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Abstract

Since most social science research relies upon multiple data sources, merging data sets
is an essential part of researchers’ workflow. Unfortunately, a unique identifier that unam-
biguously links records is often unavailable, and data may contain missing and inaccurate
information. These problems are severe especially when merging large-scale administrative
records. We develop a fast and scalable algorithm to implement a canonical probabilistic
model of record linkage that has many advantages over deterministic methods frequently
used by social scientists. The proposed methodology efficiently handles millions of obser-
vations while accounting for missing data and measurement error, incorporating auxiliary
information, and adjusting for uncertainty about merging in post-merge analyses. We con-
duct comprehensive simulation studies to evaluate the performance of our algorithm in real-
istic scenarios. We also apply our methodology to merging campaign contribution records,
survey data, and nationwide voter files. An open-source software package is available for
implementing the proposed methodology.
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1 Introduction

As the amount and diversity of available data sets rapidly increase, social scientists often harness

multiple data sources to answer substantive questions. Indeed, merging data sets, in particular

large-scale administrative records, is an essential part of cutting-edge empirical research in many

disciplines (e.g., Jutte, Roos and Browne, 2011; Ansolabehere and Hersh, 2012; Einav and Levin,

2014). Data merging can be consequential. For example, the American National Election Studies

(ANES) and Cooperative Congressional Election Study (CCES) validate self-reported turnout by

merging their survey data with a nationwide voter file where only the matched respondents are

treated as registered voters. While Ansolabehere and Hersh (2012) advocate the use of such a

validation procedure, Berent, Krosnick and Lupia (2016) argue that the discrepancy between self-

reported and validated turnout is due to the failure of the merge procedure rather than social

desirability and non-response bias.

Merging data sets is straightforward if there exists a unique identifier that unambiguously

links records from different data sets. Unfortunately, such a unique identifier is often unavailable.

Under these circumstances, some researchers have used a deterministic algorithm to automate

the merge process (e.g., Bolsen, Ferraro and Miranda, 2014; Figlio and Guryan, 2014; Meredith

and Morse, 2014; Adena et al., 2015; Giraud-Carrier et al., 2015; Ansolabehere and Hersh, 2017;

Berent, Krosnick and Lupia, 2016; Cesarini et al., 2016; Hill, 2017) while others have relied upon

a proprietary algorithm (e.g., Ansolabehere and Hersh, 2012; Richman, Chattha and Earnest,

2014; Figlio and Guryan, 2014; Hill and Huber, 2017; Hersh, 2015; Engbom and Moser, 2017).

However, these methods are not robust to measurement error (e.g., misspelling) and missing data,

which are common to social science data. Furthermore, deterministic merge methods cannot

quantify the uncertainty of the merging procedure and instead typically rely on arbitrary thresholds

to determine the degree of similarity sufficient for matches.1 This means that post-merge data

analyses fail to account for the uncertainty of the merging procedure, yielding a bias due to

measurement error. These methodological challenges are amplified especially when merging large-

scale administrative records.

1These thresholds are highly dependent on data. For example, Ansolabehere and Hersh (2017) find that using

3 fields with exact matches as the threshold works well for the Texas voter file, but the same threshold may not

work for other data. In contrast, probabilistic methods can automatically weight observations.
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We demonstrate that social scientists should use probabilistic models rather than deterministic

methods when merging large data sets. Probabilistic models can quantify the uncertainty inherent

in many merge procedures, offering a principled way to calibrate and account for false positives and

false negatives. Unfortunately, while there exists a well-known statistics literature on probabilistic

record linkage (e.g., Winkler, 2006b; Herzog, Scheuren and Winkler, 2007; Harron, Goldstein

and Dibben, 2015), the current open-source implementation does not scale to large data sets

commonly used in today’s social science research. We address this challenge by developing a

fast and scalable implementation of the canonical probabilistic record linkage model originally

proposed by Fellegi and Sunter (1969). Together with parallelization, this algorithm, which we

call fastLink, can be used to merge data sets with millions of records in a reasonable amount of

time using one’s laptop computer. Additionally, building on the prior methodological literature

(e.g., Lahiri and Larsen, 2005), we show (1) how to incorporate auxiliary information such as

population name frequency and migration rates into the merge procedure and (2) how to conduct

post-merge analyses while accounting for the uncertainty about the merge process. We describe

these methodological developments in Section 2.

In Section 3, we conduct comprehensive simulation studies to evaluate the robustness of fastLink

to several factors including the size of data sets, the proportion of true matches, measurement

error, and missing data proportion and mechanisms. A total of 270 simulation settings consis-

tently show that fastLink significantly outperforms the deterministic methods. While the proposed

methodology produces high quality matches in most situations, the lack of overlap between two

data sets often leads to large error rates, suggesting that effective blocking is essential when the

expected number of matches is relatively small. Furthermore, fastLink appears to perform at least

as well as recently proposed probabilistic approaches (Steorts, 2015; Sadinle, 2017). Importantly,

our merge method is faster and scales to larger data sets than these state-of-art methods.

In Section 4, we present two empirical applications. First, we revisit Hill and Huber (2017) who

examine the ideological differences between donors and non-donors by merging the CCES data of

more than 50,000 survey respondents, with the a campaign contribution database of over 5 million

donor records (Bonica, 2013). We find that the matches identified by fastLink are at least as high-

quality as those identified by the proprietary method, which was used by the original authors.

We also improve the original analysis by incorporating the uncertainty of the merge process in
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the post-merge analysis. We show that although the overall conclusion remains unchanged, the

magnitude of the estimated effects are substantially smaller.

As the second application, we merge two nationwide voter files of over 160 million voter records

each, representing one of the largest data merges ever conducted in social science research.2 By

merging voter files over time, scholars can study the causes and consequences of partisan residential

segregation (e.g., Tam Cho, Gimpel and Hui, 2013; Mummolo and Nall, 2016) and political ana-

lytics professionals can develop effective micro-targeting strategies (e.g., Hersh, 2015). We show

how to incorporate available within-state and across-state migration rates in the merge process.

Given the enormous size of the data sets, we propose a two-step procedure where we first conduct

a within-state merge for each state followed by across-state merges for every pair of states. The

proposed methodology is able to match about 95% of voters, which is about 30 percentage points

greater than the exact matching method. Although it is more difficult to find across-state movers,

we are able to find 20 times as many such voters than the existing matching method.

Finally, we give concluding remarks in Section 5. We provide an open-source R software package

fastLink: Fast Probabilistic Record Linkage, which is freely available at the Comprehensive R

Archive Network (CRAN; https://CRAN.R-project.org/package=fastLink)for implementing

our methodology so that other researchers can effectively merge data sets in their own projects.

2 The Proposed Methodology

In this section, we first introduce the canonical probabilistic model of record linkage originally

proposed by Fellegi and Sunter (1969). We describe several improvements we make to this model,

including a fast and scalable implementation, the use of auxiliary information to inform parameter

estimation, and the incorporation of uncertainty about the merge process in post-merge analyses.

2.1 The Setup

Suppose that we wish to merge two data sets, A and B, which have sample sizes of NA and NB,

respectively. We use K variables, which are common to both data sets, to conduct the merge.

2While Hersh (2015) conducted a large-scale data merge, his relied upon a proprietary algorithm. Others such

as Ansolabehere and Hersh (2017) and Tam Cho, Gimpel and Hui (2013) match datasets of several million voters

each, but neither of these studies approaches the scale of our applications. Note that the US Census Bureau

routinely conducts large-scale data merges for decennial census (Winkler, Yancey and Porter, 2010).
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Name Address

First Middle Last Date of birth House Street
Data set A

1 James V Smith 12-12-1927 780 Devereux St.

2 Robert NA Martines 01-15-1942 60 16th St.

Data set B
1 Michael F Martinez 02-03-1956 4 16th St.

2 James D Smithson 12-12-1927 780 Dvereuux St.

Agreement patterns
A.1− B.1 different different different different different different

A.1− B.2 identical different similar identical identical similar

A.2− B.1 different NA similar different different different

A.2− B.2 different NA different different different different

Table 1: An Illustrative Example of Agreement Patterns. The top panel of the table shows
two artificial data sets, A and B, each of which has two records. The bottom panel shows the
agreement patterns for all possible pairs of these records. For example, the second line of the
agreement patterns compares the first record of the data set A with the second record of the data
set B. These two records have an identical information for first name, date of birth, and house
number; similar information for last name and street name; and different information for middle
name. A comparison involving at least one missing value is indicated by NA.

