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Abstract

This paper derives Gaussian approximation bounds for the standardized aggregate wireless inter-

ference (AWI) in the downlink ofdenseK-tier heterogeneous cellular networks when base stations in

each tier are distributed over the plane according to a (possibly non-homogeneous) Poisson process.

The proposed methodology is general enough to account for general bounded path-loss models and

fading statistics. The deviations of the distribution of the standardized AWI from the standard normal

distribution are measured in terms of the Kolmogorov-Smirnov distance. An explicit expression bounding

the Kolmogorov-Smirnov distance between these two distributions is obtained as a function of a

broad range of network parameters such as per-tier transmission power levels, base station locations,

fading statistics and the path-loss model. A simulation study is performed to corroborate the analytical

results. In particular, a good statistical match between the standardized AWI distribution and its normal

approximation occurs even for moderately dense heterogeneous cellular networks. These results are

expected to have important ramifications on the characterization of performance upper and lower bounds

for emerging 5G network architectures.

I. INTRODUCTION

The next generation of wireless networks is envisioned to bemore heterogenous and denser in

order to meet high capacity demands from mobile users [1]–[3]. Therefore, characterization and

mitigation of aggregate wireless interference (AWI) appear to be a more pronounced design

bottleneck against meeting such high data rate demands in heterogenous cellular networks

(HCNs), e.g., see [4] and [5]. However, even for traditionalmacro cell deployments, computation

http://arxiv.org/abs/1601.06023v2
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of the exact AWI distribution is a very challenging task thatusually does not result in closed

form expressions [6], [7]. This motivates us in the current paper to search for a structure in

the distribution of AWI for the downlink of aK-tier HCN that will lead to simplifications in

performance characterization and network design.

The early work in the literature focusing on approximating the distribution of AWI in wireless

networks includes [8]–[10]. These papers considered traditional single-tier macro cell deploy-

ments and obtained various approximations on the distribution of AWI using LePage series

[8], Edgeworth expansion [9] and geometrical considerations [10]. More recently, Berry-Esseen

types of bounds were obtained in [11], [12], but again by considering only single-tier wireless

networks. The related work also includes those papers [13],[14] on the analysis of interference

and signal-to-interference-plus-noise ratio (SINR) in the downlink ofK-tier HCNs. In [13], the

authors investigated a Gamma distribution approximation for the distribution of AWI clogging

a fixed-size cell with a guard zone and a dominant interferer.In [14], the author derived the

downlink SINR distribution forK-tier HCNs by assuming the classical unbounded path-loss

model, Rayleigh faded wireless links and the nearest base-station (BS) association rule.

In this paper, we examine the problem of Gaussian approximation for the standardized (i.e.,

centered and normalized) AWI in the downlink of adenseK-tier HCN, where the network tiers

are differentiated from each other in terms of transmissionpower levels, spatial BS distribution

and RF signal propagation characteristics. In particular,the underlaying spatial stochastic pro-

cesses determining the BS locations in each tier are assumedto be Poisson but not necessarily

homogenous. The signal power attenuation due to path-loss is modeled through a general bounded

and power-law decaying path-loss function, which can vary from one tier to another. Fading and

shadowing are also accounted for in the employed signal propagation model without assuming

any specific distribution functions for these other random wireless channel dynamics.

Measuring the distance between the standardized downlink AWI and normal distributions

by means of Kolmogorov-Smirnov statistic, we obtain an analytical expression for deviations

between them. This is the main contribution of the present paper. Briefly, the stated distance

consists of two parts: (i) a scaling coefficient, multipliedwith (ii) a positive functionc(x) with x ∈
R being the point at which we want to estimate the value of the standardized AWI distribution.

The scaling coefficient depends on various network parameters at each tier such as transmission

powers, BS distribution and signal propagation characteristics. An important property of the
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scaling coefficient is its monotonically decaying nature tozero with denser deployments of BSs

per tier. On the other hand, the functionc(x) is uniformly boundedby a small constant and

approaches zero for large absolute values ofx at a rate|x|−3, which makes the derived bounds

on the tails of the standardized downlink AWI distribution tight even for sparsely deployed

HCNs. These results are formally given in Theorem 1.

The above stated contributions in this paper differ from theprevious work in several im-

portant aspects. When compared to [8]–[12], this paper extends the previous known results

approximating AWI distribution for macro cell deploymentsto more heterogenous and complex

wireless communication environments. In particular, functional dependencies among different

tiers to approximate the AWI distribution in the downlink ofa HCN are clearly identified. When

compared with the results reported in [13], [14], our network set-up is much richer, allowing

non-homogenous Poisson point processes (PPP) for BS locations and general signal propagation

models including fading and shadowing.

II. SYSTEM MODEL

In this section, we will introduce the details of the studieddownlink model in aK-tier cellular

topology, the details of the spatial processes determiningBS locations and the signal propagation

characteristics.

