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APPENDIX A: DERIVATION OF THE BASIC EQUATIONS

In this appendix we derive the linearized equations governing the spiral waves in an inviscid disk [Eqs. (4a) and (4b)]. But first

we explain the approximation (1) for the circularization radius. The specific angular momentum with respect to the primary

of the stream as it crosses the L1 point at distance rL1 from the primary is j0 = Ωr2L1, where Ω =
√
G(M1 +M2)/a3. After

self-intersecting and shocking, the stream settles into an approximately circular orbit of radius rc. Insofar as the tidal field of

the companion mass M2 can be neglected, the angular momentum is then jc =
√
GM1rc. If one assumes that jc = j0, then

eq. (1) follows immediately. Of course the angular momentum of the stream is not strictly conserved. Eq. (1) overestimates

Flannery (1975)’s numerical results by 21% for q = 1/19 and by 51% for q = 19; the relative error increases monotonically

with q. Applying Flannery (1975)’s numerical method to a wider range of mass ratios,1 we find that the following empirical

formula, in which µ ≡ q/(1 + q),

rc
a
≈ (1 + q)

(rL1

a

)4
exp

(
−0.5µ1/3

)
, (A1)

has a maximum relative error . 4% for all positive q; the error is largest at q ≈ 3.

We adopt a thin-disk approximation assuming that there is no vertical motion, and work in a non-rotating coordinate

(r, φ, z) defined relative to the primary. Σ and P are the surface density and vertically integrated pressure respectively. The

system is governed by the Euler equations,

∂tΣ +∇ · (Σv) = 0, (A2a)

∂tv + v · ∇v +
∇P
Σ

= −∇(Ψ + ϕd). (A2b)

Here Ψ = −GM1/r is the gravitational potential of the primary and ϕd is the tidal potential of the binary companion; we

ignore the self gravity of the disc. The unperturbed disk has vr = 0, vφ = Ωr, with

Ω2 =
GM1

r3
+

1

rΣ0

dP0

dr
. (A3)

The subscript 0 denotes the unperturbed state. Linearizing (A2b) and (A2b) gives

∂tδΣ + Ω∂φδΣ = −1

r
[∂r(rΣ0δvr) + ∂φ(Σ0δvφ)] , (A4a)

∂tδvr + Ω∂φδvr − 2Ωδvφ = −
(

1

Σ0
∂rδP −

1

Σ2
0

dP0

dr
δΣ

)
− ∂rϕd, (A4b)

∂tδvφ + Ω∂φδvφ +
κ2δvr

2Ω
= − 1

rΣ0
∂φδP −

1

r
∂φϕd. (A4c)

Here κ2 = 2Ωr−1 d
dr

(r2Ω) is the epicyclic frequency. Assuming an azimuthal dependence of exp(imφ− imωt) (and implicitly

dropping this dependence in the perturbed variables), the above equations become

− iσδΣ = −1

r

[
d

dr
(rΣ0δvr) + imΣ0δvφ

]
, (A5a)

− iσδvr − 2Ωδvφ = −
(

1

Σ0

d

dr
δP − 1

Σ2
0

dP0

dr
δΣ

)
− d

dr
Wm, (A5b)

− iσδvφ +
κ2δvr

2Ω
= − im

rΣ0
δP − im

r
Wm. (A5c)

Here δ denotes Eulerian perturbation and σ = m(ω−Ω) is the frequency of the tide in the corotating frame and Wm the mth

azimuthal harmonic of the tidal potential, with

ϕd(r, φ, t) =

∞∑
m=2

Wm(r) exp(imφ− imωt). (A6)

In this paper, we only consider the quadrupole (m = 2) potential,

W2 = −3

4

GM2

a3
r2. (A7)

We then write the equations in terms of the radial Lagrangian displacement ξ and Eulerian enthalpy perturbation

δK ≡ δΣ/Σ0. The radial velocity is related to ξ by δvr = (∂t + Ω∂φ)ξ = −iσξ, and δΣ is given by

δΣ = −dΣ0

dr
ξ +

1

c2

(
Σ0δK +

dP0

dr
ξ

)
=

Σ0

c2
δK − Σ0N

2
0

(
dK0

dr

)−1

ξ. (A8)

Here K0 =
∫

Σ−1
0 dP0 is the unperturbed enthalpy and N0 is the Brunt-Väisälä frequency defined by eq. (3). Eliminating δvφ

from (A5a) - (A5c) and expressing the derivatives of Σ0, P0 using dK0/dr and N2
0 gives the equation of motion (4a) and (4b).