We consider all possible pair-wise comparisons between these two data sets. For each of these

NA×NB distinct pairs, we define an agreement vector of length K, denoted by γ(i, j), whose kth

element γk(i, j) represents the discrete level of within-pair similarity for the kth variable between

the ith observation of data set A and the jth observation of data set B. Specifically, if we have a

total of Lk similarity levels for the kth variable, then the corresponding element of the agreement

vector can be defined as,

γk(i, j) =



0 different

1
...

Lk − 2

 similar

Lk − 1 identical

(1)

The proposed methodology allows for the existence of missing data. We define a missingness

vector of length K, denoted by δ(i, j), for each pair (i, j) where its kth element δk(i, j) equals 1 if

at least one record in the pair has a missing value in the kth variable and is equal to 0 otherwise.

Table 1 presents an illustrative example of agreement patterns based on two artificial data
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sets, A and B, each of which has two records. In this example, we consider three possible values

of γk(i, j) for first name, last name, and street name, i.e., Lk = 3 (different, similar, nearly

identical), whereas a binary variable is used for the other fields, i.e., Lk = 2 (different, nearly

identical). The former set of variables require a similarity measure and threshold values. We use

the Jaro-Winkler string distance (Jaro, 1989; Winkler, 1990), which is a commonly used measure

in the literature (e.g., Cohen, Ravikumar and Fienberg, 2003; Yancey, 2005).3 Since the Jaro-

Winkler distance is a continuous measure whose values range from 0 (different) to 1 (identical),

we discretize it so that γk(i, j) takes an integer value between 0 and Lk−1 as defined in equation (1).

Suppose that we use three levels (i.e., different, similar, and nearly identical) based on the

threshold values of 0.88 and 0.94 as recommended by Winkler (1990). Then, when comparing the

last names in Table 1, we find that, for example, Smith and Smithson are similar (a Jaro-Winkler

distance of 0.88) whereas Smith and Martinez are different (a Jaro-Winkler distance of 0.55).4

The above setup implies a total of NA×NB comparisons for each of K fields. Thus, the number

of comparisons grows quickly as the size of data sets increases. One solution is to use blocking

and avoid comparisons that should not be made. For example, we may make comparisons within

gender group only. While appealing due to computational efficiency gains, Winkler (2005) notes

that blocking often involves ad hoc decisions by researchers and face difficulties when variables

have missing values and measurement error. Here, we focus on the data merge within a block and

refer interested readers to Christen (2012) and Steorts et al. (2014) for comprehensive reviews of

blocking techniques.5 We also note a related technique, called filtering, which has the potential to

overcome the weaknesses of traditional blocking methods by discarding pairs that are unlikely to

be matches when fitting a probabilistic model (Murray, 2016).

2.2 The Canonical Probabilistic Model of Record Linkage

2.2.1 The Model and Assumptions

We first describe the most commonly used probabilistic model of record linkage (Fellegi and Sunter,

1969). Let a latent mixing variable Mij indicate whether a pair of records (the ith record in the

3Online Supplementary Information (SI) A describes how the Jaro-Winkler string distance is calculated.
4As shown in Section 3.3 and Appendix A, the discretization of the distance measure leads to substantial

computational efficiency when making pairwise comparison for each linkage field.
5The parameters of record linkage models must be interpreted separately for each block (Murray, 2016).

5



data set A and the jth record in the data set B) represents a match. The model has the following

simple finite mixture structure (e.g., McLaughlan and Peel, 2000; Imai and Tingley, 2012),

γk(i, j) |Mij = m
indep.∼ Discrete(πkm) (2)

Mij
i.i.d.∼ Bernoulli(λ) (3)

where πkm is a vector of length Lk, containing the probability of each agreement level for the kth

variable given that the pair is a match (m = 1) or a non-match (m = 0), and λ represents the

probability of a match across all pairwise comparisons. Through the parameter πk0, the model

allows for the possibility that two records can have identical values for some variables even when

they do not represent a match.

This model is based on two key independence assumptions. First, the latent variable Mij

is assumed to be independently and identically distributed. Such an assumption is necessarily

violated if, for example, each record in the data set A should be matched with no more than one

record in the data set B. In theory, this assumption can be relaxed (e.g., Sadinle, 2017) but doing

so makes the estimation significantly more complex and reduces its scalability (see Online SI H).

Later in the paper, we discuss how to impose such a constraint without sacrificing computational

efficiency. Second, the conditional independence among linkage variables is assumed given the

match status. Some studies find that the violation of this assumption leads to unsatisfactory

performance (e.g., Thibaudeau, 1993; Belin and Rubin, 1995; Larsen and Rubin, 2001; Winkler

and Yancey, 2006; Herzog, Scheuren and Winkler, 2010). In Online SI D, we show how to relax

the conditional independence assumption while keeping our scalable implementation.

In the literature, researchers often treat missing data as disagreements, i.e., γk(i, j) = 0 if

δk(i, j) = 1 (e.g., Goldstein and Harron, 2015; Sariyar, Borg and Pommerening, 2012; Ong et al.,

2014)). This procedure is problematic because a true match can contain missing values. Other

imputation procedures also exist but none of them has a theoretical justification or appears to

perform well in practice.6 To address this problem, following Sadinle (2014, 2017), we assume that

data are missing at random (MAR) conditional on the latent variable Mij,

δk(i, j) ⊥⊥ γk(i, j) |Mij

6For example, although Goldstein and Harron (2015) suggest the possibility of treating a comparison that

involves a missing value as a separate agreement value, but Sariyar, Borg and Pommerening (2012) find that this

approach does not outperform the standard method of treating missing values as disagreements.
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for each i = 1, 2, . . . , NA, j = 1, 2, . . . , NB, and k = 1, 2, . . . , K. Under this MAR assumption, we

can simply ignore missing data. The observed-data likelihood function of the model defined in

equations (2) and (3) is given by,

Lobs(λ,π | δ,γ) ∝
NA∏
i=1

NB∏
j=1


1∑

m=0

λm(1− λ)1−m
K∏
k=1

(
Lk−1∏
`=0

π
1{γk(i,j)=`}
km`

)1−δk(i,j)


where πkm` represents the `th element of probability vector πkm, i.e., πkm` = Pr(γk(i, j) = ` |

Mij = m). Since the direct maximization of the observed-data log-likelihood function is difficult,

we estimate the model parameters using the EM algorithm (see Online SI B).

2.2.2 The Uncertainty of Merge Process

The advantage of probabilistic models is their ability to quantify the uncertainty inherent in

merging. Once the model parameters are estimated, we can compute the match probability for

each pair using Bayes rule,7

ξij = Pr(Mij = 1 | δ(i, j),γ(i, j))

=
λ
∏K

k=1

(∏Lk−1
`=0 π

1{γk(i,j)=`}
k1`

)1−δk(i,j)
∑1

m=0 λ
m(1− λ)1−m

∏K
k=1

(∏Lk−1
`=0 π

1{γk(i,j)=`}
km`

)1−δk(i,j) (4)

In Section 2.4, we show how to incorporate this match probability into post-merge regression

analysis in order to account for the uncertainty of the merge process.

While in theory a post-merge analysis can use all pairs with non-zero match probabilities, it

is often more convenient to determine a threshold S when creating a merged data set. Such an

approach is useful especially when the data sets are large. Specifically, we call a pair (i, j) a match

if the match probability ξij exceeds S. There is a clear trade-off in the choice of this threshold

value. A large value of S will ensure that most of the selected pairs are correct matches but may

fail to identify many true matches. In contrast, if we lower S too much, we will select more pairs

but many of them may be false matches. Therefore, it is important to quantify the degree of these

matching errors in the merging process.