A. The Downlink Model in aK-Tier Cellular Topology

We consider an overlayK-tier HCN in which the BSs in all tiers are fully-loaded (i.e., no

empty queues) and access to the same communication resources both in time and frequency. The

BSs in different tiers are differentiated mainly on the basis of their transmission powers, with

Pk > 0 being the transmission power of a tier-k BS fork = 1, . . . , K. As is standard in stochastic

geometric modeling, it is assumed that BSs are distributed over the plane according to a PPP

(possibly non-homogeneous) with differing spatial density among the tiers. Further, the signal

propagation characteristics (including both large-scalepath-loss and small-scale fading effects)

also vary from one tier to another. The details of BS locationprocesses and signal propagation

are elaborated below.

We place a test user at an arbitrary pointx
(o) =

(

x
(o)
1 , x

(o)
2

)

∈ R
2 and consider signals coming

from all the BSs in all tiers as thedownlinkAWI experienced by this test user. Since we focus
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on the downlink analysis, we assume that the uplink and downlink do not share any common

communication resources. Therefore, the uplink interference can be ignored for the analysis

of downlink AWI. This setting is general enough to understand the effects of various network

parameters such as transmission powers and BS intensity in each tier on the distribution of the

AWI seen by the test user.

B. BS Location Processes

The BS locations in tier-k, k = 1, . . . , K, independently form a spatial planar PPPΦΛ(k), where

Λ(k) represents themean measure(alternatively called: intensity measure or spatial density) of

thekth tier BSs. We do not assume any specific functional form forΛ(k) and hence do not restrict

our attention only to homogenous PPPs. For each (Borel) subset A of R2, Λ(k) (A) gives us the

average number of BSs lying inA. We will assume thatΛ(k) is locally finite i.e.,Λ(k) (A) < ∞
for all bounded subsetsA of R

2, andΛ(k) (R2) = ∞, i.e., there is an infinite population of

tier-k BSs scattered all around inR2. For the whole HCN, the aggregate BS location process,

which is the superposition of all individual position processes, is denoted byΦΛ =
⋃K

k=1ΦΛ(k) .

Henceforth, when we refer to an interfering BS (without specifying its tier) in the sequel, we

write X ∈ ΦΛ to represent its location.

For mathematical convenience, we also expressΦΛ(k) as a discrete sum of Dirac measures

as ΦΛ(k) =
∑

j≥1 δX(k)
j

, where δ
X

(k)
j

(A) = 1 if X
(k)
j ∈ A ⊆ R

2, and zero otherwise. The

level of AWI at x(o) from tier-k BSs depends critically on the distances between the points

of ΦΛ(k) andx
(o). It is well-known from the theory of Poisson processes that the transformed

process
∑

j≥1 δT
(

X
(k)
j

) is still Poisson (on the positive real line) with mean measure given

by Λ(k) ◦ T−1, whereT (x) =
∥

∥x− x
(o)
∥

∥

2
=

√

(

x1 − x
(o)
1

)2

+
(

x2 − x
(o)
2

)2

and T−1 (A) =

{x ∈ R
2 : T (x) ∈ A} for all A ⊆ R [15]. We will assume thatΛ(k) ◦ T−1 has a density in the

form Λ(k) ◦ T−1 (A) = λk

∫

A
µk(t)dt. Here,λk is a modeling parameter pertaining to thekth

tier, which can be interpreted as theBS intensity parameter, that will enable us to control the

average number of tier-k BSs whose distances fromx(o) belong toA and interfere with the

signal reception at the test user.
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C. Signal Propagation and Interference Power

We model the large scale signal attenuation for tier-k, k = 1, . . . , K, by aboundedmonotone

non-increasing path-loss functionGk : [0,∞) 7→ [0,∞). Gk asymptotically decays to zero at

least as fast ast−αk for some path-loss exponentαk > 2. To ensure the finiteness of AWI at the

test user, we require the relationshipµk(t) = O (tαk−1−ǫ) as t → ∞ to hold for someǫ > 0.

The fading (power) coefficient for the wireless link betweena BS located at pointX ∈ ΦΛ

and the test user is denoted byHX .1 The fading coefficients{HX}
X∈ΦΛ

form a collection of

independent random variables (also independent ofΦΛ), with those belonging to the same tier,

say tier-k, having a common probability distribution with densityqk(h), h ≥ 0. The first, second

and third order moments of fading coefficients are assumed tobe finite, and are denoted bym(k)
H ,

m
(k)
H2 and m

(k)
H3 , respectively, for tier-k. We note that this signal propagation model is general

enough thatHX ’s could also be thought to incorporateshadow fadingeffects due to blocking

of signals by large obstacles existing in the communicationenvironment, although we do not

model such random factors explicitly and separately in thispaper.

Considering all the signal impairments due to fading and path-loss, we can write the interfer-

ence power seen by the test user from a tier-k BS located atX(k) ∈ ΦΛ(k) asPkHX(k)Gk

(

T
(

X
(k)
))

.