1 but we initialize the orbital integrations with the unstable linear mode near L1, whereas Flannnery starts exactly at L1 with a small ẋ
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APPENDIX B: VALIDITY OF IGNORING DISK SELF GRAVITY

Consider the gravitational potential perturbation ϕ due to the density perturbation in the disk. Assume that the disk is 2D

(i.e. zero thickness in z), we have

∇2ϕ = 4πGΣδ(z). (B1)

For z 6= 0, the WKBJ solution for ϕ is Goldreich & Tremaine (1979)

ϕ(r, z) = Φ(r) exp

(
−|k(r)z|+ i

∫ r

k(s)ds

)
. (B2)

Here as always, the linearised quantities are implicitly proportional to exp[im(φ− ωt)]. Now (B1) at z = 0 becomes

−2|k|Φ exp

(
i

∫ r

k(s)ds

)
= 4πGΣ. (B3)

Mild self-gravity modifies the WKBJ wavenumber k(r) from its value (D1), but nevertheless throughout most of the disk,

σ2 ∼ κ2 ∼ Ω2, so that

k(r) ∼ Ω/c. (B4)

Ignoring disk self gravity is a good approximation when |δϕ(r, z = 0)/δK(r)| � 1. Since∣∣∣∣δϕ(r, z = 0)

δK(r)

∣∣∣∣ ∼ ∣∣∣∣4πGδΣc/Ωc2δΣ/Σ0

∣∣∣∣ ∼ ΣdM, (B5)

On the RHS we use the normalized units of 2.1, in which 4πG, Ω, and r are O(1), and c ∼ M−1, when r is not too small

compared to the size of the Roche lobe. Self-gravity can therefore be neglected if

ΣdM∼ (Md/M1)M� 1, (B6)

in which Md is the disk mass. This condition is satisfied for typical CV disks in quiescence and in circumplanetary disks.

One caveat is that in the analysis above we are considering only regions in the disk where the WKBJ approximation is

applicable. As we show in the main text, however, density waves are mainly excited where the WKBJ approximation does

not hold. Still, based on the agreement between our result (ignoring self gravity) and that of Goldreich & Tremaine (1979)

(including self gravity) for wave excitation at an ILR, it is likely that self gravity in the wave excitation region will not

significantly affect any nontrivial excitation.

APPENDIX C: FIRST-ORDER SYSTEM

When written in terms of the scales variables y = [
√
rΣ0ξ,

√
rΣ0(δK +Wm)]T , the first order equations (4a) and (4b) become

dy

dr
= M · y + w, (C1a)

where

M =


−

[
2mΩ

rσ
+

1

2

d ln(rΣ0)

dr
−N2

0

(
dK0

dr

)−1
]

m2

r2σ2
− 1

c2

σ2 − κ2 −N2
0 +

[
2mΩ

rσ
+

1

2

d ln(rΣ0)

dr
−N2

0

(
dK0

dr

)−1
]
 , (C1b)

w =


1

c2
√
rΣ0Wm

N2
0

(
dK0

dr

)−1√
rΣ0Wm

 . (C1c)

Note that M is traceless. The eigenvalues of the system, therefore, are both purely real or both purely imaginary. Note that

this is not the unique choice of y that gives a traceless M. However, any different scaling will make M directly depend on

Σ0, while here M depends only on 1/Hr ≡ −d ln Σ0/dr.
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The eigenvalue is ±ik0 with

k20 =
σ2 − κ2 −N2

0

c2

(
1− m2c2

r2σ2

)
−

[
2mΩ

rσ
+

1

2

d ln(rΣ0)

dr
−N2

0

(
dK0

dr

)−1
]2

≈σ
2 − κ2 −N2

0

c2
−

[
1

2Hr
+N2

0

(
dK0

dr

)−1
]2
.

(C2)

In the second line, all terms that are always . O(1) are dropped. This gives the eigenvalue in (7).

Either component of y can be eliminated in favor of the other to yield a single second-order equation for the remaining

component, such as eq. (13). Although often convenient, this may introduce spurious singularities. For example, the coefficient

f(r) defined by eqs. (13) & (D1c) is singular where M12 = 0, although this is not a singularity of the first-order equations

(C1). Similarly, if one eliminates y1 in favor of y2 from the second row of eq. (C1a), a singularity appears where M21 = 0,

coinciding with the Lindblad resonances when N2
0 = 0. Although these are not true singularities, they are very nearly turning

points inasmuch as k20 is dominated by the off-diagonal terms of M. Corotation (where σ = 0) is usually a physical singularity,

however (Goldreich & Nicholson 1989).