One advantage of probabilistic models over deterministic methods is that we can estimate the

false discovery rate (FDR) and the false negative rate (FNR). The FDR represents the proportion

7This is known as the maximum a posteriori (MAP) estimate.
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of false matches among the selected pairs whose matching probability is greater than or equal to

the threshold. We estimate the FDR using our model parameters as follows,

Pr(Mij = 0 | ξij ≥ S) =

∑NA
i=1

∑NB
j=1 1{ξij ≥ S}(1− ξij)∑NA

i=1

∑NB
j=1 1{ξij ≥ S}

. (5)

whereas the FNR, which represents the proportion of true matches that are not selected, is esti-

mated as,

Pr(Mij = 1 | ξij < S) =

∑NA
i=1

∑NB
j=1 ξij1{ξij < S}
λNANB

. (6)

Researchers typically select, at their own discretion, the value of S such that the FDR is sufficiently

small. But, we also emphasize the FNR since a strict threshold can lead to many false negatives.8

In our simulations and empirical studies, we find that the results are not particularly sensitive to

the choice of threshold value, although in other applications, scholars found ex-post adjustments

are necessary for obtaining good estimates of error rates (e.g., Winkler, 1993; Thibaudeau, 1993;

Belin and Rubin, 1995; Larsen and Rubin, 2001; Winkler, 2006a; Murray, 2016).

In the merging process, for a given record in the data set A, it is possible to find multiple

records in the data set B that have high match probabilities. In some cases, multiple observations

have an identical value of match probability, i.e., ξij = ξij′ with j 6= j′. Following the literature

(e.g., Tancredi and Liseo, 2011; Sadinle, 2017; McVeigh and Murray, 2017), we recommend that

researchers analyze all matched observations by weighting them according to the matching prob-

ability (see Section 2.4). If researchers wish to enforce a constraint that each record in one data

set is only matched at most with one record in the other data set, they may follow a procedure

described in Online SI E.

2.3 Incorporating Auxiliary Information

Another advantage of the probabilistic model introduced above is that we can incorporate auxiliary

information in parameter estimation. This point has not been emphasized enough in the literature.

Here, we briefly discuss two adjustments using auxiliary data — first, how to adjust for the fact that

8A more principled solution to the threshold S selection problem would require data for which the true matching

status M(i, j) is known – so that one can select the value of S to minimize the classification error. However, in

record linkage problems, only in rare occasions labeled datasets exists. See Larsen and Rubin (2001), Feigenbaum

(2016), and Enamorado (2018) for approaches that directly incorporate labeled data.
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some names are more common than others, and second, how to incorporate aggregate information

about migration. More details can be found in Online SI Section F.

Since some first names are more common than others, they may be more likely to be false

matches. To adjust for this possibility without increasing the computational burden, we formalize

the conditions under which the ex-post correction originally proposed by Winkler (2000) is well-

suited for this purpose. Briefly, the probability of being a match will be up-weighted or down-

weighted given the true frequencies of different first names (obtained, for instance, from Census

data) or observed frequencies of each unique first name in the data (see Online SI F.3.1).

Furthermore, we may know a priori how many matches we should find in two data sets due

to knowledge and data on over-time migration. For instance, the IRS publishes detailed infor-

mation on migration in the United States from tax records (see https://www.irs.gov/uac/

soi-tax-stats-migration-data). An estimate of the share of individuals who moved out of a

state or who moved in-state can be easily reformulated as a prior on relevant parameters in the

Fellegi-Sunter model and incorporated into parameter estimation (see Online SI F.3.2).

2.4 Post-merge Analysis

Finally, we discuss how to conduct a statistical analysis once merging is complete. One advantage

of probabilistic models is that we can directly incorporate the uncertainty inherent to the merging

process in the post-merge analysis. This is important because researchers often use the merged

variable either as the outcome or as the explanatory variable in the post-merge analysis. For

example, when the American National Election Survey (ANES) validates self-reported turnout by

merging the survey data with a nationwide voter file, respondents who are unable to be merged

are coded as non-registered voters. Given the uncertainty inherent to the merging process, it is

possible that a merging algorithm fails to find some respondents in the voter file even though they

are actually registered voters. Similarly, we may incorrectly merge survey respondents with other

registered voters. These mismatches, if ignored, can adversely affect the properties of post-match

analyses (e.g., Neter, Maynes and Ramanathan, 1965; Scheuren and Winkler, 1993).

Unfortunately, most of the record linkage literature has focused on the linkage process itself

without considering how to conduct subsequent statistical analyses after merging data sets.9 Here,

9An important exception includes a fully Bayesian approach outside of the Fellegi-Sunter framework, which we

do not pursue here due to its limited scalability (see Tancredi and Liseo, 2011; Gutman, C. and M., 2013; Gutman
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we build on a small literature about post-merge regression analysis, whose goal is to eliminate

possible biases due to the linkage process within the Fellegi-Sunter framework (e.g., Scheuren and

Winkler, 1993, 1997; Lahiri and Larsen, 2005; Kim and Chambers, 2012; Hof and Zwinderman,

2012). We also clarify the assumptions under which a valid post-merge analysis can be conducted.

2.4.1 The Merged Variable as an Outcome Variable

We first consider the scenario, in which researchers wish to use the variable Z merged from the

data set B as a proxy for the outcome variable in a regression analysis. We assume that this

regression analysis is applied to all observations of the data set A and uses a set of explanatory

variables X taken from this data set. These explanatory variables may or may not include the

variables used for merging. In the ANES application mentioned above, for example, we may be

interested in regressing the validated turnout measure merged from the nationwide voter file on a

variety of demographic variables measured in the survey.

For each observation i in the data set A, we obtain the mean of the merged variable, i.e.,

ζi = E(Z∗i | γ, δ) where Z∗i represents the true value of the merged variable. This quantity can

be computed as the weighted average of the variable Z merged from the data set B where the

weights are proportional to the match probabilities, i.e., ζi =
∑NB

j=1 ξijZj/
∑NB

j=1 ξij. In the ANES

application, for example, ζi represents the probability of turnout for survey respondent i in the

data set A and can be computed as the weighted average of turnout among the registered voters in

the voter file merged with respondent i. If we use thresholding and one-to-one match assignment

so that each record in the data set A is matched with at most one record in the data set B (see

Section 2.2), then we compute the mean of the merged variable as ζi =
∑NB

j=1M
∗
ijξijZj where M∗

ij

is a binary variable indicating whether record i in the data set A is matched with record j in the

data set B subject to the constraint
∑NB

j=1M
∗
ij ≤ 1.

Under this setting, we assume that the true value of the outcome variable is independent of

the explanatory variables in the regression conditional on the information used for merging, i.e.,

Z∗i ⊥⊥ Xi | (δ,γ) (7)

for each i = 1, 2, . . . , NA. The assumption implies that the merging process is based on all relevant

information. Specifically, within an agreement pattern, the true value of the merged variable Z∗i

et al., 2016; Dalzell and Reiter, 2018).
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is not correlated with the explanatory variables Xi. Under this assumption, the law of iterated

expectation implies that regressing ζi on Xi gives the results equivalent to the ones based on the

regression of Z∗i on Xi in expectation.

E(Z∗i | Xi) = E{E(Z∗i | γ, δ,Xi) | Xi} = E(ζi | Xi) (8)

The conditional independence assumption may be violated if, for example, within the same

agreement pattern, a variable correlated with explanatory variables is associated with merging

error. Without this assumption, however, only the bounds can be identified (Cross and Manski,

2002). Thus, alternative assumptions such as parametric assumptions and exclusion restrictions

are needed to achieve identification (see Ridder and Moffitt, 2007, for a review).

2.4.2 The Merged Variable as an Explanatory Variable

The second scenario we consider is the case where we use the merged variable as an explanatory

variable. Suppose that we are interested in fitting the following linear regression model,

Yi = α + βZ∗i + η>Xi + εi (9)

where Yi is a scalar outcome variable and the strict exogeneity is assumed, i.e., E(εi | Z∗,X) = 0

for all i. We follow the analysis strategy first proposed by Lahiri and Larsen (2005) but clarify

the assumptions required for their approach to be valid (see also Hof and Zwinderman, 2012).

Specifically, we maintain the assumption of no omitted variable for merging given in equation (7).

