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Abstract

Internet-of-Things and machine learning promise a new era for health-
care. The emergence of transformative technologies, such as Implantable
and Wearable Medical Devices (IWMDs), has enabled collection and
analysis of physiological signals from anyone anywhere anytime. Machine
learning allows us to unearth patterns in these signals and make health-
care predictions in both daily and clinical situations. This broadens the
reach of healthcare from conventional clinical contexts to pervasive ev-
eryday scenarios, from passive data collection to active decision-making.

Despite the existence of a rich literature on IWMD-based and clin-
ical healthcare systems, the fundamental challenges associated with
design and implementation of smart healthcare systems have not been
well-addressed. The main objectives of this article are to define a stan-
dard framework for smart healthcare aimed at both daily and clinical
settings, investigate state-of-the-art smart healthcare systems and their
constituent components, discuss various considerations and challenges
that should be taken into account while designing smart healthcare sys-
tems, explain how existing studies have tackled these design challenges,
and finally suggest some avenues for future research based on a set of
open issues and challenges.
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and TrendsR© in Electronic Design Automation, vol. XX, no. XX, pp. 1–67, 2018.
DOI: 10.1561/XXXXXXXXXX.



1
Introduction

A rapidly aging population and the dramatic increase in the cost of
in-hospital healthcare have led to the recognition of the importance of
efficient healthcare systems [Nia et al., 2015] and fostered several novel
research directions at the intersection of healthcare, data analytics,
wireless communication, embedded systems, and information security.
Implantable and Wearable Medical Devices (IWMDs), which facilitate
non-invasive prevention, early diagnosis, and continuous treatment
of medical conditions, are envisioned as key components of modern
healthcare [Ghayvat et al., 2015, Mukhopadhyay, 2015, Mosenia et al.,
2017b]. The computational power, energy capacity, and networking
capabilities of IWMDs have improved significantly in the last decade
while their sizes have decreased drastically. These technological advances
have brought daily healthcare systems from a distant vision to the verge
of reality. Furthermore, the emergence of Internet-of-Things (IoT) and
the introduction of new computing/networking paradigms (such as
Cloud computing and Fog computing), which make possible systems
consisting of several heterogeneous sensing and computing devices, have
revolutionized traditional healthcare and provided an opportunity to
replace in-hospital medical systems with Internet-connected IWMD-

2



3

based systems, thus bringing us to the dawn of a new era of smart
healthcare.

Smart healthcare does not have a unique definition. However, our
broad interpretation of smart healthcare is that besides clinical usage,
it also utilizes IWMDs to gather, store, and process various types of
physiological data during daily activities. Smart healthcare systems may
rely on wireless connectivity to take advantage of external resources,
e.g., computational/storage resources available on nearby devices or the
Cloud, or inform a clinician about the patient’s medical condition. Hence,
smart healthcare offers a proactive approach to early detection and
even prevention of medical conditions. It even enables physicians and
clinicians to assist patients in their home environment where they can be
continuously monitored with the help of numerous Internet-connected
healthcare systems. This reduces the need for institutionalization and
hospitalization, and is especially beneficial to the disabled and elderly.
It also has the potential to reduce healthcare costs significantly and
enhance the quality of life of patients.

Since the introduction of the first IWMD (an implantable pacemaker)
in 1958, several types of IWMDs have been developed and introduced in
the market, ranging from sweat-analyzing devices [Gao et al., 2016] to
Internet-connected multi-sensor continuous long-term health monitoring
systems [Nia et al., 2015, Pantelopoulos and Bourbakis, 2010]. However,
despite a rich body of literature on IWMD-based and clinical healthcare
systems (see [Pantelopoulos and Bourbakis, 2010], [Mosenia et al.,
2017b], and [Musen et al., 2014] for a comprehensive survey), the
fundamental challenges associated with design and implementation of
smart healthcare systems have not yet been well-addressed. The main
goals of this article are to define the scope of smart healthcare and
investigate state-of-the art smart healthcare systems, their constituent
components, their design considerations, and how existing studies have
tackled these challenges. In particular, we do the following.
• We present a novel framework for smart healthcare, which aims

to support both in-patient and out-patient health monitoring and
discuss and compare clinical and daily healthcare.

• We describe several emerging smart healthcare systems, including
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IBM Watson [High, 2012], Open mHealth [Estrin and Sim, 2010],
Health Decision Support System (HDSS) [Yin and Jha, 2017],
Stress Detection and Alleviation system (SoDA) [Akmandor and
Jha, 2017], and an energy-efficient system for continuous health
monitoring of a patient’s medical condition over the long term
[Nia et al., 2015].

• We discuss several considerations and challenges that should be
taken into account while designing smart healthcare systems.

• We describe five research trends for addressing these design consid-
erations, including compact deep neural networks and compressive
sensing to drastically reduce computation energy and storage, and
MedMon, OpSecure, and SecureVibe to enhance security of health-
care systems.

• Finally, we discuss several future research directions, including
the need to obtain medical datasets and machine learning models
for them, standardization and infrastructure, and the promising
role that Fog computing can play in smart healthcare.

The rest of the article is organized as follows. In Chapter 2, we present
a smart healthcare framework that enables exploitation of the rapid
clinical-to-daily healthcare expansion. In Chapter 3, we analyze five
emerging systems that act as enablers of smart healthcare. In Chapter 4,
we discuss associated design considerations and challenges in these
systems, including efficiency, security, accuracy, cost, responsiveness,
maintainability, scalability, reliability and fault tolerance. In Chapter 5,
we describe five emerging research trends that address some of these
challenges. In Chapter 6, we discuss open issues and future research
directions. Finally, we conclude in Chapter 7.



2
What is Smart Healthcare?

Modern healthcare saves human lives and improves the quality of
life. The average life expectancy has increased by five years in the
past two decades [Salomon et al., 2013]. The wide-ranging impact of
healthcare on billions of people around the globe has spurred enormous
interdisciplinary research efforts and remarkable innovations. However,
for decades, healthcare has been confined to clinics/hospitals. It has
failed to utilize patient data obtained from the daily context, thus
missing out on the ability to catch a disease in its early stages. Recent
years have seen such deficiencies beginning to get addressed by advances
in daily healthcare enabled by IWMDs, i.e., Wearable Medical Sensors
(WMSs) and Implantable Medical Devices (IMDs). The possibility of
daily healthcare monitoring, in conjunction with conventional clinical
healthcare, promises to usher in a new era of smart healthcare.

In this chapter, we present a novel smart healthcare framework
that captures the rapid clinical-to-daily healthcare expansion. This
framework defines the scope of smart healthcare, thus helps unify
various fragmented healthcare tasks under one umbrella.
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6 What is Smart Healthcare?

2.1 The Smart Healthcare Framework

Depending on where healthcare takes place, smart healthcare can be
divided into two major parts: (i) daily healthcare, depicted on the left
of Fig. 2.1, and (ii) clinical healthcare, depicted on the right of Fig. 2.1.
These two parts are separated by the clinical boundary.

The upper section of Fig. 2.1 summarizes the five major tasks that
need to be carried out by smart healthcare:

• Disease prevention: (i) daily prevention

• Disease diagnosis: (ii) daily and (iii) clinical diagnosis

• Disease treatment: (iv) clinical and (v) daily treatments

These five tasks fall under three categories that correspond to the three
most critical challenges of modern healthcare: prevention, diagnosis,
and treatment of human diseases. Each task constitutes a vibrant
research field that includes challenging research topics such as fitness
tracking, daily disease diagnosis, physician variance reduction, treatment
plan selection, and precision medicine (summarized in bullet points in
Fig. 2.1). These five tasks need to be carried out in a sequential and
circular manner, as indicated by the arrows in Fig. 2.1. This directed
loop is referred to as the smart healthcare loop.

We call healthcare systems ‘smart’ when they have a decision-making
ability. This ability is enabled by data analytics, as shown in the lower
section of Fig. 2.1. Information distillation starts with various data types
of interest that may assist decision-making. Data types vary from phys-
iological and environmental readings in the daily context to physician
observations and laboratory test results in the hospital/clinic. These
data must be efficiently captured, processed, and securely transmitted to
the upper levels of the healthcare system, assisted by machine learning
engines, such as WEKA [Hall et al., 2009] and TensorFlow [Abadi et al.,
2016], to extract health inferences. These health inferences form an
integral part of the tasks in the loop.
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Daily Healthcare Clinical Healthcare

Smart Healthcare

(ii) Daily Diagnosis

• WMS-based diagnosis

(i) Daily Prevention

• Fitness checkup
• Activity tracking
• Emotion analysis
• Disease risk prediction

(v) Daily Treatment

• Out-patient therapy
• Ambient healthcare
• Disease status monitoring
• Precision medicine

(iv) Clinical Treatment

• Treatment plan selection
• Treatment method evaluation
• In-patient monitoring
• Precision medicine

(iii) Clinical Diagnosis

• Physician variance reduction
• Personalized diagnosis
• PME reduction

Clinical Boundary

Systems & Analytics

• Health server
• Edge
• IWMDs

Data
• Physiological data
• Environmental data
• Genetic data
• Historical records
• Demographics

Machine 
learning engine

Systems & Analytics

• CDSS
• EHRs

Machine 
learning engine

Data
• Physician observations
• Laboratory test results
• Genetic data
• Historical records
• Demographics

Figure 2.1: The smart healthcare framework.



8 What is Smart Healthcare?

Next, we zoom into clinical healthcare and then daily healthcare
and discuss them in detail.

2.2 Clinical Healthcare

Despite remarkable progress over the past few decades, the clinical
healthcare system in the U.S. is still far from being optimal. For example,
a recent study [Makary and Daniel, 2016] shows that Preventable
Medical Errors (PMEs) accounted for more than 251,000 deaths in 2013,
making it the third leading cause of death in the U.S. hospitals after
heart disease and cancer. This is substantially higher than the 98,000
deaths due to preventable medical errors mentioned in the 1999 IOM
report [Kohn et al., 2000].

Computerized information systems, e.g., Clinical Decision Support
Systems (CDSSs) and Electronic Health Records (EHRs), provide physi-
cians and healthcare providers with intelligently filtered clinical sug-
gestions, thus can greatly improve the quality of clinical healthcare.
More than 66% of EHR-based CDSSs have been shown to significantly
improve clinical practice in the long run [Hunt et al., 1998]. As a result,
more hospitals and clinics are adopting CDSSs and EHRs to assist
physicians. This was aided by the Health Information Technology for
Economic and Clinic Health Act of 2009 that was accompanied by a
$27B federal disbursement.

