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We extend to quenched disordered systems the variational scheme for real space renormalization
group calculations that we recently introduced for homogeneous spin Hamiltonians. When disorder
is present our approach gives access to the flow of the renormalized Hamiltonian distribution, from
which one can compute the critical exponents if the correlations of the renormalized couplings
retain finite range. Key to the variational approach is the bias potential found by minimizing a
convex functional in statistical mechanics. This potential reduces dramatically the Monte Carlo
relaxation time in large disordered systems. We demonstrate the method with applications to
the two-dimensional dilute Ising model, the random transverse field quantum Ising chain, and the
random field Ising in two and three dimensional lattices.

Understanding the phase diagram of quench-
disordered systems, such as glasses or materials with a
disordered distribution of defects, is a major scientific
goal. The effect of fluctuations on the equilibrium
properties of translationally invariant spin models has
been studied successfully with real space Monte Carlo
(MC) renormalization group (RG) techniques [1–3], but
direct MCRG studies of disordered systems face major
difficulties. In random systems, the RG flow of the
Hamiltonian distribution is of fundamental importance
[4]. Its explicit calculation requires an average of the
RG flows of many Hamiltonians, each with an extensive
number of quench-disordered couplings. Moreover, in
disordered systems MC relaxation times tend to be
significantly longer than in pure systems. Although it
is an old idea to study quench-disordered systems with
real-space renormalization, the task is so computation-
ally challenging that it has not been explicitly carried
out within MCRG. So far, the challenge of dealing
with many random couplings has been avoided, either
by limiting the form of the disordered renormalized
Hamiltonian, or by adopting techniques that do not
require its explicit calculation [5, 6].

Recently, we introduced a scheme called Variational
Monte Carlo Renormalization Group (VMCRG) [7] that
facilitates the calculation of the renormalized coupling
constants and critical exponents by mitigating the ef-
fects of critical slowing down. Here we show that this
approach makes possible to compute directly the evolu-
tion of the coupling distribution under scale transforma-
tions in classical quench disordered models, in addition
to greatly alleviating sampling difficulties due to disor-
der. The method is particularly useful when dealing with
finite disorder fixed-points whose critical distribution has
a finite width that is difficult to estimate perturbatively.
In these situations, VMCRG recovers the scaling law for
the singular part of the free energy, and leads to a viable
scheme for computing the critical exponents, when the
evolving distribution can be parameterized in terms of lo-

cal correlations between the renormalized couplings. The
approach can also discern strong disorder fixed-points
characterized by a diverging variance of the critical distri-
bution, but in this case, it does not provide a way to com-
pute the critical exponents. Strong disorder fixed points
have often been associated to disordered quantum models
that are amenable to exact solution with Strong Disor-
der Renormalization Group (SDRG) techniques [8, 9]. If
the partition function of these systems has a sign-free
path integral representation, the corresponding classical
model can be studied numerically with VMCRG, which
then provides an alternative way of assessing the strong
disorder character of the critical distribution.

We illustrate the formalism with applications to four
disordered spin systems, namely, the 2D dilute Ising
model (DIM), the Trotter approximation of the 1D ran-
dom quantum transverse-field Ising model (TFIM), and
the random field Ising model (RFIM) in 2D and 3D.
We find the following results. The critical Hamiltonian
distribution of the 2D DIM approaches a finite-disorder
fixed point, indicating that disorder persists at all length
scales, a condition that is difficult to establish with per-
turbative means as disorder is neither asymptotically
small or large. We find that disorder has an even larger
effect in the 1D TFIM, where the magnetic phase tran-
sition is associated to a Hamiltonian distribution with
increasing variance along the RG flow, consistent with
the strong-disorder fixed point predicted by SDRG [8, 9].
The magnetic phase transition is wiped out by disorder
in the 2D RFIM, where we find that, well below the crit-
ical temperature of the pure 2D Ising model, the RG
flow approaches the fixed-point with zero-field and zero-
coupling, in agreement with the exact result for the free
energy of this model [10]. In the 3D RFIM there is
a magnetic phase transition, in agreement with earlier
predictions [11]. The corresponding critical distribution,
however, is not of the finite-disorder kind like in the 2D
DIM, but shows increasing variance along the RG flow,
like in the 1D TFIM. Interestingly, this behavior, i.e. an
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increasingly large variance without significant changes in
the mean along the RG flow, is also observed within a
finite coupling range below the critical coupling, suggest-
ing that the random magnetic fields promote strong dis-
order in the RG distribution of this model even below
bulk criticality.

