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Abstract

Two-photon laser scanning microscopy of calcium dynamics using fluorescent indicators is a 

widely used imaging method for large scale recording of neural activity in vivo. Here we introduce 

volumetric Two-photon Imaging of Neurons using Stereoscopy (vTwINS), a volumetric calcium 

imaging method that employs an elongated, V-shaped point spread function to image a 3D brain 

volume. Single neurons project to spatially displaced “image pairs” in the resulting 2D image, and 

the separation distance between images is proportional to depth in the volume. To demix the 

fluorescence time series of individual neurons, we introduce a novel orthogonal matching pursuit 

algorithm that also infers source locations within the 3D volume. We illustrate vTwINS by 

imaging neural population activity in mouse primary visual cortex and hippocampus. Our results 

demonstrate that vTwINS provides an effective method for volumetric two-photon calcium 

imaging that increases the number of neurons recorded while maintaining a high frame-rate.

Introduction

Two-photon excitation laser scanning microscopy1 (TPM) enables high spatial resolution 

optical imaging in highly scattering tissue such as the mammalian brain. When combined 

with genetically-encoded calcium indicators2,3, or synthetic indicators that label neural 
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populations4, intracellular calcium dynamics can be measured across a population of cells, 

providing a method for large scale recording of neural activity at cellular resolution4,5. In 

general, increasing the number of simultaneously recorded neurons is important because it 

increases the power of population analysis methods in studies of neural coding and 

dynamics. To increase the number of neurons recorded with two-photon calcium imaging, 

volumetric imaging methods, such as multi-plane imaging6, random access fluorescence 

microscopy7–9 and ultrasound lens scanning10, are under development.

In traditional TPM1, a diffraction-limited, high numerical aperture (NA) point spread 

function (PSF) is raster-scanned across a single plane. Volume imaging can be performed by 

sequentially moving the focal plane (or sample) up or down between each raster scan, 

repeating this pattern for each volume measurement. This method can be implemented with 

movable objectives, remote focusing11, or a liquid lens6. However, if the frame rate for 

single plane imaging is N frames/sec, and the number of planes imaged per volume is m, 

then the aggregate volume frame rate is reduced to N/m. Many calcium indicators12 have on-

response kinetics below 0.1 s. To capture these dynamics, volume frame rates must remain 

close to 10 Hz. With current resonant scanner-based TPM (N ≈ 30 Hz), this implies that 

only a relatively low number of planes (m=3,4) can be used for multi-plane volumetric 

imaging.

Elongating the PSF of the focused excitation beam along the optical axis, using either a low-

NA Gaussian beam focus or Bessel beam methods13, can be used with raster scanning to 

form a projection image of a volume14. This is useful in applications like functional imaging 

of dendritic spines in sample volumes with sparse neural expression of the indicator15. 

However, in samples with dense expression, such as those encountered in large-scale 

recording of a neural population in vivo, extending a single PSF axially causes neurons at 

different depths to be superimposed. Information about depth in the sample of individual 

neurons is lost, and demixing of fluorescence signals from individual neurons is 

compromised if their images significantly overlap.

Our method addresses these limitations by splitting an elongated PSF into two excitation 

beams. These beams are spatially separated and angled inwards to create a stereoscopic “V”-

shaped PSF configuration (Fig. 1a). Raster scanning with this PSF produces a 2D projection 

image that preserves information about neural activity at different depths. We refer to this 

method as volumetric Two-photon Imaging of Neurons using Stereoscopy (vTwINS). The 

intuition behind vTwINS is straightforward: the soma of any neuron in the 3D volume makes 

two contributions to the 2D projection image, one soma-shaped image for each arm of the V-

shaped PSF. The spatial offset between these two images is equal to the distance between the 

two arms of the V at the neuron’s depth in the volume. This results in short distances 

between deep neurons, and longer distances for shallower neurons (Fig. 1a).

Although vTwINS ensures that all neurons have distinct “paired” spatial profiles in the 

projection image, identifying which pair of image regions reflect a single neuron’s activity is 

ill-posed from single images. Recent methods solve this problem by leveraging the temporal 

statistics of neural activity across frames (e.g. PCA/ICA16 and constrained non-negative 

matrix factorization; CNMF17,18). We describe a novel inference algorithm based on 
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orthogonal matching pursuit that exploits both the expected shapes of neural spatial profiles 

(pairs of rings or disks displaced along the axis of the V-shaped PSF) and the sparseness of 

neural activity. The image pair separation Δ in a neuron’s identified spatial profile also 

determines its axial position via the relationship d = 0.5(Δ − Δmin)/tan(θ), where Δmin is the 

minimum inter-beam distance of the PSF and θ is the beam angle from the axial direction 

(Fig 1a,b). Thus, the demixing algorithm both provides the neuron’s fluorescence time 

course and location in the volume.

In the following, we describe the optics developed to produce the vTwINS PSF and 

demonstrate images and image time series produced using this method. We then present the 

algorithm that was developed for identifying active neurons in these time series and 

demixing fluorescence transients. Finally, using the combined imaging system and 

algorithm, we demonstrate large-scale recording of GCaMP-expressing neurons in visual 

cortex and hippocampus of awake mice

Results

vTwINS Optics

In a vTwINS microscope, the diffraction limited PSF (Fig. 1b) of traditional TPM is 

replaced with an elongated V-shaped PSF produced from two intersecting Gaussian beams 

(Fig. 1b), or Bessel beams (Fig. 1b). The strategy we used to create the V-shaped PSF was 

dual-beam excitation through a single objective lens (Fig. 1c,d). To produce a V-shaped PSF, 

the back-aperture is illuminated with a pair of small Gaussian beams or rings (Bessel 

beams19). Adjusting the separation distance, beam convergence, and beam parameters 

changes the angle, offset, and extension of the PSF, respectively (Online Methods, 

Supplementary Fig 1a., Supplementary Note 1).

