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Abstract

Hypergraphs are used in machine learning to model higher-order relationships in data. While
spectral methods for graphs are well-established, spectral theory for hypergraphs remains an active
area of research. In this paper, we use random walks to develop a spectral theory for hypergraphs with
edge-dependent vertex weights: hypergraphs where every vertex v has a weight γe (v) for each incident
hyperedge e that describes the contribution of v to the hyperedge e . We derive a random walk-based
hypergraph Laplacian, and bound the mixing time of random walks on such hypergraphs. Moreover,
we give conditions under which random walks on such hypergraphs are equivalent to random walks on
graphs. As a corollary, we show that current machine learning methods that rely on Laplacians derived
from random walks on hypergraphs with edge-independent vertex weights do not utilize higher-order
relationships in the data. Finally, we demonstrate the advantages of hypergraphs with edge-dependent
vertex weights on ranking applications using real-world datasets.

1 Introduction

Graphs are ubiquitous in machine learning, where they are used to represent pairwise relationships between
objects. For example, social networks, protein-protein interaction (PPI) networks, and the internet are
modeled with graphs. One limitation of graph models, however, is that they do not encode higher-order
relationships between objects. A social network can represent a community of users (e.g. a friend group)
as a collection of edges between each user, but this pairwise representation loses information about the
overall group structure [38]. In biology, protein interactions are not only between pairs of proteins, but
also between groups of proteins in protein complexes [32, 33].

Such higher-order interactions can be modeled using a hypergraph: a generalization of a graph con-
taining hyperedges that can be incident to more than two nodes. A hypergraph representation of a social
network can model a community of friends with a single hyperedge. In contrast, the corresponding rep-
resentation of a community in a graph requires many edges that connect pairs of individuals within the
community; conversely, it may not be clear which collection of edges in a graph represents a community
(e.g. a clique, an edge-dense subnetwork, etc). Hypergraphs have been used in a variety of machine learning
tasks, including clustering [1, 27, 28, 43], ranking keywords in a collection of documents [5], predicting
customer behavior in e-commerce [26], object classi�cation [41, 42], and image segmentation [24].

A common approach to incorporate graph information in a machine learning algorithm is to utilize
properties of random walks or di�usion processes on the graph. For example, random walks on graphs
underlie algorithms for recommendation systems [21], clustering [18, 31], information retrieval [6], and
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other applications. In many machine learning applications, the graph is represented through the graph
Laplacian. Spectral theory includes many key results regarding the eigenvalues and eigenvectors of the
graph Laplacian, and these results form the foundation of spectral learning algorithms.

Spectral theory on hypergraphs is much less developed than on graphs. In seminal work, Zhou et al.
[43] developed learning algorithms on hypergraphs based on random walks on graphs. However, at nearly
the same time, Agarwal et al. [2] showed that the hypergraph Laplacian matrix used by Zhou et al. is equal
to the Laplacian matrix of a closely related graph, the star graph. A consequence of this equivalence is that
the methods introduced by Zhou et al. utilize only pairwise relationships between objects, rather than the
higher-order relationships encoded in the hypergraph. More recently, Chan et al. [7] and Li and Milenkovic
[27, 28] developed nonlinear Laplacian operators for hypergraphs that partially address this issue. However,
all existing constructions of linear Laplacian operators utilize only pairwise relationships between vertices,
as shown by Agarwal et al. [2].

In this paper, we develop a spectral theory for hypergraphs with edge-dependent vertex weights. In
such a hypergraph, each hyperedge e has an edge weight ω(e), and each vertex v has a collection of vertex
weights, with one weight γe (v) for each hyperedge e incident to v . �e edge-dependent vertex weight γe (v)
models the contribution of vertex v to hyperedge e . Edge-dependent vertex weights have previously been
used in several applications including: image segmentation, where the weights represent the probability of
an image pixel (vertex) belonging to a segment (hyperedge) [11]; e-commerce, where the weights model
the quantity of a product (hyperedge) in a user’s shopping basket (vertex) [26]; and text ranking, where the
weights represent the importance of a keyword (vertex) to a document (hyperedge) [5]. Hypergraphs with
edge-dependent vertex weights have also been used in image search [20, 40] and 3D object classi�cation
[42], where the weights represent contributions of vertices in a k-nearest-neighbors hypergraph.

Unfortunately, because of a lack of a spectral theory for hypergraphs with edge-dependent vertex
weights, many of the papers that use these hypergraphs rely on incorrect or theoretically unsound assump-
tions. For example, Zhang et al. [42] and Ding and Yilmaz [11] use a hypergraph Laplacian with no spectral
guarantees, while Li et al. [26] derive an incorrect stationary distribution for a random walk on such a
hypergraph (see Supplement for additional details). �e reason such issues arise is because existing spectral
methods are developed for hypergraphs with edge-independent vertex weights, i.e. hypergraphs where the
γe (v) are identical for all hyperedges e .

In this paper, we derive several results for hypergraphs with edge-dependent vertex weights. First, we
show that random walks on hypergraphs with edge-independent vertex weights are always equivalent to
random walks on the clique graph (Figure 1). �is generalizes the results of Agarwal et al. [2] and gives the
underlying reason why existing constructions of hypergraph Laplacian matrices [34, 43] do not utilize the
higher-order relations of the hypergraph.

Motivated by this result, we derive a random walk-based Laplacian matrix for hypergraphs with edge-
dependent vertex weights that utilizes the higher-order relations expressed in the hypergraph structure.
�is Laplacian matrix satis�es the typical properties one would expect of a Laplacian matrix, including
being positive semi-de�nite and satisfying a Cheeger inequality. We also derive a formula for the stationary
distribution of a random walk on a hypergraph with edge-dependent vertex weights, and give a bound on
the mixing time of the random walk.

Our paper is organized as follows. In Section 2, we de�ne our notation, and introduce hypergraphs
with edge-dependent vertex weights. In Section 3, we formally de�ne random walks on hypergraphs with
edge-dependent vertex weights, and show that when the vertex weights are edge-independent, a random
walk on a hypergraph has the same transition matrix as a random walk on its clique graph. In Section
4, we derive a formula for the stationary distribution of a random walk, and use it to bound the mixing
time. In Section 5, we derive a random-walk based Laplacian matrix for hypergraphs with edge-dependent
vertex weights and show some basic properties of the matrix. Finally, in Section 6, we demonstrate two
applications of hypergraphs with edge-dependent vertex weights: ranking authors in a citation network
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and ranking players in a video game. All proofs are in the Supplementary Material.

2 Graphs, Hypergraphs, and RandomWalks

Let G = (V ,E,w) be a graph with vertex set V , edge set E, and edge weights w . For a vertex v , let
N (v) = {u ∈ V : (u,v) ∈ E} denote the vertices incident to v . �e adjacency matrix A of a graph is a
|V | × |V | matrix where A(u,v) = w(e) if (u,v) ∈ E and 0 otherwise.

Let H = (V ,E,ω) be a hypergraph with vertex set V ; edge set E ⊂ 2V ; and hyperedge weights ω. A
graph is a special case of a hypergraph, where each hyperedge e has size |e | = 2. For hypergraphs, the terms
“hyperedge” and “edge” are used interchangeably. A random walk on a hypergraph is typically de�ned as
follows [4, 9, 12, 43]. At time t , a “random walker” at vertex vt will:

1. Select an edge e containing vt , with probability proportional to ω(e).

2. Select a vertex v from e , uniformly at random.

3. Move to vertex vt+1 = v at time t + 1.

A natural extension is to modify Step 2: instead of choosing v uniformly at random from e , we pick v
according to a �xed probability distribution on the vertices in e . �is motivates the following de�nition of
a hypergraph with edge-dependent vertex weights.

De�nition 1. A hypergraph H = (V ,E,ω,γ ) with edge-dependent vertex weights is a set of verticesV , a set
E ⊂ 2V of hyperedges, a weight ω(e) for every hyperedge e ∈ E, and a weight γe (v) for every hyperedge
e ∈ E and every vertex v incident to e .

We emphasize that a vertexv in a hypergraph with edge-dependent vertex weights has multiple weights:
one weight γe (v) for each hyperedge e that containsv . Intuitively, γe (v)measures the contribution of vertex
v to hyperedge e . In a random walk on a hypergraph with edge-dependent vertex weights, the random
walker will pick a vertex v from hyperedge e with probability proportional to γe (v). Note that we set
γe (u) = 0 if u < e . We show an example of a hypergraph with edge-dependent vertex weights in Figure 1.

If each vertex has the same contribution to all incident hyperedges, i.e. γe (v) = γe ′(v) for all hyperedges
e and e ′ incident to v , then we say that the hypergraph has edge-independent vertex weights, and we use
γ (v) = γe (v) to refer to the vertex weights of H . If γe (v) = 1 for all vertices v and incident hyperedges e ,
we say the vertex weights are trivial.