Additionally, we assume that the merging variables are independent of the outcome variable

conditional on the explanatory variables Z∗ and X, i.e.,

Yi ⊥⊥ (γ, δ) | Z∗,X. (10)

Under these two assumptions, we can consistently estimate the coefficients by regressing Yi on ζi

and Xi,

E(Yi | γ, δ,Xi) = α + βE(Z∗i | γ, δ,Xi) + η>Xi + E(εi | γ, δ,Xi)

= α + βζi + η>Xi (11)

where the second equality follows from the assumptions and the law of iterated expectation.
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We generalize this strategy to the maximum likelihood (ML) estimation, which, to the best of

our knowledge, has not been considered in the literature (but see Kim and Chambers (2012) for

an estimating equations approach),

Yi | Z∗i ,Xi
indep.∼ Pθ(Yi | Z∗i ,Xi) (12)

where θ is a vector of model parameters. To estimate the parameters of this model, we maximize

the following weighted log-likelihood function,

θ̂ = argmax
θ

NA∑
i=1

NB∑
j=1

ξ∗ij logPθ(Yi | Z∗i = Zj,Xi) (13)

where ξ∗ij = ξij/
∑NB

j′=1 ξij′ . Online SI G shows that under the two assumptions described earlier

and mild regularity conditions, the weighted ML estimator given in equation (13) is consistent

and asymptotically normal. Note that because we are considering large data sets, we ignore the

uncertainty about ξ∗ij.

3 Simulation Studies

We conduct a comprehensive set of simulation studies to evaluate the statistical accuracy and

computational efficiency of our probabilistic modeling approach and compare them with those of

deterministic methods. Specifically, we assess the ability of the proposed methodology to control

estimation error, false positives and false negatives, and its robustness to missing values and noise

in the linkage fields, as well as the degree of overlap between two data sets to be merged. We do

so by systematically varying the amount and structure of missing data and measurement error.

3.1 The Setup

To make our simulation studies realistic, we use a data set taken from the 2006 California voter

file. Since merging voter files is often done by blocking on gender, we subset the data set to extract

the information about female voters only, reducing the number of observation to approximately

17 million voters to 8.3 million observations. To create a base data set for simulations, we further

subset the data set by removing all observations that have at least one missing value in the

following variables: first name, middle initial, last name, date of birth, registration date, address,

zip code, and turnout in the 2004 Presidential election. After listwise deletion, we obtain the final
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data set of 341,160 voters, from which we generate two data sets of various characteristics to be

merged. From this data set, we independently and randomly select two subsamples to be merged

under a variety of scenarios.

We design our simulation studies by varying the values of the five parameters as summarized

below. Online SI I.1 describes in detail the precise setups of these simulations.

1. Degree of overlap: Proportion of records in the smaller data set that are also in the larger

data set. We consider three scenarios — 20% (small), 50% (medium), and 80% (large).

2. Size balance: Balance of sample sizes between the two data sets to be merged. We consider

three ratios — 1:1 (equally sized), 1:10 (imbalanced), and 1:100 (lopsided).

3. Missing data: We consider five different mechanisms, missing completely at random (MCAR),

missing at random (MAR), and not missing at random (NMAR). For MAR and NMAR, we

consider independent and dependent missingness patterns across linkage fields

4. Amount of missing data: Proportion of missing values in each linkage variable other than

year of birth. We consider three scenarios — 5% (small), 10% (medium), and 15% (large).

5. Measurement error: Proportion of records (6%) whose first name, last name, and street

name contains classical measurement error.

Together, we conduct a total of 135 (= 33 × 5) simulation studies where missing data are of

main concern. We also conduct another set of 135 simulations with various types of non-classical

measurement errors, while keeping the amount of missing values fixed (see Online SI I.2).

3.2 Results

Figure 1 compares the performance of fastLink (blue solid bars) to the two deterministic methods

often used by social scientists. The first is the merging method based on exact matches (red

shaded bars), while the second is the recently proposed partial match algorithm (ADGN; light

green solid bars) that considers two records as a match if at least three fields of their address,

date of birth, gender, and name are identical (Ansolabehere and Hersh, 2017). The top panel of

Figure 1 presents the FNR while the bottom panel presents the absolute error for estimating the

2004 turnout rate. We merge two data sets of equal size (100,000 records each) after introducing
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Figure 1: Accuracy of Data Merge. The top and bottom panels present the false discovery rate
(FNR) and the absolute estimation error (for estimating the turnout rate), respectively, when
merging datasets of 100,000 records each across with different levels of overlap (measured as a
percentage of a data set). Three missing data mechanisms are studied with the missing data
proportion of 10% for each linkage field other than year of birth: missing completely at random
(MCAR), missing at random (MAR), and missing not at random (MNAR). Classical measurement
error is introduced to several linkage fields. The proposed probabilistic methodology (fastLink;
blue solid bars) significantly outperforms the two deterministic algorithms, i.e., exact match (red
shaded bars) and partial match (ADGN; light green solid bars), across simulation settings.

the classical measurement error and the medium amount of missing data as explained above. For

fastLink, only pairs with a match probability ≥ 0.85 are considered to be matches, but the results

remain qualitatively similar if we change the threshold to 0.75 or 0.95.

We find that fastLink significantly outperforms the two deterministic methods.10 While all

three methods are designed to control the FDR, only fastLink is able to keep the FNR low (less

than 5 percent in all cases considered here). The deterministic algorithms are not robust to missing

data and measurement error, yielding a FNR of much greater magnitude. Additionally, we observe

10In Online SI H, we compare fastLink to the state-of-the-art probabilistic methods, and finds that fastLink

performs as well as these methods.
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Figure 2: Accuracy of FDR and FNR Estimates. The top panel compares the estimated FDR (x-
axis) with its true value (y-axis) whereas the bottom panel compares the estimated FNR against
its true value. We consider the medium amount of missing data generated under MAR as a
missingness mechanism and add measurement error to some linkage fields. The blue solid circles
represent the estimates based on fastLink whereas the black solid triangles represent the estimates
obtained by treating missing data as disagreements. The FDR and FNR estimates are accurate
when the overlap is high. Additionally, fastLink gives lower FDR and FNR than the same algorithm
that treats missing values as a disagreement. Note that in cases where the overlap is small (20%),
blocking improves the precision of our estimates.

that the deterministic methods yield a substantially greater estimation bias than fastLink unless

the data are missing completely at random. Under the other two missing data mechanisms, the

magnitude of the bias is substantially greater than that of fastLink. While fastLink has an absolute

estimation error of less than 1.5 percentage points even under MNAR, the other two methods have

an absolute estimation error of more than 7.5 percentage points under both MAR and MNAR.

Finally, the performance of fastLink worsens as the size of overlap reduces and the missing data

mechanism becomes less random.

We next evaluate the accuracy of FDR and FNR estimates in the top and bottom panels,

respectively. Since the deterministic methods do not give such error estimates, we compare the
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performance of the proposed methodology (indicated by blue solid circles) with that of the same

probabilistic modeling approach, which treats missing values as disagreements following a common

practice in the literature (indicated by solid triangles). Figure 2 presents the results of merging

two data sets of equal size where the medium amount of data are assumed to be missing at random

and some noise are added as described earlier. In the top panel of the figure, we find that the true

FDR is low and its estimate is accurate unless the degree of overlap is small. With a small degree

of overlap, both methods significantly underestimate the FDR. A similar finding is obtained for

the FNR in the bottom panel of the figure where estimated FNR is biased upward.

One way to address the problem of having small overlap would be to use blocking based on a

set of fully observed covariates. For example, in our simulations, since the year of birth is observed

for each record in both datasets, we block the data by making comparisons only across individuals

within a window of ± 1 year around each birth year.11 Then, we apply fastLink to each block

separately. As shown in the right most column of Figure 2, blocking significantly improves the

estimation accuracy for the FDR and FNR estimates as well as their true values although the bias

is not eliminated. The reason for this improvement is that traditional blocking increases the degree

of overlap. For example, in this simulation setting for each of the 94 blocks under consideration,

the ratio of true matches to all possible pairs is at least 8× 10−5, which is more than 15 times as

large as the corresponding ratio for no blocking and is comparable to the case of overlap of 50%.

We present the results of the remaining simulation studies in the Online Simulation Appendix.

