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DINI: data imputation using neural 
inversion for edge applications
Shikhar Tuli * & Niraj K. Jha 

The edge computing paradigm has recently drawn significant attention from industry and academia. 
Due to the advantages in quality-of-service metrics, namely, latency, bandwidth, energy efficiency, 
privacy, and security, deploying artificial intelligence (AI) models at the network edge has attracted 
widespread interest. Edge-AI has seen applications in diverse domains that involve large amounts of 
data. However, poor dataset quality plagues this compute regime owing to numerous data corruption 
sources, including missing data. As such systems are increasingly being deployed in mission-critical 
applications, mitigating the effects of corrupted data becomes important. In this work, we propose a 
strategy based on data imputation using neural inversion, DINI. It trains a surrogate model and runs 
data imputation in an interleaved fashion. Unlike previous works, DINI is a model-agnostic framework 
applicable to diverse deep learning architectures. DINI outperforms state-of-the-art methods by at 
least 10.7% in average imputation error. Applying DINI to mission-critical applications can increase 
prediction accuracy to up to 99% (F1 score of 0.99), resulting in significant gains compared to baseline 
methods.

In the past decade, the Internet-of-Things (IoT) paradigm has seen an explosion in its adoption by businesses 
across continents and  industries1. The number of IoT devices worldwide is forecast to almost triple from 9.7 bil-
lion in 2020 to more than 29 billion in  20302. This burgeoning success has been made possible by the increasingly 
affordable and accessible low-power compute platforms. These platforms have fueled the growth of edge-AI, 
bringing computationally-expensive AI methods to the network  edge3–5. A major driving force behind training/
inference of deep neural network (DNN) models on the network edge is the advantages they provide in latency, 
bandwidth, energy efficiency, privacy, and security, relative to traditional cloud-based  approaches6. The edge 
computing paradigm primarily requires collecting data from various sensors. Cyber-physical systems (CPS) 
also involve sending actuation signals to multiple devices in a physical environment. Other applications, where 
edge computing has made significant strides, include smart  healthcare7, nuclear power  plants8, smart  grids9, 
and autonomous  vehicles10, to name a few. However, corrupted sensor data or partially-procured/missing data 
plague these applications. Recently, DNN-based approaches have shown promise in effectively imputing missing 
 data11. However, as we show in this work, even state-of-the-art DNN-based methods become ineffective when 
edge-specific corruptions are present (e.g., where output labels may be missing even when all input feature 
values are available, or when some feature values may be missing). We propose a novel interleaved training-
and-imputation approach, leveraging a DNN-based surrogate model to reliably impute the corrupted data (this 
includes missing data). We also propose unconventional methods to mimic data corruption, going beyond 
traditional techniques, to be more in accordance with corrupted data found in edge applications. We show that 
our imputation framework outperforms baseline methods on corrupted data synthesized through traditional 
and proposed corruption techniques.

Challenges. Imputing corrupted/missing data is a challenging problem (we use the words corrupted and 
missing synonymously in this article; not-a-number, or NaN, values are often used to report missing data in the 
literature, and in the context of edge applications, we assume that which data are corrupted is known a priori 
through signal processing or other  methods11). Missing data may be out-of-distribution relative to observed 
data, making it hard to predict the missing  values12. This calls for generalizable models that can reliably impute 
the missing data. The imputation algorithm should be able to learn the underlying data-generation process 
(thus forming a surrogate model for this process) to effectively predict what data would be observed if they were 
not missing. Traditional methods typically implement interpolations on observed  data13,14. Recent DNN-based 
approaches have shown substantial gains, but are restricted to either input feature imputation or output label 
prediction, limiting them to only specific  scenarios15,16. In multi-input/multi-output regression datasets, it is 
possible that both the input and output features are corrupted, and thus only partially available. In this context, 
we need to impute not only the input but also the output features.
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Motivation. Corrupted data are commonplace in edge applications. Data can get corrupted in a variety of 
ways. In a distributed compute setting, network congestion can cause some data to reach late, resulting in some 
data becoming stale. Sensors may die due to a multitude of reasons—malfunctioning hardware, intermittent 
power supply, and even human-in-the-loop  accidents12. Sensors and other edge devices are also prone to security 
attacks that may cause parts of the network to shut down or transmit malicious or corrupted data. Mission-
critical edge deployments exacerbate this problem, where data corruption could hamper operation. Consider 
the following examples.