The sharp increase in the amount of patient-specific clinical data
provides a fertile resource for machine learning algorithms to derive
healthcare inference. Rapid algorithmic advancements in machine learn-
ing have even enabled super-human clinical decision-making perfor-
mance. For example, a deep Convolutional Neural Network (CNN) has
been shown to perform on par with 21 board-certified dermatologists
in skin cancer classification [Esteva et al., 2017]. CheXNet, a 121-layer
CNN, was able to beat the average performance of four radiologists
in pneumonia detection and analysis [Rajpurkar et al., 2017]. Deep
Patient [Miotto et al., 2016] deploys a three-layer stack of auto-encoders
to capture the regularities and dependencies in the aggregated EHRs
of 700,000 patients. It uses the extracted rules for disease risk predic-



2.3. Daily Healthcare 9

tion and achieves very high accuracy on 76,214 test patients with 78
diseases. With the help of massive parallel deep learning on Graphi-
cal Processing Units (GPUs), DeepBind analyzes millions of genome
sequences (previously between 10,000 and 100,000) to identify causal
disease variants [Alipanahi et al., 2015]. This speeds up exploration of
relationships among DNA, key molecules in cells, and associated disease
risks, thus assisting with the development of precision medicine [Leung
et al., 2016].

However, clinical healthcare is still restricted to hospitals/clinics. It
has very limited access to the daily health status of patients, a context
in which most diseases actually develop and are treated [Estrin and Sim,
2010]. This can lead to many deficiencies. For example, daily health data
form an extremely important and sometimes the only information source
for physicians and CDSSs for making diagnostic decisions. Relying on
self-reported symptom recalls from patients can be quite error-prone,
given that symptoms often may not even be noticeable by an individual.
These shortcomings point to the need to complement clinical healthcare
in the daily scenario.

2.3 Daily Healthcare

As opposed to decades-long advancements in clinical innovations, daily
healthcare is an emerging research field. It requires a steady, consistent,
accurate, yet user-transparent, data acquisition mechanism. This has
only been made feasible by recent advancements in low-power sensors
and signal processing techniques.

The past decade has witnessed the deployment of many disruptive
sensors in IWMDs, stationary sensors in house/office/gym, and em-
bedded sensors in mobile phones. These sensors can consistently and
persistently collect vast amounts of health-related data in the daily
context to enable decision-making. This falls under an IoT paradigm
where things communicate and cooperate with each other pervasively to
achieve common goals [Atzori et al., 2010]. The IoT framework contains
three hierarchical computation layers: sensor, edge, and the Cloud. In
the context of healthcare, the three IoT layers sequentially transform
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health-related data, such as physiological signals and environmental
readings, into purposeful healthcare inferences, such as disease diagnosis
and activity prediction, thus delivering smartness to daily healthcare.
With the need to support billions of devices, the current IoT framework
suffers from a limited sensor energy budget, constrained communica-
tion bandwidth, limited server storage, and a wide attack surface for
malicious adversaries [Li et al., 2011, Halperin et al., 2008, Yin et al.,
2015]. These shortcomings lead to significant design challenges, such as
the need for efficiency and security. We discuss these design consider-
ations in Chapter 4 and the techniques to address these challenges in
Chapter 5.

Hitherto, two major approaches have been used to obtain healthcare
inference along the IoT hierarchy:

• A top-down approach from the Cloud: this approach starts from
the Cloud to obtain population-level inferences and extract general
rules. The data amount that such an approach needs to tackle
is large, typically terabytes (1012 B) or more. Consequentially,
this approach suffers from high analysis costs for data collection,
storage, and pre-processing. IBM Watson1 uses this approach, as
explained in detail in Chapter 3.

• A bottom-up approach from the sensor/edge: this approach starts
with the user side to obtain individualized inferences. It typically
assembles and analyzes the data from relatively smaller patient
groups. As a result, it enables a fine-grained analysis that can
lead to more accurate individualized models. The amount of data
that needs to be analyzed is typically in the megabytes (106 B)
to gigabytes (109 B) range, hence much smaller than the top-
down approach. Hence, it reduces associated costs for machine
learning model generation. Examples using this approach include
Open mHealth [Estrin and Sim, 2010], HDSS [Yin and Jha, 2017]
and SoDA [Akmandor and Jha, 2017], as explained in detail in
Chapter 3.

1IBM Watson, https://www.ibm.com/watson.
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General model 
out1 = G(input1)

Individualized model 
out2 = I(input2)

Training data acquisition Cloud Sensor/edge

Model cost High Low

Data amount Large (TB) Small (MB)/medium (GB)

Target General rules Individual traits

Hybrid inference model 
outfinal = H(out1, out2)

Figure 2.2: A hybrid inference model for daily healthcare.

However, neither approach is mature yet. A top-down approach,
which yields a generalized population-level model, may fail to cater to
individual patients by not being able to accommodate his/her personal
traits. This is also a fundamental research question faced in personalized
diagnosis and precision medicine. On the other hand, the bottom-up
approach, which yields an individualized model, is limited by the fact
that analysis of data from a single patient group may fail to yield general
rules applicable at the population level. This may lead to inference
models that perform well within the group, but are not generalizable
to other groups since the features may not be drawn from the same
probability distribution.

To address the above concerns, we describe a potential inference
model for smart healthcare as an ensemble of both generalized and
individualized models. We refer to it as a hybrid inference model, as
shown in Fig. 2.2. The meta learner function H(·) accepts inputs from
both the generalized function G(·) and individualized function I(·) as
its base learners. This can effectively:

• tune a generalized model to each individual, given his/her personal
physiological traits, and

• augment an individualized model with additional ground truths
and larger knowledge base.



3
Emerging Smart Healthcare Systems

There is a need for ubiquitous healthcare to improve human well-being.
Modern healthcare systems have become smart based on unprecedented
advances in data analytics and increasingly pervasive based on rapid
deployment of IoT.

In this chapter, we review several systems from the smart healthcare
domain, including: (i) IBM Watson that extracts rules from the medical
literature to answer health-related questions [High, 2012], (ii) Open
mHealth that aims at daily chronic disease prevention based on data
collected from mobile phone applications [Estrin and Sim, 2010], (iii)
HDSS that enables disease diagnosis based on WMSs and machine
learning ensembles [Yin and Jha, 2017], (iv) SoDA that focuses on
continuous stress detection and alleviation via integration of WMS data
with machine learning algorithms [Akmandor and Jha, 2017], and (v) an
energy-efficient system that tackles continuous monitoring of a patient’s
medical conditions over the long term [Nia et al., 2015].

12
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3.1 IBM Watson

IBM Watson is a cognitive system that combines deep Natural Lan-
guage Processing (NLP), hypothesis generation, and dynamic learning
to generate confidence-based responses [High, 2012]. It is capable of con-
densing information from an immense amount of unstructured and noisy
data: scientific articles, textbooks, user manuals, guidelines, frequently
asked questions, plans, laboratory notes, news, and proprietary data.
The extracted knowledge base is stored as a Watson corpus. Watson
generates a unique corpus per target domain. Due to its significant NLP
capabilities, Watson has tackled a wide range of target domains, such
as engineering, medicine, law, and finance [Chen et al., 2016].

Watson uses its corpus for question-answer style inferences. When a
new question is raised, it (i) captures the main question features, (ii)
acquires the candidate answers across hundreds of hypotheses generated
by the corpus, (iii) compares answers through reasoning algorithms,
and then (iv) selects the answer that has the highest confidence score.
This top-down approach, i.e., starting with reading all available infor-
mation in the target domain, yields amazing results but at a very high
cost. For example, IBM Watson won against human champions in the
Jeopardy Clash Knowledge Test in 2011. It read roughly 200M pages
of content to acquire its corpus to prepare for this test. It had to rely
on 90 IBM Power750 processors and 16 terabytes of RAM during the
competition [Chandrasekar, 2014].

In the healthcare domain, Watson’s better-than-human content
reading capability enables it to answer health-related questions in both
daily and clinical scenarios. It can scan and analyze content from a wide
range of medical resources: scientific journals, patents, drug and disease
related ontologies, clinical trials, EHRs, laboratory and imaging data,
genomic data, claims data, and web social content [Chen et al., 2016].
This has led to three major applications of Watson in healthcare:

• Oncology: Watson can compare a patient profile with relevant
clinical trials/records to evaluate and rank cancer treatment op-
tions. It cuts down time costs involved in reviewing the literature
and EHRs dramatically. For example, it took Watson 10 min-
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utes to finalize a treatment plan for a 76-year old brain-tumor
patient, while this process took human experts roughly 160 hours
to complete [Wrzeszczynski et al., 2017].

• Drug discovery: Watson can identify novel drug targets and new
uses of existing drugs. For example, it successfully identified 15 new
drug candidates for a malaria parasite from a drug candidate pool
available from a pharmaceutical company [Chen et al., 2016]. To
do so, it first checked the literature, identified relevant drugs that
have been shown to be effective for malaria parasite mitigation,
and then checked the candidate drug’s similarity in terms of
chemical structures and action mechanisms.

• Genomics: Watson can unearth new associations and relationships
between genes, proteins, drugs, and diseases. It can also rank and
predict the most likely driver mutation and the alteration type
of DNA in a patient’s tumor to enhance personalized treatments.
This provides physicians with more therapeutic options.

3.2 Open mHealth

The Open mobile Health (mHealth) project is aimed at daily chronic
disease prevention and management based on data collected from health-
care applications in mobile phones and devices [Estrin and Sim, 2010].
There were more than 13,000 health-related applications available on
Apple’s iPhone by 2012 [Localystics, 2012]. These applications enable
patients to electronically record and track their vital physiological signs
on a daily basis, thus enabling satisfactory user-centered outcomes.
For instance, WellDoc is a mobile phone based diabetes management
application that uses messages and prompts to track the glucose level
of its users [Quinn et al., 2011]. A randomized controlled trial observed
that WellDoc leads to a significant reduction in glycated hemoglobin
among its users and a 20% reduction in clinical visits and emergency
care usage [Quinn et al., 2011].

Open mHealth aims to standardize the fragmented mHealth ap-
plications deployed on mobile phones. It proposes open Application
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Programming Interfaces (APIs) built around a minimal set of common
communication protocols [Estrin and Sim, 2010, Chen et al., 2012]. This
enables the sharing of data and application modules between various
devices, across different operating systems, and over multiple chronic
diseases.