Two major patterns discussed above are also found under these other simulation scenarios. First,

regardless of the missing data mechanisms and the amount of missing observations, fastLink con-

trols FDR, FNR, and estimation error well. Second, a greater degree of overlap between datasets

leads to better merging results in terms of FDR and FNR as well as the accuracy of their estimates.

Blocking can ameliorate these problems caused by small overlap to some extent. These empirical

patterns are consistently found across simulations even when two datasets have unequal sizes.

3.3 Computational Efficiency

We compare the computational performance of fastLink with that of the RecordLinkage package in

R (Sariyar and Borg, 2016) and the Record Linkage package in Python (de Bruin, 2017) in terms

11In Online SI L, we also present results using a clustering method, i.e., k-means, to group similar observations.
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of running time. The latter two are the only other open source packages in R and Python that

implement a probabilistic model of record linkage under the Fellegi-Sunter framework. To mimic

a standard computing environment of applied researchers, all the calculations are performed in a

Macintosh laptop computer with a 2.8 GHz Intel Core i7 processor and 8 GB of RAM.

While fastLink takes advantage of a multicore machine via the OpenMP-based parallelization

(the other two packages do not have a parallelization feature), we perform the comparison on

a single-core computing environment so that we can assess the computational efficiency of our

algorithm itself. Additionally, we include runtime results where we parallelize computation across

eight cores. For all implementations, we set the convergence threshold to 1× 10−5.12

We consider the setup in which we merge two datasets of equal size with 50% overlap, 10%

missing proportion under MCAR, and no measurement error. Our linkage variables are first name,

middle initial, last name, house number, street name, and year of birth. We vary the size of each

data set from 1,000 records to 300,000 observations. As in the earlier simulations, each dataset is

based on the sample of 341,160 female registered voters in California, for whom we have complete

information in each linkage field. To build the agreement patterns, we use the Jaro-Winkler string

distance with a cutoff of 0.94 for first name, last name, and street name. For the remaining fields,

we only consider exact matches as agreements.

Figure 3 presents the results of this running time comparison. We find that although all three

packages take a similar amount of time for data sets of 1,000 records, the running time increases

exponentially for the other packages in contrast to fastLink (black solid triangles connected by

a dashed line, single core; blue solid circles connected by a solid line, 8 cores), which exhibits a

near linear increase. When matching data sets of 150,000 records each, fastLink takes less than 6

hours to merge using a single core (under 3 hours when parallelized across 8 cores). In contrast, it

takes more than 24 hours for Record Linkage (Python; solid purple squares connected by a dotted

line), to merge two data sets of only 20,000 observations each. The performance is not as bad for

Record Linkage (R; red crosses connected by a dashed line), but it still takes over 6 hours to merge

data sets of 40,000 records each. Moreover, an approximation based on an exponential regression

12Starting values differ across methods because other methods do not allow us to change their default starting

values. However, the EM algorithm converges quickly regardless of the choice of starting values. In fact, it is well

known that the bottleneck is a large number of required comparisons (e.g., Jaro, 1972; Christen, 2012), for which

we use a hashing technique as described below in Appendix A.2.
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Figure 3: Running Time Comparison. The plot presents the results of merging datasets of equal
size using different implementations of the Fellegi-Sunter model. The datasets were constructed
from a sample of female registered voters in California. The amount of overlap between datasets
is 50%, and, for each dataset, there are 10% missing observations in each linkage variable: first
name, middle initial, last name, house number, street name, and year of birth. The missing
data mechanism is Missing Completely at Random (MCAR). The computation is performed on
a Macintosh laptop computer with a 2.8 GHz Intel Core i7 processor and 8 GB of RAM. The
proposed implementation fastLink (single-core runtime as black solid triangles connected by a
dashed line, and parallelized over eight cores as blue solid dots connected by a solid line) is
significantly faster than the other open-source packages.

model suggests that Record Linkage (R) would take around 22 hours to merge two data sets of

50,000 records each, while Record Linkage (Python) would take about 900 days to accomplish the

same merge. In Online SI C.1, we further decompose the runtime comparison to provide more

detail on the sources of our computational improvements. We detail the choices we make in the

computational implementation that yields these substantial efficiency gains in Appendix A.

4 Empirical Applications

In this section, we present two empirical applications of the proposed methodology. First, we

merge election survey data (about 55,000 observations) with political contribution data (about 5

million observations). The major challenge of this merge is the fact that the expected number

of matches between the two data sets is small. Therefore, we utilize blocking and conduct the
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data merge within each block. The second application is to merge two nationwide voter files,

each of which has more than 160 million records. This may, therefore, represent the largest data

merge ever conducted in the social sciences. We show how to use auxiliary information about

within-state and across-state migration rates to inform the match.

4.1 Merging Election Survey Data with Political Contribution Data

Hill and Huber (2017) study differences between donors and non-donors by merging the 2012

Cooperative Congressional Election Study (CCES) survey with the Database on Ideology, Money

in Politics, and Elections (DIME, Bonica (2013)). The 2012 CCES is based on a nationally

representative sample of 54,535 individuals recruited from the voting-age population in the United

States. The DIME data, on the other hand, provide the information about individual donations

to political campaigns. For the 2010 and 2012 elections, the DIME contains over 5 million donors.

The original authors asked YouGov, the company which conducted the survey, to merge the two

data sets using a proprietary algorithm. This yielded a total of 4,432 CCES respondents matched

to a donor in the DIME data. After the merge, Hill and Huber (2017) treat each matched CCES

respondent as a donor and conduct various analyses by comparing these matched respondents with

those who are not matched with a donor in the DIME data and hence are treated as non-donors.

Below, we apply the proposed methodology to merge these two data sets and conduct a post-merge

analysis by incorporating the uncertainty about the merge process.

4.1.1 Merge Procedure

We use the name, address, and gender information to merge the two data sets. In order to

protect the anonymity of CCES respondents, YouGov used fastLink to merge the data sets on our

behalf. Moreover, due to contractual obligations, the merge was conducted only for 51,184 YouGov

panelists, which is a subset of the 2012 CCES respondents. We block based on gender and state of

residence, resulting in 102 blocks (50 states plus Washington DC × two gender categories). The

size of each block ranges from 175,861 (CCES = 49, DIME = 3589) to 790,372,071 pairs (CCES

= 2,367, DIME = 333,913) with the median value of 14,048,151 pairs (CCES = 377, DIME =

37,263). Within each block, we merge the data sets using the first name, middle initial, last name,

house number, street name, and postal code. As done in the simulations, we use three levels of

agreement for the string valued variables based on the Jaro-Winkler distance with 0.85 and 0.92 as
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the thresholds. For the remaining variables (i.e., middle initial, house number, and postal code),

we utilize a binary comparison indicating whether they have an identical value.

To construct our set of matched pairs between CCES and DIME, first, we use the one-to-one

matching assignment algorithm described in Online SI E and find the best match in the DIME data

for each CCES respondent. Then, we declare as a match any pair whose matching probability

is above a certain threshold. We use three thresholds, i.e., 0.75, 0.85, and 0.95, and examine

the sensitivity of the empirical results to the choice of threshold value.13 Finally, in the original

study of Hill and Huber (2017), noise is added to the amount of contribution in order to protect

the anonymity of matched CCES respondents. However, we signed a non-disclosure agreement

with YouGov for our analysis so that we can make a precise comparison between the proposed

methodology and the proprietary merge method used by YouGov.

4.1.2 Merge Results

Table 2 presents the merge results. We begin by assessing the match rates, which represent the

proportion of CCES respondents who are matched with donors in the DIME data. While the

match rates are similar between the two methods, fastLink appears to find slightly more (less)

matches for male (female) respondents than the proprietary method regardless of the threshold

used. However, this does not mean that both methods find identical matches. In fact, out of

4,797 matches identified by fastLink (using the threshold of 0.85), the proprietary method does

not identify 861 or 18% of them as matches.

As discussed in Section 2.2, one important advantage of the probabilistic modeling approach

is that we can estimate the FDR and FNR, which are shown in the table. Such error rates are

not available for the proprietary method. As expected, the overall estimated FDR is controlled to

less than 1.5% for both male and female respondents. The estimated FNR, on the other hand, is

large, illustrating the difficulty of finding some donors. In particular, we find that female donors

are much more difficult to find than male donors.