The first example is a chemical plant. There have been more than 50,000 reported hazardous chemical inci-
dents in the last decade in the  USA17. In chemical plants, where the formation of combustible gases is highly 
likely, it is important to quickly and reliably detect the appearance of such gases so that relevant action can be 
taken to alleviate their ill effects. For this application, we use the ‘Gas’  dataset18, which involves a mixture of 
different gases. The second example is a water distribution system that may be used in a nuclear power plant. As 
such facilities get smarter, it is important to quickly detect attacks on them to reduce the chances of large-scale 
calamities. The number of attacks on CPS is increasing by the day. Just in the first half of 2021, there were 1.5 
billion IoT/CPS breaches  reported2. These could adversely affect high-stakes organizations and facilities like 
nuclear plants. Thus, it is crucial to detect whether an attack has occurred so that corresponding mitigating 
mechanisms can be invoked. For this application, we use the ‘smart water treatment’ (SWaT)  dataset19. Finally, 
Internet of Medical Things (IoMT) is a growing industry with a current market size of $42 billion. In applications 
like the smart detection of  COVID20, some data may either be corrupted or simply unavailable. Even under these 
circumstances, it may be of interest to reliably detect disease onset in a secure and private (in terms of inference 
on the network edge) manner. Since data may be scarce in such critical applications, simply throwing away cor-
rupted data may not be a viable option.

Contributions. In this work, we aim to address the challenge of data imputation by proposing a DNN-based 
surrogate modeling approach—data imputation using neural inversion (DINI). We leverage gradient-based 
optimization using backpropagation to the input (GOBI)21, implemented through neural  inversion22. DINI 
implements interleaved training (of the surrogate model) and imputation (of the data). As a surrogate model is 
trained, it can impute the corrupted data better, making an even superior model available for the next training 
iteration. We hypothesize that an interactive dynamic between imputation and training ensures more informed 
data generation and surrogate modeling. DINI can handle variegated data types, including multi-input/multi-
output datasets. Input data can be continuous or categorical; the output may also have categorical labels or 
continuous values. Unlike previous  works15,16, DINI can work with diverse types of DNN models, from fully-
connected neural networks (FCNNs) to advanced architectures like  Transformers23, whichever model works 
best for the given data distribution and model setting. Finally, DINI can output the uncertainty in predicted 
values like recent  works15.

Figure 1 shows a high-level working schematic of the DINI framework. Tabular input (with features F1–F4 ) 
and output data (with features Y1–Y4 ) support both continuous and categorical features, along with their combi-
nations. Figure 1a and b show these, respectively. We show only the first three observations (rows O1–O3 ). NaN 
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Figure 1.  DNN-based data imputation and surrogate modeling framework of DINI. Example (a) input and (b) 
output tabular data. Supported surrogate models: (c) FCNN-based and (d) Transformer-based for time-series 
data. (e) High-level schematic of the DINI pipeline.
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values represent corrupted data. Output features Y1 and Y2 are categorical (may or may not be one-hot encoded). 
Previous works often refer categorical one-hot encoded output features as output labels. Since we support an 
expanded set of output formats, like the inputs, we refer to them as output features instead. Figure 1c shows DINI 
leveraging a DNN-based surrogate model (here, an FCNN) to map the input to the output and vice versa. Dur-
ing training, we backpropagate the gradients (from an appropriate loss function) to the weights (shown in red). 
During imputation, we freeze the model weights and backpropagate the gradients to the input/output features to 
predict the missing values (shown in blue). Figure 1d shows a Transformer-based surrogate model for time-series 
data, supported by DINI. Only one encoder layer is shown (it can be repeated N times) with four self-attention 
(SA) heads followed by an FCNN. Figure 1e shows a high-level schematic of the DINI pipeline. We first impute 
the corrupted data (with NaN values) with an initial imputation method (details in section “Methodology”) and 
then forward them to the DINI framework. DINI implements an interleaved training-and-imputation pipeline, 
which iteratively trains the surrogate model and imputes the data based on the updated model in a repeated 
fashion. This not only outputs an imputed dataset with no corruptions, but also a superior surrogate model that 
better represents the data distribution.

DINI outperforms baseline methods by at least 10.7% in reducing average error across diverse datasets. We 
further demonstrate the effectiveness of DINI in three case studies involving mission-critical edge applications. 
Moreover, we propose novel corruption techniques motivated by the distribution of corrupted data found in 
edge-AI settings. We show that DINI outperforms baseline approaches, giving much higher prediction perfor-
mance for the required label.

Outline. The rest of the article is organized as follows. Section “Background and related work” discusses back-
ground material on data corruption strategies, related works on imputation, and their critique. Section “Meth-
odology” presents the DINI framework in detail. Section “Experimental setup” describes the experimental setup 
and presents the datasets used and baseline approaches for comparison. We validate our proposed framework 
and discuss the results in section “Results”. Section Discussion discusses limitations and future work directions. 
Finally, section Conclusions concludes the article.

Background and related work
Various synthetic corruption methods have been widely used in the literature. We give a brief overview of these 
methods in this section. We then describe related works on data imputation and highlight their limitations.