In the following we consider a generic quench-
disordered spin Hamiltonian with local interactions on
a lattice of N sites:

HK(σ) = −
∑
α

N∑
i=1

Ns(α)∑
s=1

Ki,s
α Si,sα (σ), K ∼ Pv(K) (1)

Here the index α specifies the coupling type, such as
nearest neighbor, smallest plaquette, etc. The index i
runs over the N lattice sites, while s runs over the Ns(α)
point group symmetry operations that generate distinct
couplings of type α stemming from site i. For example,
the nearest neighbor coupling has two terms at each lat-
tice site, while the smallest plaquette has only one. Si,sα
are products of spins in the neighborhood of i specified
by α and s. The coupling constants Ki,s

α are made di-
mensionless by incorporating the factor (kBT )−1 in their
definition. The vector K denotes the full set {Ki,s

α } of
couplings corresponding to a disorder realization drawn
from the probability density Pv(K) specified by the pa-
rameter set v.

Let σ′ = τ(σ) be a coarse-graining map, such as the
block spin transformation [12], which implements a scale
dilation that preserves the symmetry of Pv(K). The cor-
responding renormalized couplings K′ and Hamiltonian
H ′K′ are

H ′K′(σ′) +Ng(K) = − ln
∑
σ

δτ(σ),σ′e−HK(σ) (2)

Here δτ(σ),σ′ is the Kroneker delta function. g(K) in-
dicates the “background” free energy per site of a RG
transformation [13] so that H ′K′ does not contain spin
independent terms. Let R be the RG map of the cou-
pling constants implicitly defined by Eq. 2:

K′ = R(K) (3)

The distribution of the renormalized constants Pv′(K′)
is related to Pv(K) by

Pv′(K′) =

∫
dKPv(K)δ(K′ −R(K)) (4)

Thus, the renormalization of the coupling constants, from
K to K′, induces a renormalization from v to v′. In
disordered systems, v plays the role of scaling variable.

In our procedure we calculate K′ = R(K) for a rep-
resentative number of quenched realizations. Each map
involves a large number of disordered coupling constants.
Sampling is hampered by the rugged disordered energy
landscape and is slowed down by long-range correlations

near criticality. VMCRG overcomes these difficulties by
adding to the renormalized Hamiltonian H ′K′(σ′) a bias
potential V (σ′) so that the distribution of σ′ under the
Hamiltonian H ′K′(σ′) + V (σ′) becomes equal to a pre-
set target probability pt(σ

′). By choosing the uniform
distribution for the latter, i.e. pt(σ

′) = ( 1
2 )N

′
for Ising

systems, the variables σ′ are uncorrelated. Thus, finite
size effects are greatly reduced because, in the biased sys-
tem, the correlation functions decay exponentially over a
distance approximately equal to b, the linear size of the
block spin, even at criticality. Following [14] the bias
potential that performs this task minimizes the convex
functional Ω[V ] given by:

Ω[V ] = ln

∑
σ′ e−[H′(σ′)+V (σ′)]∑

σ′ e−H
′(σ′)

+
∑
σ′

pt(σ
′)V (σ′) (5)

The minimizing potential, Vmin, satisfies [7]:

H ′K′(σ′) = −Vmin(σ′), (6)

modulo an immaterial constant. Thus, by minimizing Ω
one finds the renormalized Hamiltonian. In practice, we
adopt for V a finite representation that parallels the one
of the Hamiltonian in Eq. 1:

VJ(σ′) =
∑
α

N∑
i=1

Ns(α)∑
s=1

J iαS
i
α(σ′) (7)

