an arbitrary

tensorial interaction, which we leave as a possible avenue for future work. In this context, it

would also be interesting to study the possibility of fixed points with other large N scalings,

perhaps dominated by the “wheel” interaction (g2) of figure 1, in addition to the large N

fixed point dominated by the prism interaction (g1) studied in this paper.7

Another interesting extension of theO(N)3 symmetric model (1.2) is to add a 2-component

Majorana fermion ψabc, so that the fields can be assembled into a d = 3 N = 1 superfield

Φabc = φabc + θ̄ψabc + θ̄θχabc (7.3)

7A d = 0 theory with wheel interactions was studied in [53].
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Then the prismatic scalar potential follows if we assume a tetrahedral superpotential for

Φabc [5]. Large N treatments of supersymmetric tensor and SYK-like models with two

supercharges have been given in [16, 25], and we expect the solution of the N = 1 super-

tensor model in d < 3 to work analogously. An advantage of the tensor QFT approach is

that one can also develop the 3− ε expansion using the standard renormalized perturbation

theory. In the supersymmetric case, it is sufficient to introduce only three coupling constants:

W = g1Φa1b1c1Φa1b2c2Φa2b1c2Φa2b2c1

+ g2

(
Φa1b1c1Φa1b1c2Φa2b2c1Φa2b2c2 + Φa1b1c1Φa2b1c1Φa1b2c2Φa2b2c2 + Φa1b1c1Φa1b2c1Φa2b1c2Φa2b2c2

)
+ g3Φa1b1c1Φa1b1c1Φa2b2c2Φa2b2c2 , (7.4)

and it is possible to find explicit expressions for the beta functions and operator scaling

dimensions [54]. Also, directly in d = 3 it is possible to couple the N = 1 theory with the

above superpotential to O(N)k1 × O(N)k2 × O(N)k3 supersymmetric Chern-Simons gauge

theory with levels k1, k2, k3, and derive the corresponding beta functions for couplings gi [54].
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A The two-loop beta functions and anomalous dimen-

sions

In this Appendix we state our explicit two-loop results for the O(N)3 invariant theory with

the 8 coupling constants and interaction terms

g1

6!
φa1b1c1φa1b2c2φa2b1c2φa3b3c1φa3b2c3φa2b3c3 +

g2

6!
φa1b1c1φa1b2c2φa2b2c3φa2b3c1φa3b3c2φa3b1c3

+
g3

3 · 6!

(
φa1b1c1φa2b1c1φa1b2c2φa2b2c3φa3b3c2φa3b3c3 + φa1b1c1φa1b2c1φa2b1c2φa2b2c3φa3b3c2φa3b3c3

+ φa1b1c1φa2b1c1φa1b2c2φa2b3c2φa3b2c3φa3b3c3
)

+
g4

3 · 6!

(
φa1b1c1φa1b1c2φa2b2c2φa2b2c3φa3b3c3φa3b3c1 + φa1b1c1φa2b1c1φa2b2c2φa3b2c2φa3b3c3φa1b3c3

+ φa1b1c1φa1b2c1φa2b2c2φa2b3c2φa3b3c3φa3b1c3
)

+
g5

3 · 6!

(
φa1b1c1φa1b2c2φa2b1c2φa3b2c1φa2b3c3φa3b3c3 + φa1b1c1φa2b1c2φa1b2c2φa1b2c3φa3b2c3φa3b3c3

+ φa1b1c1φa2b2c1φa2b1c2φa1b2c3φa3b3c2φa3b3c3
)

+
g6

6!
φabcφabcφa1b1c1φa1b2c2φa2b1c2φa2b2c1

+
g7

3 · 6!
φabcφabc(φa1b1c1φa1b1c2φa2b2c1φa2b2c2 + φa1b1c1φa2b1c1φa1b2c2φa2b2c2 + φa1b1c1φa1b2c1φa2b1c2φa2b2c2)

+
g8

6!
(φabcφabc)3 . (A.1)

We find

β1 =− 2g1ε+
1

270(8π)2

(
(g2

5 + 3(g2
1 + 8g2

6))N3 + 3(3g2
5 + 4(2g1 + 3g2 + 4g6)g5 + 6g1(g1 + 3g2))N2

+ 2(32g2
5 + (90g1 + 72g2 + 96g6)g5 + 6g4(9g2 + 4g5) + 9(5g2

1 + 6g2g1 + 16g6g1 + 8g7g1 + 9g2
2

+ 24g2g6))N + 2g2
3(N(N + 6) + 55) + 2g3(9N(g1(N + 8) + 8g2) + 6g4(N + 6)