Synthetic corruption methods. As pointed out before, corrupted data are inherently assumed to be 
missing. Mathematically, let the data be denoted by a matrix-valued random variable X ∈ R

n×d , where n is the 
number of observations (rows) and d is the data dimension (columns). Now, x denotes a realization of X and 
x̃ denotes its observation. Note the difference between realized and observed values of the  data24. The observed 
value is a function of the instantiation of the random variable for the data and its missingness. More concretely, 
let M denote the missingness in input data (it has the same dimensions as X ). The (i, j)th element of M is 1 if the 
corresponding element of X is observed and 0 if it is missing. In summary, x ∼ X and its observation is a func-
tion of x and m , i.e., x̃ = o(x,m) , where m ∼ M , such that:

 For the purpose of surrogate modeling, x̃ is divided based on input and output feature columns as 
x̃ = [x̃in x̃out ] , where [·] denotes concatenation of matrices in block notation. Here, x̃in ∈ R

n×din and 
x̃out ∈ R

n×dout . The observed data can be further categorized into correctly observed (denoted by x̃o ) or cor-
rupted (denoted by x̃c ) values. Table 1 summarizes the notations used in this work.

Here, the reader may notice a difference between our definition of observed values from those used in the 
 literature24. Realized data are the data we would get when there is no source of corruption. Observed data are 
the complete data that we see with the corruption (i.e., with NaN values). The part of the observed data that is 
correct, unlike previous works, is called correctly observed data ( ̃xo ); part of the data that is corrupted/missing 
is simply called corrupted data ( ̃xc ). The slight change in notation is motivated by the need to unify previous 
 inconsistencies12,15,24,25 and bind our formulation to the context of data corruption.

Rubin26 has defined a widely used, yet  controversial24, nomenclature for synthetic corruption (or missing 
value) mechanisms. We present these next.

Missing completely at random. The first is missing completely at random (MCAR). In MCAR, the data are cor-
rupted entirely at random, i.e., there is no dependency on the data. Consider a hypothesized missingness model 
φ . Then, as per the MCAR scheme:

In other words, the missing values do not depend on either the correctly observed or the corrupted values, which 
constitute the observed data x̃ . Here, φ is a uniform sampling model that corrupts data completely randomly.

Missing at random. The term missing at random (MAR) is a misnomer. Basically, MAR corruption refers to the 
missingness depending solely on the correctly observed data, or:

x̃ij =

{

xij , ifmij = 1

NaN, otherwise

Pφ(M|x̃o, x̃c) = Pφ(M)
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Here, φ is a logistic missingness  model25. First, a subset of variables (columns) with no missing values is randomly 
selected. The remaining variables have missing values based on a logistic model with random weights, depending 
on the correctly observed data, rescaled to attain the desired proportion of missing values for those variables.

Missing not at random. Data are said to be missing not at random (MNAR) if the missingness is neither MCAR 
nor MAR. More specifically, data are MNAR if the missingness depends on the correctly observed and poten-
tially even the corrupted values. In this context, the missingness cannot be fully accounted for by the correctly 
observed values. Here, we implement φ as a self-masking logistic  model25. The values are masked based on a 
probability given by the logistic model with random weights, having the entire data matrix x as input.

Missing streams at random. To go beyond traditional corruption schemes, we propose two corruption tech-
niques inspired by the distribution of corrupted data in diverse edge  deployments11,12. Sensor data from various 
sources in a distributed IoT network can get corrupted, and once corrupted, likely stay corrupted for extended 
periods of time before being reset. To account for such scenarios, we propose the missing streams at random 
(MSAR) corruption technique. In this case, the missingness model φ chooses points in the data matrix at ran-
dom and, unlike MCAR, corrupts a stream (of length 10 in our experiments) of datapoints through that column. 
This model is especially relevant to time-series data.

Missing patches at random. To account for spatiotemporal correlation in the corruption process, we further 
propose the missing patches at random (MPAR) corruption mechanism. In a distributed environment, sensors 
are often closely placed in groups (to implement redundancy in some cases). For example, some sensors might 
be placed in one part of a smart facility and others in another. If one sensor fails in a group, several sensors in the 
group may likely fail. Thus, rather than streams (involving a single column), patches of data will get corrupted. 
Here, φ chooses points in the data matrix randomly, then corrupts a patch (of size 5× 5 in our experiments) 
around that point.

Data imputation methods. We can categorize previously proposed imputation methods as either dis-
criminative or generative. Discriminative methods include multivariate imputation by chained equations 

Pφ(M|x̃o, x̃c) = Pφ(M|x̃o)

Table 1.  Notations used in DINI.

Notation Definition

n The number of observations (rows in the tabular dataset)

d The data dimension (columns in the tabular dataset)

din The input data dimension; din < d

dout The output data dimension; dout < d

X Matrix-valued random variable, X ∈ R
n×d for the data distribution

x A realization of X , i.e., x is sampled from the data distribution, x ∼ X

M Matrix-valued random variable, M ∈ R
n×d denoting the distribution of missingness in the data

m A realization of M , i.e., m is sampled from the missingness distribution, m ∼ M

min Part of the missingness matrix corresponding to the input; min ∈ R
n×din

mout Part of the missingness matrix corresponding to the output; mout ∈ R
n×dout

o(·, ·) Observation function, given a realization and missingness matrix

x̃ An observation of x that has missing NaN values; x̃ = o(x,m)

x̃in Part of the observed data corresponding to the input; x̃in ∈ R
n×din

x̃out Part of the observed data corresponding to the output; x̃out ∈ R
n×dout

x̃
o Correctly observed data, formed by the rows of x̃ with no NaN values

x̃
c Corrupted observed data, formed by the rows of x̃ with NaN values

φ Missingess model that generates the missingness distribution M

x̂ Final imputed dataset; the imputation method takes in x̃ and outputs x̂

fθ1 Forward surrogate model (from input to output) with trainable weights θ1
bθ2 Backward surrogate model (from output to input) with trainable weights θ2
F Overall surrogate model for input and output predictions, a combination of the above two: F = (fθ1 , bθ2 )