Hence, the level of AWI atx(o) is equal toIλ =
∑K

k=1

∑

X(k)∈Φ
Λ(k)

PkHX(k)Gk

(

T
(

X
(k)
))

,

whereλ = [λ1, . . . , λK ]
⊤. This parametrization of AWI is chosen to emphasize the dependence

of its distribution to the BS intensity parameterλk of each tier.Iλ is a random function of BS

configurations and fading states. In the next section, we will show that the distribution ofIλ can

be approximated by a Gaussian distribution.

III. GAUSSIAN APPROXIMATION FOR THEAWI D ISTRIBUTION

In this section, we will establish the Gaussian approximation bounds for the distribution of

the standardized AWI in the downlink of a HCN. These bounds will clearly show the functional

dependence between the downlink AWI distribution and a broad range of network parameters

1For simplicity, we only assign asingle fading coefficient to each BS. In reality, it is expected thatthe channels between a

BS and all potential receivers (intended or unintended) experience different (and possibly independent) fading processes. Our

simplified notation does not cause any ambiguity here since we focus on the total interference power at a given arbitrary position

in R
2 in the remainder of the paper.
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such as transmission power levels, BS distribution over theplane and signal propagation charac-

teristics in each tier. We will also specialize these approximation results to the commonly used

homogenous PPPs at the end of this section. Most of the proofsare relegated to appendices

for the sake of fluency of the paper. Hence, we focus on the mainengineering and design

implications of these results for emerging 5G networks in the remainder of the paper.

Theorem 1:For all x ∈ R,
∣

∣

∣

∣

∣

Pr

{

Iλ − E [Iλ]
√

Var (Iλ)
≤ x

}

−Ψ(x)

∣

∣

∣

∣

∣

≤ Ξ · c(x), (1)

where Ξ =
∑K

k=1

λkP
3
k
m

(k)

H3

∫

∞

0 G3
k
(t)µk(t)dt

(

∑K
k=1 λkP

2
k
m

(k)

H2

∫

∞

0 G2
k
(t)µk(t)dt

) 3
2
, c(x) = min

(

0.4785, 31.935
1+|x|3

)

and Ψ(x) =

1√
2π

∫ x

−∞ e−
t2

2 dt, which is the standard normal cumulative distribution function (CDF).

Proof: Please see Appendix B.

Measuring the distance by means of Kolmogorov-Smirnov statistic, Theorem 1 provides

us with an explicit expression for the deviations between the standardized AWI and normal

distributions. Several important remarks about this result are in order. The scaling coefficientΞ

appearing in Theorem 1 is linked to the main network parameters such as transmission power

levels, distribution of BSs over the plane and signal propagation characteristics. Starting with the

BS intensity parametersλk, k = 1, . . . , K, we observe that the rate of growth of the expression

appearing in the denominator ofΞ is half an order larger than that of the expression appearing

in the numerator ofΞ as a function ofλk. This observation implies that the derived Gaussian

approximation becomes tighter for denser deployments of HCNs. A formal statement of this

result is given in the following lemma.

Lemma 1:The scaling coefficientΞ appearing in the Gaussian approximation result in The-

orem 1 is bounded above byΞ ≤ δ√
‖λ‖2

for some finite positive constantδ.

Proof: Let ak = P 3
km

(k)

H3

∫∞
0

G3
k(t)µk(t)dt and bk = P 2

km
(k)

H2

∫∞
0

G2
k(t)µk(t)dt. Then,

Ξ =

∑K
k=1 akλk

(

∑K

k=1 λkbk

)
3
2

≤ ‖λ‖2‖a‖2
(

∑K

k=1 λkbk

)
3
2

due to Cauchy-Schwarz inequality. Further, we can lower-bound the sum in the denominator

above as
(

K
∑

k=1

λkbk

)

3
2

≥
(

min
1≤k≤K

bk

K
∑

k=1

|λk|
)

3
2

≥ ǫ (‖λ‖2)
3
2 ,
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where the last inequality follows from the equivalence of all the norms in finite dimensional

vector spaces. Combining these two inequalities, we conclude the proof.

Following a similar approach, we can also see that changing transmission powers is not as

effective as changing BS intensity parameters to improve the Gaussian approximation bound in

Theorem 1. This is expected since the power levels are assumed to be deterministic (i.e., no

power control is exercised) and therefore they do not reallyadd to the randomness coming from

the underlying spatial BS distribution over the plane and the path-loss plus fading characteristics

modulating transmitted signals.

Another important observation we have in regards to the combined effect of the selection of

transmission powers per tier and the moments of fading processes in each tier on the Gaussian

approximation result in Theorem 1 is that our approximationbounds benefit from the fading

distributions with restricted dynamic ranges and the alignment of received AWI powers due

to fading and path-loss components. This observation is made rigorous through the following

lemma.