+ 2g5(N + 10)(2N + 5) + 2(60g1 + 63g2 + 96g6 + 16g7)) + 2(36g2
4 + 36(5g1 + 3g2 + 2g5)g4

+ 80g2
5 + 4g5(45g1 + 4(9g2 + 6g6 + 8g7)) + 3(34g2

1 + 12(7g2 + 4g6 + 2g7 + 20g8)g1 + 27g2
2

+ 128g2
6 + 48g2(g6 + 2g7))

)
(A.2)
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β2 =− 2g2ε+
1

270(8π)2

(
g5(12g1 + g5)N2 + 2(13g2

5 + 18(g1 + g2)g5 + 9g1(g1 + 2g4 + 8g6) + 72g2g7)N

+ 2g2
3(N(N + 6) + 19) + 2g3(3N(3g2(N + 4) + 8g1) + 6g4(N + 2) + 6g5(N + 6) + 30g1 + 36g2

+ 32g7) + 2(36g2
1 + 54g2g1 + 96g7g1 + 45g2

2 + 12g2
4 + 20g2

5 + 12g4(3g1 + 9g2 + 2g5)

+ 12g5(4g1 + 3g2 + 8g6) + 72g2g7 + 720g2g8)
)

(A.3)

β3 =− 2g3ε+
1

270(8π)2

(
2(g2

5 + 8g2
7)N3 + 3(6g2

1 + 12g5g1 + 27g2
2 + 5g2

5)N2 + 2(83g2
5 + 2(66g1

+ 63g2 + 48g6 + 64g7)g5 + 9(2g1 + 3g2)(4g1 + 3g2) + 96(g1 + 3g2)g7)N + g2
3(N(N(2N + 31)

+ 244) + 388) + 18g2
4(N(N + 16) + 12) + 12g4(3g1(N + 1)(N + 14) + g5(5N(N + 6) + 72)

+ (N + 2)(9g2(N + 3) + 8g7N) + 96g6 + 64g7) + 4g3(3g4(N(N(N + 6) + 28) + 102)

+N(g5(11N + 74) + 6(g1 + 3g2 + 4g7)N + 66g1 + 72g2 + 60g6 + 84g7) + 194g5

+ 3(71g1 + 81g2 + 32g6 + 76g7 + 120g8)) + 4(92g2
5 + 2(93g1 + 90g2 + 72g6 + 80g7)g5

+ 128g2
7 + 9(7g2

1 + 15g2g1 + 9g2
2 + 24(g1 + g2)g6) + 144(g1 + g2)g7)

)
(A.4)

β4 =− 2g4ε+
1

270(8π)2

(
(g2

5 + 8g2
7)N3 + 4g5(3g1 + g5)N2 + 6(3g2

1 + 9g2
5 + 8(g1 + 3g2)g7

+ 2g5(5g1 + 9g2 + 4(g6 + 3g7)))N + 2g2
3(N(N(N + 7) + 34) + 113) + 9g2

4(N(N + 2)2 + 52)

+ 4g3(9g2(N + 2)2 + 3g1(N + 1)(N + 13) +N(g4(6N + 75) + g5(6N + 31) + 8g7(N + 4))

+ 16(3g4 + 5g5 + 6g6 + 5g7)) + 12g4(3g1(N + 12) + 2g5(N(N + 6) + 13) + 8N(g7(N + 2) + 3g6)

+ 48g2 + 44g7 + 120g8) + 2(54g2
1 + 162g2g1 + 96g7g1 + 81g2

2 + 58g2
5 + 128g2

7

+ 4g5(27g1 + 27g2 + 24g6 + 32g7))
)

(A.5)
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β5 =− 2g5ε+
2

270(8π)2

(
(3(g1g5 + 8g6g7)N3 + 2(9g2

1 + 9(3g2 + g5)g1 + g5(27g2 + 6g5 + 16g7))N2

+ (99g2
1 + 6(45g2 + 35g5 + 36g6 + 40g7)g1 + 81g2

2 + 216g2(g5 + g6)