Specifically, there are 12,803 CCES respondents who said they made a campaign contribution

during the last 12 months before the 2012 election. Among them, 5,206 respondents claimed

13In Online SI J.3, instead of a one-to-one matching restriction used here, we present the results of the weighted

approach described in Section 2.2.2. As shown in Figure S7 of Online SI J.3, there is no distinguishable difference

in the results obtained from either approach.
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fastLink Proprietary
method0.75 0.85 0.95

Number of matches
All 4948 4797 4576 4534
Female 2198 2156 2067 2210
Male 2750 2641 2524 2324

Overlap between fastLink
and proprietary method

All 3959 3936 3881
Female 1877 1866 1844
Male 2082 2070 2037

Match rate (%)
All 9.67 9.37 8.94 8.85
Female 8.12 7.96 7.63 8.16
Male 11.40 10.95 10.40 9.64

False discovery rate
(FDR; %)

All 1.24 0.65 0.21
Female 0.92 0.53 0.14
Male 1.50 0.75 0.28

False negative rate
(FNR; %)

All 15.25 17.35 20.81
Female 5.35 6.80 10.30
Male 21.83 24.36 27.79

Table 2: The Results of Merging the 2012 Cooperative Congressional Election Study (CCES) with
the 2010 and 2012 Database on Ideology, Money in Politics, and Elections (DIME) Data. The
table presents the merging results for both fastLink and the proprietary method used by YouGov.
The results of fastLink are presented for one-to-one match with three different thresholds (i.e.,
0.75, 0.85, 0.95) for the matching probability to declare a pair of observations as a successful
match. The number of matches, the amount of overlap, and the overall match rates are similar
between the two methods. The table also presents information on the estimated false discovery
and false negative rates (FDR and FNR, respectively) obtained using fastLink. These statistics
are not available for the proprietary method.

to have donated at least 200 dollars. Interestingly, both fastLink and the proprietary method

matched an essentially identical number of self-reported donors with a contribution of over 200

dollars (2,431 and 2,434 or approximately 47%, respectively), whereas among the self-reported

small donors both methods can only match approximately 16% of them.

Next, we examine the quality of matches for the two methods (see also Online SI M). We begin

by comparing the self-reported donation amount of matched CCES respondents with their actual

donation amount recorded in the DIME data. While only donations greater than 200 dollars are

recorded at the federal level, the DIME data include some donations of smaller amounts, if not

all, at the state level. Thus, while we do not expect a perfect correlation between self-reported

and actual donation amount, under the assumption that donors do not systematically under- or

over-report the amount of campaign contributions, a high correlation between the two measures
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Figure 4: Comparison of fastLink and the Proprietary Method. The top panel compares the self-
reported donations (y-axis) by matched CCES respondents with their donation amount recorded
in the DIME data (x-axis) for the three different groups of observations: those declared as matches
by both fastLink and the proprietary method (left), those identified by fastLink only (middle), and
those matched by the proprietary method only (right). The bottom panel presents histograms for
the match probability for each group. For fastLink, we use one-to-one match with the threshold
of 0.85.

implies a more accurate merging process.

The upper panel of Figure 4 presents the results where for fastLink, we use one-to-one match

with the threshold of 0.85.14 We find that for the respondents who are matched by both methods,

the correlation between the self-reported and matched donation amounts is reasonably high (0.73).

In the case of respondents who are matched by fastLink only, we observe that the correlation is low

(0.57) but is greater than the correlation for those matches identified by the proprietary method

alone (0.42). We also examine the distribution of match probabilities for these three groups of

matches. The bottom panel of the figure presents the results, which are consistent with the

patterns of correlation identified in the top panel. That is, those matches identified by the two

14Figures S5 and S6 in Online SI J present the results under two different thresholds: 0.75 and 0.95, respectively.

The results under those thresholds are similar to the those with the threshold of 0.85 presented here.
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methods have the highest match probability whereas most of the matches identified only by the

proprietary method have extremely low match probabilities. In Online SI M we also examine the

quality of the agreement patterns separately for the matches identified by both methods, fastLink

only, and the proprietary method only. Overall, our results indicate that fastLink produces matches

whose quality is often better than those based on the proprietary method.

4.1.3 Post-merge Analysis

An important advantage of the probabilistic modeling approach is its ability to account for the

uncertainty of the merge process in post-merge analyses. We illustrate this feature by revisit-

ing the post-merge analysis of Hill and Huber (2017). The original authors are interested in the

comparison of donors (defined as those who are matched with records in the DIME data) and

non-donors (defined as those who are not matched) among CCES respondents. Using the matches

identified by a proprietary method, Hill and Huber (2017) regress policy ideology on the matching

indicator variable, which is interpreted as a donation indicator variable, the turnout indicator

variables for the 2012 general election and 2012 congressional primary elections, as well as several

demographic variables. Policy ideology, which ranges from −1 (most liberal) to 1 (most conser-

vative), is constructed by applying a factor analysis to a series of questions on various issues.15

The demographic control variables include income, education, gender, household union member-

ship, race, age in decades, and importance of religion. The same model is fitted separately for

Democrats and Republicans.

To account for the uncertainty of the merge process, as explained in Section 2.4, we fit the same

linear regression except that we use the mean of the match indicator variable as the main explana-

tory variable rather than the match indicator variable. Table 3 presents the estimated coefficients

of the aforementioned linear regression models with the corresponding heteroskedasticity-robust

standard errors in parentheses. Generally, the results of our improved analysis agree with those of

the original analysis, showing that donors tend to be more ideologically extreme than non-donors.

While the overall conclusion is similar, the estimated coefficients are smaller in magnitude

when accounting for the uncertainty of merge process. In particular, according to fastLink, for

Republican respondents, the estimated coefficient of being a donor represents only 12% of the

15They include gun control, climate change, immigration, abortion, jobs versus the environment, gay marriage,

affirmative action, and fiscal policy.
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Republicans Democrats

Original fastLink Original fastLink

Contributor 0.080∗∗∗ 0.046∗∗∗ −0.180∗∗∗ −0.165∗∗∗

(0.016) (0.015) (0.008) (0.009)
Turnout for 2012 0.095∗∗∗ 0.095∗∗∗ −0.060∗∗∗ −0.060∗∗∗

general election (0.013) (0.013) (0.010) (0.010)
Turnout for 2012 0.094∗∗∗ 0.095∗∗∗ −0.019∗∗ −0.022∗∗∗

primary election (0.009) (0.009) (0.009) 0.009)
Demographic Controls Yes Yes Yes Yes

Number of observations 17386 17386 20925 20925

Table 3: Predicting Policy Ideology Using Contributor Status. The estimated coefficients from
the linear regression of policy ideology score on the contributor indicator variable and a set of
demographic controls. Along with the original analysis, the table presents the results of the
improved analysis based on fastLink, which accounts for the uncertainty of the merge process. ***
p<0.001, ** p<0.01, * p<0.05. Robust standard errors in parentheses.

standard deviation of their ideological positions (instead of 21% given by the proprietary method).

Indeed, the difference in the estimated coefficients between fastLink and the proprietary method

is statistically significant for both Republicans (0.035, s.e. = 0.014), and Democrats (−0.015,

s.e. = 0.007). Moreover, although the original analysis find that the partisan mean ideological

difference for donors (1.108, s.e. = 0.018) is 31 percent larger than that for non-donors (0.848,

s.e. = 0.001), the results based on fastLink shows that this difference is only 25 percent larger

for donors (1.058, s.e. = 0.018). Thus, while the proprietary method suggests that the partisan

gap for donors is similar to the partisan gap for those with a college degree or higher (1.100,

s.e. = 0.036), fastLink shows that it is closer to the partisan gap for those with just some college

education but without a degree (1.036, s.e. = 0.035).

4.2 Merging Two Nationwide Voter Files over Time

Our second application is what might be the largest data merging exercise ever conducted in social

sciences. Specifically, we merge the 2014 nationwide voter file to the 2015 nationwide voter file,

each of which has over 160 million records. The data sets are provided by L2, Inc., a leading

national non-partisan firm and the oldest organization in the United States that supplies voter

data and related technology to candidates, political parties, pollsters and consultants for use in

campaigns. In addition to the sheer size of the data sets, merging these nationwide voter files
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is methodologically challenging because some voters change their residence over time, making

addresses uninformative for matching these voters.