ǫ∗ Convergence threshold for the corresponding operation ∗

η1 , η2 Learning rates for updating weights for the forward and backward models

ηin , ηout Learning rates for updating input and output features

Lf  , Lb Loss functions for the forward and backward models

∇∗ Gradient w.r.t. ∗ ; where ∗ could be model weights ( θ1 , θ2 ) or previously imputed features ( ̂xin , x̂out)
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(MICE)14, matrix  completion27, spectral  regularization28, iterative singular value decomposition (SVD)29, and 
k-nearest neighbors (kNN)13. Generative models include algorithms based on expectation maximization, such 
as those using Gaussian mixture models (GMMs)30 and approaches based on modern deep learning, like denois-
ing autoencoders (DAEs)31,32 and generative adversarial networks (GANs). One state-of-the-art GAN-based 
imputation method is  GAIN15, which forgoes the assumptions made in previous generative imputation mod-
els—restrictions on the underlying data distribution and types of datasets (categorical or continuous).  GRAPE16 
is yet another DNN-based approach that converts the data into a bipartite graph and then uses a graph neural 
network (GNN) for imputation.

Traditional statistical methods for imputation provide useful theoretical bounds but exhibit notable shortcom-
ings. First, they tend to make strong assumptions about the data distribution. Second, they lack flexibility for 
handling mixed data types that include both continuous and categorical variables. Finally, matrix-completion-
based approaches do not generalize to unseen samples (thus performing poorly on out-of-distribution data) and 
require retraining when new data samples are  encountered13,27–29. Recent DNN-based approaches try to address 
these shortcomings but are still limited in their application. GAIN only implements input feature imputation 
and assumes that all output labels are  available15. GRAPE does either input feature imputation or output label 
prediction, but not  both16. It also does not support uncertainties in prediction, only models the expectation of 
the data distribution. Other recent works that use these methods, or their combination, are only applicable to 
specific  applications33. In many applications, especially in the context of edge deployments, both input features 
and output labels may be  missing12. Further, the output features in previous works are only one-dimensional 
(only one continuous feature or categorical label). These restrictions prevent their application to many tasks, 
including multi-input/multi-output regression datasets. In the case of such datasets and under some corruption 
strategies (e.g., when the output can also be corrupted), even state-of-the-art DNN-based approaches become 
ineffective, as we demonstrate later. DINI, on the other hand, can support mixed continuous and categorical 
features not only in the input but also in the output. Lastly, previous DNN-based works are either restricted to 
adversarial  networks15,  autoencoders31, or  GNNs16. However, different DNN models may be suitable for differ-
ent data distributions. DINI, being a model-agnostic framework, can be applied to diverse DNN architectures, 
including FCNNs, convolutional neural networks (CNNs)34, long-short term memories (LSTMs)35, and even 
 Transformers23.

Methodology
We now discuss the DINI framework in detail.

Problem formulation. As noted previously, we consider the imputation (via surrogate modeling) of the 
observed dataset x̃ ∈ R

n×d , partitioned into input and output columns as x̃in ∈ R
n×din and x̃out ∈ R

n×dout . For 
better-posed modeling, we first scale the input data to [0, 1] with a MinMax  scaler36. The task at hand is to output 
an imputed dataset x̂ that is as close as possible to the real dataset x , had there not been any corruption. The goal 
is to achieve the least error between the imputed and real data. The two error metrics are the root mean square 
error (RMSE) and mean absolute error (MAE)37, defined as follows:

Note that from the NaN values in x̃ , the missingness mask m ∈ R
n×d is recoverable and can also be similarly 

partitioned into min ∈ R
n×din and mout ∈ R

n×dout.

The DINI framework. DINI comprises two DNNs that act as surrogate models for the data distribution. 
Each DNN models one side (input-to-output or output-to-input) of the dataset and runs GOBI for imputa-
tion. Thus, the surrogate model of DINI is given by F  that comprises two functions, one being the forward 
model fθ1 : [0, 1]din → [0, 1]dout and the other the backward model bθ2 : [0, 1]dout → [0, 1]din . Here, θ1 and θ2 
are the parameters, or weights of the DNNs, for the forward and backward models, respectively. DINI involves 
interleaved training of the surrogate model F  (where the neural network parameters θ1 and θ2 are updated) and 
imputation (where the x̂ data are updated).