The minimizing coefficients, Jmin = {J iα,min}, can be
found by minimizing Ω with a gradient descent proce-
dure [14]. In disordered systems, the number of unknown
coefficients is large and we use only the diagonal part of

the Hessian ∂2Ω

∂Ji,sα ∂Jj,tβ
in addition to the gradient ∂Ω

∂Ji,sα
in

the minimization procedure. Empirically, we find that
the optimization cost increases linearly with the number
of coefficients J i,sα , making possible calculations on large
lattices. We have by virtue of Eq. 6:

K′ = −Jmin (8)

The RG procedure is repeated for ND disorder realiza-
tions, generating many K′ vectors distributed according
to Pv′(K′) at each RG iteration. This distribution can
be visualized with histograms representing the marginal
distribution of coupling type α:

Qv(Kα) =

ND∑
iD=1

N∑
i=1

Ns(α)∑
s=1

δε(Kα − (Ki,s
α )iD )

NDNαNs(α)
(9)

Here δε is a delta-function approximant with support ε.
When the critical fixed-point distribution has finite dis-

order the following procedure can be used to compute the
critical exponents. We indicate by v∗ the parameter set
corresponding to the critical distribution. In order to
compute the critical exponents we should compute the
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leading eigenvalue(s) of the Jacobian of the transforma-

tion of the scaling variables, ∂v′

∂v , at v∗. Assuming that
the correlations between the couplings are short ranged
we may use a finite set of short-ranged basis functions
Uβ(K) to represent Pv(K) [5]:

− lnPv(K) = C +
∑
β

vβUβ(K) (10)

Here C is a normalizing constant and the index β speci-
fies the coupling correlation type, such as one-body, two-
body, etc., associated to products of different Kα or com-
binations thereof. The sum over β includes terms of in-
creasing range up to some cutoff distance on the lattice.
The vector parameter v corresponds to the set of ampli-
tudes {vβ}. The coupling functions Uβ(K) are sums of
local coupling products that play a role similar to that
of the spin functions Si,sα (σ) in Eq. 1. For example, for
Hamiltonians with nearest neighbor (Knn) and next near-
est neighbor (Knnn) couplings, the first four Uβ(K) could
be U1 =

∑
i,sK

i,s
nn , U2 =

∑
i,sK

i,s
nnn, U3 =

∑
i,s(K

i,s
nn )2,

and U4 =
∑
i,sK

i,s
nnK

i,s
nnn. Taking the derivative ∂v′

∂v in
the close proximity of v∗, we obtain:

〈UβU ′γ〉 − 〈Uβ〉〈U ′γ〉 =
∑
α

∂v′α
∂vβ
· (〈U ′αU ′γ〉 − 〈U ′α〉〈U ′γ〉)

(11)
Here 〈·〉 denotes an average under Pv(K). The RG Ja-
cobian may then be obtained from Eq. 11.

We now consider systems on the square and cubic lat-
tices to demonstrate the method. We start with a DIM,
which in 2D is marginal for the Harris criterion [15] that
is commonly used to characterize whether disorder is rel-
evant at criticality. The Hamiltonian is

HDI = −KDI

∑
〈i,j〉

kijσiσj (12)

Here KDI > 0, 〈i, j〉 denotes nearest neighbors, and
kij = 1 or 1

2 with probability 1
2 . The critical value of

KDI is known to be KDI,c = 0.609377... by a duality ar-
gument [16]. We adopt the majority rule with a random
tie-breaker on b×b blocks with b = 2. Three couplings are
included in the renormalized Hamiltonian, namely near-
est neighbor (Knn), next nearest neighbor (Knnn), and
smallest plaquette (K�), which are the most important
couplings in the pure Ising model. The calculations are
done on 1282 lattices for 4 RG iterations for three values
of KDI, i.e. KDI = KDI,c, 0.60, and 0.62. In addition,
for KDI = KDI,c, we carry out a 5th iteration on a 2562

lattice. For n = 5, we deal with spin blocks of linear size
bn = 32, for which spin correlations are significant. In
this case, we find that sampling efficiency improves sig-
nificantly by adopting the Wolff algorithm [17] instead
of the Metropolis algorithm [18] used in all other simula-
tions in this paper. For the simulation correlation time,

τ ∼ ξz, the cluster algorithm reduces the dynamical ex-
ponent z while the bias potential reduces the correlation
length ξ.