We de�ne E(v) = {e ∈ E : v ∈ e} to be the hyperedges incident to a vertex v , and E(u,v) = {e ∈
E : u ∈ e,v ∈ e} to be the hyperedges incident to both vertices u and v . Let d(v) = ∑

e ∈E(v)ω(e) denote
the degree of vertex v , and let δ (e) = ∑

v ∈e γe (v) denote the degree of hyperedge e . �e vertex-weight
matrix R of a hypergraph with edge-dependent vertex weights H = (V ,E,ω,γ ) is an |E | × |V | matrix
with entries R(e,v) = γe (v), and the hyperedge weight matrixW is a |V | × |E | matrix withW (v, e) = ω(e)
if v ∈ e , and W (v, e) = 0 otherwise. �e vertex-degree matrix DV is a |V | × |V | diagonal matrix with
entries DV (v,v) = d(v), and the hyperedge-degree matrix DE is a |E | × |E | diagonal matrix with entries
DE (e, e) = δ (e).

Given H = (V ,E,ω,γ ), the clique graph of H , GH , is an unweighted graph with vertices V , and edges
E ′ = {(v,w) ⊂ V ×V : v,w ∈ e for some e ∈ E}. In other words, GH turns all hyperedges into cliques.

We say a hypergraph H is connected if its clique graph GH is connected. In this paper, we assume all
hypergraphs are connected.

For a Markov chain with states S transition probabilities p, we use pu,v to denote the probability of
going from state u to state v .
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Figure 1: Example illustrating �eorem 4. A hypergraph with edge-independent vertex weights H (le�)
and a corresponding edge-weighted clique graph GH (right) such that random walks on H and GH are
equivalent. Note that, if one changes the vertex weights of b to be edge-dependent vertex weights, by se�ing
γe1(b) = 1,γe2(b) = 2, then it is not possible to choose edge weights wu,v on GH such that random walks on
GH and H are equivalent.

3 RandomWalks onHypergraphswithEdge-DependentVertexWeights

Let H = (V ,E,ω,γ ) be a hypergraph with edge-dependent vertex weights. We �rst de�ne a random walk
on H . At time t , a random walker at vertex vt will do the following:

1. Pick an edge e containing v , with probability ω(e)/d(v).

2. Pick a vertex w from e , with probability γe (w)/δ (e).

3. Move to vertex vt+1 = w , at time t + 1.

Formally, we de�ne a random walk on H by writing out the transition probabilities according to the
above steps.

De�nition 2. A random walk on a hypergraph with edge-dependent vertex weights H = (V ,E,ω,γ ) is a
Markov chain on V with transition probabilities

pv,w =
∑

e ∈E(v)

(
ω(e)
d(v)

) (
γe (w)
δ (e)

)
. (1)

�e probability transition matrix P of a random walk on H is the |V | × |V | matrix with entries P(v,w) =
pv,w and can be wri�en in matrix form as P = D−1

V WD−1
E R. (We use the convention that probability

transition matrices have row sum 1.) Using the probability transition matrix P , we can also de�ne a random
walk with restart on H [36]. �e random walk with restart is useful when it is unknown whether the
random walk is irreducible.

Note that our de�nition allows self-loops, i.e. pv,v > 0, and thus the random walk is lazy. While one
can de�ne a non-lazy random walk (i.e. pv,v = 0 for all v), the analysis of such walks is signi�cantly more
di�cult, as the probability transition matrix cannot be factored as easily. In the Supplement, we show that
a weaker version of �eorem 4 below holds for a non-lazy random walk. Cooper et al. [9] also studies the
cover time of a non-lazy random walk on a hypergraph with edge-independent vertex weights.

Next, we de�ne what it means for two random walks to be equivalent. Because random walks are
Markov chains, we de�ne equivalence in terms of Markov chains.
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De�nition 3. Let M and N be Markov chains with the same (countable) state space, and let PM and PN be
their respective probability transition matrices. We say that M and N are equivalent if

PMx,y = PNx,y

for all states x and y.

Using this de�nition, we state our �rst main theorem: a random walk on a hypergraph with edge-
independent vertex weights is equivalent to a random walk on its clique graph, for some choice of weights
on the clique graph.

�eorem 4. Let H = (V ,E,ω,γ ) be a hypergraph with edge-independent vertex weights. �ere exist weights
wu,v on the clique graph GH such that a random walk on H is equivalent to a random walk on GH .

�eorem 4 generalizes the result by Agarwal et al. [2] who showed that the two hypergraph Laplacian
matrices constructed in Zhou et al. [43] and Rodriguez-Velazquez [34] are equal to the Laplacian matrix of
either the clique graph or the star graph, another graph constructed from a hypergraph. Agarwal et al. [2]
also showed that the Laplacians of the clique graph and the star graph are equal when H is k-uniform (i.e.
when all hyperedges have size k), and are very close otherwise. Since the Laplacian matrices in Zhou et al.
[43] and Rodriguez-Velazquez [34] are derived from random walks on edge-independent vertex weights,
�eorem 4 implies that both Laplacians are equal to the Laplacian of the clique graph – even when the
hypergraph is not k-uniform – thus strengthening the result in Agarwal et al. [2].

�e proof of �eorem 4 relies on the fact that a random walk on H satis�es a property known as
time-reversibility: πupu,v = πvpv,u for all vertices u,v ∈ V , where π is the stationary distribution of the
random walk [3]. It is well-known that a Markov chain can be represented as a random walk on a graph if
and only if it is time-reversible. Moreover, time-reversiblility allows us to derive a formula for the weights
wu,v on GH . Let γ (v) = γe (v) be the edge-independent weight for vertex v . �en,

wu,v = πupu,v =
∑

e ∈E(u,v)

ω(e)γ (u)γ (v)
δ (e) . (2)

Conversely, the caption of Figure 1 describes a simple example of a hypergraph with edge-dependent
vertex weights that is not time-reversible. �is proves the following result.

�eorem 5. �ere exists a hypergraph with edge-dependent weights H = (V ,E,ω,γ ) such that a random
walk on H is not equivalent to a random walk on its clique graph GH for any choice of edge weights on GH .

Anecdotally, we �nd from simulations that most random walks on hypergraphs with edge-dependent
vertex weights are not time-reversible, and therefore satisfy �eorem 5. However, it is not clear how to
formalize this observation.

�eorem 5 says that random walks on graphs with vertex set V are a strict subset of Markov chains on
V . A natural follow-up question is whether all Markov chains on V can be described as a random walk on
some hypergraph H with vertex set V and edge-dependent vertex weights. In the Supplement, we show
that the answer to this question is no and provide a counterexample.

In addition, we show in the Supplement that hypergraphs with edge-dependent vertex weights create a
rich hierarchy of Markov chains, beyond the division between time-reversible and time-irreversible Markov
chains. In particular, we show that random walks on hypergraphs with edge dependent vertex weights and
at least one hyperedge of cardinality k cannot in general be reduced to a random walk on a hypergraph
with hyperedges of cardinality at most k − 1.

Finally, note that our de�nition of equivalent random walks (De�nition 3) requires the probability
transition matrices to be equal. �us, another natural question is: given H = (V ,E,ω,γ ), do there exist
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weights on the clique graph GH such that random walks on H and GH are “close”? We provide a partial
answer to this question in Section 5, where we show that, for a speci�c choice of weights on GH , the
second-smallest eigenvalues of the Laplacian matrices of H and GH are close.

4 Stationary Distribution and Mixing Time

4.1 Stationary Distribution

Recall the formula for the stationary distribution of a random walk on a graph. If G = (V ,E,w) is a graph,
then the stationary distribution π of a random walk on G is

πv = ρ
∑

e ∈E(v)
w(e), (3)

where ρ =
(
2
∑

e ∈E w(e)
)−1. We derive a formula for the stationary distribution for a random walk on a

hypergraph with edge-dependent vertex weights; the formula is analogous to equation (3) above with two
important changes: �rst, the proportionality constant ρ depends on the hyperedge, and second, each term
in the sum is multiplied by the vertex weight γe (v).

�eorem 6. Let H = (V ,E,ω,γ ) be a hypergraph with edge-independent vertex weights. �ere exist positive
constants ρe such that the stationary distribution π of a random walk on H is

πv =
∑

e ∈E(v)
ρeω(e)γe (v). (4)

Moreover, ρe can be computed in time O
(
|E |3 + |E |2 · |V |

)
.

Note that while the vertex weights γe (v) can be scaled arbitrarily without a�ecting the properties of
the random walk, �eorem 6 suggests that ρe is the “correct” scaling factor.

