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| Abstract—In this work, a likelihood encoder is studied in the ~ of soft-covering was first introduced in [15] and was latezdis
context of lossy source compressio.n. The analysis of thedikhood i [16] for channel resolvability.
encoder is based on a soft-covering lemma. It is demonstrate e gppication of the likelihood encoder together with the
that the use of a likelihood encoder together with the soft-avering ft - . o .
lemma gives alternative achievability proofs for classicasource SOft-covering lemma is not limited to only discrete alphabe
coding problems. The case of the rate-distortion function wih  The proof for sources from continuous alphabets is readily
side information at the decoder (i.e. the Wyner-Ziv problen) is included, since the soft-covering lemma imposes no reisinic
carefully examined and an application of the likelihood enoder  on alphabet size. Therefore, no extra work, i.e. quantiati
Elf’the mu.lt"te.rm'”&tlll. Soé”ce coding inner bound (i.e. the Beger- 4t the source, is needed to extend the standard proof for
ng region) is outlined. . ' - . .
ung region) is outli discrete sources to continuous sources &g in [8]. This aagan
l. INTRODUCTION become_s more desirable for th_e multi-terminal case, since
) ) ] eneralization of the type-covering lemma and the Markov
Rate-distortion theory, founded by Shannonlin [1] and [2jemma to continuous alphabets is non-trivial. Strong ersi
provides the fundamental limits of lossy source compressiqf the Markov lemma on finite alphabets that can prove
The minimum rate required to represent an independent afg Berger-Tung inner bound can be found in [8] and [17].
identically distributed (i.i.d.) source sequence undemery However, generalization to the continuous alphabets lisasti
tolerance of distortion is given by the rate-distortiondtion.  ongoing research topic. Some work, such [as [18], has been

Related problems such as source coding with side informgsdicated to making this transition, yet is not strong emoug
tion available only at the decoder| [3] and distributed seur¢y pe applied to the Berger-Tung case.

coding [4], [5], [€] have also been heavily studied in thetpas
decades. Standard prodfs [7], [8] of achievability for theste- Il. PRELIMINARIES
distortion problems often use joint-typicality encoding, the .
encoder looks for a codeword that is jointly typical with thé) Notation
source sequence. The distortion analysis involves bogndin A sequenceXy, ..., X,, is denoted byX™. Limits taken with
several “error” events which may come from either encodirrgspect to ## — oo” are abbreviated as—%,,”. Inequalities
or decoding. These bounds use the joint asymptotic eqiipawith limsup, _,  h, < h and liminf, ,h, > h are
tion principle (J-AEP) and its immediate consequences @s thbbreviated a%,, <,, h andh,, >,, h, respectively. WhenX
main tool. In the cases where there are multiple informatigtenotes a random variablejs used to denote a realizatiofi,
sources, such as side information at the decoder, intésacis used to denote the support of that random variable /and
arise, such as the need for a Markov lemfia [7] and [8]. Theiseused to denote the probability simplex of distributiorighw
subtleties also lead to error-prone proofs involving thalgsis alphabet¥. The symbol - | is used to denote the cardinality.
of error caused by random binning, which have been pointédMarkov relation is denoted by the symbel. We useEp,
out in several existing works [9] [10]. Pp, and Ip(X;Y) to indicate expectation, probability, and
In this paper, we propose using a likelihood encoder toutual information taken with respect to a distributiéh
achieve classical source coding results such as the Wyrlewever, when the distribution is clear from the contexg th
Ziv rate-distortion function and Berger-Tung inner bouftis ~ subscript will be omitted. To keep the notation uncluttetae
encoder has been used [n][11] to achieve the rate-distortiguments of a distribution are sometimes omitted when the
function for point-to-point communication and [nJ12] afiB] arguments’ symbols match the subscripts of the distributio
to achieve strong coordination. The advantage of the likeld €.9. Px|y (z|y) = Px|y. We use a bold capital lettdP to
encoder over a joint-typicality encoder becomes crucial @enote that a distributio® is random. We us& to denote
secrecy systems [114]. the set of real numbers arl™ to denote the nonnegative
Just as the joint-typicality encoder relies on the J-AEB, tisubset.
likelihood encoder relies on the soft-covering lemma. Theai  For a distortion measurd : X x Y — RT, we use
E[d(X,Y)] to measure the distortion of incurred by rep-
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The distortion between two sequences is defined to be themma 1 (Lemma 1.1[[11] and Lemma IV.1_[12])Given

per-letter average distortion a joint distribution Pxy, let C(™ be a random collection
L of sequences’™(m), with m = 1,...,2"% each drawn
d(z",y") = = Zd(wt,yt)- independently and i.i.d. according 1y, . Denote byPx~ the
N output distribution induced by selecting an indexuniformly
B. Total Variation Distance at random and applying’"(m) to the memoryless channel

. . L specified b . ThenifR > I(X;Y),
The total variation distance between two distributiéghand P Vx| > I( )

on the same alphabéf is defined as -
@ P Ecn || Pxo — [] Pxllzv < €n —n 0.