RMSE(x, x̂) =

√

√

√

√

1

nd

∑

ij

(

xij − x̂ij
)2
, ∀ xij ∈ x, x̂ij ∈ x̂

MAE(x, x̂) =
1

nd

∑

ij

|xij − x̂ij|, ∀ xij ∈ x, x̂ij ∈ x̂
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Algorithm 1 summarizes this interleaved training-and-imputation pipeline. First, isNaN () recovers the 
missingness masks in the input and output data (line 17). Then, initImpute () takes the observed data and 
outputs them after running an initial imputation on the NaN values so that the data are amenable to training the 
surrogate model (line 18). This could be either mean, random, or zero imputation. Based on our tests, zero impu-
tation performs the best. This could be attributed to the high gradient of the logistic function at zero, leading to 
faster convergence for the corrupted values. Then, we run interleaved training and imputation until convergence 
(lines 22-23). Here, when the new imputed data gets close enough to the old data based on a threshold ǫDINI 
(line 24), the algorithm reaches convergence. During training, the forward and backward models are trained by 
backpropagating the gradients of an appropriate loss function to their respective parameters ( θ1 and θ2 ; line 5). 
The red color shows the operation of gradients towards the weights. Here, we show stochastic gradient descent 
for simplicity, although we used the Adam  optimizer38 in our experiments. To account for both continuous and 
categorical values in the input and output features, we consider the loss function as a sum of the RMSE and the 
MAE between the predicted and actual data matrices. Mathematically,

The loss function could also have leveraged the categorical cross-entropy loss, where the variables are known to 
be categorical and one-hot encoded. During imputation, the model weights are frozen and gradients are com-
puted towards the respective inputs, i.e., x̂pin and x̂pout (line 12). Again, blue type color represents the operation 
for gradients towards the features. We only impute that part of the data that is known to be corrupted, using the 
masks min and mout . Leveraging Monte Carlo (MC)  dropout39, the forward and backward models output the 
data distribution, whose standard deviation gives the uncertainty. Partial imputation can be performed based 
on the least uncertain predictions. This is implemented by the maskedUpdate () function (line 13). If some 
variables are categorical, this function also forces the corresponding imputed values to 0 or 1 based on a thresh-
old (set to 0.5). Training or imputation reaches convergence when the L1-norm of the respective gradients falls 
below a threshold. Finally, the DINI () function outputs the trained surrogate model F  along with the imputed 
data matrix x̂ (line 25). Note that, unlike what Figure 1c shows, we implement the surrogate model as a set of 
two functions ( fθ1 and bθ2 ) that we train in tandem. This aids the implementation of GOBI in a conserved man-
ner. We defer the implementation of DINI using weight-shared models, or even a single model, to future work.

L
f (x, x̂) = L

b(x, x̂) = RMSE(x, x̂)+MAE(x, x̂)
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Experimental setup
In this section, we discuss details of the experimental setup. First, we present the model architecture and training 
hyperparameters. We then discuss the datasets used for the imputation problem and the surrogate modeling 
tasks for three mission-critical edge applications. Finally, we briefly discuss the baselines used for comparison 
with the DINI model.

The model architecture. As explained in section “The DINI framework”, we implemented the forward 
and backward models as two DNNs. For our experiments, we chose the DNNs to be FCNNs with the input and 
output number of neurons equal to the corresponding data dimensions. More concretely, for the forward model 
f (backward model b), we set the number of input neurons to din ( dout ) and the number of output neurons to dout 
( din ). We ran a grid search over the number of hidden layers and the dimension of each hidden layer. We found 
that the smallest architecture that achieved a reasonable RMSE ( < 1× 10−3 ) on the uncorrupted data (for all 
considered datasets) needs only one hidden layer with 512 neurons. We use leaky ReLU as the activation func-
tion for each layer except for the output layer, where we use the sigmoid activation function. Any DNN-based 
surrogate model can leverage DINI. Hence, for time-series datasets, we further tested LSTM-based35 architec-
tures and  Transformers23 as well. Figure 1d shows how a Transformer-based surrogate model employs DINI. 
However, we found that for the datasets considered, FCNNs were the simplest architectures that also performed 
the best in imputation performance (see section “Ablation analysis”). We leave other applications with more 
complex data distributions that require DINI with advanced deep learning models for future exploration. We 
set the hyperparameters for the DINI pipeline as follows. We set the learning rates to η1 = η2 = 1× 10−4 , 
ηin = ηout = 5× 10−4 . We use a weight decay of 1× 10−3 . We set Adam optimizer’s parameters to β1 = 0.9 , 
β2 = 0.999 . Finally, we set all convergence thresholds to 1× 10−3.

Imputation datasets. To measure the imputation performance (in terms of RMSE and MAE), we consider 
a diverse set of popular machine learning datasets, including those used by previous  works15,16. These datasets 
include ones from the popular UCI  repository40: breast cancer Wisconsin prognostic dataset (Breast), energy 
efficiency dataset (Energy), and the yacht hydrodynamics dataset (Yacht). Since DINI can also tackle multi-
output datasets, we consider such datasets as well. For this, we consider two prediction outputs in the Energy 
dataset: separate heating and cooling loads, which previous works do  not16. We also consider other popular 
datasets like the Diabetes  dataset41 (with six blood serum estimates and the responses of interest as continuous-
valued outputs), the Diamonds  dataset42 (with carat and price as two continuous-valued prediction outputs), and 
the Flights  dataset43 (with two categorical outputs, namely whether the flight was diverted or canceled, and three 
continuous outputs: departure and arrival delays along with the estimated flying time). Further, unlike previous 
works, we carry out corruption not only on input features but also on the output features.