When the hypergraph has edge-independent vertex weights (i.e. γe (v) = γ (v) for all incident hyperedges
e), ρe = (

∑
v ∈V γ (v)d(v))−1, leading to the following formula for the stationary distribution:

πv =
d(v)γ (v)∑
v ∈V d(v)γ (v) . (5)

Furthermore, if the vertex weights are trivial (i.e. γ (v) = 1) then πv = d(v)/∑v ∈V d(v), recovering
the formula derived in Zhou et al. [43] for the stationary distribution of hypergraphs with trivial vertex
weights.

4.2 Mixing Time

In this section, we derive a bound on the mixing time of a random walk on H = (V ,E,ω,γ ). First, we recall
the de�nition of the mixing time of a Markov chain.

De�nition 7. Let M be a Markov chain with states S and probability transition matrix P . �e mixing time
of M is

tmix (ϵ) = min{t ≥ 0 : | |P t (s, ·) − π | |TV ≤ ϵ,∀s ∈ S},
where | | · | |TV is the total variation distance.

We derive the following bound on the mixing time for a random walk on a hypergraph with edge-
dependent vertex weights.

6



�eorem 8. Let H = (V ,E,ω,γ ) be a hypergraph with edge-dependent vertex weights. Without loss of
generality, assume ρe = 1 (i.e. by multiplying the vertex weights in hyperedge e by ρe ). �en,

tHmix (ϵ) ≤
⌈
8β1
Φ2 log

(
1

2ϵ
√
dminβ2

)⌉
, (6)

where

• Φ is the Cheeger constant of a random walk on H [22, 30]

• dmin is the minimum degree of a vertex in H , i.e. dmin = minv d(v),

• β1 = min
e ∈E,v ∈e

(
γe (v)
δ (e)

)
,

• β2 = min
e ∈E,v ∈e

(
γe (v)

)
.

�is bound on the mixing time of the hypergraph random walk has a similar form to the bound on the
mixing time bound for a random walk on a graph [22]. For a graph G with edge weights w(e) satisfying∑
v d(v) = 1, we have,

tGmix (ϵ) ≤
⌈

2
Φ2 log

(
1

2ϵ
√
dmin

)⌉
. (7)

Note that both tHmix (ϵ) and tGmix (ϵ) have the same dependence on 1/Φ2, log(1/ϵ), and log(1/
√
dmin).

Intuitively, the additional dependence of tHmix (ϵ) on β1 and β2 is because small values of β1 and β2 correspond
to the hypergraph having vertices that are hard to reach, and the presence of such vertices increases the
mixing time.

5 Hypergraph Laplacian

Let H = (V ,E,ω,γ ) be a hypergraph with edge-dependent vertex weights. Since a random walk on H is a
Markov chain, we can model the transition probabilities pHu,v of the random walk using a weighted directed
graph G with the same vertex set V . Speci�cally, let G = (V ,E ′,w ′) be a directed graph with directed
edges E ′ = {(u,v) : ∃ e ∈ E with u,v ∈ e}, and edge weights w ′u,v = pHu,v . Extending the de�nition of the
Laplacian matrix for directed graphs [8], we de�ne a Laplacian matrix L for the hypergraph H as follows.

De�nition 9 (Random walk-based hypergraph Laplacian). Let H = (V ,E,ω,γ ) be a hypergraph with
edge-dependent vertex weights. Let P be the probability transition matrix of a random walk on H with
stationary distribution π . Let Π be a |V | × |V | diagonal matrix with Πv,v = πv . �en, the random walk-based
hypergraph Laplacian matrix L is

L = Π − ΠP + PTΠ

2 . (8)

At �rst glance, one might hypothesize that the hypergraph Laplacian L de�ned above does not model
higher-order relations between vertices, since L is de�ned using a directed graph containing edges only
between pairs of vertices. Indeed, if H has edge-independent vertex weights, then it is true that L does
not model higher-order relations between vertices. �is is because the transition probabilities pHu,v are
completely determined by the edge weights of the undirected clique graph GH (�eorem 4). �us, for each
pair (u,v) of vertices in H , only a single quantity wu,v , which encodes a pairwise relation between u and v ,
is required to de�ne the random walk. As such, the Laplacian matrix L de�ned in Equation (8) is equal to
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the Laplacian matrix of an undirected graph, showing that L only encodes pairwise relationships between
vertices.

In contrast, when H has edge-dependent vertex weights, the transition probabilities pHu,v generally
cannot be computed from a single quantity wu,v de�ned for each pair (u,v) of vertices (�eorem 5). �e
absence of such a reduction implies that the transition probabilities pHu,v , which are the edge weights of
the directed graph G ′, encode higher-order relations between vertices. �us, the Laplacian matrix L also
encodes these higher-order relations.

From Chung [8], the hypergraph Laplacian matrix L given in equation (8) is positive semi-de�nite
and has a Rayleigh quotient for computing its eigenvalues. L can be used in developing spectral learning
algorithms for hypergraphs with edge-dependent vertex weights, or to study the properties of random
walks on such hypergraphs. For example, the following Cheeger inequality for hypergraphs follows directly
from the Cheeger inequality for directed graphs [8].
�eorem10 (Cheeger inequality for hypergraphs). LetH = (V ,E,ω,γ ) be a hypergraph with edge-dependent
vertex weights. Let L be the Laplacian matrix given in equation (8), and let Φ be the Cheeger constant of a
random walk on H . Let λi be the non-zero eigenvalues of L, and let λ = mini λi . We have

Φ2

2 ≤ λ ≤ 2Φ. (9)

5.1 Approximating the Hypergraph Laplacian with a Graph Laplacian

In Section 3, we posed the following question: given a hypergraph H with edge-dependent vertex weights,
can we �nd weights on the clique graph GH such that the random walks of H and G are close? We prove
the following result.
�eorem 11. Let H = (V ,E,ω,γ ) be a hypergraph, with the edge-dependent vertex weights normalized so
that ρe = 1 for all hyperedges e . Let GH be the clique graph of H , with edge weights

wu,v =
∑

e ∈E(u,v)

ω(e)γe (u)γe (v)
δ (e) . (10)

Let LH ,LG be the Laplacians of H and GH , respectively, and let λH1 , λ
G
1 be the second-smallest eigenvalues of

LH ,LG , respectively. �en
1

c(H )λ
H
1 ≤ λG1 ≤ c(H )λH1 , (11)

where c(H ) = max
v ∈V

(
maxe ∈E γe (v)
mine ∈E γe (v)

)
.

�is theorem says that there exist edge weights wu,v on GH such that second smallest eigenvalues of
the Laplacians of H andGH are within a constant factor c(H ) of each other, where c(H ) is determined by the
vertex weights. We do not know if the edge weights in Equation (59) give the tightest bound, or if another
choice of edge weights on GH will yield a Laplacian LG that is “closer” to the hypergraph Laplacians LH .

Interestingly, Zhang et al. [42] use a variant of LG as the Laplacian matrix of a hypergraph with edge-
dependent vertex weights, and obtain state-of-the-art results on an object classi�cation task. �eorem 11
provides some theoretical evidence for why Zhang et al. [42] are able to obtain good results, even with the
“wrong” Laplacian.

6 Experiments

We demonstrate the utility of hypergraphs with edge-dependent vertex weights in two di�erent ranking
applications: ranking authors in an academic citation network, and ranking players in a video game.
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6.1 Citation Network

We construct a citation network of all machine learning papers from NIPS, ICML, KDD, IJCAI, UAI, ICLR,
and COLT published on or before 10/27/2017, and extracted from the ArnetMiner database [35]. We
represent the network as a hypergraph whose vertices V are authors and whose hyperedges E are papers,
such that each hyperedge e connects the authors of a paper. �e hypergraph has |V | = 28551 vertices and
|E | = 25423 hyperedges.

We consider two vertex weighted hypergraphs: HT = (V ,E,ω, 1) has trivial vertex weights with
γe (v) = 1 for all for all vertices v and incident hyperedges e , and HD = (V ,E,ω,γe ) has edge-dependent
vertex weights

γe (v) =
{

2 if vertex v is the �rst or last author of paper,
1 if vertex v is a middle author of paper.

�e edge-dependent vertex weights γe (v) model unequal contributions by di�erent authors. For papers
whose authors are in alphabetical order (as is common in theory papers), we set vertex weights γe (v) = 1 for
all v ∈ e . We set the hyperedge weights ω(e) = (number of citations for paper e) + 1 in both hypergraphs.

We calculate the stationary distribution of a random walk with restart on both HT and HD (restart
parameter β = 0.4), and rank authors v in each hypergraph by their value in the stationary distribution.
�is yields two di�erent rankings of authors: one with edge-independent vertex weights, and one with
edge-dependent vertex weights.