As an initial proof of principle that vTwINS could spatially localize objects in a 3D volume, 

we imaged fluorescent beads embedded in agarose (Supplementary Fig. 2, Supplementary 

Note 2). Using the beads, we localized the center position of the beads to 2.7±1.6 µm 
(N=31) against a reference image stack, more than accurate enough for imaging neuronal 

cell bodies. While beads were localized over a large axial range, we found that in vivo 
(Online Methods) the effective axial illumination length of each elongated beam is 

approximately 1/e full-width of the maximum intensity.

vTwINS Calcium Imaging

In diffraction-limited TPM (Fig. 2a), a single soma-shaped spatial profile of high 

fluorescence intensity is observed when calcium transients are produced in an active neuron 

and the cell soma of GCaMP-expressing quiescent cells can typically be resolved20. A 

vTwINS image is qualitatively different. Active neurons are represented as two bright soma 

shaped regions (disk or ring; Fig. 2b) and the images of quiescent neurons are typically not 

resolved because the projection produces an increased, and more uniform, background 

intensity. The geometry of the vTwINS PSF greatly reduces the signal of active neuropil and 

spreads it out over large regions, resulting in a broad, time-varying addition to the 

background intensity. When multiple cells are simultaneously active, many soma pairs 
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become visible. Pairs from different cells have different spatial separations (Fig. 2c), 

representing different depths of the cell somas in the volume.

The properties of vTwINS based calcium imaging data (Fig. 2) introduce a number of 

unique challenges in demixing spatial profiles of neural activity to extract the fluorescence 

time traces of individual cells. First, there is a lower SNR per cell due to the axially extended 

PSFs (Fig. 2b). Second, the spatial profiles of cells under vTwINS can partially overlap (Fig. 

2d), and typically consist of disjoint regions. While the geometry of vTwINS reduces 

maximal overlap between profiles (Online Methods, Supplementary Note 3, Supplementary 

Fig. 3), the disjoint nature of the profiles violates the spatial locality assumption in current 

demixing methods16, 18 (Online Methods, Supplementary Fig. 4b). Third, neurons co-

aligned in the fast-scan direction can create ambiguous, interdigitated spatial profile pairs 

(Fig. 2e). Finally, intensity differences between the two images in a pair may result from the 

non-uniform scattering between the two beam paths (e.g. due to varying tissue properties).

vTwINS Profile Identification and Demixing

We addressed the challenges of analyzing vTwINS data with Sparse Convolutional Iterative 

Shape Matching (SCISM), a novel demixing method that explicitly seeks horizontally 

separated image pairs (Online Methods, Fig. 3, Supplementary Fig. 5). As a pre-processing 

step, we motion-corrected, temporally averaged, and spatially binned the raw image time 

series (Online Methods). At each iteration, candidate spatial profiles, consisting of 

stereotyped profiles (pairs of annuli separated in the fast-scan direction with different 

separation distances), are compared to the measured fluorescence frames across the field-of-

view (FOV) (Fig. 3a, Supplementary Fig. 5a,b). Estimating pairs of images simultaneously 

increases the available signal to distinguish the neural profile from the noise fluctuations 

(Supplementary Fig. 6, Supplementary Note 4). The stereotyped profile most correlated with 

the data is then selected (Supplementary Fig. 5c), and the most highly correlated frames are 

used to refine the profile shape to better match the data (Supplementary Fig. 5d). This step 

allows SCISM to handle spatial profile pairs where one beam path has lower intensity. The 

new profile is added to the set of active spatial profiles, and the corresponding time-traces 

are estimated using non-negative LASSO21 (Supplementary Fig. 5e). Finally, the data 

residual is calculated by subtracting off the component of the data captured by the current 

set of active spatial profiles (Fig. 3b, Supplementary Fig. 5f); this residual is used in the step 

to determine the next spatial profile.

This procedure iteratively selects spatial profiles greedily in order of correlation strength 

with the data, using both spatial and temporal statistics to determine the most likely spatial 

profile at each iteration. Specifically, SCISM leverages sparsity in neural activity as well as 

the spatial constraint that each spatial profile consists of two areas separated in the fast-

scanning direction. Sparse neural activity is particularly important as it permits minimal 

cross-contamination due to spatially overlapping neurons. Once spatial profiles are 

determined with SCISM, full resolution time trace estimates are obtained using non-

temporally averaged data via non-negative LASSO.
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Large Scale Recording in Mouse Visual Cortex

Head-restrained GCaMP6f-expressing transgenic mice, running on a spherical treadmill, 

were presented with a visual stimulus sequence consisting of randomly placed Gabor 

patches (Online Methods). vTwINS imaging was performed in layer 2/3 of primary visual 

cortex (V1). Images were acquired in a 550 µm × 550 µm area with a 45 µm-long inverted-V 

PSF (FWHM, 60 µm 1/e full-width) at 30 Hz frame rate over a 14 minute imaging session.

The time series fluorescence data was preprocessed with rigid motion-correction and spatio-

temporal averaging (Online Methods, Supplementary Fig. 7a, Supplementary Video 1,2). 