Case studies. For case studies related to mission-critical edge applications, we consider three datasets, as 
described in section “Motivation”. The first is the Gas  dataset18 that is from the UCI  repository40. It contains 
mixtures of gases at different concentrations. In the context of detecting flammable gases, we take measurements 
from 15 sensors as input and set the detection label for flammable gases as the categorical output. The second is 
the SWaT  dataset19 with a diverse set of categorical and continuous input features, and detection of attack as the 
prediction label. Finally, we consider the smart-COVID detection  dataset20 that considers age, sex, offset of days 
since symptoms appeared, type of pneumonia, and features extracted from chest X-rays44.

Baselines. To validate DINI’s imputation and surrogate modeling performance, we compare it against vari-
ous baselines, as mentioned in section “Data imputation methods”. For completeness, we present these com-
monly used imputation methods below:

• Mean/median imputation: The method imputes the corrupted values x̃ij with the mean/median of all correctly 
observed samples along column j.

• kNN imputation: The method imputes the corrupted rows i in x̃ij based on the kNN along column j with the 
weights based on the Euclidean distance to the row.

• SVD imputation: The method imputes missing values based on matrix completion with iterative low-rank 
SVD decomposition.

• MICE imputation: The method runs multiple regressions where each missing value is modeled conditioned 
on the observed non-missing values.

• Spectral imputation: This matrix completion model uses the nuclear norm as a regularizer and imputes miss-
ing values with iterative soft-thresholded SVD.

• Matrix imputation: This method finds the matrix with the minimum nuclear norm that fits the correctly 
observed data.

• GMM imputation: This approach fits a GMM on the observed data using the expectation-maximization 
algorithm and imputes the missing values based on the model.

• GAIN imputation: A generative-adversarial-network-based input feature imputation strategy.
• GRAPE imputation: A state-of-the-art imputation method that converts data into a bipartite graph and uses 

a GNN model for imputation.

GAIN only does input feature imputation. GRAPE either implements input feature imputation or output label 
prediction, but not both simultaneously. We adapt these models, based on the new formulation of DINI, as a 



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20210  | https://doi.org/10.1038/s41598-022-24369-1

www.nature.com/scientificreports/

forward and a backward model. We then apply these methods to the input and output features based on these 
models. We call these adaptations GAIN∗ and GRAPE∗.

The time complexity of the proposed DINI algorithm (see Algorithm 1) is O(nd2) for one iteration of imputa-
tion of the entire dataset. This is because the forward pass of an FCNN (and even backpropagation) implements 
matrix multiplication operations in practice. For the considered architecture ( din < d input neurons, 512 hidden 
neurons, dout < d output neurons), this is implemented in O(nd2) time. The same is true for both training the 
surrogate model and imputation. Here, training and imputation are assumed to be for a fixed number of epochs. 
Classical approaches like Mean and Median have O(nd) time complexity. kNN has a time complexity of O(knd) . 
On the other hand, state-of-the-art DNN-based methods, GAIN and GRAPE, have time complexities O(nd2) 
and O(rnh2) , respectively, where r is the number of neighbors sampled for each node and h is the node hidden 
feature  dimension45. The number of hidden layers is assumed to be one for both these methods. This implies that 
DINI is comparable to previous DNN-based methods in computational complexity.

Results
This section presents performance comparisons for DINI with baseline imputation methods. Since DINI inher-
ently works with a DNN-based surrogate model, we subsequently present its modeling performance by testing 
the corresponding label detection performance on three mission-critical edge applications. Finally, we present 
ablation studies.

Imputation performance. We compare DINI with the baseline imputation methods described in sec-
tion “Baselines”. For this comparison, we test the RMSE and MAE of the imputed data relative to the actual data 
when subjected to different corruption strategies (including the two newly proposed ones). Table 2 compares 
the imputation performance of DINI across six datasets and five corruption strategies against the considered 
baselines. DINI outperforms the baselines for most tasks (46 out of 60 rows). Spectral imputation performs 
the worst on most datasets. GAIN∗ does not perform well on the Yacht dataset when subjected to corruption 
in both the input and output features. On an average, DINI outperforms the next best imputation method, i.e., 
MICE, by 10.7% in terms of imputation error. Even though MICE inherently assumes the corruption to be either 
MCAR or MAR, DINI achieves a lower error even under these strategies for most datasets. Unlike the results 
presented in previous  works15,16, as we see here, even state-of-the-art DNN-based methods are not that effective 
when subjected to simultaneous input/output corruption. DINI outperforms GAIN∗ and GRAPE∗ by 36.8% and 
33.9%, respectively.