�e two rankings have a Kendall τ correlation coe�cient [23] of 0.77, indicating modest similarity.
Examining individual authors, we typically see that authors who are �rst/last authors on their most cited
papers have higher rankings in HD compared to HT , e.g. Ian Goodfellow [17]. In contrast, authors who are
middle authors on their most cited papers have lower rankings in HD relative to their rankings in HT . Table
6.1 shows the authors with rank above 700 in at least one of the two hypergraphs, and with the largest gain
in rank in HD relative to HT .

Name Rank in HT Rank in HD

Richard Socher 687 382
Zhongzhi Shi 543 304

Daniel Rueckert 619 391
Lars Schmidt-�ieme 673 454

Tat-Seng Chua 650 435
Ian J. Goodfellow 612 413

Table 1: Highly ranked authors with the largest increase in rank when edge-dependent vertex weights are
used in the hypergraph citation network.

We emphasize that this example is intended to illustrate how a straightforward application of vertex
weights leads to alternative author rankings. We do not anticipate that our simple scheme for choosing
edge-dependent vertex weights will always yield the best results in practice. For example, Christopher
Manning drops in rank when edge-dependent vertex weights are added, but this is because he is the
second-to-last, and co-corresponding, author on his most cited papers in the database. A more robust
vertex weighting scheme would include knowledge of such equal-contribution authors, and would also
incorporate di�erent relative contributions of �rst, middle, and corresponding authors.

6.2 Rank Aggregation

We illustrate the usage of hypergraphs with edge-dependent vertex weights on the rank aggregation problem.
�e rank aggregation problem aims to combine many partial rankings into one complete ranking. Formally,
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given a universe {1, 2, ...,n} of items and a collection of partial rankings τ1, ...,τk (e.g. τi = (3, 1, 5) is a
partial ranking expressing item 3 < item 1 < item 5), a rank aggregation algorithm should �nd a permutation
σ on {1, 2, ...,n} that is “close” to the partial rankings τi .

We consider a particular application of rank aggregation: ranking players in a multiplayer game. Here,
the outcome of a game/match gives a partial ranking τ of the players participating in the match. In addition
to the ranking, one may also have additional information such as the scores of each player in the match.
�e la�er se�ing has been extensively studied; classic ranking methods are the ELO [14], and Glicko [16]
systems that are used to rank chess players. More recently, online multiplayer games such as Halo have led
to the development of alternative ranking systems such as Microso�’s TrueSkill [19] and TrueSkill 2 [29].

We develop a rank aggregation algorithm that uses random walks on hypergraphs with edge-dependent
vertex weights, and evaluate the performance of this algorithm on a real-world datasets of Halo 2 games. In
the Supplement, we also include results on experiments with synthetic data.

Data. We analyze the Halo 2 dataset from the TrueSkill paper [19]. �is dataset contains two kinds of
matches: free-for-all matches with up to 8 players, and 1-v-1 matches. �ere are 31028 free-for-all matches
and 5093 1-v-1 matches among 5507 players. Using the free-for-all matches as partial rankings, we construct
rankings of all players in the dataset, and evaluate those rankings on the 1-v-1 matches.

Methods. A well-known class of rank aggregation algorithms are Markov chain-based algorithms,
�rst developed by Dwork et al. [13]. Markov-chain based algorithms create a Markov chain M whose
states are the players and whose the transition probabilities depend in some way on the partial rankings.
�e �nal ranking of players is determined by sorting the values in the stationary distribution π of M . In
our experiments, we use a random walk with restart (β = 0.4) instead of just a random walk, so that the
stationary distribution always exists [36].

Using the free-for-all matches, we construct rankings of the players using four algorithms. �e �rst
three algorithms use Markov chains: a random walk on hypergraph H with edge-dependent vertex weights;
a random walk on a clique graph; and MC3, a Markov chain-based rank aggregation algorithm designed by
Dwork et al. [13]. �e fourth algorithm is TrueSkill [19].

First, we derive a rank aggregation algorithm using a random walk on a hypergraph H = (V ,E,ω,γ )
with edge-dependent vertex weights. �e vertices V are the players, and the hyperedges E correspond to
the free-for-all matches. We set the hyperedge and vertex weights to be

ω(e) = (standard deviation of scores in match e) + 1,
γe (v) = exp[(score of player v in match e)].

�is choice of hyperedge weights are inspired by Ding and Yilmaz [11], who also use variance to de�ne
the hyperedge weights of their hypergraph. For vertex weights, we use exp(score). We choose these vertex
weights instead of raw scores for two reasons: �rst, scores in Halo 5 can be negative, but vertex weights
should be positive, and second, exponentiating the score gives more importance to the winner of a match.
We chose to use relatively simple formulas for the hyperedge and vertex weights to evaluate the potential
bene�ts of utilizing edge-dependent vertex weights; further optimization of vertex and edge weights may
yield be�er performance.

Second, we derive a rank aggregation algorithm using a random walk on the clique graph GH of
hypergraph H described above, with the edge weights of GH given by Equation 59. Speci�cally, if H =
(V ,E,ω,γ ) is the hypergraph de�ned above, then GH is a graph with vertex set V and edge weights wu,v
de�ned by

wu,v =
∑

e ∈E(u,v)

ω(e)γe (u)γe (v)
δ (e) . (12)

In contrast to Equation 59, here we do not normalize vertex weights on H so that ρe = 1 for each hyperedge
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e , since computing ρe is computationally infeasible on our large dataset. Instead, we normalize vertex
weights so that δ (e) = 1 for all hyperedges e .

�ird, we use MC3, a Markov chain-based rank aggregation algorithm designed by Dwork et al. [13].
MC3 uses the partial rankings in each match; it does not use the score information. MC3 is very similar to
a random walk on a hypergraph with edge-independent vertex weights. We convert the scores from each
player in match i into a partial ranking τi of the players, and use the τi as input to MC3.

Fourth, we use TrueSkill [19]. TrueSkill models each player’s skill with a normal distribution. We
rank players according to the mean of this distribution. We also implemented the probabilistic decision
procedure for ranking players from the TrueSkill paper, and found no di�erence in performance between
ranking by the mean of the distribution and the probabilistic decision procedure.

Evaluation and Results: We evaluate the rankings of each algorithm by using them to predict the
outcomes of the 1-v-1 matches. Speci�cally, given a ranking π of players, we predict that the winner of
a match between two players is the player with the higher ranking in π . Table 2 shows the fraction of
1-v-1 matches correctly predicted by each of the four algorithms. Random walks on the hypergraph with
edge-dependent vertex weights have signi�cantly be�er performance than both MC3 and random walks
on the clique graph GH , and comparable performance to TrueSkill. Moreover, on 8.9% of 1-v-1 matches,
the hypergraph method correctly predicts the outcome of the match, while TrueSkill incorrectly predicts
the outcome—suggesting that the hypergraph model is capturing some information about the players that
TrueSkill is missing. Unfortunately, we are unable to identify any speci�c pa�ern in the matches where the
hypergraph predicted the outcome correctly and TrueSkill predicted incorrectly.

Table 2: Result of ranking players for Halo 2 Dataset.

Correctly Predicted
TrueSkill 73.4%

Hypergraph 71.1%
Clique Graph 61.1%

MC3 52.3%

7 Conclusion

In this paper, we use random walks to develop a spectral theory for hypergraphs with edge-dependent vertex
weights. We demonstrate both theoretically and experimentally how edge-dependent vertex weights model
higher-order information in hypergraphs and improve the performance of hypergraph-based algorithms.
At the same time, we show that random walks on hypergraphs with edge-independent vertex weights are
equivalent to random walks on graphs, generalizing earlier results tha showed this equivalence in special
cases [2].

�ere are numerous directions for future work. It would be desirable to evaluate additional applications
where hypergraphs with edge-dependent vertex weights have previously been used (e.g. [26, 42]), replacing
the Laplacian used in some of these works with the hypergraph Laplacian introduced in Section 5. Sharper
bounds on the approximation of the hypergraph Laplacian by a graph Laplacian are also desirable. Another
direction is to examine the relationship between the linear hypergraph Laplacian matrix introduced here
and the nonlinear Laplacian operators that were recently introduced in the case of trivial vertex weights
[7] or submodular vertex weights [27, 28].