[P = Qllrv £ sup|P(4) — Q(A)], =1
A E. Approximation Lemma
Lemma 2. For a distribution Pyy x and0 < e < 1, if P[U #
Property 1 (Property 2 [[14]) The total variation distance V] < ¢, then
satisfies the following properties: |Prx — Pvx|lrv <e.

(a) Lete >0 and let f(x) be a function in a bounded range  The proof is omitted due to a lack of space.
with widthb € R. Then

where A ranges over all subsets of the sample space.

IIl. PROBLEM SETUP AND RESULT REVIEW
IP=Qllrv <& = [Ep[f(X)]-Eqlf(X)]| <eb. (1) A Wyner-Ziv Model Review

(b) Total variation satisfies the triangle inequality. Fonya The source and side informatioiX™, B") is distributed
Re Ay, i.i.d. according to(X;,B;) ~ Pxp. The system has the
following constraints:
P— <||P-R + |R— . 2 i .
| Qllzv < lrv _H_ .QH.TV _ @ « Encoderf,, : X" — M (possibly stochastic).
(c) Let Px Py x and Qx Py x be two joint distributions on . Decoderg, : M x B™ — Y™ (possibly stochastic).
Axxy. Then « Compression rateR, i.e. M| = 2"E,
IPxPyx — QxPyixllov = |Px — Qxllrv. () _The system perfor_m.ance is measured according to the follow-
ing distortion metric:
(d) ForanyP,Q € Axxy, « Average distortiond(X™,Y") = L ™% d(X,, ;).

[Px — Qxllrv < ||Pxy — Qxvyllrv. (4) Definition 1. A rate distortion pair(R, D) is achievable if
C. The Likelihood Encoder there exists a sequence of rafe¢ encoders and decoders

i o ] ) (fn, gn), such thatkE [d(X™, Y™)] <, D.

We define the likelihood encoder, operating at f&tevhich o ] ) o N
receives a sequenas, ..., z, and maps it to a messagé ¢ Definition 2. The rate distortion function isR(D) =
[1:2"%]. In normal usage, a decoder then ugégo form an inf((r,p) is achievabig -
approximate reconstruction of the, ..., z,, sequence. The above mathematical formulation is illustrated in Eig. 1

The encoder is specified by a codeboolg®bfm) sequences
and a joint distributionPxy . Consider the likelihood function

for each codeword, with respect to a memoryless channel from B"
Y to X, defined as follows: |
L(m|z™) £ Pynjyn (a7 (m)). X" |Encoder M [Decoder y"
n gn

A likelihood encoder is a stochastic encoder that detersine

the message index with probability proportional&¢m|z"), Fig. 1: The Wyner-Ziv problem: rate-distortion for souraling with
side information at the decoder

ie.
L(ml|z"™) B. Rate-Distortion Function of Wyner-Ziv
Phrjxn (mlz™) = D Lm/|z%) o< L{mlz"™). The solution to this source coding problem is given in
m! €12 7] [3]. The rate-distortion function with side information tite

D. Soft-Covering Lemma decoder is

Now we introduce the core lemma that serves as the R(D) = min I(X;V|B) (5)
foundation for this analysis. One can consider the role ef th Py xpEM(D) P
soft-covering lemma in analyzing the likelihood encoder gshere

analogous to that of the J-AEP which is used for the analysis o

joint-typicality encoders. The general idea of the softaring M(D) = {FWXB V—X-B,|V| <|X|+1,
lemma is that the distribution induced by selecting unifigrm i
from a random codebook and passing the codeword through and there exists

a memoryless channel is close to an i.i.d. distribution aglo 3 function¢ s.t. E [d(X,Y)] < D,Y £ ¢(V, B)}. (6)
as the codebook size is large enough.



IV. ACHIEVABILITY PROOFUSING THE LIKELIHOOD decoder, let(-, -) be the function corresponding to the choice
ENCODER of Py|xp in (@), thatisY = ¢(V, B) andE5 [d(X,Y)] < D.