Surrogate modeling performance. Since DINI is more than an imputation method, we can leverage 
the implicit surrogate training for tasks beyond filling missing values. Previous works have widely used sur-
rogate training and inference; however, seamless exploitation of corrupted data (using interleaved imputation) 
is novel and is broadly applicable to edge applications where corrupted sensor data are commonplace. Hence, 
we leverage this extra capability of DINI to obtain better surrogate models for such applications. We use three 
mission-critical applications as case studies. We formulate the comparison experiments as follows. For each 
dataset, we split the data three ways: 40%-40%-20%. We assume 40% of the data is heavily corrupted (no row can 
be extracted that does not have any corrupted values). For this, we use MSAR or MPAR corruption with close 
to 100% corruption ratio. The first 40% of the uncorrupted data and the 40% corrupted data comprise the 80% 
training set for imputation and surrogate model training. We use the final 20% of the data as the test set. For 
like-to-like comparisons, with each imputation strategy, we use the same architecture for the surrogate model 
trained on the imputed data: FCNN with one hidden layer having 512 hidden neurons. Figures 2 and 3 show the 
modeling performance on the three datasets for imputed data from DINI and all the baseline methods. Note 
that we do not consider Mean imputation because it imputes categorical columns with an intermediate value 
that is not allowed (if the mean value is forced to 0 or 1 based on a threshold, the performance becomes close to 
that of Median imputation). GRAPE∗ is also not considered in these comparisons since it only outputs RMSE/
MAE in imputations in its graph format and does not convert the imputed data back to the tabular format for 
surrogate modeling. For the Gas dataset, we need to detect whether the flammable gas is observed or not. For 
the smart water plant (SWaT dataset), we need to detect if the system has been attacked. On the other hand, for 
smart-COVID detection, we need to detect if the patient has the disease. Since all these datasets have a single 
categorical output, we train the forward model in DINI with binary cross-entropy loss. In all these tasks, we not 
only wish to leverage the corrupted, partially observed data, but also need a high true positive rate since false 
negatives would incur high risks in such applications. On the other hand, we also need a low false positive rate 
since invoking mitigating mechanisms could be costly, and performing them needlessly could result in large 
system overheads. Hence, we plot the F1 score along with the test accuracy.

DINI consistently outperforms the baseline imputation methods with a high test accuracy and F1 score. For 
example, DINI attains around 99% test accuracy and 0.99 F1 score on the Gas dataset, implying that almost all 
cases where a flammable gas is present are correctly detected. No other imputation strategy approaches this 
performance. For the SWaT and COVID datasets, DINI reaches around 96% (0.95) and 97% (0.96) average test 
accuracy (F1 score) across the two corruption strategies, respectively. However, for some imputation strategies, 
like Median imputation with the Gas dataset under MSAR corruption, the F1 score is very low even when the 
test accuracy is reasonable. This is because the surrogate model is heavily biased toward negative labels (since 
the model has not generalized well), having a high number of true negatives but few true positives. This results 
in a low F1 score. DINI does not suffer from this problem.

Figure 4 shows how we passed the corrupted data to the imputation models in their training set. We observe 
that the data imputed by DINI, shown in Fig. 4c, are very similar to the original data, shown in Fig. 4a. This 
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striking similarity shows that DINI can reproduce the underlying data distribution even in the presence of high 
levels of corruption. Figure 5 compares the imputation methods under different corruption ratios and the MCAR 
corruption strategy on the Breast dataset. DINI consistently outperforms baselines by achieving a lower RMSE 
and MAE for the different corruption ratios.

Ablation analysis. To test the efficacy of our interleaved training-and-imputation strategy, we modify the 
DINI framework as follows. First, we train the surrogate model on the correctly observed subset and use this 
model for imputation (using GOBI for the input and output features from the forward and backward models). 
Second, we pre-train the surrogate model on the correct subset and run interleaved training and imputation 
on the corrupted subset. Note that we impute all the data at every iteration. Third, we run interleaved training 
and imputation from scratch (i.e., with no pre-training) on the entire dataset, as described in the DINI pipeline 
above. However, we attempt to leverage the uncertainty in prediction through the MC dropout layer. We thus 
only impute part of the data, where the model is the least uncertain. Based on the uncertainty values for the 
entire data matrix, we start at the 25th, 50th, or the 75th percentile of the uncertainties and impute only part of 
the data accordingly. To account for the surrogate model getting better towards the end of training, we linearly 
increase the imputation ratio to 100%. Table 3 shows the results on the Breast dataset with MCAR corruption 

Table 2.  Comparison of imputation performance of DINI with various baselines. Six datasets and five 
(including two newly proposed) corruption strategies are considered. The last row averages all entries for each 
column (including both RMSE and MAE values). Confidence intervals are not shown to conserve space. Values 
corresponding to the lowest error are in [bold].
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(a) (b) (c)

k

Figure 2.  Test accuracy and F1 score for imputation models on the (a) Gas, (b) SWaT, and (c) COVID datasets, 
for the MSAR corruption strategy. Test accuracy is shown as bar plots with the axis on the left. F1 score is shown 
as a dashed line plot with the axis on the right.