4.2.1 Merge Procedure

When merging data sets of this scale, we must drastically reduce the number of comparisons. In

fact, if we examine all possible pairwise comparisons between the two voter files, the total number

of such pairs exceeds 2.5 × 1016. It is also important to incorporate auxiliary information about

movers since the address variable is non-informative when matching these voters. We use the

Internal Revenue Service Statistics of Income (IRS SOI) to calibrate match rates for within-state

and across-state movers. Details on incorporating migration rates into parameter estimation can

be found in Section 2.3 and Online SI F.2. The IRS SOI data is a definitive source of migration

data in the United States that tracks individual residences year-to-year across all states through

their tax returns.

We develop the following two-step procedure that utilizes random sampling and blocking of

voter records to reduce the computational burden of the merge (see Online SI C.2 and Sec-

tion F.2). Our merge is based on first name, middle initial, last name, house number, street name,

date/year/month of birth, date/year/month of registration, and gender. The first step uses each

of these fields to inform the merge, while the second step uses only first name, middle initial, last

name, date/year/month of birth, and gender. For both first name and last name, we include a

partial match category based on the Jaro-Winkler string distance calculation, setting the cutoff

for a full match at 0.92 and for a partial match at 0.88.

As described in Online SI F.2, we incorporate auxiliary information into the model by moving

from the likelihood framework to a fully Bayesian approach. Due to conjugacy of our priors, we

can obtain the estimated parameters by maximizing the log posterior distribution via the EM

algorithm. This approach allows us to maintain the computational efficiency.16

Step 1: Matching within-state movers and non-movers for each state.

16Specifically, we set prior parameters on the expected match rate and expected within-state movers rate using

the IRS data, giving 75% weight to the prior estimate and 25% weight to the maximum likelihood estimate. For

the first step, we set priors on both πaddress,1,0 (the probability of a voter’s address not matching conditional on

being in the matched set, which is equivalent to the share of in-state movers in the matched set) and λ. For the

second step, we set a prior on λ.
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(a) Obtain a random sample of voter records from each state file

(b) Fit the model to this sample using the within-state migration rates from the IRS data

to specify prior parameters

(c) Create blocks by first stratifying on gender and then applying the k-means algorithm

to the first name

(d) Using the estimated model parameters, conduct the data merge within each block

Step 2: Matching across-state movers for each pair of states.

(a) Set aside voters who are identified as successful matches in Step 1

(b) Obtain a random sample of voter records from each state file as done in Step 1(a)

(c) Fit the model using the across-state migration rates from the IRS data to specify prior

parameters

(d) Create blocks by first stratifying on gender and then applying the k-means algorithm

to the first name as done in Step 1(c)

(e) Using the estimated model parameters, conduct the data merge within each block as

done in Step 1(e)

In Step 1, we apply random sampling, rather than blocking, strategy in order to use the within-

state migration rates from the IRS data and fit the model to a representative sample for each state.

For the same reason, we use a random sampling strategy in Step 2 to exploit the availability of IRS

across-state migration rates. We obtain a random sample of 800,000 voter records for files with

over 800,000 voters and use the entire state file for states with fewer than 800,000 voter records on

file. Online SI K shows through simulation studies that for datasets as small as 100,000 records,

a 5% random sample leads to parameter estimates nearly indistinguishable from those obtained

using the full data set. Based on this finding, we choose 800,000 records as the size of the random

samples, corresponding to a 5% of records from California, the largest state in the United States.

Second, within each step, we conduct the merge by creating blocks in order to reduce the

number of pairs for consideration. We block based on gender, first name, and state, and we select

the number of blocks so that the average size of each blocked dataset is approximately 250,000
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fastLink

0.75 0.85 0.95 Exact

Match count
(millions)

All 135.60 129.69 128.73 91.62
Within-state 127.38 127.12 126.80 91.36
Across-state 8.22 2.57 1.93 0.27

Match rate (%)
All 97.25 93.67 93.04 66.24
Within-state 92.06 91.87 91.66 66.05
Across-state 5.19 1.80 1.38 0.19

False discovery rate
(FDR; %)

All 1.02 0.10 0.03
Within-state 0.08 0.04 0.01
Across-state 0.95 0.06 0.02

False negative rate
(FNR; %)

All 3.35 3.63 3.86
Within-state 2.63 2.83 3.05
Across-state 0.72 0.80 0.81

Table 4: The Results of Merging the 2014 Nationwide Voter File with the 2015 Nationwide Voter
File. This table presents the merging results for fastLink for three different thresholds (i.e., 0.75,
0.85, 0.95) for the matching probability to declare a pair of observations a successful match. Across
the different thresholds, the match rates do not change substantially and are significantly greater
than the corresponding match rates of the exact matching technique.

records. To block by first name, we rank-ordered the first names alphabetically and ran the k-

means algorithm on this ranking in order to create clusters of maximally similar names.17 Finally,

the entire merge procedure is computationally intensive. The reason is that we need to repeat

Step 1 for each of 50 states plus Washington DC and apply Step 2 to each of 1275 pairs. Thus,

as explained in Online SI C.2, we use parallelization whenever possible. All merges were run on a

Linux cluster with 16 2.4-GHz Broadwell 28-core nodes with 128 GB of RAM per node.

4.2.2 Merge Results

Table 4 presents the overall match rate, FDR, and FNR obtained from fastLink. We assess the

performance of the match at three separate matching probability thresholds to declare a pair of

observations a successful match: 0.75, 0.85, and 0.95. We also break out the matches by within-

state matches only and across-state matches only. Across the three thresholds, the overall match

rate remains very high, at 93.04% under a 95% acceptance threshold, while the estimated FDR

and FNR remain controlled at 0.03% and 3.86%. All three thresholds yield match rates that are

17See Online SI N for evidence that this blocking strategy performs similarly to a blocking strategy based on age

windowing.
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Figure 5: Graphical Diagnostics from Merging the 2014 Nationwide Voter File with the 2015 Na-
tionwide Voter File. This figure presents graphical diagnostics for fastLink for within-state matches
(top panel) and across-state matches (bottom panel). The first column plots the distribution of
the matching probability across all patterns. The second column plots the distribution of the
match rate for each state. Lastly, the third column compares the FNR against the FDR for each
state separately.

significant higher than the corresponding match rates of the exact matching technique.

In Figure 5, we examine the quality of the merge separately for the within-state merge (top

panel) and across-state merge (bottom panel). The first column plots the distribution of the

matching probability across all potential match pairs. For both within-state and across-state

merge, we observe a clear separation between the successful matches and unsuccessful matches,

with very few matches falling in the middle. This suggests that the true and false matches are

identified reasonably well. In the second column, we examine the distribution of the match rate

by state. Here, we see that most states are tightly clustered between 88% and 96%. Only Ohio,

with a match rate of 85%, has a lower match rate. For the across state merge, the match rate is
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Figure 6: Across-State Match Rates for the 2014 Nationwide Voter File to 2015 Nationwide Voter
File Merge. We plot the match rates from each across-state match pair as a heatmap, where
darker colors indicate a higher match rate.

clustered tightly between 0% and 5%.

In the third column, we plot the estimated FDR against the estimated FNR for each state.

For the within-state merge, the FDR is controlled well — every state other than Minnesota has

an FDR below 0.1%. Additionally, there are only two states, Mississippi and New Mexico, where

fastLink seems to have trouble identifying true matches, as measured by the FNR. In the across-

state merge, the FDR for every state is below 0.1%, suggesting that the resulting matches are of

high quality. Furthermore, fastLink appears to be finding a high share of true movers across voter

files, as the FNR for all but three states falls under 2%.

Finally, we examine the across-state migration patterns recovered from our matching proce-

dure. Figure 6 displays a heatmap of the migration patterns obtained from fastLink with darker

purple colors indicating a higher match rate when merging the 2014 nationwide voter file for a
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given state (Origin State) to the 2015 nationwide voter file for a given state (Destination State).