Our proof technique involves using the likelihood encoddf€fine¢” (v",b") as the concatenatiopp(v:, by) }i; and set
and a channel decoder and showing that the behavior of {ng decodeiPs to be the deterministic function
system is approximated by a well-behaved distribution.dExa Po(y"|m, i/, b") 2 1{y" = ¢"(V"(m, '), b™)}.
bounds are obtained by using the soft-covering lemma to
analyze how well the approximating distribution matches th Analysis: We will need three distributions for the analysis,
system. For the readers’ reference, a very short and simfiie induced distributiol® and two approximating distributions
achievability proof for point-to-point lossy compressioas Q) andQ(?). The idea is to show that 1) the system has nice
provided in [11], which will serve to familiarize the readembehavior for distortion unde®Q®; and 2)P and Q® are
with the proof techniques in this paper using the likelihoodose in total variation (averaged over the random codebook

encoder. throughQ().

We will introduce a virtual message which is produced by
the encoder but not physically transmitted to the receieer s ﬂ) n , X"
that this virtual message together with the actual message g M cn v (M? M ) PXBW B”>
a high enough rate for applying the soft-covering lemmaurThe s >

we show that this virtual message can be reconstructed with
vanishing error probability at the decoder by using the side

information. This is analogous to the technique of random Now we will design an auxiliary distributior) through a

binning. . test channel as shown in Figl 2. The joint distribution under
Let R > R(D), whereR(D) is from (8). We prove thaR? ( in Fig.[2 can be written as

is achievable for distortiorD. Let M’ be a virtual message

with rate R’ which is not physically transmitted. By the Qi pnyvmarn
rate-distortion formula(@), we can fix Py xp € M(D), = Qurae Qurinrar Qxcnpr v
(PV|XB = PV|X) SL-ICh thatR + R-I > IF(X,V) and _ 1 _ ]].{'Un :V"(m,m/)}
R’ < Is(V; B). We will use the likelihood encoder derived 2"(F+#")

from Pxy and a random codebook™(m,m’)} generated

according toPy to prove the result. The decoder will first= sy L{v" = V" (m,m)}
use the transmitted messaf§ie and the side informatiof™

to decode)’ as M’ and reproduce)” (M, M’). Then the \yhere(@) follows from the Markov chain undeF, V — X — B.

reconstruction’™ is produced as a function @™ andV"™. | fact, the reason for choosing the likelihood encoder iles
The distribution induced by the encoder and decoder is
P - Quumrix» =Pre. (10)
XnB"MM'M'Y™

£ ﬁX"B"PJVI]M/\X"PA}/U\/]BnPyn‘A/INI/Bn (7) Furthermore, it can be verified that
-

Fig. 2: Auxiliary distribution with test channeP x 5y

=

Pxpjv(we, be|Vi(m,m'))

t

1

=

ﬁX‘V(l'A’Ut)ﬁB\X(bt'xt) (9)

~
Il

PxrnpnPrp(m,m'|z")Pp('[m, b")Pa (y"|m, i ,b")  (8) Ectm) [Qxnpryn(z”,0",0™)] = Pxnpnya (2™, 0", 0"), (11)

where Py is the likelihood encoderPp(m/|m,b") is o .5 . S

. . ’ P n n n h ol . P .
the first part of the decoder that estimates as /i/; and [()a(;?in eX tva/oV digﬁgzisasngs(;)l inglsc,tzrggUté)zlgetglong‘;s
Py (y"|m,m',b") is the second part of the decoder thagyows:

reconstructs the source sequence. Note that the distitauti
are random due to the random codebook. QgiBnVnMM,]gpyn £ Qxnpnyvnua PoPa(y"m, ', 0") (12)

We now concisely restate the_behavior_of _the_encoder a ;LBWWMM/M/W 2 Qunpnynnine PoPo(y"fm,m’, 0. (13)
decoder, as components of the induced distribution.

Codebook generation We independently generate Notice thatQ(® differs from Q) by allowing the decoder
2n(B+1) sequences i according to[]_, Pv(v;) and to usem’ rather thanii’ when forming its reconstruction
index by (m,m’) € [1: 2"8] x [1 : 2"%']. We useC™ to throughg¢™.
denote the random codebook. Therefore, on account off1)),

Encoder. The encoderP .z (m,m/|z™) is the likelihood
encoder that choosdd and M’ stochastically with probability
proportional to the likelihood function given by Consequently,

2 n n n n 5) n n n n
c(n) [QE(LB”V”Y"(I. 7b VY )} :PX”B"V"Y"(:E 7b UL, Y )

L(m,m/[2") = Pxajyn(a"|V"(m,m)). Ece [Eqe [d(X™, Y™)]] = Ep [d(X,Y))]. (14)

Decoder. The decoder has two steps. I.léb_(m’]m,b") be Now applying the soft-covering lemma, sinde+ R’ >
a good channel decoder (e.g. the maximum likelihood de()od?i(B X;V) = I(X;V), we have

r
with respect to the sub-codebo6k”) (m) = {v"(m,a)}, and " -
the memoryless channdtpy,. For the second part of the Ecmy [HPXan — QXanHTV] <€, —n 0.