Another interesting direction is in extending graph convolutional neural networks (GCNs) to hyper-
graphs. Recent approaches to GCNs implement the graph convolution operator as a non-linear function
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of the graph Laplacian [10, 25]. GCNs have also been generalized to hypergraph convolutional neural
networks (HGCNs), where the convolution layer operates on a hypergraph with edge-independent vertex
weights instead of a graph [15, 37]. �e hypergraph Laplacian matrix introduced in this paper would allow
one to extend HGCNs to hypergraphs with edge-dependent vertex weights.
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A Incorrect Stationary Distribution in Earlier Work

Li et al. [26] claim in Equation 4 that the stationary distribution π of a random walk on a hypergraph
H = (V ,E,γ ,ω) with edge-dependent vertex weights is

πv =
d(v)∑

u ∈V d(u) , (13)

where d(v) = ∑
e ∈E(v)ω(e) is the sum of edge weights of incident hyperedges. Curiously, the stationary

distribution given by this formula does not depend on the vertex weights. A counterexample to this formula
is shown in hypergraph H in Figure 1 of the main text, with edge-dependent vertex weights as described in
the caption (i.e. γe1(b) = 1,γe2(b) = 2). Computing the stationary distribution π of a random walk on H
yields that πb = 7/20, while Equation (13) incorrectly yields πb = 2/7.

B Proof of �eorem 4

First we need the following de�nition and lemma.

De�nition 12. Let M be a Markov chain with state space X and transition probabilities px,y , for x ,y ∈ S .
We say M is reversible if there exists a probability distribution π over S such that

πxpx,y = πypy,x . (14)

Lemma 13. LetM be an irreducible Markov chain with �nite state space S and transition probabilities px,y
for x ,y, ∈ S . M is reversible if and only if there exists a weighted, undirected graph G with vertex set S such
that a random walk on G andM are equivalent.

Proof of Lemma. First, suppose M is reversible. Since M is irreducible, let π be the stationary distribution
of M . Note that, because M is irreducible, πx , 0 for all states x .

Let G be a graph with vertices S , and edge weights wx,y = πxpx,y . By reversibility, G is well-de�ned. In
a random walk on G, the probability of going from x to y in one time-step is

wx,y∑
z∈S wx,z

=
πxpx,y∑
z∈S πxpx,z

=
px,y∑
z∈S px,z

= px,y ,

since
∑

z∈S px,z = 1.
�us, if M is reversible, the stated claim holds. �e other direction follows from the fact that a random

walk on an undirected graph is always reversible [3]. �

�eorem 4. Let H = (V ,E,ω,γ ) be a hypergraph with edge-independent vertex weights. �en, there exist
weightswu,v on the clique graph GH such that a random walk on H is equivalent to a random walk on GH .

Proof of �eorem 4. Let γ (v) = γe (v) for vertices v and incident hyperedges e . We �rst show that a random
walk on H is reversible. By Kolmogorov’s criterion, reversibility is equivalent to

pv1,v2pv2,v3 · · ·pvn,v1 = pv1,vnpvn,vn−1 · · ·pv2,v1 . (15)

for any set of vertices v1, . . . ,vn .
Since the transition probabilities for any two vertices u,v are

pu,v =
∑

e ∈E(u,v)

ω(e)
d(u)

γ (u)
δ (e) =

γ (u)
δ (u)

∑
e ∈E(u,v)

ω(e)
δ (e) , (16)
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we have

pv1,v2pv2,v3 · · ·pvn,v1 =
©­«γ (v1)
δ (v1)

∑
e ∈E(v1,v2)

ω(e)
δ (e)

ª®¬ · · · ©­«γ (vn)δ (vn)
∑

e ∈E(vn,v1)

ω(e)
δ (e)

ª®¬
=

n∏
i=1

©­«γ (vi )δ (vi )
∑

e ∈E(vi ,vi+1)

ω(e)
δ (e)

ª®¬ ,where we de�ne vn+1 = v1

=
©­«γ (v1)
δ (v1)

∑
e ∈E(vn,v1)

,
ω(e)
δ (e)

ª®¬ · · · ©­«γ (v2)
δ (v2)

∑
e ∈E(v2,v1)

ω(e)
δ (e)

ª®¬
= pv1,vnpvn,vn−1 · · ·pv2,v1 .

(17)

So by Kolmogorov’s criterion, a random walk on H is reversible.
Furthermore, because H is connected, random walks on H are irreducible. �us, by Lemma 13, there

exists a graphG with vertex setV and edge weightswu,v such that random walks onG and H are equivalent.
�e equivalence of the random walks implies that pu,v > 0 if and only if wu,v > 0, so it follows that G is
the clique graph of H . �

C Non-Lazy RandomWalks on Hypergraphs

First we generalize the random walk framework of Cooper et al. [9] to random walks on hypergraphs with
edge-dependent vertex weights. Informally, in a non-lazy random walk, a random walker at vertex v will
do the following:

1. pick an edge e containing v , with probability ω(e)
d (v) ,

2. pick a vertex w , v from e , with probability γe (w )
δ (e)−γe (v) , and

3. move to vertex w .

Formally, we have the following.

De�nition 14. A non-lazy random walk on a hypergraph with edge-dependent vertex weights H =
(V ,E,ω,γ ) is a Markov chain on V with transition probabilities

pv,w =
∑

e ∈E(v)

(
ω(e)
d(v)

) (
γe (w)

δ (e) − γe (v)

)
. (18)

for all states v , w .

It is also useful to de�ne a modi�ed version of the clique graph without self-loops.

De�nition 15. Let H = (V ,E,ω,γ ) be a hypergraph with edge-dependent vertex weights. �e clique graph
of H without self-loops, GH

nl , is a weighted, undirected graph with vertex set V , and edges E ′ de�ned by

E ′ = {(v,w) ∈ V ×V : v,w ∈ e for some e ∈ E, and v , w}. (19)

In contrast to the lazy random walk, a non-lazy random walk on a hypergraph with edge-independent
vertex weights is not guaranteed to satisfy reversibility. However, if H has trivial vertex weights, then
reversibility holds, and we get the following result.
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�eorem 16. Let H = (V ,E,ω,γ ) be a hypergraph with trivial vertex weights, i.e. γe (v) = 1 for all vertices v
and incident hyperedges e . �en, there exist weightswu,v on the clique graph without self-loops GH

nl such that
a non-lazy random walk on H is equivalent to a random walk on GH

nl .

Proof. Again, we �rst show that a non-lazy random walk on H is reversible. De�ne the probability mass
function πv = c · d(v) for normalizing constant c > 0. Let pu,v be the probability of going from u to v in a
non-lazy random walk on H , where u , v . �en,

πuPu,v = c · d(u) ·
©­«

∑
e ∈E(u,v)

w(e)
d(u) ·

1
|e | − 1

ª®¬
=

∑
e ∈E(u,v)

(
ω(e) · c

|e | − 1

)
.

By symmetry, πupu,v = πvpv,u , so a non-lazy random is reversible. �us, by Lemma 13, there exists a
graph G with vertex set V and edge weights wu,v such that a random walk on G and a non-lazy random
walk on H are equivalent. �e equivalence of the random walks implies that pu,v > 0 if and only ifwu,v > 0,
so it follows that G is the clique graph of H without self-loops. �

D Relationships between Random Walks on Hypergraphs and Markov
Chains on Vertex Set

In the main text, we show that there are hypergraphs with edge-dependent vertex weights whose random
walks are not equivalent to a random walk on a graph. A natural follow-up question is to ask whether all
Markov chains on a vertex set V can be represented as a random walk on some hypergraph with the same
vertex set and edge-dependent vertex weights. Below, we show that the answer is no. Since random walks
on hypergraphs with edge-dependent vertex weights are lazy, in the sense that pv,v > 0 for all vertices v ,
we restrict our a�ention to lazy Markov chains with pv,v = 0.

Claim 17. �ere exists a lazy Markov chain M with state spaceV such that M is not equivalent to a random
walk on a hypergraph with vertex set V and edge-dependent vertex weights.

Proof. Suppose for the sake of contradiction that any lazy Markov chain with V is equivalent to a random
walk on some hypergraph with vertex set V . Let M be a lazy Markov chain with states V and transition
probabilities pM , with the following property. For some states x ,y ∈ V , let

pMx,x = 0.9
pMx,y = 0.01
pMy,x = 0.1
pMy,y = 0.001.