The 511 spatial profiles obtained via SCISM (Fig. 4) show significant overlap, as expected 

from the relatively high density of GCaMP-expressing cells and the vTwINS PSF. Given the 

spatial profiles, we used the vTwINS PSF to extract the 3D cell positions (Online Methods, 

Fig 4a,b). The demixed spatial profile activity traces (Fig. 4c, Supplementary Fig. 8) have 

the expected temporal statistics of sparsely firing neurons. Because SCISM is an iterative 

method that extracts highly active spatial profiles first, the time traces are ordered by how 

correlated the profiles are with the data.

The spatial profile volumetric locations (Fig. 4b) indicates that vTwINS records activity 

across the entire axial extent. The range of axial depths captured by vTwINS is further 

illustrated by plotting the spatial profiles in a 107 µm × 107 µm subsection of the FOV (Fig. 

4d), sorted by inferred depth, (Fig. 4d) and their corresponding position in a 3D anatomical 

volume (Online Methods, Supplementary Fig. 9). The corresponding spatial profile activity 

traces (Fig. 4d) also show that cell transients are well isolated, despite the highly 

overlapping spatial profiles.

To validate that neural activity recorded with vTwINS is comparable to standard methods, 

we simultaneously imaged an entire neural volume with vTwINS, and a single slice of the 

volume with diffraction-limited TPM. Both datasets were collected at 30 Hz over a 470 µm 
× 200 µm overlapping area (Supplementary Fig. 1b, 6c, Supplementary Video 3,4). vTwINS 

data was demixed using SCISM while we extracted spatial profiles and activity traces from 

the single-plane data using a modified CNMF algorithm22 as an independent comparison 

(Online Methods).

Comparison of spatial profiles from the simultaneous recordings (Fig. 5) indicates that 

vTwINS captures both neural activity in the single slice TPM and activity at other depths. 

Overall, in a ten minute imaging session, 454 spatial profiles were found in the volume using 

vTwINS, as compared to 169 spatial profiles found in the single plane diffraction-limited 

data. Activity traces corresponding to the found spatial profiles of cells identified in both the 

single plane and the volume, restricted to cells active in a 5 s window (Fig. 5a,b), show very 

high correlation between the two imaging modalities. Of the single-slice spatial profiles, 116 

spatial profiles had >1 transient per minute. Of these, 98 (84%) had a matching spatial 

profile in the vTwINS data (Supplementary Fig. 10). Of the remaining single-slice spatial 

profiles, many had very low SNR, suggesting that that activity fell below the vTwINS’ lower 

SNR level. These correlations indicate that vTwINS still captures most of the activity at any 

given depth while also capturing additional activity elsewhere in the volume.
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Large Scale Recording in Mouse Hippocampus

As a more challenging application of vTwINS, we recorded and demixed activity from the 

CA1 region of mouse hippocampus. In this region, neuronal cell soma are densely packed in 

a well-defined layer, producing high spatial overlap in vTwINS data. To induce activity in 

CA1, water-restricted mice were trained to run down a linear track in a virtual reality 

system23 for water rewards (Online Methods). Images were collected over a 14 minute 

session in a 470 µm × 470 µm area with a 35 µm long vTwINS PSF (FWHM, 45 µm 1/e full-

width, non-inverted V) at 30 Hz (Supplementary Fig. 7b, Supplementary Video 5,6). CA1 

recordings were processed and analyzed using the same pre-processing and SCISM 

demixing as described for the V1 data.

The 3D positions for each of the 882 spatial profiles found using SCISM were calculated 

(Fig. 6a,b) and their activity was demixed (Fig. 6c, Supplementary Fig. 11). Interestingly, 

the tendency for shallower neurons towards the center of the FOV and deeper neurons 

towards the edges of the FOV indicates that the vTwINS spatial profiles are capturing the 

curvature of CA1 (Fig. 6a). A subset of spatial profiles in a 92 µm × 92 µm section (Fig. 

6b,d) of the FOV demonstrate that the inferred 3D locations match well to the anatomical z-

stack (Supplementary Fig. 12).

Despite the highly overlapping spatial profiles due to the vTwINS PSF and high neural 

density, SCISM successfully demixed spatial profiles in CA1. Fluorescence time courses in 

different regions of two overlapping spatial profiles illustrate the demixed time traces (Fig. 

6e). The trace from the overlapped region of the two cells contains transients from both non-

overlap regions, while the demixed traces contain only the single-profile region activity. 

Interestingly, one transient at 230 s in Region 2’s trace is missing from the overlap trace, 

indicating that this transient originated from a third profile and was successfully demixed in 

Profile 2’s time trace.

We also explored in mouse CA1 a variation of vTwINS where we alternate between each 

half of the vTwINS PSF on consecutive frames (Online Methods, Supplementary Fig. 1c). 

Illumination with a single beam (40 µm-long PSF; FWHM, 56 µm 1/e full-width) increases 

SNR per frame, however each beam can only be recorded at half the framerate (15 Hz). By 

merging the 30Hz interpolated recording, we used SCISM to locate spatial profiles separated 

by the width of the image (Supplementary Fig. 13a–c, 14). The temporal separation of the 

two channels was observed to reduce the total background neuropil, improving the SNR of 

the recorded transients (Supplementary Fig. 13d–f).