Lemma 2:Let ak = λk

∫∞
0

G3
k(t)µk(t)dt, bk = λk

∫∞
0

G2
k(t)µk(t)dt and ck = P 2

km
(k)
H2 . Then,

the scaling coefficientΞ appearing in the Gaussian approximation result in Theorem 1is bounded

below by

Ξ ≥
(

1

‖c‖2‖b‖2

)
3
2

K
∑

k=1

akc
3
2
k ,

with equality achieved if fading processes in all tiers are deterministic and the vectorsb =

[b1, . . . , bK ]
⊤ andc = [c1, . . . , cK ]

⊤ are parallel.

Proof: Using ak, bk and ck introduced above, we can write a lower bound forΞ as

Ξ =

∑K

k=1 akP
3
km

(k)
H3

(

∑K

k=1 bkck

)
3
2

=

∑K

k=1 akP
3
km

(k)
H3

(‖c‖2)
3
2

(

∑K

k=1 bk
ck

‖c‖2

)
3
2

≥
(

1

‖c‖2‖b‖2

)
3
2

K
∑

k=1

akP
3
km

(k)
H3 .

Using Jensen’s inequality, we also havem(k)

H3 ≥
(

m
(k)

H2

)
3
2
. Using this lower bound onm(k)

H3 in

the above expression, we finally haveΞ ≥
(

1
‖c‖2‖b‖2

)
3
2 ∑K

k=1 akc
3
2
k .

In addition to the above fundamental properties of the scaling coefficientΞ, it is also worth-

while to mention that the Gaussian approximation bound derived in Theorem 1 is a combination
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of two different types of Berry-Esseen bounds embedded in the function c(x). One of these

bounds is auniformbound that helps us to estimate the standardized AWI distribution uniformly

as ∣

∣

∣

∣

∣

Pr

{

Iλ − E [Iλ]
√

Var (Iλ)
≤ x

}

−Ψ(x)

∣

∣

∣

∣

∣

≤ Ξ · 0.4785.

On the other hand, the other one is anon-uniformbound that helps us to estimate thetails of

the standardized AWI distribution as
∣

∣

∣

∣

∣

Pr

{

Iλ − E [Iλ]
√

Var (Iλ)
≤ x

}

−Ψ(x)

∣

∣

∣

∣

∣

≤ Ξ · 31.935

1 + |x|3

and decays to zero as a third order inverse power law.

Up to now, we considered general PPPs for the distribution ofBSs in each tier. One sim-

plifying assumption in the literature is to assume that PPPsdetermining the locations of BSs

are homogenous. In this case,µk(t) for all tiers is given byµk(t) = 2πt1{t≥0}, where1{·} is

the indicator function. Using this expression forµk(t) in Theorem 1, we obtain the following

approximation result for the distribution of AWI when all BSs are homogeneously distributed

over the plane according to a PPP with differing BS intensityparametersλk from tier to tier.

Theorem 2:Assume thatΦΛ(k) is a homogeneous PPP with a mean measure givenΛ(k) (A) =

λk · area(A). Then, for allx ∈ R,
∣

∣

∣

∣

∣

Pr

{

Iλ − E [Iλ]
√

Var (Iλ)
≤ x

}

−Ψ(x)

∣

∣

∣

∣

∣

≤ Ξ · c(x), (2)

where Ξ = 1√
2π

∑K

k=1

λkP
3
k
m

(k)

H3

∫

∞

0
G3

k
(t)tdt

(

∑K
k=1 λkP

2
k
m

(k)

H2

∫

∞

0
G2

k
(t)tdt

) 3
2
, c(x) = min

(

0.4785, 31.935
1+|x|3

)

and Ψ(x) =

1√
2π

∫ x

−∞ e−
t2

2 dt, which is the standard normal CDF.

Proof: The proof follows from Theorem 1 by replacingµk(t) with 2πt1{t≥0}.

When all network parameters are assumed to be the same, i.e.,the same transmission power

levels, fading distributions and BS distributions for all tiers, the HCN in question collapses to a

single tier network. In this case, the Gaussian approximation result is given below.

Corollary 1: AssumePk = P , µk(t) = 2πt1{t≥0}, Gk (t) = G (t), λk = λ, m(k)

H2 = mH2 and

m
(k)
H3 = mH3 for all k = 1, . . . , K. Then, for allx ∈ R, we have

∣

∣

∣

∣

∣

Pr

{

Iλ − E [Iλ]
√

Var (Iλ)
≤ x

}

−Ψ(x)

∣

∣

∣

∣

∣

≤ Ξ · c(x),
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Fig. 1. Gaussian approximation bounds for the standardizedAWI CDFs (upper figures). Comparison of the simulated

standardized AWI CDFs with the standard normal CDF (lower figures). Rayleigh fading with unit mean power is assumed.

whereΞ = 1√
2π

1√
Kλ

m
H3

(mH2)
3
2

∫

∞

0 G3(t)tdt

(
∫

∞

0 G2(t)tdt)
3
2
, andc(x) andΨ(x) are as given in Theorem 1.

We note that this is the same result obtained in [12] as a special case of the network model

studied in this paper.