InfoVis was the first standard data visualization tool developed in
the Open mHealth project [Chen et al., 2012]. It accepts data inputs
from lower-level lego-like reusable software modules: Data Processing
Units (DPUs) and Data Visualization Units (DVUs). Each DPU and
DVU performs a general-purpose task. Multiple DPUs and DVUs work
collaboratively to deliver application-level functionalities.

Chen et al. have developed DPUs and DVUs for an mHealth applica-
tion called Post-Traumatic Stress Disorder (PTSD) explorer that helps
PTSD patients manage acute distress symptoms [Chen et al., 2012].
Mobile applications can offer unique standard care to PTSD patients,
given that such patients seldom seek in-person consultation due to the
attached stigma, logistical barriers, and hard-to-notice symptoms [Hoge
et al., 2004]. The DPUs and DVUs enable a direct visualization of
the self-reported PTSD checklist scores and blood glucose levels [Chen
et al., 2012]. Given an open architecture based on shared APIs, these
PTSD DPUs and DVUs can also be used for other applications, such
as the visualization of self-reported chronic pain measurements from
patients [Chen et al., 2012].

3.3 HDSS: Health Decision Support System

The Health Decision Support System (HDSS) enables disease diagnosis
in both in- and out-of-clinic scenarios through the integration of WMS
data to CDSSs [Yin and Jha, 2017]. HDSS has a multi-tier structure,
starting with a WMS tier, backed by robust machine learning, that
enables diseases to be tracked individually by a disease diagnosis module.
It sequentially structures the information framework for daily health
monitoring, initial clinical checkup, detailed clinical examination, and
post-diagnostic decision support.

HDSS has two major parts to support daily and clinical healthcare:
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(i) Pervasive Decision Support System (PHDS), shown on the left of
Fig. 3.1 and (ii) PHDS-assisted CDSS (CDSS+), shown on the right of
Fig. 3.1. PHDS acts on WMS data for daily disease diagnosis. CDSS+
tackles clinical diagnosis. HDSS has four major tiers. Tier-1 assists with
daily health monitoring. The decision modules in Tier-1 are trained
using clinical domain knowledge. This transmits physician expertise
across the clinical boundary, and can thus help individuals without
professional medical training to effectively track their diseases. When
an alert is raised at Tier-1, it passes symptom records, stored as disease-
onset records, across the clinical boundary. Tier-2 provides immediate
decision support to physicians for an incoming patient based on basic
clinical measurements. Tier-3 entails a more detailed diagnostic analysis
based on detailed laboratory measurements. Finally, Tier-4 provides
post-diagnostic treatment, prescription, and lifestyle suggestions. Higher-
level tiers gather more information than lower-level ones, but at higher
time and energy costs. HDSS operates across these tiers in a sequential
and closed-loop manner, as indicated by the large arrow behind the
four tiers in Fig. 3.1.

HDSS deploys various Transitions (T ) to facilitate the flow of infor-
mation among the various tiers, as depicted by indexed arrows in Fig. 3.1.
When an alert is raised at Tier-1, a transition TIN passes disease-onset
records across the clinical boundary. At Tier-2, HDSS aggregates the
data with additional physician insights, and then passes the data to
the diagnosis engine through T1. The diagnosis engine contains libraries
accessible by machine learning engines, such as WEKA [Hall et al.,
2009] and TensorFlow [Abadi et al., 2016]. If a diagnosis requires further
laboratory measurements, T2 transfers HDSS to Tier-3. Otherwise, T2′

transfers HDSS to Tier-4. In either case, diagnostic suggestions are
immediately available to physicians. When T2 occurs, Tier-3 reaches the
diagnosis engine through T3. The engine orders appropriate laboratory
tests via T4, after which test results are fed back to the diagnosis engine
via T5. Diagnosis at Tier-3 consumes more time and expense compared
to Tier-2. For example, it can take 12-16 hours to acquire a blood test
report (even longer for tests like computed tomography and functional
magnetic resonance imaging). However, Tier-3 is still the most
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important tier, since it needs to finalize a diagnosis based on all avail-
able clinical information. Tier-4 is reached through T2′ or T6 for post-
diagnostic suggestions. A final TOUT indicates completion of the clinical
visit.

HDSS relies on disease diagnosis modules for disease monitoring.
Each such module specifies the unique and necessary information frame-
work components for the diagnosis of a target disease. Thus, one only
needs to modify the disease diagnosis module of the target disease to up-
date or evaluate the diagnostic rules instead of restructuring the entire
HDSS. Multiple disease diagnosis modules derive disease signatures in
parallel to monitor various diseases simultaneously. To differentiate one
disease from another, HDSS adopts the International Statistical Classifi-
cation of Diseases and Related Health Problems (ICD) coding system for
disease diagnosis module indexing. The ICD code is maintained by the
World Health Organization. Its latest version, ICD-10, has two coding
sub-systems: ICD-10-CM for disease categorization and ICD-10-PCS for
in-patient procedure identification. HDSS uses ICD-10-CM for disease
indexing. ICD-10-CM currently contains 69,000 human disease codes
allocated to 20 disease categories [Quan et al., 2005].

Yin and Jha demonstrate the feasibility of disease diagnosis through
HDSS by generating disease diagnosis modules for arrhythmia, type-2
diabetes, breast cancer, urinary bladder disorder, renal pelvis origin
nephritis, and hypothyroid disease based on University of California at
Irvine (UCI) datasets [Lichman, 2013, Czerniak and Zarzycki, 2003].
They experiment with eight supervised machine learning algorithms and
six ensemble methods for disease diagnosis module training. Table 3.1
summarizes their names, abbreviations, along with brief descriptions.
An ensemble method specifies the rules for a meta learner to make a
final decision based on predictions from its base learners. In general,
ensemble methods boost machine learning algorithm performance.

The disease diagnosis module performance is summarized in Ta-
ble 3.2. The rows indexed with Type list the machine learning models
that achieve the highest diagnostic accuracies. The rows indexed with
Obj. list the performance objective that varies between binary classifi-
cations (B) at Tier-1 to multi-class classification of k classes (M-k) at
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Table 3.1: Machine learning algorithms and ensemble methods [Yin and Jha, 2017]

Name Abbr. Descriptions
Naive Bayes NB Bayes theorem based probabilistic learner
Bayes network BN Network driven, conditional tables at nodes
k-nearest neighbor IB-k Similarity analysis with k closest instances
Best-first decision tree BFTree Tree with binary splits on features
J48 J48 Pruned or unpruned decision tree
Decision table DT A decision table based majority learner
Support vector machine SVM Support vector based linear separator
Multilayer perceptron MLP Back propagation based neural network
Stacker ST Combiner based stacking of base learners
AdaBoost (Booster) ADA Weighted decision of weak classifiers
DECORATE (Voter) DEC Voting through diversified base learners
Bagger BAG Training with sampled subsets
Random tree RT Bagging on tree sampling features
Random forest RF Bagging on tree sampling instances/features

Tier-2 and Tier-3. The rows indexed with ACC summarize the high-
est diagnostic accuracies at the corresponding diagnostic tiers. These
values are comparable or better than relevant work from the litera-
ture [Suryakumar et al., 2013, Cao et al., 2016, Arif and Basalamah,
2012, Jadhav et al., 2011]. What is noteworthy is that HDSS obtains
high diagnostic accuracies even at Tier-1, in which the data can only
be collected from WMSs.

To evaluate the scalability of HDSS, Yin and Jha conducted a
literature review over the last 10-year span of diseases whose biomedical
datasets are not yet publicly available. They discuss seven representative
works that verify the applicability of machine learning to diagnosis
and treatment of malaria [Das et al., 2013], sleep apnea [Khandoker
et al., 2009], Parkinson’s disease [Tahir and Manap, 2012], respiratory
malfunction [Palaniappan et al., 2014], seizure [Tzallas et al., 2009], skin
lesion [Korotkov and Garcia, 2012], and prenatal/perinatal defections
[Cerqueira et al., 2014].

Fig. 3.2 summarizes the current scope of HDSS over the ICD-10-CM
categories. It contains three major sections. The lightest section includes
the four ICD-10-CM categories covered by the disease diagnosis modules
in Table 3.2. The light gray section highlights the categories that contain
at least one verified machine learning model, but on private datasets.
HDSS could be applied to these categories as well once these datasets
are made public. Finally, the dark gray section lists the open categories
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Table 3.2: Performance summary of HDSS on UCI biomedical datasets [Yin and
Jha, 2017]

Disease →
DDM ↓

Arrhythmia Diabetes
type-2

Breast cancer Urinary
bladder
disorder

Renal pelvis
origin

nephritis

Hypothyroid

ICD-10-CM I49.9 E11-* C50-* N32.0 N12 E03.9

Tier-1

Type RF+F NB+F – RT NB RF
Obj. B B – B B B
ACC 85.9% 77.6% – 99.6% 93.7% 94.8%

Tier-2

Type BAG(BN)+F NB+F – RF+F RT ADA(BFTree)
Obj. M-16 B – B B B
ACC 77.4% 77.6% – 100%

(100%3)
99.9%

(100%3)
94.8%

Tier-3

Type BAG(BN)+F DEC(BN) BAG(BN)+F – – J48+F
Obj. M-16 B B – – B
ACC 77.4%

(78.9%1)
78.9%

(76.5%2)
97.0%

(95.5%2)
– – 99.3%

+F: feature filtering; DDM: disease diagnosis module; 1:[Jadhav et al., 2011]; 2:[Cao et al., 2016];
3:[Arif and Basalamah, 2012]. Abbreviations for the machine learning algorithms are summarized
in Table 3.1.

where biomedical datasets and machine learning models are sparse. This
offers opportunities to further broaden the scope of HDSS.

3.4 SoDA: Stress Detection and Alleviation System

Stress is linked with various health problems, ranging from cardiovascu-
lar diseases [Schubert et al., 2009] to sleep disorders [McEwen, 2004]
and cancer [Irie et al., 2001]. Reducing the risk of these serious health
problems requires keeping stress under control. Akmandor and Jha have
introduced a system called SoDA to address this problem [Akmandor
and Jha, 2017].

SoDA is an automatic stress detection and alleviation system that
collects physiological signals using WMSs and performs machine learning
inferences on them. Its main components are shown in Fig. 3.3. It uses
machine learning inferences to provide continuous and user-/situation-
oriented stress level tracking (green path) and coaching (red path).