The first-order form also allows a slightly different view of the WKBJ approximation. Let y = (q, p)T , where q(r) and

p(r) are scalar functions. Since M is traceless (M11 = −M22), eq. (C1a) is equivalent to the equations of motion generated

by the hamiltonian

H(q, p; r) =
1

2

(
M12p

2 + 2M11pq −M21q
2) + w1p− w2q , (C3)

with r playing the role of “time.” The level curves of H in the plane of (q, p) are closed when the discriminant of the quadratic

form is negative: namely, when M2
11 +M12M21 = −k20 < 0. In that case, the action

J(H; r) ≡ 1

4π

∮
H=const

(pdq − qdp)

is an adiabatic invariant: it is conserved to exponential accuracy where the logarithmic derivatives of the coefficients {Mij(r), wi(r)}
that define the hamiltonian (C3) are small compared to the oscillation frequency |k0|. This condition always fails at the turning

points (k20 = 0), but it may fail elsewhere if M or w varies rapidly.

APPENDIX D: THE SECOND ORDER EQUATION AND THE LOCAL MODEL FOR RESONANCES

D1 The second order equation

The first order equation (C1a) can be rewritten as a first order equation in y1 in the form of (13), with

p(r) = −d ln |M12|
dr

≈ d ln c2

dr
, (D1a)

k2(r) = M11

(
d lnM12

dr
− d lnM11

dr

)
+ k20 ≈ k20, (D1b)

f(r) = M12
d(M−1

12 w1)

dr
+M11w1 +M12w2

=
1

c2
√
rΣ0

(
dW2

dr
− 2mΩ

rσ
W2

)
− d ln(1−m2c2/r2σ2)

dr

1

c2
√
rΣ0W2 +

m2

r2σ2
N2

0

(
dK0

dr

)−1√
rΣ0W2

≈ 1

c2
√
rΣ0

(
dW2

dr
− 2mΩ

rσ
W2

)
. (D1c)

The approximate final equalities in each of eqs. (D1), and the final form of k20 in eq. (8), are accurate when M � 1 and

M2/r � 1/Hr, N
2
0 (dK0/dr)

−1.

D2 Obtaining the local model for resonances

Near a resonance (i.e. a zero of k20), the second-order equation can be further approximated as

d2y1
dx2

− xy1 = λ2f(r), (D2)

with x ≡ (r − rres)/λ and λ the lengthscale (25), provided that

λ� r,

∣∣∣∣d lnM12

dr

∣∣∣∣� λ−1,

∣∣∣∣ ddr
[
M11

(
d lnM12

dr
− d lnM11

dr

)]∣∣∣∣� λ−3, (D3)
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A sufficient condition for (D3) to hold is that c2, Hr, N
2
0 , dK0/dr (and σ2−κ2 when the resonance is not the ILR) are effectively

constant over distances ∼ λ� r.

Note, however, that we do not require Σ0 to be slowly varying: indeed, its scale length Hr may be comparable to λ at an

ACR or SACR, provided only that Hr itself varies slowly. The variation of f(r) in eq. (D2) is then dominated by the factor√
Σ0 that it contains. Defining α ≡ λ/2Hr [so Σ0(x) ∝ e−2αx approximately], we approximate eq. (D2) still further by putting

f(x) ≈ f(rres)e
−αx, α ≡ λ/2Hr , (D4)

which gives eq. (26).

D3 Amplitude of the ingoing wave

At large negative x, the solution to eq. (26) should consist of an ingoing wave that satisfies the homogeneous Airy equation—

plus a non-wavelike part that is in phase with the local forcing term

y1(x) ≈ Ain[Ai(x) + iBi(x)] + (−x)−1λ2f(rres)e
−αx x→ −∞. (D5)

The angular-momentum flux is proportional to the square of the first (wavelike) term, but the second term is much larger

because of the exponential factor. In the forbidden zone, y1 → 0 as x→ +∞.

To solve (26) for the coefficient Ain, we first adopt a new dependent variable u(x) = eαxy(x), which satisfies

d2u

dx2
− 2α

du

dx
+ (α2 − x)u(x) = λ2f(rres). (D6)

The solution for u(x) should tend to zero in both directions, so it will have a Fourier transform ũ(q),

u(x) =
1

2π

∞∫
−∞

eiqxũ(q) dq . (D7)

The transform ũ(q) satisfies the transform of eq. (D6),

dũ

dq
+ (−iq2 + 2αq + iα2)ũ = 2πiδ(q)λ2f(rres) , (D8)

with initial condition ũ(q) = 0 at q < 0, since the phase of u(x) should increase with x to have negative radial group velocity:

u(x) = iλ2f(rres)

∞∫
0

exp
[
1
3
iq3 − αq2 + iq(x− α2)