IV. NUMERICAL EXAMPLES

In this section, we will illustrate the analytical Gaussianapproximation results derived for

the standardized AWI distribution in Section III for a specific three-tier HCN scenario. To this

end, we will assume the same path-loss modelGk (t) =
1

1+tα
for all tiers with various values of

α > 2. Similar conclusions continue to hold for other path-loss models. The BSs in each tier are

distributed over the plane according to a homogeneous PPP, with BS intensity parameters given
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by λ1 = 0.1κ, λ2 = κ and λ3 = 5κ. Here,κ is our control parameter to control the average

number of BSs interfering with the signal reception at the test user. The test user is assumed

be located at the origin without loss of any generality sincewe focus only on homogenous

PPPs in this numerical study. The random fading coefficientsin all tiers are assumed to be i.i.d.

random variables, drawn from a Rayleigh distribution with unit mean power gain. Our results

are qualitatively the same for other fading distributions such as Nakagami and Rician fading

distributions. The transmission power levels are set asP1 = 4P2 = 16P3, whereP2 is assumed

to be unity.

In the upper figures of Fig. 1, we present the upper and lower bounds for the Kolmorov-

Smirnov distance between the standardized AWI and normal distributions, i.e., we plot the

expressionsΨ(x) + Ξ · c(x) andΨ(x) − Ξ · c(x) appearing in Theorem 1, with a variety ofκ

values. Two different regimes are apparent in these figure. For the moderate values at which

we want to estimate the CDF of standardized AWI, i.e.,Pr

{

Iλ−E[Iλ]√
Var(Iλ)

≤ x

}

with moderatex

values, our uniform Berry-Esseen bound, which isΞ · 0.4785, provides better estimates for the

AWI distribution. On the other hand, for absolute values larger than3.4 at which we want

to estimate the CDF of standardized AWI, i.e.,Pr

{

Iλ−E[Iλ]√
Var(Iλ)

≤ x

}

with |x| larger than3.4,

our non-uniform Berry-Esseen bound, which isΞ · 31.935
1+|x|3 , is tighter. These figures also clearly

demonstrate the effect of BS intensity parametersλk on our Gaussian approximation bounds.

As suggested by Lemma 1, the Kolmogorov-Smirnov distance between the standardized AWI

and normal distributions approach the zero at a rate1√
‖λ‖2

. Further, even if all BS intensity

parameters are fixed, the distance between the upper and lower bounds in Theorem 1 disappears

at a rateO
(

|x|−3) as |x| → ∞ due to the non-uniform bound.

When we compare upper lefthand side and righthand side figures in Fig. 1, we observe a better

convergence behavior for smaller values of the path-loss exponentα. This is due to the path-

loss model dependent constants appearing in Theorem 1. For this particular choice of path-loss

model and BS distribution over the plane, our approximationresults benefit from small values

of path-loss exponent, although the difference between them becomes negligible for moderate

to high values ofκ.

We also performed Monte-Carlo simulations to compare simulated standardized AWI distri-

butions with the normal distribution for104 random BS configurations. The lower figures in

Fig. 1 provides further numerical evidence for the Gaussianapproximation of AWI in HCNs.
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Surprisingly, there is a good match between the simulated standardized AWI distribution and

the standard normal CDF even for sparsely populated HCNs, i.e., κ = 1.

V. CONCLUSIONS

In this paper, we have investigated the Gaussian approximation for the AWI distribution in

the downlink of HCNs under a general set-up. Analytical bounds measuring the Kolmogorov-

Smirnov distance between these two distributions have beenobtained. The derived Gaussian

approximation bounds have also been illustrated numerically through simulation of a particular

three-tier HCN scenario. A good statistical fit between the simulated (centralized and normalized)

AWI distribution and the standard normal distribution has been observed even for moderate values

of BS intensities.

APPENDIX A

AUXILIARY LEMMAS FOR THE PROOF OFTHEOREM 1

In this appendix, we will provide five lemmas to construct theproof of Theorem 1 in the

next appendix. We start our analysis by showing that AWI has aprobability non-degenerate

distribution. By using Laplace functionals of Poisson processes (refer to [15] for details), we

can find the Laplace transform forIλ as follows:

LIλ (s) = E
[

e−sIλ
]

=

K
∏

k=1

exp

(

−λk

∫ ∞

0

∫ ∞

0

(

1− e−sPkhGk(t)
)

µk (t) qk (h) dtdh

)

,

wheres ≥ 0. The following lemma establishes thatIλ is of a non-degenerate distribution.

Lemma 3:For all s ≥ 0,
∫∞
0

∫∞
0

(

1− e−sPkhGk(t)
)

µk (t) qk (h) dtdh< ∞.