The detailed flow of the operations in SoDA is shown in Fig. 3.4.
As a first step, SoDA collects physiological data from the WMSs. It
then processes the collected data to remove artifacts, i.e., outliers,
baseline wander, power-line interference, and muscle noise, and extracts
informative features. After inputting the feature values to a previously-
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C00-D48 Neoplasms Breast cancer

E00-E90 
Endocrine, nutritional and metabolic 

diseases 
Type-2 diabetes

Hypothyroid

I00-I99 Diseases of the circulatory system Arrhythmia

N00-N99 Diseases of the genitourinary system 
Urinary bladder disorder

Renal pelvis origin nephritis

A00-B99 Certain infectious and parasitic diseases Malaria

G00-G99 Diseases of the nervous system 
Seizure

Sleep apnea
Parkinson          

J00-J99 Diseases of the respiratory system Respiratory pathology

L00-L99 Diseases of the skin and subcutaneous tissue Pigmented skin lesions

P00-P96 
Certain conditions originating in the perinatal 

period 
Prenatal and perinatal care

D50-D89 
Diseases of the blood and blood-forming organs and certain disorders 

involving the immune mechanism 

F00-F99 Mental and behavioral disorders 

H00-H59 Diseases of the eye and adnexa 

H60-H95 Diseases of the ear and mastoid process 

K00-K93 Diseases of the digestive system 

M00-M99 Diseases of musculoskeletal system 

O00-O99 Pregnancy, childbirth and puerperium

Q00-Q99 Congenital malformations, deformations and chromosomal abnormalities 

R00-R99 
Symptoms, signs and abnormal clinical and laboratory findings, not 

elsewhere classified 

S00-T98 Injury, poisoning and certain other consequences of external causes 

V01-Y98 External causes of morbidity and mortality 

Z00-Z99 Factors influencing health status and contact with health services 

ICD-10-CM 

Categories 

for

69,000 diseases

Studied by [Yin and Jha, 2017] Relevant work Open research opportunities

Figure 3.2: Coverage of HDSS on the ICD-10-CM disease categories based on the
generated disease diagnosis modules and analysis of related work [Yin and Jha, 2017].

trained machine learning model (classification block in Fig. 3.4), SoDA
determines if the epoch under question corresponds to ‘stressed’ or
‘not stressed’. If the decision is ‘not stressed’, SoDA bypasses the stress
alleviation protocol and performs operations on the upper path in
Fig. 3.4. However, if the decision is ‘stressed’, SoDA activates the stress
alleviation protocol through the lower path in Fig. 3.4. Using the stress
alleviation protocol, outlined in Algorithm 1, SoDA guides the user to
perform stress-reducing therapies and analyzes the extracted feature
values from the collected physiological data. Depending on the tendency
of the feature values, SoDA either terminates the stress alleviation



22 Emerging Smart Healthcare Systems

Data	  
Processing	  
and	  Analysis	  

SoDA 

Classifica4on	  

Stress	  
Allevia4on	  
Protocol	  

Data	  
Collec4on	  
from	  WMSs	  

Figure 3.3: Main components of SoDA [Akmandor and Jha, 2017].

protocol or continues it with the same or the next stress-reducing
therapy for a predefined time period.

SoDA has two operating models: ‘generalized’ and ‘individualized’.
In the ‘generalized’ model, the machine learning model is obtained using
WMS data from a large group of individuals. Thus, the ‘generalized’
model can be used immediately. On the other hand, the ‘individualized’
model is obtained from the WMS data of only the individual in question.
Since the model parameters are adjusted according to the specific user’s
data, the ‘individualized’ model requires extra training time. However,
it provides higher classification accuracy during stress tracking and
coaching.
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Algorithm 1 Stress alleviation protocol [Akmandor and Jha, 2017]
Given: therapySet, set of the stress alleviation techniques.
1: therapy ← null, k ← 0, flag ← 0
2: for i = 1, ..., length(therapySet)
3: therapy ← therapySet(i)
4: Delay (30sec.)
5: Compute selected N feature values

6: Compute k, number of features showing stress relief

7: if k ≥ N/2
8: Delay (30sec.)
9: Compute selected N feature values

10: Compute k

11: if k ≥ N/2
12: flag ← 1
13: return
14: end
15: end
16: end
17: if flag = 0, none of the stress alleviation techniques is effective
18: Give warning to the user
19: return
20: end

Akmandor and Jha use the following WMSs for stress detection and
alleviation: Electrocardiogram (ECG), Galvanic Skin Response (GSR),
Respiration rate (RESP), Blood Pressure (BP), and Blood Oximeter
(BO). The data are collected from 32 participants. They include a
total of eight stress-inducing epochs: four with and four without stress-
reducing therapies. The collected WMS data are subjected to artifact
removal, feature extraction, feature selection, and Principal Component
Analysis (PCA). The final feature vectors are provided as inputs to
machine learning models for decision-making. Thus, the stress inferences
are done in a user-transparent fashion.

Following data processing and feature extraction, stress detection
performance is analyzed on two feature sets (Table 3.3). SoDA uses
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Table 3.3: Selected feature sets [Akmandor and Jha, 2017]

Feature Sensor Set
1 ECG-derived respiration rate ECG I, II
2 Mean of skin conductance amplitude GSR I, II
3 Standard deviation of skin conductance

amplitude
GSR I, II

4 Sum of amplitudes of skin conductance
responses above the threshold (continuous
decomposition analysis)

GSR I

5 Mean of tonic activity GSR I
6 Maximum positive deflection GSR I
7 Mean of respiration duration RESP I
8 RMS of respiration signal RESP I, II
9 Median of respiration duration RESP I
10 Mean of blood oxygen level BO I, II
11 Mean of systolic blood pressure BP I, II
12 Variance of systolic blood pressure BP I, II
13 Mean of diastolic blood pressure BP I, II
14 Mean of mean arterial pressure BP I, II
15 Variance of mean arterial pressure BP I, II

k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM) Radial
Basis Function (RBF) as classifiers. The ‘individualized’ model has the
following average stress classification accuracies for the two feature sets
(see Fig. 3.5(a) and Fig. 3.5(b)): 94.5-95.8%, 93.7-94.7%, 93.8-94.8%,
94.2-94.5%, and 86.7-83.2% for the k-NN (k = 1), k-NN (k = 2), k-NN
(k = 3), k-NN (k = 4), and SVM RBF classifiers, respectively. For the
analyses in the stress alleviation stage, Akmandor and Jha compare
feature values with and without stress therapy and find that therapy
results in a considerable improvement in stress levels.

In summary, SoDA is an automatic and user-friendly stress level
coach that continuously tracks physiological signals to detect stress
and guides the user whenever needed. Due to its high stress detection
accuracy and efficient stress alleviation, SoDA is a promising technology
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Figure 3.5: Stress detection accuracy statistics of the machine learning algorithms
for the ‘individualized’ and ‘generalized’ models with feature set (a) I, (b) II, and (c)
definitions of the boxplot parameters [Akmandor and Jha, 2017].
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for prevention and treatment of stress and stress-related health problems.

3.5 Energy-efficient Health Monitoring System

Traditional medical monitors, e.g., bedside ECG and oxygen satura-
tion monitoring systems, gather, store, and transmit data with no (or
minimal) on-device processing. Furthermore, such systems are com-
monly powered from the electrical outlet, as opposed to state-of-the-art
IWMDs that rely on energy-constrained batteries. Recent advances in
signal processing, low-power electronics, communication protocols, and,
in particular, design of low-power radio-frequency transmission modules,
have enabled wireless connectivity to even the most energy-constrained
medical devices, allowing them to form a Wireless Body Area Network
(WBAN) [Ullah et al., 2012, Ko et al., 2010]. WBAN-based continuous
health monitoring systems rely on a network of medical sensors. They
gather, process, and store various types of physiological data and offer a
holistic approach to prevention and early detection of diseases. Indeed,
continuous health monitoring systems have garnered ever-increasing
attention in recent years and are envisioned as fundamental components
of smart healthcare systems.

There exist several key challenges in the design and development of
such systems. To maximize system acceptance and user convenience,
IWMDs must be small and passive, i.e., collect physiological data with
minimum user involvement. These requirements impose significant lim-
its on the storage and battery capacities of each sensor. Nia et al. [Nia
et al., 2015] comprehensively examine the energy and storage require-
ments of continuous personal health monitoring systems. To enable
energy-efficient continuous health monitoring, they first conduct a thor-
ough literature review of IWMDs, summarize their common resolution,
sampling rate, and transmission rate, and analyze a health monitoring
system consisting of eight sensors that continuously gather and transmit
raw physiological data to a base station for further processing (Fig. 3.6).
Table 3.4 summarizes the resolution, sampling rate, and maximum
wireless data transmission rate of various sensors.

Nia et al. have developed several analytical models to characterize
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Figure 3.6: A personal healthcare system [Nia et al., 2015]. EEG: Electroencephalo-
gram.

such a system and highlight a significant gap between the storage/energy
requirements for long-term continuous monitoring and the capabilities
of already-in-use IWMDs utilized in health monitoring systems. To
minimize the energy consumption of each sensor, they analyze three
lightweight on-sensor computation techniques, namely, sample aggrega-
tion, anomaly-driven transmission, and Compressive Sensing (CS).

Table 3.5 summarizes key characteristics of all schemes discussed
in [Nia et al., 2015]. They compare their proposed schemes with
a baseline scenario in which all sensor are continuously collecting
and transmitting the data to a base station without any on-sensor
computation. As discussed in [Nia et al., 2015], in addition to the
storage and battery capacity of a sensor, latency and extensibility
requirements are among the key considerations for choosing the suitable
computation/transmission approach for each sensor. Next, we describe
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Table 3.4: Resolution, sampling rate, and maximum transmission rate [Nia et al.,
2015]

Sensor Resolution Sampling Transmission
(bits/sample) rate (Hz) rate (bits/s)

Heart rate 10 2-8 80
Blood pressure 16 0.001-100 1600

Oxygen saturation 8 0.001-2 16
Temperature 8 0.001-1 8
Blood sugar 16 0.001-100 1600
Accelerometer 12 2-400 4800

ECG 12 100-1000 12000
EEG 12 100-1000 12000

Table 3.5: Comparison of different schemes [Nia et al., 2015]

Scheme Energy Storage Latency Extensibility
Baseline Very high High Low High
Aggregation Very high High Varies High
Anomaly-driven Low Low Low Low
CS-based Very low Low Low Low

these two requirements in further detail.