(20)

By assumption, let H = (V ,E,ω,γ ) be a hypergraph with vertex set V and edge-dependent vertex
weights, such that a random walk on H is equivalent to M . Let pH be the transition probabilities of a
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random walk on H . We have

d(x) · pMx,x = d(x) · pHx,x

=
∑

e ∈E(x )
ω(e) ·

(
γe (x)
δ (x)

)
≥

∑
e ∈E(x,y)

ω(e) ·
(
γe (x)
δ (x)

)
= d(y) · pHy,x
= d(y) · pMy,x

(21)

Plugging in Equations (20) to the above yields d(x) · 0.9 ≥ d(y) · 0.1, or 9d(x) ≥ d(y).
By similar reasoning, we also have d(y) · pMy,y ≥ d(x) · pMx,y , and plugging in Equations (20) gives us

d(y) · 0.001 ≥ d(x) · 0.01, or d(y) ≥ 10d(x).
Combining both of these inequalities, we obtain

9d(x) ≥ d(y) ≥ 10d(x). (22)

Since the vertex degree d(x) ≥ 0, we obtain a contradiction. �

Next, for any k > 1, de�ne a k-hypergraph to be a hypergraph with edge-dependent vertex weights
whose hyperedges have cardinality at most k . We show that, for any k , there exists a k-hypergraph with
vertex set V whose random walk is not equivalent to the random walk of any (k − 1)-hypergraph with
vertex set V . We �rst prove the result for k = 3.

Lemma 18. �ere exists a 3-hypergraph with vertex set V , whose random walk is not equivalent to a random
walk on any 2-hypergraph with vertex set V .

Proof. Let H3 = (V ,E3,ω,γ ) be a 3-hypergraph with four vertices, V = {v1,v2,v3,v4}, and two hyperedges
e1 = {v1,v2,v3} and e2 = {v1,v3,v4}. Let the hyperedge weights be ω(e1) = ω(e2) = 1 and the vertex
weights be γe1(v1) = 2, and γei (vj ) = 1 for all other vj , ei such that vj ∈ ei .

For the sake of contradiction, suppose a random walk on H3 is equivalent to a random walk on
H2 = (V ,E2,ω,γ ), where H2 is a 2-hypergraph with vertex set V . Let pHi be the transition probabilities of
Hi for i = 2, 3; by assumption, pH2 = pH3 .

H2 must have the following edges: e ′12 = {v1,v2}, e ′14 = {v1,v4}, e ′23 = {v2,v3}, e ′34 = {v3,v4}, and
e ′13 = {v1,v3}. WLOG let γei j (vi ) + γei j (vj ) = 1 for each i, j. Moreover, while we do not depict these edges
in the �gure below, H2 also has edges e ′i = {vi } for i = 1, 2, 3, 4, though it may be the case that ω(e ′i ) = 0.

For shorthand, we write ωi j for ω(e ′i j ), ωi for ω(e ′i ), and γi jk for γe ′i j (vk ) where k ∈ {i, j}.
By de�nition, we have

1
2 = p

H3
v2,v1 = p

H2
v2,v1 =

(
ω12

ω12 + ω23 + ω2

)
γ 121 (23)

�us,
(

ω12
ω12+ω23+ω2

)
= (2 · γ121)−1.

By similar analysis of pH3
v2,v3 , and using that γ232 + γ233 = 1, we also have

(
ω23

ω12+ω23+ω2

)
=

(
4
(
1 − γ232

) )−1.
�us, adding together the bounds on pH2

v2,v1 and pH3
v2,v1

1
2γ121

+
1

4(1 − γ232)
=

(
ω12

ω12 + ω23 + ω2

)
+

(
ω23

ω12 + ω23 + ω2

)
≤ 1. (24)
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Figure 2: Pictured above is H3.

Figure 3: Pictured above is H2. For illustrative purposes, we do not draw out singleton edges.

Note that, to get the bound in Equation (24), we summed pH2
v2,vi for i , 2. If we follow the same steps

but replace v2 with v1,v3, we get the following bounds, respectively:

1
8 · γ121

+
7

24(1 − γ131)
+

1
6(1 − γ141)

≤ 1 (25)

1
8γ232

+
5

12γ131
+

1
6γ344

≤ 1. (26)

Now, solving for γ121 in Equation (24) yields

γ121 ≥
2(1 − γ232)
3 − 4γ232

. (27)
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Next, using that γi jk ∈ [0, 1], we bound Equation (25):

1 ≥ 1
8γ121

+
7

24(1 − γ131)
+

1
6(1 − γ141)

≥ 1
8γ121

+
7
24 +

1
6

=
1

8γ121
+

11
24 .

(28)

Solving for γ121 yields γ121 ≤ 10
13 . Combining with Equation (27):

10
13 ≥ γ121 ≥

2(1 − γ232)
3 − 4γ232

=⇒ γ232 ≤
2
7 . (29)

Bounding Equation (26) in a similar way to Equation (28) gives us:

1 ≥ 1
8γ232

+
5

12γ131
+

1
6γ344

≥ 1
8γ232

+
5
12 +

1
6

=
1

8γ232
+

7
12 .

(30)

Solving for γ232 gives us
γ232 ≥

3
10 . (31)

Finally, pu�ing together Equations (29) and (31):

3
10 ≤ γ232 ≤

2
7 , (32)

which yields a contradiction, as 3
10 >

2
7 . �

We prove the result for general k by extending the above proof.

�eorem 19. Let k > 1. �en, there exists a k-hypergraph with vertex set V whose random walk is not
equivalent to a random walk on any (k − 1)-hypergraph with vertex set V .

Proof. For simplicity, assume k is even (our argument can be adapted to odd k). Write k = 2(n + 1). For the
sake of contradiction, suppose all k-hypergraphs have random walks equivalent to the random walk of
some (k − 1)-hypergraph.

Let Hk = (V ,Ek ,ω,γ ) be a k-hypergraph with vertices V = {v1, . . . ,vn ,w1, . . . ,wn ,x ,y}, and hyper-
edges e1 = {v1, . . . ,vn ,b, c} and e2 = {w1, . . . ,wn ,b, c}. �e edge weights are ω(e1) = ω(e2) = 1, and the
edge-dependent vertex weights are ωe1(b) = 2, and ωei (v) = 1 for all other v, ei with v ∈ ei .

By assumption, let Hk−1 = (V ,Ek−1,ω,γ ) be a (k − 1)-hypergraph whose random walk is equivalent to
a random walk on Hk . Let pHk , pHk−1 be the transition probabilities of Hk ,Hk−1, respectively.

�en, in Hk−1, we have

d(vi ) · pHk−1
vi ,vj =

∑
e ∈E(vi ,vj )

ω(e) ·
(
γe (vj )
δ (e)

)
≤

∑
e ∈E(vj )

ω(e) ·
(
γe (vj )
δ (e)

)
= d(vj ) · pHk−1

vj ,vj (33)
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Figure 4: Pictured above is Hk .

for all i, j ∈ {1, . . . ,n}. Since pHk−1
vi ,vj = pHk−1

vj ,vj , the above equation implies d(vi ) ≤ d(vj ). So by symmetry,
d(vi ) = d(vj ) for all i, j.

�is means that Equation (33) is actually a strict equality, so∑
e ∈E(vi ,vj )

ω(e) ·
(
γe (vj )
δ (e)

)
=

∑
e ∈E(vj )

ω(e) ·
(
γe (vj )
δ (e)

)
. (34)

Since every term in the above sums are positive and equal, it must be the case that every hyperedge in
Hk−1 containing vj also contains vi , for all i, j. Because they all are in the same hyperedges in both Hk−1
and Hk , we can view {v1, . . . ,vn} as a single “supernode” v . By symmetry, we can also view {w1, . . . ,wn}
as a single supernode w .

�us, we have reduced our problem to the counterexample in Lemma 18, and the result follows. �

Pu�ing all of our results together gives us the following (informal) hierarchy of Markov chains

{random walks on hypergraphs with edge-independent vertex weights} = {random walks on graphs}
( {random walks on 2-hypergraphs}
( {random walks on 3-hypergraphs}
( . . .

( {all lazy Markov chains}.

E Proof of �eorem 6

We �rst prove the following lemma.

Lemma 20. Let H = (V ,E) be a hypergraph with edge-dependent vertex weights γe (v) and hyperedge weights
ω(e). Without loss of generality, assume

∑
v ∈e γe (v) = 1. �ere exist ρe > 0 satisfying

ρe =
∑
v ∈e

∑
f ∈E(v)

d(v)−1 · ρf · ω(f ) · γf (v) (35)

and ∑
e ∈E

ρe · ω(e) = 1. (36)
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Proof of Lemma. Our proof outline is as follows. First, we prove the lemma in the case where the hyperedge
weights are all equal to each other. �en, we extend that result to the case where the hyperedge weights
are rational. Finally, we use the density of Q in R to extend our result from rational hyperedge weights to
real ones.

First, suppose all of the hyperedge weights are equal to each other. WLOG let ω(e) = 1 for all e ∈ E.
Switching the order of summation in Equation 35, we have∑

v ∈e

∑
f ∈E(v)

d(v)−1 · ρf · ω(f ) · γf (v) =
∑
v ∈e

∑
f ∈E(v)

d(v)−1 · ρf · γf (v)

=
∑
f ∈E

∑
v ∈e∩f

d(v)−1 · ρf · γf (v)

=
∑
f ∈E

ρf ·
©­«

∑
v ∈e∩f

d(v)−1γf (v)
ª®¬ .