Proof: Recall thatGk(t) = O (t−αk) as t → ∞. Hence, we can find constantsB1 > 0 and

β > 0 such thatGk(t) ≤ βt−αk for all t ≥ B1. This implies that
∫ ∞

0

∫ ∞

0

(

1− e−sPkhGk(t)
)

µk (t) qk (h) dtdh

≤
∫ ∞

0

∫ B1

0

(

1− e−sPkhGk(t)
)

µk (t) qk (h) dtdh+

∫ ∞

0

∫ ∞

B1

(

1− e−sPkhβt
−αk

)

µk (t) qk (h) dtdh

≤
∫ B1

0

µk (t)dt+

∫ ∞

0

∫ ∞

B1

(

1− e−sPkhβt
−αk

)

µk (t) qk (h) dtdh. (3)
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The first integral in the last line in (3) is finite sinceΛ(k) is locally finite. To show the finiteness

of the second integral, we divide it into two parts as follows:
∫ ∞

0

∫ ∞

B1

(

1− e−sPkhβt
−αk

)

µk (t) qk (h) dtdh

=

∫ 1
sPkβ

0

∫ ∞

B1

(

1− e−sPkhβt
−αk

)

µk (t) qk (h) dtdh

+

∫ ∞

1
sPkβ

∫ ∞

B1

(

1− e−sPkhβt
−αk

)

µk (t) qk (h) dtdh. (4)

The first integral in (4) can be bounded as
∫ 1

sPkβ

0

∫ ∞

B1

(

1− e−sPkhβt
−αk

)

µk (t) qk (h) dtdh ≤
∫ ∞

B1

(

1− e−t−αk

)

µk (t) dt,

which is finite since1− e−t−αk = O (t−αk) andµk (t) = O (tαk−1−ε) ast → ∞. Hence, proving

the finiteness of
∫∞

1
sPkβ

∫∞
B1

(

1− e−sPkhβt
−αk

)

µk (t) qk (h) dtdh will complete the proof. To this

end, we need the following lemma.

Lemma 4:1− e−at−αk ≤ 2a (1− e−a) t−αk for all a ≥ 1 and t large enough.

Proof: We let ft (a) = 1 − e−at−αk and gt (a) = 2a (1− e−a) t−αk . For a = 1, we have

lim
t→∞

ft(1)

t−αk
= 1 and lim

t→∞
gt(1)

t−αk
= 2 (1− e−1) > 1. Hence, there exists a constantB2 > 0 such that

gt (1) > ft (1) for all t ≥ B2. We now fix an arbitraryt greater thanB2. Then,

dft (a)

da
= t−αke−at−αk and

dgt (a)

da
= 2t−αk

(

1 + ae−a − e−a
)

.

Thus,gt (a) grows faster thanft (a), implying thatgt (a) ≥ ft (a) for all a ≥ 1 and t ≥ B2.

By using Lemma 4, we can upper bound the second integral in (4)as
∫ ∞

1
sPkβ

∫ ∞

B1

(

1− e−sPkhβt
−αk

)

µk (t) qk (h) dtdh

≤
∫ B3

B1

µk (t) dt+

∫ ∞

B3

∫ ∞

1
sPkβ

2sPkhβ
(

1− e−sPkhβ
)

qk (h) t
−αkµk (t) dhdt (5)

for some positive constantB3 large enough. The first integral in (5) is finite due to local finiteness

of Λ(k). The second integral in (5) can be upper bounded by2sPkβm
(k)
H

∫∞
B3

t−αkµk (t) dt, which

is finite sincem(k)
H < ∞ and µk (t) = O (tαk−1−ε) as t → ∞. This completes the proof of

Lemma 3.
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The following lemma shows that the probability distribution of Iλ can be approximated by

the limit distribution of a sequence of random variablesIn, i.e., In
d→ Iλ asn → ∞.

Lemma 5:For eachn, let U (k)
1,n , . . . , U

(k)
⌈

Λ
(k)
n

⌉

,n
be a sequence of i.i.d. random variables with a

common probability density functionfk (t) =
λkµk(t)

Λ
(k)
n

1{0≤t≤n} for tier-k, whereΛ(k)
n = λk

∫ n

0
µk (t)dt

and⌈.⌉ is the smallest integer greater than or equal to its argument. Let

In =

K
∑

k=1

I(k)n , (6)

whereI(k)n = Pk

∑

⌈

Λ
(k)
n

⌉

i=1 H
(k)
i Gk

(

U
(k)
i,n

)

and
{

H
(k)
i

}∞

i=1
is an i.i.d. collection of random variables

with the common probability density functionqk(h) for k = 1, . . . , K. Then In converges in

distribution toIλ, which is shown asIn
d→ Iλ, asn → ∞.

Proof: It is enough to show thatLIn(s) converges toLIλ(s) pointwise asn tends to infinity.