Latency: In [Nia et al., 2015], latency is defined as the time interval
between the occurrence of a significant event (e.g., an anomaly) and the
response provided by medical devices or physicians. Tolerable latency
significantly depends on the application of the sensor and the patient’s
condition. For example, a health monitoring system that monitors a
healthy subject may use sample aggregation to offer a routine medical
check by collecting and sending medical information to physicians or
hospitals at long intervals (e.g., once a day). In contrast, a monitoring
system that is used to monitor a subject with a history of serious
disease (e.g., high blood glucose) should detect any changes in the
medical condition (e.g., any rapid rise in blood glucose) immediately
and cannot use sample aggregation.
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Extensibility: Extensibility is an essential design requirement where the
implementation takes future modifications into account. High extensi-
bility implies that applications of a biomedical sensor can be extended
in the future with a minimum level of effort. In general, schemes that
do not perform on-sensor computation are more extensible since they
can be changed without modifying the sensor.

Takeaway: Performing on-sensor computation can significantly
reduce the total energy consumption of the sensor, e.g., compressive
sensing can provide up to three orders-of-magnitude improvement in
energy and storage. In addition to significantly increasing the battery
lifetime of IWMDs, this approach provides another key benefit: designers
can take advantage of the energy saved [Nia et al., 2015] to enable the
implementation of security-enhancing technologies (in particular, strong
encryption schemes that are commonly avoided in IWMDs due to their
significant energy overhead) on IWMDs.



4
Design Considerations

The increasing functional complexity of smart healthcare systems raises
inherent design challenges: efficiency, security, accuracy, cost, respon-
siveness, maintainability, scalability, reliability, and fault tolerance. Due
to the human-critical nature of smart healthcare systems, any short-
comings in these measures may lead to adverse consequences, ranging
from system impracticality to life-threatening situations [Akmandor and
Jha, 2018]. In this chapter, we summarize and explain the key design
considerations of smart healthcare systems in order to: (i) pinpoint
where improvements can be made to existing systems, and (ii) provide
guidance for future system design. The key design considerations are:

• Efficiency: Smart healthcare systems have to be both energy-
and storage-efficient. They rely on devices located at various posi-
tions on/in the body and in the environment to capture health
information of the users. If the system frequently runs out of
battery energy or requires external energy resources, the practi-
cality of the system is negatively impacted. As an example, in
some IMDs like pacemakers, a battery change requires surgery
with its attendant risks [Halperin et al., 2008]. Data compression
techniques (e.g., compressive sensing with direct computations

31
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[Shoaib et al., 2015, 2014], compressed signal processing [Lu et al.,
2016], etc.) are effective in promoting energy efficiency. Compres-
sion reduces the data size. This leads to lower computational
energy needs. A Hierarchical Inference Model (HIM) that exploits
the intrinsically sensor/edge-grouped IoT data structure (e.g.,
data collected from one WMS is spatially separated from data
collected from another WMS) can also improve efficiency without
impacting accuracy. For example, Yin et al. show that HIM can
reduce run-time system transmission loads by 3.2-60.0× with clas-
sification accuracy change in the −0.4%-+6.7% range for eight
inference models derived for seven IoT applications, which include
stress monitoring, chemical gas classification, and the diagnosis of
heart disease, renal pelvis disorder, urinary bladder disorder diag-
nosis, hypothyroid, and type-2 diabetes [Yin et al., Submitted].
Moreover, flexible electronics offer energy harvesting potential for
wearable IoT applications. As demonstrated by Jokic and Magno
[Jokic and Magno, 2017], thin-film flexible photovoltaic panels
have the potential to enable continuous long-term health monitor-
ing by harvesting energy. This technology reduces or eliminates
the need for battery change or recharge. Smart healthcare systems
also need to support efficient memory utilization. The collected
data, parameters needed for signal processing, and inference mod-
els need significant amounts of storage. This may make inference
slower and limit integration of more sensors/devices. Therefore,
energy and storage requirements of smart healthcare systems need
to be carefully analyzed.

• Security: Smart healthcare systems extract sensitive health infor-
mation from the user. As a result, security is of utmost importance
in such systems. However, most smart healthcare systems overlook
security. Previous studies have exposed vulnerabilities of various
medical devices, e.g., insulin pump [Li et al., 2011], pacemaker
[Halperin et al., 2008], physiological side channels [Nia et al.,
2016], etc., to security attacks. These attacks may range from a
loss of privacy to life-threatening consequences. Therefore, smart
healthcare systems should be designed to be resistant to possible
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security attacks.

• Accuracy: Smart healthcare systems are called ‘smart’ because
of their decision-making capability. This capability emanates from
inference. Since smartness enables disease diagnosis, treatment
decisions, therapy duration, and raising of alerts [Yin and Jha,
2017, Akmandor and Jha, 2017], accuracy of the inference has a
direct impact on the health of the user. If the system provides
false alerts, diagnosis, or treatment suggestions, and steers the
users/physician in the wrong direction, the reliability of the system
decreases. This may lead to loss of confidence in the system and
hence its discontinuation. Therefore, accuracy plays a critical
role in utilization, quality, and effectiveness of smart healthcare
systems.

• Cost: With lowered cost, smart healthcare systems become more
widely deployed in daily and therapeutic medical applications.
This has the potential to decrease dependency on hospitals/clinics,
increase early diagnosis of the medical conditions, and bend na-
tional healthcare costs downwards. Thus, the cost aspect of such
systems needs to be analyzed comprehensively at the design stage.
Flexible Hybrid Electronics (FHE) is a promising technology for
satisfying this goal. FHE integrates flexible electronics with silicon
technology. It benefits from flexible technology in terms of low-cost
manufacturing and flexible substrates, while preserving compu-
tational and storage advantages of traditional silicon technology
[Gupta et al., 2017, Huang et al., 2015].

• Responsiveness: Smartness imparts increased functionality to
the healthcare systems, but at the cost of additional computa-
tional and storage resources. This may decrease the responsiveness
of the system (i.e., increase its latency). Since these systems pro-
vide treatment, diagnosis, guidance, and alerts when necessary,
increased latency adversely impacts system functionality. If the
system cannot provide the desired response on time, adding smart-
ness to the system becomes unreasonable and disadvantageous.
Therefore, system responsiveness too needs careful analysis.
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• Maintainability: Smart healthcare systems require periodic
maintenance. This includes both software and hardware updates
[Akmandor and Jha, 2018]. The system should be readily adapt-
able to these updates. Thus, the system need not be discarded
when a minor flaw is discovered. Energy harvesting also has a
positive impact on maintainability. Since thin-film flexible pho-
tovoltaic panels [Jokic and Magno, 2017] not only address the
energy-efficiency challenge, but also maintainability, they are a
promising candidate for wearable healthcare systems.

• Scalability: Advancing sensor technology enables an increasing
number of sensors and devices to be integrated into smart health-
care systems. This increased functionality broadens the application
scope. Thus, system design should anticipate future expansion of
system capability.

• Reliability and fault tolerance: Smart healthcare systems
collect data from various sources. During data collection, signal
processing or data transmission, errors might be introduced due
to faults in different parts of the system. Reliability indicates
the system’s ability to withstand these faults. A higher reliability
makes it more likely that the smart healthcare system will be
adopted. Thus, continued operation in the presence of faults is very
desirable. This can be ensured through built-in fault tolerance.



5
Innovations & Trends

In this chapter, we explain five innovative research trends that may
help address the design considerations of smart healthcare systems.
We first explain two approaches that can lead to substantial energy
and storage efficiency improvements through: (i) compact deep neural
networks in Section 5.1, and (ii) compressive sensing in Section 5.2.
Then, we explain three approaches that address the security concerns:
(i) MedMon for wireless communication channel monitoring of WBANs
in Section 5.3, (ii) OpSecure for optical key exchange in Section 5.4, and
(iii) SecureVibe for secure communication via a vibration side channel
in Section 5.5.

5.1 NeST: Synthesizing Compact Deep Neural Networks

Neural Networks (NNs) have begun to have a pervasive impact on
various healthcare applications. Their ability to distill intelligence from
very large datasets through multi-layer abstraction can lead to superior
or even super-human performance, as observed in the case of CheXNet
and DeepBind (see Section 2.2). However, conventional NNs consume
extensive memory and computation energy. As a result, most healthcare-
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Figure 5.1: An illustration of the architecture synthesis flow in NeST [Dai et al.,
2017].

oriented deep NNs are still confined to the clinical Cloud, and do not
find place in mobile phones that can be used on a daily basis.

The problem of finding an accurate yet compact NN (or lightweight
NN) for large applications has remained open for several decades. Con-
ventional approaches search for optimal NNs through extensive trial-
and-error. Such approaches are extremely inefficient. For a deep NN
with millions of parameters, each training trial can easily consume tens
or hundreds of hours even with the fastest GPUs. In addition, the
generated NNs still suffer from substantial redundancy. For example,
Han et al. show that without any accuracy degradation, the number
of parameters in the well-known AlexNet [Krizhevsky et al., 2012] NN
architecture for the ImageNet dataset [Deng et al., 2009] can be reduced
by 9× [Han et al., 2015].

To address these problems, Dai et al. propose an NN Synthesis
Tool (NeST) that can automatically generate accurate yet extremely
compact NNs, given a target application dataset [Dai et al., 2017]. NeST
can dramatically cut down on the memory cost, inference run-time,
and energy consumption of deep NNs. It has the potential to enable
incorporation of deep NNs on mobile phones, thus expanding the reach
of such NNs from the clinical domain to daily healthcare.

The NeST methodology is depicted in Fig. 5.1. It starts with a very
sparse seed NN architecture. It iteratively tunes this architecture with:
(i) gradient-based growth and (ii) magnitude-based pruning of neurons
and connections. The major techniques involved in these two phases
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Architecture synthesis algorithm

Gradient-based growth Magnitude-based pruning

Fully connected layers Convolutional layers

• Pruning of insignificant weights
• Partial-area convolution

• Connection growth
• Neuron growth

• Connection growth
• Feature map growth

Figure 5.2: Major components of the NN architecture synthesis algorithm in NeST
[Dai et al., 2017].

are summarized in Fig. 5.2. The growth phase utilizes the gradient
information to add new connections, neurons, and feature maps. This
allows the NN to easily adapt to the problem at hand. The pruning
phase removes redundant connections and neurons. This drastically
reduces the number of NN parameters, thus memory, and Floating-point
Operations (FLOPs) per inference, thus computation cost. Finally, NeST
yields accurate, yet very compact, NNs.