Discussion

Early strategies for large scale recording using calcium imaging generally used the spatial 

resolution of the optical instrumentation to ensure that the fluorescence from individual 

neurons formed spatially independent, disjoint sets. Spatial separation was the basis for hand 

selection of neural regions of interest, which has been widely used as a mask for extracting 

the time traces of individual cells. In practice, however, perfect separation of adjacent cell 

signals has been difficult to achieve for densely labeled cells. As a result, demixing 

algorithms16,17,22 have been developed to identify spatial profiles by allowing individual 
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pixels to have contributions from multiple neurons. vTwINS (and also a recent multi-plane 

technique24) take this mixing assumption as a starting point for the development of the 

optical instrumentation. The vTwINS V-shaped PSF increases signal mixing in individual 

pixels, but also ensures that each neuron will have a unique spatial profile that can be 

efficiently used in the co-designed demixing algorithm to extract the time traces and 3D 

location of individual cells. We anticipate that this strategy in which optical instrumentation 

and demixing algorithm are co-designed for large scale recording may generalize to other 

excitation geometries (e.g. 3 beams, multiple objectives).

vTwINS required the ability to seek specific spatial profile shapes while maintaining the 

flexibility to adapt to variations in neuronal shape. SCISM permitted the specification of 

these shapes as guides to locate relevant activity while still balancing the general expected 

temporal statistics of neural activity. Current automated methods do not use such detailed 

spatial information, focusing instead on temporal demixing25–29 with no spatial 

constraints16,17 or utilizing generic locality assumptions (i.e. spatial profiles must be fully 

contained in a constrained region)22,30. The ability of SCISM to adapt profiles to the data 

also differentiates it from standard matching pursuit-style algorithms31–33, which assume a 

fixed dictionary of features. Although we designed SCISM to seek features specific to 

vTwINS imaging, it can easily accommodate other spatial profile shapes in future imaging 

methods.

When compared to the most similar current approaches, vTwINS offers a number of 

advantages. Unlike fast point scanning strategies10, vTwINS has a substantially lower peak 

nonlinear excitation (Supplementary Note 5), allowing for scanning in larger volumes. 

Additionally, the vTwINS excitation configuration is comparatively power efficient34, and 

has high total two-photon excitation for a given average power. Compared to other 

multiplexed two-photon approaches24, vTwINS requires no additional recordings to 

initialize components, and guarantees uniqueness of spatial profiles. Finally, when compared 

to volumetric TPM using single, elongated PSFs, the use of two beams in vTwINS decreases 

ambiguity between spatial profiles (Supplementary Fig. 3, 4a).

vTwINS, like other TPM techniques, is subject to practical concerns of imaging in vivo. For 

our recordings, motion correction was not compromised due to the elongated PSF and 

sufficient high spatial frequency features in the imaged regions remained for accurate motion 

correction. Alternatively, in brain regions with low spatial structure, nuclearly localized RFP 

may be used for accurate motion correction. Nonlinear phototoxicity35,36 in vTwINS is 

reduced (Supplementary Note 5) as compared to high-NA TPM, while heating37 is limited 

to 100mW per excitation beam.

Additional work can further optimize vTwINS for other applications. vTwINS has additional 

background fluorescence from neuropil contamination, but might work particularly well 

with a nuclear localized GCaMP38, which would significantly reduce background 

fluorescence from neuropil and improve SNR. Furthermore, more flexible spatial 

information can be implemented in SCISM to improve demixing of neural signals from 

neuropil contamination. For brain regions with limited optical access (e.g. hippocampus23 or 

MEC39), smaller angles between arms or separation distance may be necessary. The choice 
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between Bessel beams and Gaussian beams requires additional study. Bessel beams offer 

flexibility in controlling the axial profile and lateral resolution40. Gaussian beams, while less 

flexible, are simpler to implement and have higher two-photon excitation (Online Methods, 

Supplementary Fig. 1). Finally, as a complementary method, vTwINS can be paired with 

existing improvements, such as sequential plane imaging (e.g. remote focusing11, or liquid 

lens6) to image larger volumes or take advantage of the improvement to SNR that a lower 

repetition rate laser offers34.

Online Methods

Microscope Design

The vTwINS microscope was modeled in ZEMAX (Zemax LLC) and custom MATLAB 

(Mathworks) scripts. The microscope (Fig. 1c) was constructed as a modification of a 

resonant scanning two-photon microscope. A beam shaping module to produce the V-shaped 

PSF for vTwINS was designed to be inserted between the laser and microscope. This 

strategy was used so that the module could, in principle, straightforwardly be adapted for 

any existing standard two-photon microscope. The beam-shaping module consisted of three 

optical paths that could be switched via flip-mount mirrors between: 1) a standard high-NA 

path for standard two-photon imaging, 2) a vTwINS path using low-NA Gaussian beams, or 

3) a vTwINS path using Bessel beams.

The collimated Gaussian laser beam entering the beam-shaping module had a measured 

knife-edge width (10/90 percent) of 1.3mm which corresponds to a 1/e2 diameter of 2 mm. 

The high-NA path consisted of a 2.5× beam expander (AC254-40-B and AC254-100-B, 

Thorlabs). The Gaussian vTwINS path consisted of a 0.3–1.2× variable telescope 

(G06-203-525 AC 140/31,5 Linos, LC1120 and AC254-125-B, Thorlabs). When aligning 

the Gaussian vTwINS path, care was taken to avoid focusing the laser beam directly onto the 

scanners. The Bessel vTwINS path consisted of an axicon and achromat lens pair (179.2° 

BK7 Axicon, Altechna and AC254-200-B, Thorlabs) to generate the ring-shaped excitation 

for the Bessel beam. The specific choice of axicon and achromat lens pair was based on 

tradeoff between lateral resolution and two-photon excitation efficiency. For the Bessel 

beams to be correctly formed within the sample, the rear pupil of the objective needs to be 

illuminated with well focused annuli of light. For this reason, the back aperture of the 

objective is conjugate to the achromatic lens front focal plane of the Axicon-Achromat pair. 