Observing that the random variablesI(k)n for k = 1, . . . , K are independent, we can write the

Laplace transform ofIn as

LIn (s) =

K
∏

k=1

E

[

e−sI
(k)
n

]

=

K
∏

k=1

L
I
(k)
n
(s),

whereL
I
(k)
n

(s) is the Laplace transform ofI(k)n , which is given by

L
I
(k)
n

(s) =

(

1− λk

Λ
(k)
n

∫ ∞

0

∫ n

0

(

1− e−sPkhGk(t)
)

µk (t) qk (h) dtdh

)

⌈

Λ
(k)
n

⌉

.

As n grows to infinity,
∫∞
0

∫ n

0

(

1− e−sPkhGk(t)
)

µk (t) qk (h) dtdh converges to
∫ ∞

0

∫ ∞

0

(

1− e−sPkhGk(t)
)

µk (t) qk (h) dtdh

and
∫∞
0

∫∞
0

(

1− e−sPkhGk(t)
)

µk (t) qk (h) dtdh < ∞ by Lemma 3. This observation leads to the

following identity

lim
n→∞

L
I
(k)
n

(s) = exp

(

−λk

∫ ∞

0

∫ ∞

0

(

1− e−sPkhGk(t)
)

µk (t) qk (h) dtdh

)

,
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which is exactly the Laplace transform of the AWI at the test user coming from tier-k BSs alone.

Utilizing this result, we have

lim
n→∞

LIn(s) = lim
n→∞

K
∏

k=1

L
I
(k)
n
(s)

=

K
∏

k=1

lim
n→∞

L
I
(k)
n
(s)

=
K
∏

k=1

exp

(

−λk

∫ ∞

0

∫ ∞

0

(

1− e−sPkhGk(t)
)

µk (t) qk (h) dtdh

)

= LIλ(s), (7)

which completes the proof.

The next lemma shows that the mean value and variance ofIλ can also be approximated by

the mean value and variance ofIn.

Lemma 6:Let In be defined as in (6). Then,

lim
n→∞

E [In] = E [Iλ]

and

lim
n→∞

Var (In) = Var (Iλ)

Proof: Using Campbell’s Theorem [15], we can expressE [Iλ] andVar (Iλ) as

E [Iλ] =

K
∑

k=1

λkPkm
(k)
H

∫ ∞

0

Gk(t)µk(t)dt

and

Var (Iλ) =
K
∑

k=1

λkP
2
km

(k)

H2

∫ ∞

0

G2
k(t)µk(t)dt.

We note that our modeling assumptions ensure thatE [Iλk
] and Var (Iλk

) are both finite

numbers. Let the random variablesU (k)
i,n , H

(k)
i and I

(k)
n be as defined in Lemma 5. Further,

let m(k)
i,n = E

[

PkH
(k)
i Gk

(

U
(k)
i,n

)]

andσ(k)
i,n =

√

Var

(

PkH
(k)
i Gk

(

U
(k)
i,n

))

. We first observe that

E
[

I(k)n

]

=
⌈

Λ(k)
n

⌉

m
(k)
1,n and Var

(

I(k)n

)

=
⌈

Λ(k)
n

⌉

(

σ
(k)
1,n

)2

.

Furthermore, we can expressm(k)
i,n as

m
(k)
i,n =

λkPkm
(k)
H

Λ
(k)
n

∫ n

0

Gk (t)µk (t) dt,
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which implies thatlimn→∞ E

[

I
(k)
n

]

= λkPkm
(k)
H

∫∞
0

Gk(t)µk(t)dt. Using this result, we have

lim
n→∞

E [In] = lim
n→∞

K
∑

k=1

E
[

I(k)n

]

=
K
∑

k=1

lim
n→∞

E
[

I(k)n

]

=

K
∑

k=1

λkPkm
(k)
H

∫ ∞

0

Gk(t)µk(t)dt

= E [Iλ] .

Repeating the similar steps and using the identity

(

σ
(k)
i,n

)2

=
λkP

2
km

(k)

H2

Λ
(k)
n

∫ n

0

G2
k (t)µk (t) dt−

λ2
kP

2
k

(

m
(k)
H

)2

(

Λ
(k)
n

)2

(
∫ n

0

Gk (t)µk (t) dt

)2

,

we also obtainlimn→∞ Var (In) = Var (Iλ).

Lemma 7:Let ξ1, . . . , ξm be a sequence of independent and real-valued random variables such

that E [ξi] = 0 and
∑m

i=1 E [ξ2i ] = 1. Let χ =
∑m

i=1 E [|ξ3i |]. Then,
∣

∣

∣

∣

∣

Pr

{

m
∑

i=1

ξi ≤ x

}

−Ψ(x)

∣

∣

∣

∣

∣

≤ χmin

(

0.4785,
31.935

1 + |x|3
)

for all x ∈ R.

Proof: Please refer to [12].