Dai et al. used NeST to synthesize compact NNs for the MNIST
dataset1 based on hints from LeNet-300-100 and LeNet-5 architectures
[Lecun et al., 1998], and for the ImageNet dataset2 based on hints
from the AlexNet architecture. NeST delivers extremely compact NNs
with the same or improved accuracies relative to the corresponding NN
baselines:

• For LeNet-300-100, NeST reduces network parameters by 70.2×
and FLOPs by 79.4×.

• For LeNet-5, NeST reduces the network parameters by 74.3× and
FLOPs by 43.7×.

• For AlexNet, NeST reduces network parameters by 15.7× and
FLOPs by 4.6×.

All these results constitute the current state-of-the-art [Dai et al., 2017].
128×28 handwritten digits, 60K instances for training and 10K for validation.
2ILSVRC-2012 image classification dataset, 1.2 million instances for training and

50K for validation.
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5.2 Compressive Sensing: Reducing Computation Loads

Compressive sensing is another technique that can reduce energy and
storage requirements of smart healthcare systems through computa-
tion load reduction. Compressive sensing is applicable when the data
are sparse in a secondary basis and there is incoherence between the
secondary basis and the random projection matrix it utilizes [Donoho,
2006, Candes and Tao, 2006]. The random projection matrix generally
satisfies this incoherence property if its elements are sampled from
the {+1,−1} set that is uniformly distributed [Candes and Tao, 2006,
Shoaib et al., 2015].

Random projection is a single matrix multiplication operation. Thus,
it incurs little computational cost [Shoaib et al., 2015]. However, for
traditional Nyquist-domain signal processing, the compressed signal
needs to be reconstructed to enable machine learning inference on
the user side. Reconstruction is very energy-intensive (requiring three-
to-four orders of magnitude more energy than compression) due to
the computation load required for the convex optimization problem
that needs to be solved [Shoaib et al., 2015]. Since energy-intensive
operations are not compatible with many smart healthcare systems
because of the need for frequent battery recharge [Akmandor and Jha,
2018], Shoaib et al. and Lu et al. propose techniques that do not require
signal reconstruction in the inference stage. These techniques are based
on direct computations on compressively-sensed data [Shoaib et al.,
2015, 2014] and Compressed Signal Processing (CSP) [Lu et al., 2016],
respectively.

Direct computations on compressively-sensed data requires the
derivation of compressed-domain signal processing operations. These
operations enable both feature extraction and classification to be per-
formed in the compressed domain, thus reducing energy consumption
dramatically.

CSP carries out signal processing operations in the Nyquist domain,
then performs a random projection. This minimizes the inner product
error in the compressed domain relative to the Nyquist domain. This
improves classification accuracy.

We discuss these methods in detail next.
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5.2.1 Direct Computations on Compressively-sensed Data

In the Nyquist domain, the feature vector y corresponding to data
epoch x is obtained using Eq. 5.1 based on a linear signal processing
matrix H [Shoaib et al., 2015]. In the compressed domain, as the data
are projected randomly with the help of a random projection matrix Φ,
Shoaib et al. derive a compressed-domain equivalent, Ĥ, of matrix H.
Ĥ can be used to obtain the feature vector ŷ (Eq. 5.2). Ideally, as shown
in Eq. 5.3, ŷ and y should be equal to preserve inference performance.

y = H · x (5.1)

ŷ = Ĥ ·Φ · x (5.2)

y = ŷ ⇒ H · x = Ĥ ·Φ · x⇒ H = Ĥ ·Φ (5.3)

For an N -dimensional input x, H is an N×N matrix, Φ is anM×N
matrix, whereM � N , and Ĥ is an N×M matrix. To derive Ĥ, Eq. 5.3
specifies N ×M variables and N × N equations, thus leading to an
overdetermined system [Shoaib et al., 2015]. To get around this problem,
Shoaib et al. introduce a regularization term Θ. This transforms Eq. 5.3
to Eq. 5.4.

Θ · y = ŷ ⇒ Θ ·H · x = Ĥ ·Φ · x⇒ Θ ·H = Ĥ ·Φ (5.4)

Shoaib et al. obtain solutions to Eq. 5.4 for both the square H and
non-square H cases. When H is a square matrix, the solution can be
exact or approximate (an approximate solution trades further energy
efficiency for a slight degradation in classification accuracy). Algorithm
2 shows how to obtain Ĥ for these cases.

Shoaib et al. apply their proposed technique to neural prosthesis
spike sorting and EEG seizure detection. In the case of neural pros-
thesis, even with 54× fewer samples, the technique achieves system
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Algorithm 2 Computation of the compressed-domain signal processing
matrix Ĥ [Shoaib et al., 2015]
Require: projection dimension K and matrices Φ and H
Ensure: Θ and Ĥ with ΘH = ĤΦ
1: Init: N← # cols(Φ); M← # rows(Φ); L← # rows(H)
2: if L = N then
3: DT := ΦH−1; USVT ← SVD(D); . for θi = Dĥi
4: if K = M then
5: Ĥ =

√
(N/M)

(
S−1VT); Θ =

√
(N/M)

(
ĤΦH−1

)
;

6: else
7: for i = 1 to K do
8: xi ∼ N(0, IM)/

√
(K); . for ĥi ∼ N

(
0,VS−2VT)

9: ĥi = VS−1xi; θi = Uxi;
10: end for
11: Θ=

√
(N/M)

(
θT

1 ; . . . ; θT
K

)
; Ĥ=

√
(N/M)

(
ĥT

1 ; . . . ; ĥT
K

)
;

12: end if
13: else
14: PQRT ← SVD(H); VSUT ← SVD(Φ);
15: Θ ∼ N (0, 1) /

√
(NK/M); . ortho(Θ) if K > L

16: B = ΘPQ; A = BRTU; Ĥ =
√
N/M

(
AS−1VT);

17: end if

performance comparable to Nyquist-domain processing. The accuracies
corresponding to Spike Count (SC), neuron Firing-Rate (FR) estima-
tion, and Coefficient of Variation (CV), which are the main system-level
metrics in this application, are 98.63%, 98.56%, and 96.51% for the
compressed domain as opposed to 98.97%, 99.69%, and 97.09% for
the Nyquist domain, respectively. In the case of EEG based seizure
detection, they need 21× fewer samples and achieve 94.43% sensitivity,
4.70s latency, and 0.1543 false alarms/h in the compressed domain. This
result is comparable to 96.03% sensitivity, 4.59s latency, and 0.1471
false alarms/h in the Nyquist domain.

This method can significantly reduce both energy consumption
and storage capacity in healthcare applications. For example, Nia et
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al. [Nia et al., 2015] show that this method can offer up to 724× energy
consumption reduction for ECG sensors for arrhythmia detection. It
achieves storage savings of up to 19344× when EEG sensors are used
for seizure detection.

5.2.2 Compressed Signal Processing

CSP [Lu et al., 2016] performs signal processing and feature extraction
in the Nyquist domain. After the computation of the feature vector,
CSP uses random projections to improve energy efficiency. As shown
in Eq. 5.5, the H̃ matrix provides this transformation and outputs the
feature vector ỹ. Lu et al. aim to minimize the difference between ỹ and
y in order to preserve inference performance.

ỹ = H̃ · x (5.5)

Lu et al. also evaluate their technique on neural prosthesis spike
sorting and EEG seizure detection. In the case of neural prosthesis
spike sorting, in the Nyquist domain, the average errors for SC, FR,
and CV are found to be 4.00%, 4.00%, and 2.75%, respectively. In the
compressed domain, they obtain average errors of 4.89% for SC, 4.90%
for FR, and 3.42% for CV with 32× fewer samples. In the case of EEG
seizure detection, compared to the Nyquist domain (100% sensitivity,
4.37s latency, and 0.12 false alarms/h), they obtain 100% sensitivity,
4.33s latency, and 0.22 false alarms/h with 32× fewer samples.

CSP provides comparable inference performance while compressing
the data by 32×. This can be exploited for drastic energy and storage
reductions, thus providing significant benefits to resource-constrained
healthcare applications.

5.3 MedMon: Defending Against Wireless Attacks

Diabetes mellitus is one of the most important public health challenges
of the 21st century. In 2015, more than 30.3M people in the U.S. lived
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Figure 5.3: Security attacks and the experimental setup [Li et al., 2011].

with diabetes (9.4% of the population)3. Diabetic patients rely on
effective monitoring and response systems, such as continuous glucose
monitoring and insulin delivery, to avoid hyperglycemia (high blood
glucose level) or hypoglycemia (low blood glucose level). These systems
are the state-of-the-art for diabetes management, and have thus become
increasingly popular among diabetic patients.

However, continuous glucose monitoring and insulin delivery systems
have security flaws. For example, Li et al. successfully launched security
attacks on a popular glucose monitoring and insulin delivery system [Li
et al., 2011]. The attacks exploited unencrypted wireless communication
channels that enable the glucose sensor, glucose meter, insulin pump,
and a remote control to communicate with each other. As a result, the
safety and privacy of users can be easily undermined.

Li et al. use a widely available off-the-shelf Universal Software Radio
Peripheral (USRP) to launch the attacks, as shown in Fig. 5.3. A USRP
can intercept radio communications within a target frequency band and
generate wireless signals in that target band at different power with
various modulation schemes. Their attacks can be categorized into two
major groups:

3National Diabetes Statistics Report 2017, https://www.cdc.gov/diabetes/pdfs
/data/statistics/national-diabetes-statistics-report.pdf.
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• Passive attack: eavesdropping on the wireless communication.
Li et al. use a USRP to intercept communications in the 915
MHz communication band between the remote control and insulin
pump, as shown in Fig. 5.3. They first identify the channel modu-
lation scheme as the on-off keying scheme (a presence of carrier
indicates 1, otherwise 0). This allows them to decipher the 80-bit
communication packets through reverse engineering: 4-bit device
type indicator, 36-bit device PIN, 12-bit payload information,
12-bit system counter, 12-bit cyclic redundancy check string, and
a constant 4-bit string ‘0101’ at the end. The 12-bit payload string
leaks patient information such as the existence of therapy and the
glucose level, thus completely breaching user privacy.
Li et al. show that a passive attack can be easily launched when
the USRP is within a 7-8 meter range of the insulin pump.