And with ), ([I0), (I2)), and Propertj]1(c), we obtain Definition 3. (Ri, R2) is achievable under distortion level
o (D1, Do) if there exists a sequence of rat&;, R2) encoders
Eem [HPXanMM/M/yn = Qg iy HTV} < €x (15) and decodersf1,,, f2,,, gn) Such that

Q(Q) E[dl(Xl 7Y1 )] Sn Dla

Since by definitionQ ‘" Xm B M ML
E[d2(X2",Y2")] <5 Da.

X"BrMM'M'
Y £ Pqoy [M' # M') = Py [M' # M.
The achievable rate region is not yet known in general. But
an inner bound, reproduced below, was givenin [4] and [5] and
is known as the Berger-Tung inner bound. The raies, R2)
are achievable if

Also, since R" < I(V;B), the codebook is randomly gen-
erated, andM’ is uniformly distributed unden, it is well
known that the maximum likelihood decodPr, (as well as
a variety of other decoders) will drive the error probapitid

zero asn goes to infinity. Specifically, Ry > Ip(Xy;Us|Us), (20)
E. [Po [M’#M’]} <5 0 Ry > Ip(X2;Uz2|Uh), (21)

co P - Ri+ Ry > Ip(Xy1,Xo;Uy,Us) (22)

Applying Lemma’2, we obtain for some Py, x,x,u, = Px,x,Puv,x,Pusx,, and func-
EC(")|‘Q§21'B”ILIM’ _ Qg?zanMM/IITV < Eewm [Y] < 6,. (16) tions ¢y (-, -) such thatE[dy (Xk, Yy)] < Dy, whereYy =

or(Ur,Us), k = 1,2.[?]

B. Proof Sketch Using the Likelihood Encoder

Ecem {HQQ,BHMM,W - QXanMM/Yn”TV} <d,.. (17)  For simplicity, we will focus on the corner
points, C} £ (I5(X1;Uh), I5(Xo; Us|Uy))  and
Combining(l3) and(17) and using Properfd 1(b) (d), we haves, 2 (1 (x,. 1/, |Us), I (XQ,UQ)), 'of the region given

Thus by Propert{]1(c) and definitiorf2) and (I3,

in (20) through(m]) and use convexity to claim the complete
n nyn — Q% hn < en+0n, , . !
Eew {”PX Y QX Y HTV} Sénto (18) region. Below we demonstrate how to achieéve The point
wheree,, andé,, are the error terms introduced from the softC2 follows by symmetry.
covering lemma and channel coding, respectively. Fix @ Py, v,/ x,x, = Puy|x, Pus|x, and functionspy (-, -)
Using PropertyTi(a) andd) and ([I8), we have such thatY, = ¢x(U1,Uz2) and Ep [di(Xy, Yi)] < Dr.

Note thatU; — X1 — Xo — Us forms a Markov chain
Ece [Ep[d(X"™,Y™)]] <Ep[d(X,Y)] + dnaz(en + 0r). (19) under P. We must show that any ratés;, R,) satisfying
Ry > I(X1;Ur) and Ry > I5(X2; Us|Uy ) are achievable.

Therefore, there exists a codebook under which First we will use the likelihood encoder derived frd_ﬂ)(1 U

Ep[d(X"™,Y™)] <, D. and a random codebooku:,"(m1)} generated according to

Py, for Encoder 1. Then we will use the likelihood en-

V. EXTENSION TODISTRIBUTED LOSSY SOURCE coder derived fromPy,y, and another random codebook
COMPRESSION {us™(ma,mb)} generated according t&y, for Encoder 2.