APPENDIX B

PROOF OFTHEOREM 1

In this appendix, we provide the proof for our main Gaussian approximation result given

in Theorem 1. To this end, we letξ(k)i,n =
PkH

(k)
i

Gk

(

U
(k)
i,n

)

−m
(k)
i,n

σn
for k = 1, . . . , K, n ≥ 1 and

1 ≤ i ≤
⌈

Λ
(k)
n

⌉

, whereσn =
√

Var (In), andIn, U (k)
i,n , Λ(k)

n andm(k)
i,n are as defined in Appendix

A. We note thatE
[

ξ
(k)
i,n

]

= 0 and
∑K

k=1

∑

⌈

Λ
(k)
n

⌉

i=1 E

[

(

ξ
(k)
i,n

)2
]

= 1. Hence, the collection of

random variables
⋃K

k=1

{

ξ
(k)
i,n : i = 1, . . . ,

⌈

Λ
(k)
n

⌉}

is in the correct form to apply Lemma 7. We
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need to calculateχn =
∑K

k=1

∑

⌈

Λ
(k)
n

⌉

i=1

∣

∣

∣
ξ
(k)
i,n

∣

∣

∣

3

to complete the proof. We can upper boundχn as

χn ≤ 1

σ3
n

K
∑

k=1

⌈

Λ(k)
n

⌉

E

[

∣

∣

∣
PkH

(k)
1 Gk

(

U
(k)
1,n

)

+m
(k)
1,n

∣

∣

∣

3
]

=
1

σ3
n

K
∑

k=1

⌈

Λ(k)
n

⌉

E

[

P 3
k

(

H
(k)
1

)3 (

Gk

(

U
(k)
1,n

))3

+ 3P 2
k

(

H
(k)
1

)2 (

Gk

(

U
(k)
1,n

))2

m
(k)
1,n

+3PkH
(k)
1 Gk

(

U
(k)
1,n

)(

m
(k)
1,n

)2

+
(

m
(k)
1,n

)3
]

=
1

σ3
n

K
∑

k=1

⌈

Λ(k)
n

⌉

(

P 3
km

(k)

H3λk

Λ
(k)
n

∫ n

0

(Gk(t))
3
µk(t)dt + 3

P 2
km

(k)

H2λk

Λ
(k)
n

∫ n

0

(Gk(t))
2
µk(t)dt ·m(k)

1,n

+3
Pkm

(k)
H λk

Λ
(k)
n

∫ n

0

Gk(t)µk(t)dt ·
(

m
(k)
1,n

)2

+
(

m
(k)
1,n

)3
)

.

We note thatm(k)
1,n = o (1) and

⌈

Λ
(k)
n

⌉ (

m
(k)
1,n

)3

= o (1) as n → ∞, i.e., see the proof of

Lemma 6. Furthermore, we know thatσ2
n converges toVar (Iλ) asn → ∞ by Lemma 6. Using

these results, we have

lim sup
n→∞

χn ≤ 1

(Var (Iλ))
3
2

K
∑

k=1

P 3
km

(k)

H3λk

∫ ∞

0

(Gk(t))
3
µk(t)dt. (8)

After substituting the expression forVar (Iλ) (see the proof of Lemma 6) in (8), we obtain

lim sup
n→∞

χn ≤
K
∑

k=1

λkP
3
km

(k)

H3

∫∞
0

G3
k(t)µk(t)dt

(

∑K
k=1 λkP

2
km

(k)

H2

∫∞
0

G2
k(t)µk(t)dt

)
3
2

. (9)

By using Lemma 7, we have
∣

∣

∣

∣

∣

∣

∣

Pr











K
∑

k=1

⌈

Λ
(k)
n

⌉

∑

i=1

ξ
(k)
i,n ≤ x











−Ψ(x)

∣

∣

∣

∣

∣

∣

∣

≤ χn min

(

0.4785,
31.935

1 + |x|3
)

(10)

for all n ≥ 1 andx ∈ R. Further, Lemmas 5 and 6 imply that

K
∑

k=1

⌈

Λ
(k)
n

⌉

∑

i=1

ξ
(k)
i,n

d→ Iλ − E [Iλ]
√

Var (Iλ)
as n → ∞. (11)
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Hence, using (9) and taking thelim sup of both sides in 10, we have

lim sup
n→∞

∣

∣

∣

∣

∣

∣

∣

Pr











K
∑

k=1

⌈

Λ
(k)
n

⌉

∑

i=1

ξ
(k)
i,n ≤ x











−Ψ(x)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Pr

{

Iλ − E [Iλ]
√

Var (Iλ)
≤ x

}

−Ψ(x)

∣

∣

∣

∣

∣

≤
K
∑

k=1

λkP
3
km

(k)

H3

∫∞
0

G3
k(t)µk(t)dt

(

∑K

k=1 λkP
2
km

(k)

H2

∫∞
0

G2
k(t)µk(t)dt

)
3
2

min

(

0.4785,
31.935

1 + |x|3
)

,

which completes the proof.
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