We report in Fig. 1 the RG flow of the marginal dis-
tribution Qv(Knn). The distribution initiating at KDI =
KDI,c converges to a fixed distribution, whereas for KDI

less and greater than KDI,c the distribution approaches
the paramagnetic and the ferromagnetic fixed points re-
spectively. The marginal distributions Qv(Knnn) and
Qv(K�) show similar behavior [19]. The RG evolution
approaches a fixed critical distribution, which has finite
width and is non-Gaussian indicating that the 2D DIM
remains inhomogeneous at all length scales at criticality.
Thus, the dilute and the pure Ising model in 2D do not
share the same fixed-point. Indeed, although they have
the same critical exponents, according to analytical [20–
22] and numerical [23] studies, the singular dependence of
the specific heat with respect to temperature is modified
by logarithmic factors in the diluted model compared to
the pure model [22].

As detailed in the supplementary material (SM) [19],
we use 17 coupling functions Uβ(K) to represent the dis-
tribution Pv(K) in the computation of the critical expo-
nents. With the adopted representation we find a value
of 2.018(6) for the leading even eigenvalue λe of the Ja-
cobian matrix, to be compared with λe = 2 of the pure
Ising model. The error of our estimate was not reduced
by adding more Uβ functions, suggesting that the renor-
malized Hamiltonian should include more couplings than
just nearest neighbor, next nearest neighbor, and square
terms for better accuracy.
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FIG. 1. Distribution of K′
nn for a DIM with KDI = 0.60

(left), 0.609377 (middle), and 0.62 (right). n denotes RG
iteration. All figures have the same scale. See the SM [19] for
the optimization details and the number of samples used (for
other example models, too).

Next we consider the random TFIM on a periodic chain
of L spins with Hamiltonian:

ĤTFIM = −
∑
i

kiσ̂
z
i σ̂

z
i+1 −

∑
i

hiσ̂
x
i (13)

where σ̂z and σ̂x are the Pauli matrices. Here ki and hi
are independently drawn from a Gaussian distribution
with standard deviation 0.2, and mean equal to KTFIM

and 1.0, respectively. By self-duality, the system experi-
ences a ground-state quantum phase transition when ki
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and hi are drawn from the same distribution, i.e. when
KTFIM = 1.0 [9]. The Trotter-approximation of this
model at inverse temperature β is an anisotropic nearest-
neighbor Ising model on an L × βm periodic 2D lattice
with classical Hamiltonian [24]:

HTrotter = −
L∑
i=1

βm∑
j=1

ki
m
σi,jσi+1,j

−
L∑
i=1

βm∑
j=1

1

2
ln

[
coth

(
hi
m

)]
σi,jσi,j+1

(14)

where σi,j is an Ising spin at the ith column and jth row,
and m is the number of Trotter slices. As an approxima-
tion to m,β → ∞, we use m = 8, β = 16, L = 128.
The 2 × 2 majority-rule block-spin is used despite the
anisotropy, as in [24]. Four renormalized coupling terms
are included in our VMCRG computation: the nearest
neighbor coupling in the horizontal (Knnx) and vertical
(Knny ) directions, the next nearest neighbor (Knnn) and
smallest plaquette (K�) couplings. In Fig. 2, we report
the RG flow of the marginal distribution of Q(Knny ). As
in the DIM, both paramagnetic and ferromagnetic fixed-
points are discovered. At the phase transition, that we
found to be at KTFIM = 1.035 with the adopted Trotter
approximation, however, the critical fixed-point is found
to have increasing variance, in sharp contrast with the
DIM, but consistent with the prediction of SDRG [9].
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FIG. 2. Distribution of Knny for the Trotter approximation
of the TFIM with KTFIM = 0.935 (left), 1.035 (middle), and
1.135 (right).

We then consider the RFIM in both 2D and 3D:

HRFIM = −KRFIM

∑
〈i,j〉

σiσj − h0

∑
i

hiσi (15)

with KRFIM positive, 〈i, j〉 nearest neighbor, and the his
independent unit Gaussian random variables. In both
dimensions, we use lattices with linear size L = 64 and
and adopt the majority rule with b = 2 for 3 RG itera-
tions. In 2D, we also do a fourth-iteration calculation on
a L = 128 lattice.