We uncover several regional migration patterns. First, we find a migration cluster in New England,

where voters from New Hampshire and Rhode Island migrated to Massachusetts between 2014 and

2015. Another strong migration cluster exists between New Jersey, Delaware, and Pennsylvania

in the mid-Atlantic region. Both patterns suggest that most migration occurs between clusters

of adjacent states and urban centers. Lastly, we find a large volume of out-migration to Florida

from across the United States, and the out- migration is particularly concentrated in states on the

Eastern seaboard such as Virginia, New Hampshire, New Jersey, and Connecticut. This possibly

reflects the flow of older voters and retirees to the more temperate climate.

5 Concluding Remarks

With the advance of the Internet, the last two decades have witnessed a “data revolution” in the

social sciences where diverse and large data sets have become electronically available to researchers.

Much of today’s cutting-edge quantitative social science research results from researchers’ creativ-

ity to link multiple data sets that are collected separately. In many cases, however, a unique

identifier that can be used to merge multiple data sources does not exist. Currently, most social

scientists rely on either deterministic or proprietary methods. Yet, deterministic methods are

not robust to measurement errors and missing data, cannot quantify the uncertainty inherent in

merge process, and often require arbitrary decisions from researchers. Proprietary methods, many

of which are also deterministic, lack transparency and hence are not suitable for academic and

policy research where reproducibility and transparency play an essential role.

Here, we advocate the use of probabilistic modeling to assist merging large-scale data sets. The

main advantage of probabilistic models is their ability to estimate false positive and false negative

rates that arise when linking multiple data sets. We contribute to the statistical literature of

record linkage by developing a fast and scalable implementation of the canonical model. Through

simulation and empirical studies, we demonstrate that the proposed methodology can quickly and

reliably merge data sets even when they have millions of records.

Like any methods, however, the proposed record linkage technology has important limitations

of which researchers must be aware. Most importantly, the proposed methodology is likely to

have a difficult time producing high-quality matches when the overlap between two data sets is
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expected to be small. As shown in our simulation studies, for these difficult merge problems,

effective blocking is essential. Blocking is even more important when linking many data sets at

once. Other important research question are how to merge more than two files at the same time

and how to efficiently use a small amount of hand-coded data to improve the quality of record

linkage. We leave these methodological challenges to future research.
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A Appendix: Computationally Efficient Implementation

In this appendix, we describe the details of our computationally efficient implementation of the

canonical probabilistic record linkage model.

A.1 Reverse Data Structures for Field Comparisons

The critical step in record linkage is to compare pairs of records across the K fields used to link

two datasets, which is often regarded as the most expensive step in terms of computational time

(Christen, 2012). To do so, for each linkage field k, we first compare observation i of dataset

A and j from dataset B via a pre-defined distance metric (e.g., Jaro-Winkler for string-valued

fields) and obtain a value which we call Sk(i, j). However, comparisons in the Fellegi-Sunter

model are represented in terms of a discrete agreement levels per linkage field, not a continuous

measure of agreement as the one implied by the distance metric. In other words, we need a

discrete representation of Sk(i, j). Specifically, if we have a total of Lk agreement levels for the

kth variable, then,

γk(i, j) =



0 if Sk(i, j) ≤ τ0

1 if τ0 < Sk(i, j) ≤ τ1
...

Lk − 1 if τLk−2 < Sk(i, j) ≤ τLk−1

(14)

where γk(i, j) represents the agreement level between the values for variable k for the pair (i, j) and

τ = {τ0, τ1, . . . , τLk−1
} the set of predetermined thresholds use to define the agreement levels. For

example, to compare names and last names, some authors such as Winkler (1990) argue in favor

of using the Jaro-Winkler string distance to produce Sk, where one could use τ = {0.88, 0.94} to

construct γk for three agreement levels.

Still the problem with constructing γk is that the number of comparisons we have to make

is often large. In our proposed implementation we exploit the following characteristics of typical

record linkage problems in social sciences:

• The number of unique values observed in each linkage field is often less than the number of

observations in each dataset. For example, consider a variable such as first name. Naively,

one may compare the first name of each observation in dataset A with that of every obser-
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vation in B. In practice, however, we can reduce the number of comparisons by considering

only unique first name that appears in each data set. The same trick can be used for all

linkage fields by focusing on the comparison of the unique values of each variable.

• For each comparison between two unique first names (name1,A and name1,B), for example,

we only keep the indices of the original datasets and store them using what is often referred

as a reverse data structure in the literature (Christen, 2012). In such an arrangement, a pair

of names (name1,A, name1,B) becomes a key with two lists, one containing the indices from

dataset A that have a first name equal to name1,A, and another list that does the same for

name1,B in dataset B.

• Comparisons involving a missing value need not be made. Instead, we only need to store

the indices of the observations in A and B that contain missing information for field k.

• Since the agreement levels are mutually exclusive, we use the lowest agreement level as the

base category. Once a set of threshold values has been defined, then a pair of names can only

be categorized in one of the Lk agreement levels. The indices for the the pairs of values that

can be categorized as disagreements (or nearly disagreements) do not need to be stored. For

most variables, disagreement is the category that encompasses the largest number of pairs.

Thus, our reverse data structure lists become quite sparse. This sparsity can be exploited

by the use of sparse matrix, yielding a substantially memory efficient implementation.

A.2 Sparse Matrix Representation of Hash Tables to Count Agree-

ment Patterns

Next, we describe our computationally efficient implementation of the Fellegi-Sunter model via

the EM algorithm (see Online SI B for the exact algorithm we use). First, for implementing

the E-step, notice that the match probability given in equation (5) takes the same value for two

pairs if their agreement patterns are identical. For the sake of illustration, consider a simple

example where two variables are used for merging, i.e., K = 2, and binary comparison is made

for each variable, i.e., Lk = 2. Under this setting, there are a total of nine agreement patterns:

(0, 0), (0, 1), (1, 0), (1, 1), (NA, 0), (NA, 1), (0, NA), (1, NA), and (NA, NA) where 1 and 0 represent

agreement and disagreement, respectively while NA represents a missing value. Then, for instance,
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the match probability for (0, 1) is given by λπ110π211/{λπ110π211+(1−λ)π100π201} whereas that for

(1, NA) is equal to λπ111/{λπ111 + (1− λ)π101}. If all comparison values are missing, e.g., (NA, NA),

then we set the match probability to λ. Thus, the E-step can be implemented by computing the

match probability for each of the realized agreement patterns. Often, the total number of realized

agreement patterns is much smaller than the number of all possible agreement patterns.

Second, the M-step defined in equations (S1) and (S2) requires the summation of match prob-

abilities across all pairs or their subset. Since this probability is identical within each agreement

pattern, all we have to do is to count the total number of pairs that have each agreement pattern.

In other words, the number of pairs per agreement pattern becomes our sufficient statistic. We

use the following hash function for efficient counting,18

H =
K∑
k=1

Hk where Hk =


h
(1,1)
k h

(1,2)
k . . . h

(1,NB)
k

...
...

. . .
...

h
(NA,1)
k h

(NA,2)
k . . . h

(NA,NB)
k

 (15)

where h
(i,j)
k = 1 {γk(i, j) > 0} 2γk(i,j)+(k−1)×Lk . The matrix Hk maps each pair of records to a

corresponding agreement pattern in the kth variable that is represented by a unique hash value

based on the powers of 2. These hash values are chosen such that the matrix H links each pair to

the corresponding agreement pattern across K variables.

Since an overwhelming majority of pairs do not agree in any of the linkage fields, most elements

of the Hk matrix are zero. As a result, the H matrix also has many zeros. In our implementation,

we utilize sparse matrices whose lookup time is O(P ) where P is the number of unique agreement

patterns observed. In most applications, P is much less than the total number of possible agree-

ment patterns, i.e.,
∏K

k=1 Lk. This hashing technique is applicable if the number of variables used

for merge is moderate. If many variables are used for the merge, approximate hashing techniques

such as min hashing and locally sensitive hashing are necessary.

18Since the work of Jaro (1972), the use of table-like objects to store agreement patterns has been recognized as

an important step to improve computational efficiency. Our contribution goes beyond by tying together, under a

unified framework, reverse data structures and novel use of a sparse matrix representation of a hash table to store

agreement patterns.
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