+ 4g5(21g5 + 42g6 + 38g7))N + g2
3(N(5N + 52) + 161) + 36g2

4(N + 3)

+ 3g4(12g1(N(N + 5) + 12) + g5(N(N(N + 6) + 52) + 132) + 6(N + 2)(4g6N + 9g2)

+ 96g6 + 64g7) + 2g3(6g1(N(3N + 16) + 37) + 9g2(10N + 23) +N(g4(6N + 39)

+ g5(N(N + 13) + 97) + 24g6(N + 4)) + 6(23g4 + 33g5 + 32g6 + 24g7)) + 270g2
1

+ 243g2
2 + 212g2

5 + 432g1g2 + 444g1g5 + 504g2g5 + 432g1g6 + 432g2g6

+ 384g5g6 + 384g1g7 + 288g2g7 + 328g5g7 + 768g6g7 + 720g5g8)
)

(A.6)

β6 =− 2g6ε+
2

270(8π)2

(
2(g5g7 + 3g6(g1 + 12g8))N3 + (6(9g2g6 + 4(g1 + 2g6)g7)

+ g5(3g1 + 12g6 + 10g7 + 72g8))N2 + (7g2
5 + 2(3g1 + 9g2 + 12g6 + 32g7 + 72g8)g5

+ 3(3g1 + 12(2g6 + g7 + 12g8)g1 + 48g2
6 + 8(3g2 + 5g6)g7))N + g2

3(4N + 6)

+ 3g4(12g1N + g5(N(N + 6) + 10) + 4g7(N + 2) + 18g2 + 60g6) + 2g3(6g1(N + 4)

+ g5(N(N + 6) + 19) + 3g6(N(N + 10) + 4) + 2g7N(N + 5) + 9g2 + 21g4 + 18(g7 + 4g8))

+ 13g2
5 + 48g2

7 + 36g1g2 + 30g1g5 + 18g2g5 + 48g1g6 + 72g2g6 + 108g5g6 + 120g1g7

+ 36g2g7 + 92g5g7 + 120g6g7 + 432g2g8 + 144g5g8 + 1296g6g8

)
(A.7)
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β7 =− 2g7ε+
1

270(8π)2

(
4(3g5g6 + g7(2g3 + 3g4 + 36g8))N3 + (10g2

3 + 24(g4 + 3g6

+ 2(g7 + 6g8))g3 + 7g2
5 + 3(9g2

4 + 8(3g6 + 2(g7 + 9g8))g4 + 8(5g2
7 + (g1 + 3g2 + 2g5)g7

+ (3g1 + g5)g6)))N2 + (9g2
1 + 54g5g1 + 72g6g1 + 216g7g1 + 48g2

3 + 63g2
4 + 22g2

5 + 216g2
6

+ 216g2
7 + 216g2g6 + 216g5g6 + 144g2g7 + 160g5g7 + 576g6g7 + 144(3g1 + 9g2 + 5g5)g8

+ 6g4(6g1 + 18g2 + 21g5 + 36g6 + 52g7 + 72g8) + 4g3(3g1 + 9g2 + 36g4 + 19g5 + 42g6

+ 90g7 + 144g8))N + 2(27g2
1 + 3(9g2 + 23g3 + 30g4 + 12g5 + 48g6 + 40g7 + 144g8)g1

+ 9g2(7g3 + 6(g5 + 2g6 + 4g7)) + 2(31g2
3 + (81g4 + 50g5 + 114g6 + 112g7 + 216g8)g3

+ 54g2
4 + 21g2

5 + 108g2
6 + 96g2

7 + 66g5g6 + 106g5g7 + 144g6g7 + 72(2g5 + 9g7)g8

+ 3g4(17g5 + 36g6 + 66g7 + 72g8)))
)

(A.8)

β8 =− 2g8ε+
1

270(8π)2

(
2(g5(2(3g6(N2 +N + 3) + 7g7(N + 1) + 36g8) + 3g1) + 2(3g2

6N
3

+ g2
7N

3 + 18g2
8(3N3 + 22) + 3g2

7N
2 + 12g6g7N

2 + 72g8(g7(N2 +N + 1) + 3g6N) + 9g2
6N

+ 21g2
7N + 12g6g7N + g1(9g6N + 6g7) + 6g2

6 + 23g2
7 + 9g2g6 + 48g6g7) + g2

5(N + 1)