(37)

Now let A be a square matrix of size |E | × |E |, with entries Ae,f =
∑
v ∈e∩f d(v)−1γf (v). Note that the

column sums of A are equal to 1: ∑
e ∈E

Ae,f =
∑
e ∈E

∑
v ∈e∩f

d(v)−1γf (v)

=
∑
v ∈f

∑
e ∈E(v)

d(v)−1γf (v)

=
∑
v ∈f

d(v)−1γf (v) · d(v)

=
∑
v ∈f

γf (v)

= 1.

(38)

�us, by the Perron-Frobenius theorem, A has a positive eigenvector ρ with eigenvalue 1.
So by construction, ρ satis�es Equation 35. Moreover, t · ρ also satis�es Equation 35 for any t > 0. �us,

t · ρ with t = (∑e ∈E ρe · ω(e))−1 satis�es both Equation 35 and Equation 36, and so the lemma is proved in
the case where the hyperedge weights are all equal.

Next, assumeH is a hypergraph with rational hyperedge weights, i.e. ω(e) ∈ Q for all e ∈ E. Multiplying
through by denominators, we can assume ω(e) ∈ N. Create hypergraph H ′ with vertices V in the following
way. For each hyperedge e , replace e with hyperedges e1, ..., eω(e), where each hyperedge ei :

• contains the same vertices as e ,

• has weight ω ′(ei ) = 1,

• has the same vertex weights as e , so that γ ′ei (v) = γe (v) for all v ∈ e .

Let E ′ be the hyperedges of H ′, and let M(v) be the hyperedges incident to vertex v in H ′. Since H ′

has equal hyperedge weights, we can �nd constants ρ ′ei that satisfy Equations 35 and 36 for H ′. Note that
ρ ′ei = ρ

′
ej by symmetry.

Now, for each hyperedge e of H , let ρe = ρ ′e1 . I claim that ρe satis�es Equations 35 and 36 for H .
Equation 36 is satis�ed since

ω(e) · ρe = ω(e) · ρ ′e1 = ρ
′
e1 + · · · + ρ

′
eω (e ) =

ω(e)∑
i=1

ρ ′eiω
′(ei ), (39)
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which implies ∑
e ∈E

ρe · ω(e) =
∑
e ∈E

ω(e)∑
i=1

ρ ′eiω
′(ei ) =

∑
e ∈E′

ρ ′eiω(ei ) = 1. (40)

To show Equation 35 holds for H , note that

d(v)−1 · ρf · ω(f ) · γf (v) =
ω(f )∑
i=1

(
d(v)−1 · ρ ′fi · ω

′(fi ) · γ ′fi (v)
)
. (41)

Summing over both sides yields∑
v ∈e

∑
f ∈E(v)

d(v)−1 · ρf · ω(f ) · γf (v) =
∑
v ∈e

∑
f ∈E(v)

ω(f )∑
i=1

(
d(v)−1 · ρ ′fi · ω

′(fi ) · γ ′fi (v)
)

=
∑
v ∈e

∑
f ∈M (v)

d(v)−1 · ρ ′f · ω
′(f ) · γ ′f (v)

=
∑
v ∈e1

∑
f ∈M (v)

d(v)−1 · ρ ′f · ω
′(f ) · γ ′f (v)

= ρ ′e1 , since Equation 35 holds for H ′

= ρe .

(42)

�us, Equations 35 and 36 hold for H when H has rational hyperedge weights.
Finally, we consider the general case, where we assume nothing about the hyperedge weights besides

that they are positive real numbers. By similar reasoning to our proof of the equal hyperedge weight case,
we are done if we can �nd positive ρe satisfying Equation 35.

We have ∑
v ∈e

∑
f ∈E(v)

d(v)−1 · ρf · ω(f ) · γf (v) =
∑
v ∈e

∑
f ∈E(v)

d(v)−1 · ω(f ) · ρf · γf (v)

=
∑
f ∈E

∑
v ∈e∩f

d(v)−1 · ρf · ω(f ) · γf (v)

=
∑
f ∈E

ρf ·
©­«

∑
v ∈e∩f

d(v)−1 · ω(f ) · γf (v)
ª®¬ .

(43)

Let A be a matrix of size |E | × |E | with entries

Ae,f =
∑

v ∈e∩f
d(v)−1 · ω(f ) · γf (y). (44)

Showing that there exist positive ρe that satisfy Equation 35 is equivalent to showing that A has a
positive eigenvector with eigenvalue 1. By the Perron-Frobenius theorem, this equivalent to A having
spectral radius 1.

For each hyperedge e ∈ E, let qe1 ,qe2 , . . . be a sequence of rational numbers that converges to ω(e), i.e.
limn→∞ qen = ω(e). Let Hn be H except we replace all hyperedge weights ω(e) with qen . By the previous part
of the proof, there exist positive constants ρn(e) that satisfy Equation 35 for Hn ; equivalently, if we let An
be the matrix from Equation 44 for hypergraph Hn , then An has spectral radius 1.

Since An has a continuous dependence on the hyperedge weights, and spectral radius is a continuous
function, it follows that the spectral radius of A is the limit of the spectral radius of An . �us, the spectral
radius of A is 1, and we are done. �
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�eorem 6 is now a relatively straightforward corollary of Lemma 20.
�eorem 6. Let H = (V ,E,ω,γ ) be a hypergraph with edge-independent vertex weights. �ere exist positive
constants ρe such that the stationary distribution π of a random walk on H is

πv =
∑

e ∈E(v)
ω(e) ·

(
ρeγe (v)

)
. (45)

Moreover, ρe can be computed in time O
(
|E |3 + |E |2 · |V |

)
.

Proof of �eorem 6. Without loss of generality, assume δ (e) = ∑
v ∈e γe (v) = 1 for all hyperedges e , i.e. by

scaling ρe appropriately.
Let ρe > 0 be from Lemma 20, and de�ne

πv =
∑

e ∈E(v)
ω(e)

(
ρeγe (v)

)
. (46)

I claim that πv is the stationary distribution for a random walk on H .
First, note that ∑

v ∈V
πv =

∑
v ∈V

∑
e ∈E(v)

ω(e)
(
ρeγe (v)

)
=

∑
e ∈E

∑
v ∈e

ω(e)
(
ρeγe (v)

)
=

∑
e ∈E

ρeω(e)
∑
v ∈e

γe (v)

=
∑
e ∈E

ρeω(e)

= 1, by Equation 36

(47)

so π is indeed a probability distribution on V . Now, for any vertex w ∈ V , we have∑
v ∈V

πvpv,w =
∑
v ∈V

πv
©­«

∑
e ∈E(v)

ω(e)
d(v)γe (w)

ª®¬
=

∑
v ∈V

∑
e ∈E(v,w )

πv · γe (w) · ω(e) · d(v)−1

=
∑

e ∈E(w )

∑
v ∈e

πv · γe (w) · ω(e) · d(v)−1

=
∑

e ∈E(w )
ω(e) · γe (w)

(∑
v ∈e

πv
d(v)

)
.

(48)

If we simplify the inner sum, we get∑
v ∈e

πv
d(v) =

∑
v ∈e

d(v)−1
∑

f ∈E(v)
ρf · ω(f ) · γf (v) =

∑
v ∈e

∑
f ∈E(v)

d(v)−1 · ρf · ω(f ) · γf (v) = ρe . (49)

Plugging this back in, we get∑
e ∈E(w )

ω(e) · γe (w)
(∑
v ∈e

πv
d(v)

)
=

∑
e ∈E(w )

ω(e) · γe (w) · ρe = πw . (50)

�us,
∑
v ∈V πvpv,w = πw , so π is a stationary distribution for H .

Finally, note that computing A (Equation 44) takes time O(|E |2 · |V |) when d(v) is precomputed, and
solving Aρ = ρ takes time O(|E |3), so the total runtime to compute ρe is O(|E |3 + |E |2 · |V |). �
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F Proof of �eorem 8

For completeness, we include the de�nition of the Cheeger constant of a Markov chain [30].

De�nition 21. Let M be an ergodic Markov chain with �nite state space V , transition probabilities pu,v ,
and stationary distribution π . �e Cheeger constant of M is

Φ = min
S ⊂V ,0<π (S )≤1/2

∑
x ∈S,y<S πxpx,y

π (S) , (51)

where π (S) = ∑
v ∈S πv .

First, we prove the following lemma for the mixing time of any lazy Markov chain.