(a) (b) (c)

k

Figure 3.  Test accuracy and F1 score for imputation models on the (a) Gas, (b) SWaT, and (c) COVID datasets, 
for the MPAR corruption strategy.

(a) (b) (c)
- -

Figure 4.  Data snapshot with only 160 rows from the SWaT dataset: (a) original, (b) MPAR-corrupted, and 
(c) DINI-imputed. 50% correct (0–79) and 50% corrupted (80–159; with a high corruption ratio) data form the 
training set for the imputation methods.
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(other datasets showed similar results). We observe that the method involving interleaved training and (com-
plete) imputation from scratch outperforms previous approaches. Here, by complete imputation, we mean that 
100% of the data are imputed at every iteration, regardless of the uncertainties. We explain this as follows. In the 
first approach, we do not leverage imputed data to improve the surrogate model further. In the second approach, 
after pre-training the surrogate model, training on the imputed data causes a distribution shift, as the model can-
not train along with the correctly observed data. Finally, partial imputation adds to the bias present in the sur-
rogate model initially, resulting in a higher imputation error. However, certain tasks requiring multiple solutions 
could benefit from the uncertainties in predictions. Taking inspiration from some recent  works46 that leverage 
GOBI, we also tested second-order gradients using the AdaHessian  optimizer38 in DINI’s surrogate model. This 
only provides marginal gains (reduction in MAE by 0.001) that are not statistically significant. Due to the high 
overhead of calculating these gradients, we stayed with first-order gradients in our experiments.

DINI supports diverse DNN-based surrogate models, including advanced architectures like LSTMs and 
Transformers. Table 4 compares these architectures with the FCNN used in our experiments for time-series 
datasets. FCNN performs slightly better than a Transformer with six encoder layers in most cases while being 
24,603× smaller on average. This could be due to the FCNN having enough capacity for the chosen datasets, 
while the Transformer overfits on the training data resulting in lower performance.

Discussion
As discused in section “Results”, DINI outperforms baseline methods in various experimental settings. The inter-
leaved training-and-imputation pipeline enables high gains compared to the state-of-the-art methods. Further, it 
directly incorporates heterogeneous input and output feature formats (continuous, categorical, or a combination 

(a) (b)

RM
SE

M
A

E
k

Figure 5.  Error vs. corruption ratio for various imputation methods: (a) RMSE and (b) MAE. MCAR 
corruption on the Breast dataset was used for comparison.

Table 3.  Ablation analysis for DINI. Breast dataset was considered with MCAR corruption. Data is reported 
with 95% confidence intervals. Values corresponding to the lowest error are in [bold].

Training and imputation method RMSE MAE

Pre-training on correct subset w/ imputation 0.412 ± 0.019 0.291 ± 0.015

Pre-training on correct subset w/ interleaved training/imputation 0.257 ± 0.029 0.163 ± 0.008

Interleaved training from scratch + partial imputation starting at 25th percentile 0.268 ± 0.030 0.169 ± 0.012

Interleaved training from scratch + partial imputation starting at 50th percentile 0.255 ± 0.024 0.160 ± 0.029

Interleaved training from scratch + partial imputation starting at 75th percentile 0.247 ± 0.019 0.151 ± 0.023

Interleaved training from scratch + complete imputation 0.232 ± 0.019 0.134 ± 0.013

w/ second-order gradients 0.233 ± 0.012 0.133 ± 0.011
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thereof). These advancements make it better at imputing data compared to traditional approaches. Unlike previ-
ous works, it is a unified framework that supports diverse DNN-based model architectures.

However, DINI has several limitations. For instance, it only imputes data that are known to be corrupted. One 
could also encounter adversarial data with fraudulent input feature values and noisy labeled data, where the cor-
rupted data are not in the NaN form. Detecting such data falls under the scope of adversarial attack  detection47 
and confident  learning48, respectively. One could extend the DINI model by incorporating aleatoric  loss49 to 
account for such corruptions. We can also prune or correct the input or output entries with high  uncertainties50 
(after conversion to NaN values and subsequent imputation). We defer this to future work.

Conclusions
In this article, we presented DINI, a pipeline for interleaved training of a surrogate model and imputation of 
data, leveraging gradients towards the input and output features in the model. DINI tackles corruption in both 
the input and output values, along with mixed continuous and categorical features in either. For better-posed 
problem formulation in edge-AI settings, we proposed novel corruption strategies that model the distribution 
of corrupted data in such applications more closely. We showed that DINI outperforms all baseline imputation 
methods, including state-of-the-art DNN-based models, achieving 10.7% lower imputation error relative to the 
next best baseline. Finally, we tested the modeling performance of DINI on mission-critical edge applications 
and showed that it can reach up to 99% test accuracy and 0.99 F1 score when detecting labels in such settings.

Data availability
All data and code are available in the supplementary files. The code and relevant testing scripts are made publicly 
available on GitHub under the BSD-3 license at https:// github. com/ jha- lab/ dini.
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