+ 3g4(2(6g6N + g7(N(N + 3) + 5) + 36g8) + 3g5)) + g2
3(2N + 9) + 4g3(3g4N + 3g6(2N + 5)

+ 2g7(N(N + 3) + 7) + 36g8N + 2g5) + 9g2
2 + 39g2

4

)
(A.9)
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and

γφ =
1

12 · 902(8π)4

(
(3g2

1 + 9g2
2 + g2

3 + 3g2
4 + g2

5 + 12g2
6 + 4g2

7 + 72g2
8)N6 + (6g2

3 + 2(3g1 + 9g2

+ 6(g4 + g5) + 8g7)g3 + 9g2
4 + 5g2

5 + 12g2
7 + 54g1g2 + 24g1g5 + 24g5g6 + 48g6g7

+ 12g4(g5 + 2g7) + 144g7g8)N5 + (81g2
1 + 12(9g3 + 6g4 + 5g5 + 12g6 + 2g7)g1 + 81g2

2

+ 39g2
3 + 27g2

4 + 51g2
5 + 36g2

6 + 84g2
7 + 108g3g4 + 76g3g5 + 72g4g5 + 96g3g6 + 144g4g6

+ 48g5g6 + 80g3g7 + 96g4g7 + 88g5g7 + 48g6g7 + 36g2(2g3 + g4 + 4g5 + 2g7)

+ 144(g3 + g4 + 3g6 + g7)g8)N4 + (102g2
1 + 6(75g2 + 47g3 + 54g4 + 64g5 + 24g6

+ 68g7 + 24g8)g1 + 54g2
2 + 160g2

3 + 171g2
4 + 143g2

5 + 120g2
6 + 148g2

7 + 432g2
8 + 288g3g4

+ 344g3g5 + 336g4g5 + 336g3g6 + 288g4g6 + 360g5g6 + 336g3g7 + 336g4g7 + 296g5g7

+ 336g6g7 + 144(2g3 + 3(g4 + g5) + g7)g8 + 18g2(19g3 + 24g4 + 14g5 + 32g6 + 12g7 + 24g8))N3

+ 2(189g2
1 + 6(45g2 + 58g3 + 66g4 + 49g5 + 72g6 + 54g7 + 108g8)g1 + 216g2

2 + 177g2
3

+ 189g2
4 + 176g2

5 + 216g2
6 + 120g2

7 + 318g3g4 + 330g3g5 + 336g4g5 + 360g3g6 + 288g4g6

+ 312g5g6 + 328g3g7 + 312g4g7 + 372g5g7 + 336g6g7 + 72(4g3 + 4g4 + 5g5 + 4g7)g8

+ 18g2(17g3 + 19g4 + 20g5 + 12g6 + 26g7 + 12g8))N2 + 4(81g2
1 + 3(63g2 + 63g3

+ 51g4 + 64g5 + 60g6 + 70g7 + 36g8)g1 + 81g2
2 + 87g2

3 + 72g2
4 + 90g2

5 + 72g2
6 + 96g2

7

+ 207g3g4 + 185g3g5 + 189g4g5 + 156g3g6 + 216g4g6 + 204g5g6 + 184g3g7 + 174g4g7

+ 182g5g7 + 168g6g7 + 36(6g3 + 3g4 + 5g5 + 12g6 + 4g7)g8 + 9g2(23g3 + 18g4 + 19g5

+ 24g6 + 18g7 + 36g8))N + 4(48g2
1 + (90g2 + 78g3 + 90g4 + 84g5 + 72g6 + 60g7 + 72g8)g1

+ 45g2
2 + 43g2

3 + 51g2
4 + 42g2

5 + 48g2
6 + 52g2

7 + 144g2
8 + 72g3g4 + 82g3g5 + 78g4g5 + 96g3g6

+ 72g4g6 + 72g5g6 + 84g3g7 + 96g4g7 + 76g5g7 + 96g6g7 + 18g2(4g3 + 5g4 + 5g5 + 4(g6 + g7))

+ 72(g3 + 2g4 + g5 + 2g7)g8)
)

(A.10)

At the two-loop level we also find the relation γφ2 = 32γφ.