• Active attack: impersonation and control of the insulin pump to
alter therapy. After deciphering the 80-bit data packets, Li et
al. generate legitimate-looking packets, which pass all the checks
and are, hence, accepted by the insulin pump. They use the
USRP to transmit these maliciously crafted packets to the insulin
pump. These packets contain malicious commands, such as stop
an insulin injection or inject a much higher or lower dose. This
may lead to severe adverse consequences, such as hyperglycemia
or hypoglycemia, thus endangering patient’s life.
Li et al. show that an active attack can be successfully launched
even when the USRP is 20 meters away from the insulin pump.
This is even farther than the original control range of the remote
controller: 4.5 meters.

Li et al. propose two countermeasures against these attacks. The
first method uses a cryptographic approach based on a pair of rolling
code encoders embedded in both the remote control and insulin pump.
The encryption mechanism prevents an attacker from accessing device
PINs and data payloads, thus guards against both attacks. The second
method transmits the command signal via the human body instead of
through a wireless communication channel. This prevents attackers from
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accessing the packets as long as they are not in very close proximity to
the patient or touching the patient’s skin. Both methods incur additional
battery energy on the insulin pump.

Zhang et al. propose a medical security monitor called MedMon
to detect wireless attacks on a WBAN with zero additional power
on biomedical devices [Zhang et al., 2013]. MedMon is a non-invasive
external wearable device that monitors the transmission traffic in and
from medical devices. Whenever an anomaly is detected, MedMon raises
an alert, and jams the malicious transaction before it alters the state
of the target device. MedMon does not require any modifications to
existing hardware or software, and is thus applicable to legacy healthcare
systems.

MedMon captures two major types of anomalies in the transmission
traffic within a WBAN:

• Physical anomalies: though carefully crafted, malicious trans-
missions may deviate significantly from legitimate ones in their
physical signal characteristics. These characteristics include Re-
ceived Signal Strength Indicator (RSSI), Time of Arrival (TOA),
Differential Time of Arrival (DTOA), and Angle of Arrival (AOA).
This allows MedMon to determine the relative position (angle and
distance) of the signal transmitter to the medical device. This
enables MedMon to verify the legitimacy of the transmitter, and
hence the transmission, with very high confidence. To avoid false
alarms, MedMon utilizes multiple threshold values for each of
its target signal characteristics. This accommodates the unfixed
relative positions of medical devices in a WBAN. The threshold
values are configured when MedMon is calibrated and trained to
learn normal behaviors of a target WBAN prior to its deployment
for anomaly monitoring.

• Behavioral anomalies: carefully crafted malicious transmissions
may be physically indistinguishable from a legitimate one, but
contain different underlying information (command or data) to
cause harm to the patients. These anomalies are referred to as
behavioral anomalies. For example, an adversary can forge a
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(a) (b)

Figure 5.4: Upon identifying an attack, MedMon (a) just provides a warning in
the passive mode, and (b) provides a warning and jams the communication in the
active mode [Zhang et al., 2013]

legitimate-looking packet and send it to the insulin pump to
trigger large insulin doses. Such sophisticated attacks may in some
cases be able to bypass the physical anomaly checking process. To
defend against such attacks, MedMon compares the content of a
newly arrived command/data with pre-stored legitimate historical
records to determine its legitimacy.

MedMon checks physical and behavioral anomalies in a sequential
manner. An incoming transmission is only deemed to be safe if no
anomaly is detected in both steps, and only then granted access to
the medical device. In response to a detected anomaly, MedMon can
either raise a warning (passive defense mode) to the user or jam the
transmission channel (active defense mode), as shown in Fig. 5.4.

Zhang et al. implement MedMon to defend against both the passive
and active attacks on insulin pumps [Li et al., 2011, Zhang et al., 2013].
They use one USRP to launch the attack and another USRP to function
as MedMon. The transmission band is centered at 916.68 MHz, while
the jamming signal is centered at 916.87MHz. The attacker USRP
injects malicious packets in the wireless channel, while MedMon tries
to determine the command type, verify the device PIN, and jam the
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communication channel, just in time, whenever an anomaly is detected.
MedMon achieves a 99.2% detection rate (0.8% false negative rate)

over 250 attacks launched at random times from varying locations and
at varying power levels. It achieves a 100.0% detection rate (0% false
negative rate) when within 10-20 cm from the insulin pump in over 100
attacks. In all these attacks, MedMon successfully jams the channel
before malicious packets alter the state of the insulin pump.

Takeaway: MedMon addresses security issues associated with the
use of several already-in-market medical devices and sensors utilized in
WBANs. Some companies may consider adding built-in security features
to their future designs. However, at the current state of the technology,
many in-market medical devices and sensors do not come with strong
security solutions due to the cost, energy, and storage overheads of such
solutions. MedMon can bring add-on security to non-secure medical
devices while imposing no design change and energy/cost overheads.

5.4 OpSecure: Exchanging Keys via Light

To mitigate the risk of eavesdropping on wireless channels used to
communicate with IMDs, the use of lightweight data encryption tech-
niques has been suggested [Hu et al., 2013, Zhang et al., 2014]. However,
due to limited on-IMD storage/energy resources, traditional encryption
schemes cannot be implemented on IMDs. In particular, asymmetric
encryption mechanisms are not suitable for IMDs since they would signif-
icantly degrade battery lifetime [Potlapally et al., 2006, Hu et al., 2013].
Several recent studies have proposed lightweight symmetric encryption
mechanisms to prevent eavesdropping on IMDs and enhance the security
of communication protocols utilized in such resource-constrained devices
([Strydis et al., 2008] summarize several such mechanisms). Symmetric
cryptography requires a secret key that is shared between the two parties
involved in the communication. Thus, symmetric key encryption can be
utilized in IMDs only if a secure key exchange protocol is available.

Previous studies indicate that, to prevent both battery-draining
and remote eavesdropping attacks, attack-resilient wakeup and key
exchange protocols are desirable. Mosenia and Jha [Mosenia and Jha,
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2017] have proposed attack-resilient wakeup and key exchange protocols
for subcutaneous IMDs. They have developed practical key exchange
and wakeup protocols based on visible light. These protocols com-
plement lightweight symmetric encryption mechanisms and prevent
remote battery-draining attacks and security threats against insecure
communication channels. They present a new communication channel
for IMDs, called OpSecure, inspired by the observation that visible light
can penetrate deep enough into the body to reach the IMD when the
light source is in contact with the human body. However, the challenge
is that visible light attenuates very fast in the body. Indeed, the pro-
posed solution is intrinsically secure due to the proximity requirements
imposed by the physical characteristics of visible light. OpSecure relies
on two components: (i) a light source embedded in an external device
(for example, a smartphone’s flashlight) that modulates visible light to
transmit data, and (ii) a light sensor in the IMD that can sense the
visible light generated by the light source. They implement their proto-
cols using the flashlight of smartphones. They implement an Android
application on the smartphone to support two functionalities: waking
up the IMD and transmitting a randomly-generated key (Fig. 5.5), as
described next.

Wakeup protocol: To wake up the IMD, an authorized user must
place the smartphone on the patient’s body close to the IMD, e.g., on
the patient’s chest when the user wants to wake up a pacemaker, and
press the wakeup button in the application. In this scenario, the wakeup
button simply turns on the flashlight. The IMD periodically wakes up
to check if a light source is on the body, i.e., it checks if the intensity of
the light received by the light sensor embedded in the IMD is above a
predefined threshold T . The presence of an on-body light source pointed
at the IMD is interpreted as the presence of a trusted external device.

Key exchange protocol: To exchange a key with the IMD, an
authorized user creates a random key, places the smartphone’s flash-
light on the patient’s body, and presses the key exchange button. The
smartphone exchanges the key with the IMD in four steps:
Step 1: The smartphone prepares a key packet as Keypacket =
Pre||K||Post, where K is the randomly-generated key and Pre and
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Figure 5.5: The smartphone generates a 4-bit key and transmits the key over
OpSecure. The application allows the user to control both the key length (N) and
transmission rate (R) [Mosenia and Jha, 2017].

Post are two predefined binary sequences that specify the beginning
and end of the key.
Step 2: The smartphone uses on-off keying modulation to transmit
Keypacket. To transmit bit “1”, the smartphone turns the flashlight on
for a predefined period. Similarly, it turns the flashlight off for the same
period if a bit “0” is to be transmitted.
Step 3: The IMD recovers Keypacket by demodulating the light received
at the light sensor. It then removes Pre and Post from the packet and
recovers the key K. It then creates and sends an acknowledgment packet
to the smartphone. It encrypts a predefined message Mconfirm using
K, encrypts the message with K, and transmits the encrypted message
C = ENC(Mconfirm, K) to the phone over a Radio-Frequency (RF)
communication channel (both the IMD and smartphone are assumed
to support a bidirectional RF communication protocol).
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Step 4: The smartphone checks if it can successfully decrypt the acknowl-
edgment message. If so, it concludes that the key has been successfully
transferred to the IMD.

In [Mosenia and Jha, 2017], Mosenia and Jha describe an IMD
prototype that supports the above-mentioned protocols and use a beef-
bacon body model, i.e., a human body model that consists of a thin layer
of bacon on a thick layer of lean ground beef, to evaluate them in several
realistic scenarios. In particular, they demonstrate that OpSecure adds
minimal size/energy overheads to an IMD while significantly enhancing
the security of the device. They show that OpSecure is robust against
environmental noise, e.g., ambient light, and resilient against a variety of
remote attacks, e.g., using a coherent laser to try to inject a malicious key.
Their empirical results suggest that OpSecure can significantly enhance
the security of subcutaneous IMDs in real-world scenarios, as opposed
to prior approaches, such as acoustic-based [Halperin et al., 2008]
communication channels that are vulnerable to remote eavesdropping
and can be negatively affected by environmental noise [Halevi and
Saxena, 2013].

5.5 SecureVibe: Exploiting the Vibration Side Channel

Kim et al. [Kim et al., 2015] introduce alternative vibration based
protocols for RF module wakeup and key exchange, called SecureVibe.
Fig. 5.6 shows its two-stage wakeup procedure. In the first stage, at
regular time instances, the accelerometer enters the Motion-Activated
Wakeup (MAW) mode. In this mode, the vibration is compared with
a threshold to distinguish between actual vibration and body motion.
In the case of body motion, since the previously set threshold has
a higher value, the accelerometer does not become activated. Thus,
the module shifts to the standby mode. In the case of vibration, the
threshold is exceeded and the accelerometer takes measurements. In the
measurement mode, to eliminate low-frequency components induced by
the environment or patient movements, a high-pass filter is used. After
filtering the accelerometer measurements, if there is vibration, the RF
module is activated, otherwise it is returned to the standby mode.
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Figure 5.6: Block diagram of the two-stage wakeup of the RF module in SecureVibe
[Kim et al., 2015].