In the 2D RFIM, we use four couplings, the three even
couplings of the DIM and one odd coupling constant
KM describing the strength of the local magnetization
SiM = σi to account for the random magnetic field. As

shown in Fig. 3 (left) when KRFIM = 0.8, a coupling
strength well above 0.4407, the critical coupling of the
pure Ising model, a random field with strength h0 = 1.0
drives the spin-spin interactions to zero, in accord with
the analytical result [10]. For the first three iterations,
the distribution of KM broadens as RG iterates (Fig. 3,
right), indicating the important role of disorder in sup-
pressing the spin-spin interactions. When n = 4 as the
spin-spin interactions have been greatly suppressed, the
random fields start to decrease again. This must happen,
because random fields in an interaction-free spin system
renormalize to zero [19].
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FIG. 3. Distribution of the renormalized nearest neighbor
(left) and local magnetization (right) coupling constants for
the 2D RFIM with KRFIM = 0.8 and h0 = 1.

In the 3D RFIM, we use the six renormalized couplings
listed in the SM [19], including the nearest neighbor cou-
pling (Knn) and the local magnetic field (KM). For fixed
h0 = 0.35 and varying KRFIM the system has been an-
alyzed extensively by finite size scaling for sizes up to
L = 16, finding that a magnetic transition occurs at
KRFIM = 0.2705(3) [25]. We find consistently that the
mean value of the Hamiltonian distribution starts drifting
toward higher couplings when KRFIM = 0.27. The corre-
sponding variance shows a divergent behavior, suggesting
a strong-disorder fixed point. Interestingly, the distribu-
tion keeps a fixed non-zero mean with increasing width
even below the critical coupling, for 0.26 < KRFIM < 0.27
[19]. Within the number of RG iterations performed,
this behavior suggests the presence, in the subcritical re-
gion, of magnetic clusters with a disordered distribution
of magnetizations. The evolution of the renormalized
nearest-neighbors coupling is illustrated in Fig. 4 for
three values of KRFIM, i.e. KRFIM = 0.25 (well below
the critical coupling), KRFIM = 0.264 (slightly below the
critical coupling), and KRFIM = 0.28 (well above the
critical coupling).

Finally, we discuss the MC relaxation to equilibrium.
As shown in the SM [19], in the four examples considered
the time correlation function of the magnetization in the
biased simulation is essentially independent of the lattice
size for a given RG iteration when time is measured in
MC sweeps, while the relaxation time deteriorates very
fast as the lattice sizes get larger in the unbiased en-
semble. We also note that the RG distribution in all
the examples above appears to self-average with very lit-



5

	0

	5

	10

	15

	20

	25

	0 	0.05 	0.1 	0.15 	0.2 	0.25 	0.3

Q(
K'
)

K'nn

n=1
n=2
n=3

	0
	2
	4
	6
	8

	10
	12
	14
	16
	18
	20

	0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7
K'nn

n=1
n=2
n=3

	0
	2
	4
	6
	8

	10
	12
	14
	16
	18

	0 	0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4
K'nn

n=1
n=2
n=3
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KRFIM = 0.25 (left), 0.264 (middle), and 0.28 (right).

tle sample-to-sample fluctuation, consistent with the fact
that the RG transformation is short-ranged and that the
coupling constants are independently distributed before
coarse-graining.

In conclusion, we have described a viable method
to computationally realize real-space renormalization
for classical statistical systems with quenched disor-
der. Because the biasing mechanism is rather general,
the method can be combined with other acceleration
schemes, such as cluster algorithms as done for the DIM.
The method is capable of differentiating systems with
a finite-disorder fixed point, like the DIM, and systems
with a strong-disorder fixed point, like the disordered
Ising chain in transverse field and the 3D RFIM. In the
former case the method allows us to compute the critical
coupling and the critical exponents. In the latter case,
the method can give new insights in the behavior of the
disordered distribution close to criticality.

All the codes used in this project were written in C++,
and will be available upon request. We acknowledge sup-
port from DOE Award DE-SC0017865.
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