Lemma 22. LetM be a �nite, irreducible Markov chain with states S and transition probabilitiespx,y , satisfying
px,x ≥ δ for all x ∈ S . Let π be the stationary distribution of M , and let πmin be the smallest element of π .
�en,

tmix (ϵ) ≤
⌈

8δ
Φ2 log

(
1

2ϵ√πmin

)⌉
(52)

Proof of Lemma. We use the notation of Jerison [22]. Let P∗ be the time-reversal transition matrix of P .
Note that P∗P and P+P ∗

2 are both reversible Markov chains. Let α be the square-root of the second-largest
eigenvalue of P∗P , and let b be the second-largest eigenvalue of P+P ∗

2 . By the Cheeger inequality, we have
1 − b ≥ Φ2

2 . Combining this with Lemma 1.21 of Montenegro and Tetali [30] yields

E P+P∗
2
(f , f )

Varπ (f )
≥ Φ2

2 , (53)

where f : S → R is any function, E P+P∗
2
(f , f ) is the Dirichlet form of the Markov chain P+P ∗

2 , and Varπ (f )
is the variance of f (see Montenegro and Tetali [30] for more details).

From Jerison [22],
EP ∗P (f , f ) ≥ 2δE P+P∗

2
(f , f ). (54)

Combining Equations 53 and 54 yields
EP ∗P (f , f )
Varπ (f )

≥ Φ2

4δ . (55)

Now, from Lemma 1.2 of Montenegro and Tetali [30], 1 − α2 ≥ EP∗P (f ,f )Varπ (f ) ; plugging this into the above

equation and rearranging yields α ≤
(
1 − Φ2

4δ

)1/2
≤ 1 − Φ2

8δ . Plugging this into Equation 1.6 of Jerison [22]
yields

tmix (ϵ) ≤
⌈

1
1 − α log

(
1

2ϵ√πmin

)⌉
≤

⌈
8δ
Φ2 log

(
1

2ϵ√πmin

)⌉
. �

�eorem 8. Let H = (V ,E,ω,γ ) be a hypergraph with edge-dependent vertex weights. Without loss of
generality, assume ρe = 1 (i.e. by multiplying the vertex weights in hyperedge e by ρe ). �en,

tHmix (ϵ) ≤
⌈
8β1
Φ2 log

(
1

2ϵ
√
dminβ2

)⌉
, (56)

where
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• Φ is the Cheeger constant of a random walk on H [22, 30]

• dmin is the minimum degree of a vertex in H , i.e. dmin = minv d(v),

• β1 = min
e ∈E,v ∈e

(
γe (v)
δ (e)

)
, and

• β2 = min
e ∈E,v ∈e

(
γe (v)

)
.

Proof of �eorem 8. We have

pv,v =
∑

e ∈E(v)

ω(e)
d(v)

γe (v)
δ (e) ≥ β1

∑
e ∈E(v)

ω(e)
d(v) = β1 (57)

for all vertices v . Similarly,
πv =

∑
e ∈E(v)

ω(e)γe (v) ≥ β2d(v). (58)

Applying Lemma 22 to a random walk on H yields the desired bound:

tmix (ϵ) ≤
⌈

8δ
Φ2 log

(
1

2ϵ√πmin

)⌉
≤

⌈
8β1
Φ2 log

(
1

2ϵ
√
dminβ2

)⌉
�

G Proof of �eorem 11

�eorem 11. Let H = (V ,E,ω,γ ) be a hypergraph with edge-dependent vertex weights, with vertex weights
normalized so that ρe = 1 for all hyperedges e . Let GH be the clique graph of H , with edge weights

wu,v =
∑

e ∈E(u,v)

ω(e)γe (u)γe (v)
δ (e) . (59)

Let LH ,LG be the Laplacians of H andGH , respectively, and let λH1 , λ
G
1 be the second-smallest eigenvalues

of LH ,LG , respectively. �en
1

c(H )λ
H
1 ≤ λG1 ≤ c(H )λH1 , (60)

where c(H ) = max
v ∈V

(
maxe ∈E γe (v)
mine ∈E γe (v)

)
.

Proof of �eorem 11. As shorthand, we write G = GH . Let pHu,v and πHv be the transition probabilities,
stationary distribution of a random walk on H . De�ne pGu,v and πGv similarly for G. Furthermore, let dH (v)
and dG (v) be the degree in H and G respectively.

We will use �eorem 8 of Chung [8] to prove our theorem, which requires us to have lower and upper
bounds on πGv

πHv
and πGv pv,u

πGv pv,u
.
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First, for an arbitrary vertex v , we have

πGv ∝
∑
u ∈V

wu,v =
∑
u ∈V

∑
e ∈E(u,v)

ω(e)γe (u)γe (v)
δ (e)

=
∑

e ∈E(v)

∑
u ∈e

ω(e)γe (u)γe (v)
δ (e)

=
∑

e ∈E(v)
ω(e)γe (v)

(∑
u ∈e γe (u)
δ (e)

)
=

∑
e ∈E(v)

ω(e)γe (v)

= πHv ,

(61)

so random walks on GH and H have the same stationary distributions. Next, for any two vertices u,v ,
we have

πG (v)pGu,v
πH (v)pHu,v

=
pGu,v

pHu,v
=

wu,v

dG (u)∑
e ∈E(u,v)

ω(e)
dH (u)

γe (v)
δ (e)

=

∑
e ∈E(u,v)

ω(e)γe (u)γe (v)
δ (e)∑

e ∈E(u,v)

ω(e)γe (v)dG (u)
δ (e)dH (u)

. (62)

�e RHS is upper-bounded by the maximum ratio of each term in the sum, which is

max
u,v

dH (u)γe (u)
dG (u)

= max
u,v

©­«
∑

f ∈E(u)
ω(f )ª®¬γe (u)©­«

∑
f ∈E(u)

ω(f )γf (u)
ª®¬

≤ max
u,v

(
maxe γe (u)
minf γf (u)

)
= max

u

(
maxe γe (u)
mine γf (u)

)
.

(63)

Similarly, it is lower bounded by minu mine γe (u)
maxe γe (u) . Applying �eorem 8 of Chung [8] gives the desired

bound. �

H Rank Aggregation Experiments with Synthetic Data

Data: We use a variant of the TrueSkill model to generate our data. We assume each player has an intrinsic
“skill” level (for simplicity, assume skill does not change over time), and a player’s performance in match
is proportional to their skill plus some added Gaussian noise. Such a model can represent many di�erent
kinds of games, including shooting games (e.g. Halo, scores represent kill/death ratios in a timed free-for-all
match) and racing games (e.g. Mario Kart, scores are inversely proportional to the time a player takes to
�nish a course).

�e players are {1, . . . ,n}. Player i has intrinsic skill i , so the true ranking of players, τ ∗, is

player 1 < player 2 < · · · player n.
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We create k partial rankings, τ1, . . . ,τk , where each partial ranking τi corresponds to a noisy subsampling
of τ ∗. More speci�cally, to create each partial ranking, we do the following.

1. Choose a subset of players A ⊂ {1, ...,n}, where player i is included in A with probability p.

2. Choose a scale factor c uniformly at random from [1/3, 3].

3. For each player i ∈ A, independently draw a score for player i from a N (0.2 · i,σ ) distribution, and
scale that score by c .

4. Set τj to be a ranking of the players in A according to their score.

�e tuneable parameters are: n, the number of players to be ranked; σ , the amount of noise in our
partial rankings; k , the number of partial rankings; and p, which controls the size of each partial ranking.
We set the mean score for player i to be 0.2 · i , so that the the scale of the simulated scores is similar to the
scores from the Halo dataset.

Methods: As with the real data, we create a Markov chain-based rank aggregation algorithm where
the Markov chain is a random walk on a hypergraph H = (V ,E,ω,γ ). �e vertices are V = {1, ...,n},
and the hyperedges E correspond to the partial rankings τ1, . . . ,τk . We set vertex weights γej (v) =
exp[(score of v in partial ranking τj )], and edge weights ω(ej ) = (standard deviation of scores in τj ) + 1.

Our baselines are MC3 and a rank aggregation algorithm using the clique graph GH , both of which are
described in the main text.

Results: We �x universe size n = 100, and set k to be the smallest number of hyperedges until all n
vertices are included at least once. We set σ = 1 and p = 0.03, 0.05, 0.07.

To assess performance, we measure the weighted Kendall τ correlation coe�cient [39] between the
estimated ranking and the true ranking τ ∗. Our weighted hypergraph algorithm outperforms both MC3
and the clique graph algorithm in all cases (�gure below), with the most signi�cant gains when p is small,
i.e. when there is less information in each partial ranking. Moreover, the performance of the clique graph
algorithm is much worse than both MC3 and the weighted hypergraph, which suggests that the clique
graph is not a good approximation of H .
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Figure 5: Results of rank aggregation experiment using synthetic data.
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