SecureVibe uses the key exchange protocol shown in Fig. 5.7. As a
first step, the External Device (ED) generates a random key. The medical
device receives this key in the form of a vibration. After transforming
the vibration to a bit string, the medical device encrypts a previously-
defined message and sends it to the external device. After decrypting
the received ciphertext, if the external device obtains the message
correctly, the key received by the medical device is confirmed and the
communication is carried out with the verified key. However, due to noise
or other influences in the communication environment, when vibration
is converted into bits, some bits may remain ambiguous. To address this
problem, in the case of a small number of ambiguous bits, Kim et al. use
random guessing. After guessing the random bits, the medical device
encrypts the predefined fixed message and sends it to the external device
along with the positions of the ambiguous bits. Using these positions,
the external device searches through all possible combinations of bits
that can be used to decrypt the ciphertext correctly. If the external
device finds such a key, communication is established and the messages
are encrypted with the verified key. However, if there are a large number
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Figure 5.7: Key exchange protocol of SecureVibe [Kim et al., 2015].

of ambiguous bits, the procedure is repeated with a different random
key.

To evaluate the wakeup vibration detection and key exchange proto-
cols, Kim et al. include the effect of body movement. Fig. 5.8 shows the
wakeup vibration and corresponding modes of the wakeup module. In
the beginning, since no vibration is detected, the accelerometer stays
in the standby mode. When the vibration exceeds the threshold, the
accelerometer passes to the normal measurement mode. The normal
measurement mode activates the high-pass filter. After de-noising the
measured signal, since there is no vibration, the accelerometer enters
the standby mode again. However, when there is wakeup vibration,
even after high-pass filtering, the threshold is exceeded and the RF
module is activated (see the final MAW span in Fig. 5.8). Fig. 5.9
shows the vibration waveform, amplitude gradient, and amplitude mean
for the key exchange experiment that is carried out at 20 bits/second
with a 32-bit key. As indicated by the orange triangle, the ninth bit is
ambiguous and requires a random guess. However, once the external
device obtains the position of the ambiguous bit, only two trials are
required to find the key.

Kim et al. also analyze the resistance of SecureVibe to security
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Figure 5.8: Wakeup vibration and various modes of the two-step RF wakeup module
[Kim et al., 2015].

attacks. In the presence of direct attacks, they show that key exchange
can only be done at most 10 cm away from the external device. Due to
this short-range requirement, the attacks become easily recognizable by
the patient. They also evaluate resistance to an acoustic eavesdropping
attack. Due to the masking sound, eavesdropping on the vibration sound
does not provide any valuable information about the key. In the case of
differential attacks, again no valuable information can be obtained due
to the short distance between the two sound sources. Therefore, the
practicality and strength of the proposed system are verified in various
ways.
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6
Looking Forward

Despite remarkable progress, smart healthcare is still an emerging and
booming field where a wide range of open research opportunities are
available.

6.1 Unsatisfactory Datasets and Machine Learning Models

Healthcare data can be, or in most cases are, noisy, unstructured,
time-correlated, large in volume, varying in amplitudes, packed with
missing values, and most importantly, without proper labels. These
shortcomings may prevent existing machine learning algorithms from
delivering high classification accuracy. For example, SVM, tree-based
algorithms, and Bayesian networks fail to scale well when the feature
dimension increases for more challenging tasks, such as biomedical image
classification and EHR analysis (NNs dominate in these fields). Deep
NNs, though achieving astonishing accuracies, still have to rely on an
immense well-labeled training dataset. This incurs substantial training
time. Effective unsupervised learning methods, on the other hand, do
not require labels but are not yet mature.

Currently, a lack of usable biomedical datasets still acts as a big
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bottleneck to further advances. For most target applications, a com-
prehensive, clean (i.e., structured and pre-processed), well maintained,
and preferably correctly labeled dataset does not exist. For example,
biomedical datasets that may enable disease diagnosis through ma-
chine learning do not currently exist for most diseases or even disease
categories. As shown in Fig 3.2 (see Section 3.3), a huge fraction of
ICD-10-CM disease categories is still unexplored in terms of available
biomedical datasets. Collection of these datasets can yield enormous
social benefits. For example, once an HDSS disease diagnosis module is
generated from a disease dataset, it can be used by anyone anywhere
anytime for pervasive disease diagnosis.

6.2 Protocol Standardization and Infrastructure Support

Standardized protocols are needed to facilitate a smooth transition be-
tween and synchronization of different smart healthcare resources. Smart
healthcare systems typically consist of various treatment/monitoring
protocols and heterogeneous sensors/devices for both personal and
clinical utilization. They need to perform smart healthcare tasks and
work collaboratively in the smart healthcare loop to improve the health
condition of the user. For example, in the case of an emergency, personal
smart healthcare systems should communicate efficiently with clinical
healthcare systems. On the other hand, when the emergency subsides,
clinical follow-up and treatment/rehabilitation should be compatible
with personal smart healthcare systems. Therefore, smooth transition
and synchronization based on standard protocols are necessary for
proper functioning of personal and clinical smart healthcare resources.

In all these scenarios, handling of health data requires utmost care
since the data unveil sensitive user information. Hence, it imposes a
high bar on the infrastructure support system to facilitate secure health
data collection and storage (to make smartness possible and hold its
outcome), and data transfer/sharing (to allow the full exploitation
of smartness) within/among health organizations, hospitals, research
institutes, data centers, and edge devices. Infrastructural deficiencies
can place a roadblock in the development and utilization of innovative
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healthcare solutions.

6.3 Fog Computing as an Alternative to the Cloud

Cloud computing, with its adaptive computational power and scalable
storage, has tremendously empowered healthcare applications. Despite
its obvious benefits, its applicability is limited in many healthcare
applications, in particular, when the application is mission-critical,
data-dominant, or latency-sensitive. Even a short period of Cloud un-
availability, which may be a result of a failure in Cloud servers or loss
of Internet connectivity, may be life-threatening in some healthcare ser-
vices. Furthermore, healthcare applications, e.g., seizure or arrhythmia
detection, may need to capture and process a huge amount of data
every day. For such data-dominant applications, sending the data to the
Cloud is not cost-efficient, especially, if the application relies on cellular
Internet connectivity [Mosenia et al., 2017a]. Moreover, the round-trip
delay caused by sending the raw data to the Cloud, making inferences,
and sending the inferences back to the user side are not tolerable in
applications that require a fast response [Mosenia et al., 2017b].

To address the above-mentioned shortcomings of Cloud computing,
new computing/networking paradigms, in particular, Fog computing,
have recently emerged. They push scalable computational/storage power
to the edge of the network. Fog computing has a distributed horizon-
tal architecture that exploits computational, networking, and storage
resources along the edge-to-Cloud continuum [Dastjerdi and Buyya,
2016]: it utilizes both edge-side and Cloud resources, along with other
resources available in computational/networking nodes located between
the edge and the Cloud commonly referred to as Fog nodes (Fig. 6.1).

In healthcare, Fog-based applications offer four main advantages
over traditional Cloud-based services:

• Low latency: Fog-based applications take advantage of several
close-to-the-user resources. This minimizes the round-trip delay
overhead imposed by transmitting data to remote resources and
enables the implementation of a variety of low-latency services
with minimal reliance on remote on-Cloud resources.
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Fog Node Fog Node

Fog Node Fog Node Fog Node Fog Node

Cloud Servers

Figure 6.1: Fog computing exploits computational, networking, and storage re-
sources along the edge-to-Cloud continuum. Each Fog node can talk to other nodes
at the same layer and/or other layers. Commonly, Fog nodes located closer to the
Cloud have more computational power and storage capacity.

• Cost efficiency: Fog computing minimizes the need of Cloud ser-
vices, at the same time, significantly reduces the edge-to-Cloud
data transmission overhead by exploiting close-to-the-user re-
sources.

• Privacy: Close-to-the-user resources enable the processing of sen-
sitive raw data before sharing them with third-party servers, thus
significantly enhancing patient privacy. For example, noise can
be added to raw data to hide private information or the privacy-
sensitive portions of the data can be filtered [Mosenia et al., 2017a,
Zao et al., 2017].

• Resilience to failures: In smart healthcare, availability is an essen-
tial consideration in the design and implementation of mission-
critical applications. Relying on distributed resources along the
edge-to-Cloud continuum enables fast recovery of services in the
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event of failures. In the Fog computing paradigm, critical tasks
can be reallocated to local resources upon the detection of a failure
[Zao et al., 2017].

A few recent research studies have shed light on the above-mentioned
advantages of Fog computing in real-world healthcare applications. For
instance, Cao et al. [Cao et al., 2015] presented a Fog-enabled system
to detect, predict, and prevent falls by stroke patients. It offers lower
energy consumption and faster response time compared to its Cloud-
based alternative. Stantchev et al. [Stantchev et al., 2015] described how
low latency and privacy-sensitive healthcare applications can benefit
from Fog computing. Such studies are paving the way for bringing
Fog-based services to smart healthcare. These trends show that Fog has
the potential to enable numerous healthcare applications, thus making
Fog-enabled systems a promising research direction [Mosenia et al.,
2017b].



7
Conclusion

In this article, we defined a standard framework for smart healthcare
that can enable exploitation of the rapid clinical-to-daily healthcare
expansion due to the proliferation of IoT and machine learning. We
investigated five emerging smart healthcare systems: IBM Watson,
Open mHealth, health decision support system, stress detection
and alleviation system, and an energy-efficient health monitoring
system. We discussed nine design considerations for both existing
and future smart healthcare systems: efficiency, security, accuracy,
cost, responsiveness, maintainability, scalability, reliability, and fault
tolerance. We explained five innovative research trends that help address
some of these design considerations. We first described an NN synthesis
tool call NeST that may enable Cloud-based healthcare services to
be implemented on a smartphone. We then described compressive
sensing and compressed signal processing that enable inference to be
energy- and storage-efficiently performed on wearable medical sensors.
We then described MedMon, OpSecure, and SecureVibe that impart
security to healthcare systems. Finally, we discussed several research
directions that offer avenues for future innovations, including the need
to address unsatisfactory datasets and machine learning algorithms,
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standardization and infrastructure, and the promising role of Fog
computing in smart healthcare.
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