If collimated, parallel beams are used, the two branches of the PSF form a X-shape. The PSF 

V-shape was obtained by introducing a slight beam convergence at the objective back-

aperture created and tuned by a 1× telescope (2× AC254-100-B, Thorlabs). When the 

vTwINS modalities were used, the beam was split in two parallel beams with a half-wave 

plate and a Calcite beam displacer (AHWP05M-980 and BD27, Thorlabs). The half-wave 

plate was oriented such that the fluorescence intensities of the two images are equal. The 

birefringent beam displacer was mounted in a rotation mount and oriented such that the two 

beams lie in a plane perpendicular to the resonant (fast) scanning mirror axis of rotation. 

This is to guarantee that the two images formed of a fluorescent object lie on the same 

scanned line. A pair of BK7 windows mounted on orthogonal rotation axes was used to 

adjust and center the lateral position of the beams on the scanners. The beams separation 
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(2.7 mm out of the Calcite beam displacer) was further reduced using a 0.8× telescope 

(AC254-100-B and AC254-80-B, Thorlabs). This specific choice, in combination with the 

magnification of the microscope (X3.75) and the 12.5 mm focal length of the water 

immersion Nikon objective resulted in an angle of 43° between the two branches of the PSF. 

This choice of angle resulted in an accurate axial localization of the cell bodies 

(Supplementary Fig. 2). When the high-NA path was used for conventional two-photon 

imaging, the half-wave plate was rotated to zero the power of one of the emerging beams, 

and the two BK7 windows were oriented to center the remaining beam on the optical axis of 

the microscope.

A Ti:Sapphire laser (Chameleon Vision II, Coherent) at 920 nm was used for two-photon 

excitation, and dispersion compensation in the laser was adjusted to maximize the two-

photon signal. A Pockels cell (Model 350–80 with 302RM driver, Conoptics) was used to 

modulate laser intensity and a half-wave plate plus polarizing beamsplitter cube (Thorlabs) 

was used to adjust the maximum laser intensity. The two-photon microscope body consisted 

of a resonant scanning head (6215/CRS 8 kHz, Cambridge Technologies), a 100 mm f − θ 
scan lens (4401-464-000, Linos) and a 375 mm achromat pair tube lens (2× PAC097, 

Newport), and an objective lens (N16XLWD-PF, Nikon41). The excitation and emission 

were separated by a shortpass dichroic (T680-DCSPXR-UF3 52 mm × 75 mm × 3 mm, 

Chroma), and the collection optics (ACL7560-A, LC1611-A, ACL25416U-A, Thorlabs) 

focused the emitted light onto two PMTs (H10770PA-40, Hamamatsu), separated into red 

and green channels (FF555-Di03-40×54, FF01-720/SP-50, FF02-525/40-32, 

FF01-593/40-32, Semrock). The PMT signal was amplified with an 80MHz preamplifier 

(DHPCA-100, Femto) and digitized with a FPGA (NI PXIe-7961R and NI 5732 DAQ, 

National Instruments). Scanning and data acquisition were controlled with Scanimage 2015 

(Vidrio). Average power during vTwINS data acquisition varied between 150 mW and 200 

mW at 920 nm, and average power during high-NA acquisition was between 50 mW and 70 

mW at 920 nm. Images here were typically acquired at 30Hz with an image size 512×512 

pixels at with a 90% spatial cutoff, corresponding to an image size of 470 µm × 470 µm (2.8 

zoom) or 550 µm × 550 µm (2.4 zoom). Nearly simultaneous calcium imaging using rapid 

switching between vTwINS excitation and the traditional focused high-NA Gaussian PSF 

was performed using an alternate optical setup (Supplementary Fig. 1b). A galvanometer 

(6210H, Cambridge Technologies) was used to select between high-NA and vTwINS (38 

µm-long FWHM PSF) paths, which were recombined downstream with a (50 µm, 0.88° 

optical) offset. A modified Scanimage analog control was used to switch between the two 

paths at every frame (≈ 17 ms). For each modality, images were acquired at 30 Hz with a 

512×256 pixel image size. Rapid alternation between two low-NA Gaussian beams was 

performing using a similar alternate optical setup (Supplementary Fig. 1c). Each of the two 

paths were identical variable low-NA Gaussian beams separated by a fixed distance imaged 

onto the scanners. The fixed separation distance set the relative angle of the two axially 

extended beams.

Transgenic Mice

All experimental procedures were approved by the Princeton University Institutional Animal 

Care and Use Committee. Transgenic GCaMP6f-expressing mice were produced by crossing 
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Emx1-Cre (B6.129S2 − Emx1tm1(cre)Krj/J, Jax #005628), CaMK2-tTA (B6.Cg-Tg(Camk2a-

tTA)1Mmay/DboJ, Jax #007004) and TITL-GCaMP6f (Ai93; B6. Cg − 

Igs7tm93.1(tetOGCaMP6f)Hze/J, Jax #024103) strains42. Male or female transgenics 

heterozygous for all three genes were used for all experiments.