We can study the anomalous dimensions for quartic operators

O1 = Otetra = φa1b1c1φa1b2c2φa2b1c2φa2b2c1 ,

O2 = Opillow =
1

3
(φa1b1c1φa2b1c1φa1b2c2φa2b2c2 + φa1b1c1φa1b2c1φa2b1c2φa2b2c2 + φa1b1c1φa1b1c2φa2b2c1φa2b2c2)

O3 = Od.t. = φa1b1c1φa1b1c1φa2b2c2φa2b2c2 . (A.11)

The matrix of anomalous dimensions for quartic operators can be written in the following
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way

γ11
O =

1

720π2

(
2(6g1 + 2g3 + 3g4 + 5g5 + 2g7 + 12g8) + g1(N3 + 12N + 8) + 4(g5 + 3g6 + g7)N+

+9g2N
2 + 2g5N

2 + g3

(
6N +N2

))
,

γ12
O =

1

2160π2

(
2(9g2 + 9g3 + 6g4 + 11g5 + 12g6 + 8g7) + 6g1(6 + 3N + 2N2) + 36g2N + 6g4N+

+12g6(2N +N2) + 2g3(5N +N2) + g5(24N + 5N2 +N3)
)

γ13
O =

1

180π2

(
6g2 + 2g3 + 6g1N + g6(8 +N3) + g5(2 + 2N +N2)

)
γ21
O =

1

720π2

(
2(12g1 + 9g2 + 11g3 + 12g4 + 9g5 + 12g6 + 8g7) + g5N

3+

+2(3g1 + 9g2 + 7g3 + 9g4 + 9g5 + 6g6 + 10g7)N + 2(3(g1 + g3 + g4) + g5)N2
)

γ22
O =

1

2160π2

(
64g3 + 66g4 + 62g5 + 48g6 + 60g7 + 72g8 + 6g1(N + 1)(N + 8) + 18g2(4 + 2N +N2)+

+3g4(18N + 4N2 +N3) + 2g3(27N + 6N2 +N3) + 4(6g6N + 4g7(2N +N2) + g5(10N + 3N2))
)

γ23
O =

1

180π2

(
6g3 + 6g4 + 4g5 + 8g7 + 3g1(N + 2) + 9g2N + 5g5N + g7N

3 + 3g4(N2 +N)+

+2g3(2N +N2)
)

γ31
O =

1

720π2

(
3g2 + 3g5 + 4g6 + 8g7 + 3g1N + g3(5 + 2N) + 6g4N + g5(N2 +N)+

+4(g7N + 9g8N + g7N
2) + 2g6(3N +N3)

)
γ32
O =

1

2160π2

(
6g1 + 7g5 + 24g6 + 22g7 + 36g8 + 2g3(5 + 3N +N2) + 3g4(5 + 3N +N2) + 7g5N+

+12g6(N +N2) + 36g8(N +N2) + 2g7(13N + 3N2 +N3)
)

(A.12)

The results for the quartic operator dimensions in the prismatic large N limit are listed in

(5.11).

A consistent truncation of the system of eight coupling constants is to keep only g8 non-

vanishing, since the triple-trace term is the only one which has O(N3) symmetry. Then we

find

β8 = −2g8ε+
1

15(8π)2
g2

8(3N3 + 22) , γφ =
1

1350(8π)4
g2

8(N3 + 2)(N3 + 4) , (A.13)

in agreement with [37,39]. Thus, there is a fixed point with

g∗8 =
30(8π)2ε

3N3 + 22
, g∗i = 0, i = 1, . . . , 7 . (A.14)
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At this fixed point,

∂β8/∂g8 = −2ε+
2

15(8π)2
g∗8(3N3 + 22) = 2ε+O(ε2) , (A.15)

so the triple-trace operator is irrelevant. However, the other 7 operators appear to be relevant

for sufficiently large N . For example,

∂β1

∂g1

= −2ε+
2g∗8

9(8π)2
= ε

(
−2 +

20

3(3N3 + 22)

)
+O(ε2) . (A.16)

So, this fixed point has 7 unstable directions. Examination of 4-loop and higher corrections

[37, 39] shows that the 3 − ε expansions of operator dimensions at this fixed point do not

generally have a finite large N limit starting with order ε3. This is in contrast with the

prismatic fixed point where all the g∗i are non-vanishing and scale as (5.3); as a result, the

large N limit is smooth.
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