]
dq. (D9)

This strongly resembles the standard integral representations for the Airy functions, with convergence for all x thanks to the

factor exp(−αq2) in the integrand. For large negative x, two contributions dominate the integral. One of these comes from

the lower endpoint q ≈ 0:

unonwave(x) ≈ (α2 − x)−1λ2f(rres) +O(x−3) . (D10)

This matches the expected second term on the right side of eq. (D5) to leading order in (−x)−1. The remaining contribution

comes from the vicinity of the steepest-descent point, i.e. the point q = q0 such that ∂ψ(q, x)/∂q = 0 if ψ(q, x) represents

the argument of the exponential in the integral (D9).2 The result of the steepest-descent calculation matches the asymptotic

expansion of Ai(x) + iBi(x) to leading order, and the coefficient implies

Ain = iπλ2f(rres)e
−α3/3 . (D11)

APPENDIX E: NUMERICALLY COMPUTING THE WAVE AMPLITUDE

E1 Computing the wave amplitude using the formal solution

When the wave amplitude is not too small, it can be easily obtained using the formal solution given in §2.5. First, we compute

y1,R by integrating the homogeneous first order system in ξ and δK3 inward, using an initial condition at rmax that satisfies

the outer boundary condition. Then, we find another homogeneous solution that is linearly independent of y1,R by starting

from the middle of the disk with arbitrary initial condition and integrating inwards and outwards. y1,− needs to be a linear

combination of y1,R and this second homogeneous solution. We find the coefficients for this linear relation by minimizing∫
(d2y1,−/dr

2)2. (y1,− is often singular at 0 and rmax; in practice, we minimize
∫

(d2y1,−/dr
2)2 for 0.2rmax < r < 0.8rmax to

avoid these singularities.) Then, with y1,− and y1,R, we can compute the amplitude using (17).

2 There are two roots, q0 = −iα±
√
−x, but only one of these is close to the positive real axis if x� −1, and neither if x� +1.

3 We integrate the first-order system in order to avoid divergence of parameters at rmax.
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E2 Computing the wave amplitude using a nonwave solution

The method sketched in the previous subsection has one minor disadvantage: The integration (17) involves integrating a fast

oscillating function, which makes the numerical error nontrivial once the amplitude becomes small. Here we introduce another

method for numerically computing the wave amplitude, which helps to reduce the numerical error.

The solution that satisfies both boundary conditions can be written as

y = ynw +Ainy−. (E1)

Here ynw is a solution to the inhomogeneous problem whose angular momentum flux vanishes at r → 0 (we call it a nonwave

solution), and Ain is determined by the outer boundary condition. For r → 0, we can write ynw as a power series in r (note

that F ∼ y1y2, so F → 0 requires y1y2 → 0), whose coefficients can be easily obtained from the equations of motion. We can

then use this as the initial condition at some small r and integrate the system outwards to get ynw. Meanwhile, y− can still

be computed using the method in the previous subsection. We can then determine Ain using the outer boundary condition. In

most scenarios, ynw and y− both diverge at rmax. In this case, we determine Ain by matching their divergence for r → rmax,

i,e, Ain ≈ yi,nw/yi,− for r → rmax.

The result obtained using this method agrees with that of the previous method when amplitude is relatively large (e.g.

dimensionless amplitude Ain & 10−6). For smaller amplitudes, the numerical uncertainty of the previous method often becomes

large compared to the amplitude, whereas the method of this section converges well even for amplitude as small as Ain ∼ 10−12.

APPENDIX F: WAVE EXCITATION IN THE POLYTROPIC DISKS: ANALYTIC RESULTS

When ILR lies outside the disk, the integrand of (17) (and hence the torque density on the disk) oscillates rapidly. Such

integrals tend to be exponentially small when the envelope of the oscillation tapers slowly and smoothly to zero at both limits

of integration. The integration (17) ends abruptly at rmax, however, and furthermore has a branch point there if n = (γ−1)−1

is not an integer, becauseW−1(r) ∝ Σ0(r) ∝∼ (rmax− r)n. This raises the possibility that the disk edge makes a contribution

to eq. (17) that decreases as some power of M0 rather than exponentially. To address this possibility, we analyse eq. (13) in

a simpler local approximation.