Imaging Mouse Visual Cortex

For imaging in mouse visual cortex, mice underwent surgery under isoflurane anesthesia for 

implantation of imaging windows and head-plates. A 5 mm diameter craniotomy was made 

over one hemisphere of parietal cortex (centered 2 mm caudal, 1.7 mm lateral to bregma). A 

custom titanium head-plate and optical window (#1 thickness, 5 mm diameter glass 

coverslip, Warner Instruments) bonded to a steel ring (0.5 mm thickness, 5 mm diameter, 

SS316 ring, Ziggy’s Tubes and Wires, Inc.) were attached to the mouse’s skull with dental 

cement (Metabond, Parkell). The location of V1 was estimated using a separate widefield 

imaging microscope to record retinotopic responses in fluorescence activity as the mouse 

viewed horizontally and vertically drifting bars on a 32” monitor43. Boundaries between the 

primary and secondary visual areas were defined using an automated algorithm to locate 

reversals in the retinotopic gradients44. Five days after surgery, mice were trained to run on a 

spherical treadmill (8 inch diameter Styrofoam ball) surrounded by a 270° toroidal screen45. 

Visual stimuli were generated using the Psychophysics Toolbox46–48 and displayed on the 

toroidal screen using a DLP projection system (Mitsubishi HC3000), consisting of ≈100 

randomly placed/oriented Gabor patches, with visual field size 5 – 10°, updated at 4 Hz. To 

prevent light from the projected display from entering the fluorescence collection system, 

the region between the base of the objective lens and the head-plate was light-proofed using 

a black rubber tube prior to imaging. The rubber tube was glued to a silicone ring and the 

ring itself attached to the titanium headplate with silicone elastomer (Body Double, Smooth 

On Inc.). Examples of images from cortical imaging are depicted in Supplementary Figure 

7a,c and Supplementary Video (1–4).

Imaging Mouse Hippocampus

For imaging in mouse hippocampus, mice underwent surgery under isoflurane anesthesia for 

implantation of an imaging window and a head-plate for head-restraint in virtual reality49. 

Optical access to the hippocampus was obtained as described previously23. Briefly, a ≈ 3 

mm diameter circular craniotomy over the left hemisphere was performed, centered 1.8 mm 

lateral to the midline, and 2.0 mm posterior to bregma. The cortical tissue overlying the 

hippocampus was aspirated, and a circular metal cannula with a #1 coverslip bonded to the 

bottom was implanted, with a thin layer of Kwik-sil (WPI) between the hippocampus and 

coverslip. During the surgery, a titanium headplate was attached to the skull with Metabond. 

After recovery, mice were water restricted for five days and then trained to run on a 4 m 

virtual linear track using a virtual reality setup50. Visually distinct towers were placed every 

1m and 4 µ L water rewards given at 1.6 m and 3.6 m down the track. Mice ran on a 6 inch 

diameter Styrofoam cylinder (The Baker’s Kitchen) whose position was detected by an 

angular encoder. Mice were trained for a 60 minute session per day and were given 1–1.5 

mL of water a day total (including behavioral training and supplemental water). The virtual 

reality projection system was as described previously44,48 and controlled with ViRMEn51. 

Lightproofing around the objective was performed as described for experiments in visual 
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cortex. Examples of images from hippocampal imaging are depicted in Supplementary 

Figure 7b and Supplementary Video (5,6).

Motion Correction and Pre-processing

All video sequences were first subject to a normalized cross-correlation-based motion 

correction algorithm. This algorithm, implemented via the template matching function of 

OpenCV52, found the best horizontal and vertical shifts for each frame to match a fixed 

template. The template used was set to the median across frames. Shifts were set to have a 

maximum allowable value (set to 10 pixels for the V1 data and 15 pixels for the CA1 data). 

Videos were cropped to remove edge rows and columns with missing data due to shifting. To 

improve SNR and run-time, five-fold temporal running averages and two-fold spatial 

binning were applied post-motion correction.

For the alternating-beam variation of vTwINS, we have two interleaved videos Yright and 

Yleft To use SCISM, we pre-process the data by linearly interpolating each video temporally 

up to twice the frame rate. The frames at each time-step were concatenated side-by-side 

creating a vTwINS video of twice the width where the minimum distance between pairs, 

dmin, was the actual distance between beams plus the entire width of the FOV. In the second 

interleaved video (Supplementary Fig. 4, 18d), dmin = 15pixels, approximating a typical 

vTwINS movie.

vTwINS Orthogonal Matching Pursuit

In this section, we describe the mathematical details of the vTwINS Sparse Convolutional 

Iterative Shape Matching (SCISM) demixing algorithm (Fig. 3, Supplementary Fig. 5, 

Supplementary Video 7). Let Y ∈ RN×T denote the calcium video sequence, X ∈ RN×K 

denote the neural spatial components (spatial profiles), and S ∈ RT×K denote the neural 

temporal activity traces, where N is the number of pixels in each image, T is the number of 

images (or time points), and K is the number of neurons. Thus, the columns of Y represent 

single frames of the video, the columns of X represent individual spatial profiles, and the 

columns of S represent temporal activity traces of single neurons. We model background 

activity with a set of B background components Xbg ∈ RN×B and denote the (inferred) 

background temporal activity Sbg ∈ RT×B.

Our algorithm is designed to exploit a priori knowledge of both the spatial profile shapes as 

well as neural firing statistics. Specifically, the algorithm seeks to factor the full movie 

matrix Y into the set of spatial profiles X and time-traces S such that

1. The sum of outer products of spatial profiles and time traces explains the 

observed data (Y ≈ XST).