When written in terms of K̃ ≡ K +Wm as the dependent variable instead of y1, eq. (13) becomes

d2

dr2
K̃ + p̃

d

dr
K̃ + k̃2K̃ = f̃ , (F1)

with

p̃(r) =
d

dr
ln

(
Σ0r

|σ2 − κ2|

)
, (F2)

k̃2(r) =− 2mΩ

rσ

[
d

dr
ln

(
Σ0Ω

|σ2 − κ2|

)]
− m2

r2
+
σ2 − κ2

c2
, (F3)

f̃(r) =
σ2 − κ2

c2
Wm. (F4)

At the outer edge of the disk, Σ0 and c2 both go to zero and p̃, k̃2, f̃ all have simple poles. The residue of k̃2 defines a length

scale δ,

δ−1 ≡ n
[
σ2 − κ2

ηGM1/r2
+

2mΩ

rσ

]
r=rmax

. (F5)

Note that δ/r ∼ O(η) ∼ O(M−2
0 ). So for the purpose of studying wave excitation at the disk edge when M0 � 1, it is

reasonable to discard all but the leading-order behaviors (poles) of the functions (F2), (F3), and (F4), and to adopt a scaled

independent variable

x ≡ r − rmax

δ
. (F6)

The resulting simplified equation is

x
d2K̃

dx2
+ n

dK̃

dx
− K̃ = F0 (F7)

The constant F0 = δn[r2(σ2 − κ2)Wm/ηGM1]r=rmax differs from Wm(rmax) by a small O(η) correction.

Equation (F7) has a regular singular point at x = 0. The change of variable x = −z2/4 makes it

d2K̃

dz2
+

2n− 1

z

dK̃

dz
+ K̃ = −F0 . (F8)

Clearly n = 1/2 is a particularly simple case because the homogeneous solutions are then sinusoids. The regular solution of

eq. (F7) has a convergent power series in integral powers of x and hence even powers of z, so we take cos z as the “regular”
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solution of eq. (F8). The ingoing wave is4 exp(−iz), and the coefficient of this wave as z → ∞ is formally −i
∫∞
0
F0 cos z dz

[compare eq. (17)]. As it stands, this integral is not convergent. But F0 is a proxy for Wm(r), which (since m 6= 0) tends

to zero as r → 0, corresponding to z → ∞. So we should think of F0 as a smooth slowly decreasing function F(z/M0);

furthermore F(t) = F(−t) because Wm is a regular function of r − rmax = −z2δ/4. So the amplitude of the ingoing wave is

(−i/2)M0

∫∞
−∞ F(t) cos(M0t) dt, which is exponentially small at large M0 since F(t) is smooth.

Returning now to the general case, let ν ≡ n− 1 and set K̃ = z−νw(z), so that eq. (F8) becomes

d2w

dz2
+

1

z

dw

dz
+

(
1− ν2

z2

)
w = −zνF(z/M0) . (F9)

The homogeneous solutions of this last equation are Bessel functions of order ν. The solution corresponding to the regular

homogeneous solution of (F7) is Jν(z), the ingoing wave is H
(2)
ν (z) = Jν(z) − iYν(z), and the amplitude of this wave in the

particular solution as z →∞ is

Ain(n) ≈ iπ

2

∞∫
0

zν+1Jν(z)F(z/M0) dz , (F10)

which has made use of the Wronskian W[Jν , H
(2)
ν ] = −iW[Jν , Yν ] = 2i/πz. We write “≈” rather than “=” because eq. (F10)

is based on the local approximation (F7) rather than the exact LWE. This last integral is again exponentially small, which can

be seen as follows. Set F(t) = g(t2) (since F is even in its argument) and suppose that g(u) has an inverse Laplace transform

ĝ(s), so that F(t) =
∞∫
0

ĝ(s)e−st
2

ds. Putting this into eq. (F10), reversing the order of integration, and invoking Abramowitz

& Stegun (1972, §11.4.29) yields

Ain(n) ≈ iπ

2

∞∫
0

(
M2

0

2s

)ν+1

exp

(
−M

2
0

4s

)
ĝ(s) ds

=
iπ

2
M2

0

∞∫
0

(2σ)−ν−1e−1/(4σ)ĝ(M2
0σ) dσ.

(F11)

Note finally that ĝ(s) decreases faster than any power of s as s → ∞ because g(u) = F(
√
u) has a convergent Taylor series

at u = 0 (r = rmax), so that

dkg

duk
(0) = (−1)k

∫ ∞
0

ĝ(s)sk ds

must exist. Therefore the integral (F11) decreases faster than any power of M−2
0 as M0 →∞.

To sum up, by inspecting the integral (17) we find that the excitation will be exponentially small except when the thin

region near outer edge of the disk (with characteristic size δ ∼ η) makes a nontrivial contribution. Then, we illustrated (using

the local model discussed above) that the contribution from this region decreases faster than any power ofM−2
0 asM0 →∞.

As the numerical result in §3.2 shows, this is indeed the case and the amplitude decreases exponentially as M0 increases.
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