2. The time-traces S are sparse in time.

3. The spatial profiles are shaped like pairs of neuronal soma (disks or annuli), 

offset horizontally by a small separation distance. The dark center in each soma 

is due to the lack of GCaMP6f in the nucleus.
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4. Few latent sources (active neurons) relative to the size of the data generate 

activity in the observed data, making the fluorescence movie low-rank. This 

constraint captures the physical density constraints on neuron tissue.

The optimization program that includes all these terms is

(1)

where sk is the kth column of S, representing the activity trace of neuron k, 

is the squared-Frobenius norm, D is a matrix whose columns represent all possible expected 

neural spatial profile shapes, λd is the trade-off parameter for penalizing the deviation of 

spatial profile shapes X from the idealized shapes in D, λgs is the group-sparse penalization 

parameter for ensuring that not all spatial profiles are active and λsp is the penalization 

parameter that encourages sparsity of the time traces.. We set the spatial profiles dk to be 

annuli separated by a depth-dependent distance (Fig. 3a, Supplementary Note 6).

Direct optimization of Equation (1) can be inefficient due to the problem size and the large 

search space (number of possible spatial profiles). We thus approximated a solution to 

Equation (1) with a greedy, iterative approach wherein spatial profiles are selected 

sequentially. Our method alternates between finding the best element of D that approximates 

Y given the sparsity constraints (Fig. 3b,c, Supplementary Note 6), updating that profile to 

the data (Fig. 3d, Supplementary Note 6), and inferring the temporal activity of each spatial 

profile (Fig. 3e, Supplementary Note 6). The first step sets X = D and solves for the best 

single trace to approximate Y (solving the first and third terms). The shape refinement step 

then uses the first two terms with the newly found time-trace to allow the spatial profile xk to 

deviate from its mean dk. SCISM is in essence a modification of the orthogonal matching 

pursuit (OMP) method for greedy sparse signal estimation31,53. Our method extends OMP 

by including an additional temporal sparsity penalty and a shape refinement step that allows 

for deviations from the stereotyped neuronal shapes (whereas traditional OMP assumes a 

fixed dictionary of features).

SCISM was implemented in MATLAB and made use of the TFOCS library54 to solve the 

weighted, non-negative LASSO optimization step. Typical analysis ran at a rate of 

approximately 20 s per profile found, applied to 10–15 minutes of 256×256 raw imaging 

data.

vTwINS and High-NA Spatial Profile Registration

High resolution anatomical z-stacks (median of 200–300 frames per slice at 2.5–4 µm slice 

separation taken with the high-NA beam path) were taken for each vTwINS imaging volume 

to align the vTwINS spatial profiles to anatomical positions. Alignment between the 

anatomical z-stack and the vTwINS imaging volume was performed in two steps: 1. The 3D 
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position of cells was estimated to their position within the vTwINS volume. 2. The estimated 

3D positions were offset to the anatomical volume. First, the centroids of each half of the 

spatial profile were used to calculate the 3D cell position via d = 0.5(Δ − Δmin)/tan(θ), where 

Δmin is the minimum inter-beam distance of the PSF and θ is the beam angle from the axial 

direction. A correction to the xy position was made for any differences in θ between the two 

halves of the vTwINS PSF. Second, a 3D offset between the estimated positions and 

anatomical z-stack positions was either automatically or manually calculated. For automatic 

alignment, the anatomical stack was first deconvolved (Lucy-Richardson) with the high-NA 

PSF and then convolved with the vTwINS PSF. A 3D cross-correlation was then calculated 

between the convolution stack and the median vTwINS image and the peak of the cross-

correlation was used as the offset between the vTwINS images and the anatomical z-stack. 

For manual alignment, highly active cells with similar cell shapes between the vTwINS 

spatial profiles and high-NA anatomical z-stacks were located manually and used to estimate 

the offset between the vTwINS images and anatomical z-stack.

For simultaneous vTwINS and conventional TPM imaging, neural activity was 

independently extracted from raw images with separate analyses. Neural activity underlying 

calcium dynamics for conventional TPM was estimated using the Constrained Non-negative 

Matrix Factorization and deconvolution algorithm (CNMF) to demix contributions from 

possibly overlapping cells22,55. Spatial profiles extracted using CNMF were manually 

selected for regions that approximated a cell shape (roughly circular, 10–15 µm in diameter). 

To compare number of spatial profiles between imaging modalities, spatial profiles from 

either method were only included if their center position was within 20 pixels (18 µm) of the 

× (fast-scanning) edge of the acquisition region. This is to prevent bias from clipping half of 

a single vTwINS profile near the edges of the image.

Spatial profiles and time traces extracted using vTwINS SCISM and CNMF were paired off 

by their normalized time trace Pearson correlation (Supplementary Fig. 10), subject to the 

constraint that the extracted spatial profile center positions were within 5 pixels (4.5 µm) in 

the y (slow-scanning) direction and 40 pixels (37 µm) in the × (fast-scanning) direction. This 

distance is roughly equal to half the maximum separation distance between vTwINS spatial 

profile image pairs, which does not restrict pairing of CNMF spatial profiles to vTwINS 

spatial profiles with a single blocked beam. Spatial profiles and time traces were paired off 

until the correlation dropped below a 5σ excess of the average correlation between any two 

time traces. Only high activity cells with >1 statistically significant transient/min were 

included for this analysis56. A transient was considered statistically significant if its peak 

was >3σ above the average noise levels.

Code and Data Availability

The SCISM source code (written in MATLAB) and its documentation on its usage is 

available on Bitbucket (https://bitbucket.org/adamshch/scism). Sample data and the datasets 

used are available on Open Science Framework (osf.io/z6bd3).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
vTwINS concept and design. (a) vTwINS uses a “V”-shaped PSF to image neural volumes. 

During scanning, the two PSF arms intersect neurons at different depths (e.g. the blue and 

green stylized neurons) at different time intervals. Deep neurons intersect the second arm 

shortly after the first. Shallow neurons take longer for the second arm to intersect. Each 

neuron thus appears twice, where the distance between images indicates depth. (b) Example 

PSFs for diffraction-limited (high-NA) TPM, and vTwINS microscopes using Bessel and 

low-NA Gaussian beams. (c) The vTwINS microscope consists of a beam-shaping module 

and a conventional two-photon microscope. The three optical paths generate the PSFs shown 

in (b). In the Bessel and Gaussian (low-NA) vTwINS paths, lenses adjust the PSF’s axial 

extent, and a birefringent block (calcite) splits the beam in two and sets the PSF angle. (d) 

The back aperture illumination profiles for the three paths in (c). In the high-NA 

(conventional TPM) path, the overfilled back aperture is focused to a point. In the Bessel and 

low-NA Gaussian paths, two beams are focused to form each arm of the PSF. The beam 

divergence is adjusted with the 1× telescope before the calcite block to separate the two arms 

of the X-PSF and form the V-PSF.
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Figure 2. 
Example vTwINS images. All images are averages of 5 consecutive frames taken at 30 Hz. 

(a) Diffraction-limited TPM single plane image of GCaMP6f in mouse visual cortex. (b) 

vTwINS scan of the same V1 area as (a) demonstrates paired somas of active neurons and 

reduced SNR as the background levels are much higher. Subtracting the temporal median at 

each pixel highlights neural activity. (c) Two fluorescing neurons imaged by vTwINS at 

different depths have different distances between the image pairs. Red circles indicate the 

different images and red lines connect corresponding image pairs. (d) vTwINS images 

typically have overlapping spatial profiles. (e) Neurons aligned in the direction parallel to 

the plane of the V-shaped PSF (which is the same as the fast scan direction in our 

implementation) can create ambiguity in the spatial profile image pair assignment. Both the 

solid red lines (the true pairing) and the dashed green lines indicate realizable distance 

pairings corresponding to different neuron positions, and temporal activity must be used to 

resolve this ambiguity.
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Figure 3. 
Sparse convolutional iterative shape matching (SCISM) for demixing vTwINS data. (a) 

Example stereotyped neuron image pairs with different distances are matched across frames 

to determine the most likely pair. The new profile is refined by locally masking and 

averaging frames closely aligned with the stereotyped spatial profile. (b) The new profile is 

added to the set of spatial profiles, and the time-traces for all spatial profiles are calculated 

via non-negative LASSO. The residual movie is re-computed by subtracting the contribution 

of the current set of spatial profiles (the sum of outer products of the spatial profiles and 

their time traces). The algorithm then finds the next spatial profile by restarting and 

operating on the new residual.
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Figure 4. 
Demixed spatial profiles and calcium activity in mouse visual cortex. (a) Full set of spatial 

profiles, color-coded by depth, show significant overlap. (b) 3D locations of the spatial 

profiles located in the white box in (a) show that spatial profiles are found at different 

depths. (c) Time-traces of spatial profiles show sporadic activity in the 0–100s time interval. 

(d) Example subset of spatial profiles (chosen from the white inset box in (a) and sorted by 

depth) and corresponding normalized time traces show rich activity patterns. The increasing 

separation distance as a function of depth reflects the inverted V shape of the PSF used in 

this recording.
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Figure 5. 
Simultaneous imaging of visual cortex using conventional two-photon (green) and vTwINS 

(blue). (a) Max-projection of 5 s of activity for vTwINS (blue) and single-plane imaging 

(green) demonstrates that vTwINS records neural activity at multiple depths. (b) Volumetric 

depiction of vTwINS extracted spatial profile locations and depth. Green/blue profiles 

indicate location of cells that were matched in single-plane activity. The single-plane slice is 

outlined in green. (c) Time traces corresponding to cells in (a) show that for vTwINS with 

diffraction-limited TPM counterparts, the temporal activity traces match. The gray bar 

indicates the 5 s period of activity used to isolate cells.
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Figure 6. 
Demixed spatial profiles and calcium activity in mouse hippocampus. (a) Full set of spatial 

profiles, color-coded by depth, show more overlap in CA1 than in cortical recordings. (b) 3D 

locations of the spatial profiles from the white box in (a) show found spatial profiles at 

various depths. (c) Time-traces of spatial profiles in (a) show sporadic activity in the 0–100s 

time interval. (d) Example subset of spatial profiles (chosen from the white inset box in (a) 

and sorted by depth) and corresponding normalized time traces show rich activity patterns. 

Note that some profiles have very sparse activity and do not contain transients in the 

displayed 100 s range. (e) Example demixed spatially overlapping profiles. Profile 1 (blue) 

and Profile 2 (red) spatially overlap yet have demixed time traces (right). Averaged raw 

fluorescence traces from pixels in the overlapping region (Overlap) are a linear combination 

of the traces from Profile 1 (Region 1) and Profile 2 (Region 2). The Region 2 time-trace 

also contains a transient from yet another profile at 230 s.
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