The application of the likelihood encoder can go beyon'lfxhe decoder will use the transmitted messddge to decode
single-user communications. In this section, we will mglan U1i", as in the point-to-point case, and use the transmitted

alternative proof for achieving the Berger-Tung inner biun messageé/; along with the decodet!; " to decode\/; asMj,
as in the Wyner-Ziv case, and reprodudg M-, Mj}). Finally,

A. Berger-Tung Model Review the decoder outputs the reconstructidng' as functions of

We now assume a pair of correlated sour¢&s”, X,"), Ui"andUp"™. _
distributed i.i.d. according t¢X,, X»;) ~ Px, x,, indepen- The distribution induced by the encoders and decoder is

dent encoders, and a joint decoder, satisfying the follgwin X _ B
constraints: le"'Xz”’UlanMzMéMéYWYQn = Px;nx,nP1Py
« Encoder 1f;, : X1" — M, (possibly stochastic).
" P1 é PMllxlnPUln‘]\/fl (23)

« Encoder 2f5,, : X" — My (possibly stochastic).
« Decoderg, : M; x My — Y™ x W™ (possibly P,

lI>

PM2M§|X2HPM§|M2U1"’ H PYk"\U1"MzM§(24)

stochastic). k=1,2
o Compression ratesk;, R, i.e. |[M | = 2™ |M,| =
2nRzp 1, R, i.e. [My] |Ma| 2 Py Po [] Po, (25)

k=1,2
The system performance is measured according to the follow-
ing distortion metric: where again/; plays the role of the virtual message that is

nvn n not physically transmitted as in the ner-Ziv case.
o Eldp(Xe" V") = 200 de(Xpe, Yie), b = 1,2, physicaty Wy

Where di(-,-) can be different distortion measures for ippg region, after optimizing over auxiliary variablesjrisfact not convex,
different k. so it can be improved to the convex hull through time-sharing



Codebook generation We independently generatg'
sequences itY; " according tq [}, P, (u1,) and index them
by mi € [1 : 2"7], and independently generage (72 +72)
sequences it¥," according tq [}, Pu, (u2;) and index them
by (ma,mb) € [1 : 2F2] x [1 : 27%2). We useC\™ andc{™
to denote the two random codebooks, respectively.

Encoders Encoder 1P, x,~ is the likelihood encoder
according toPx,»y,» and CE"). Encoder 2Py, arp x,n 1S
the likelihood encoder according ®x,»7,» andCé").

Decoder First, let Py, (5, be aC§") codeword lookup

Note that under this definition d;, we have
QixlnxanlnMQMéMéYlnyzn($1n7$2nyuln7m27m/27m,27yln7y2n)

n n n ! ~ ! n n n n
= Pxnx,nun (21, 22", ur ") Pa(ma, mo, tha, y1™, y2 22", ua™).

By Property(1(b),

Ecin) [Ep [di( X", Y:™)]]
Eeo [Bq [di(Xx", Yi"™)]] + dmazein
EQ’{ [dk(anv Ykn)] + dmaweln-

(29)
(30)

Note thatQj is exactly of the form of the induced distribu-

decoder. Then, letPp(r4|me,u1™) be a good channel tion P in the Wyner-Ziv proof of the previous section, with the

decoder with respect to the sub—codeboﬁ&(l)(mg)

inconsequential modification that there are two reconstus

{uz"(mg2,a)}. and the memoryless channél;, ;;,. Last, and two distortion functions. With the same technique@ld

defineg;” (u1™, u2™) as the concatenatiofpy, (w14, uay) iy
and set the decodeBy ;, to be the deterministic functions

Po i (yr" [ur™, ma, ms) = 1{ye" = ¢r" (ur™, U™ (ma, )}

through (I9]), we obtain

Eooo [Eq; [di(Xe", Y2™)]]

S EF [dk (Xk7 Yk)] + dmam(€2n + 5n>a (31)

Analysis: We will need the following distributions: the wheree,,, andd,, are error terms introduced from the soft-
induced distributionP and auxiliary distributionsQ; and covering lemma and channel decoding, respectively.
Qi. The general idea of the proof is as follows: Encoder Finally, taking the expectation ovér](" and using30) and

1 makesP and Q; close in total variation. DistributiorQ;
(random only with respect to the second codebdé’k)) is
the expectation oQ; over the random codebo«ﬂ%"). This is
really the key step in the proof. By considering the expémtat
of the distribution with respect t6\", we effectively remove 1]
Encoder 1 from the problem and turn the message from
Encoder 1 into memoryless side information at the decodel?!
Hence, the two distortions (averaged o@é?)) underP are [3]
roughly the same as the distortions un@gr, which is a much
simpler distribution. We then recogni%@; as preciselyP in
[®) from the Wyner-Ziv proof of the previous section, with a
source pair(X;, X3), a pair of reconstructionéyy, Y5) and
U as the side information.

1) The auxiliary distributionQ; takes the following form:

(4
(5]
(6]

(7]

[8]
Ql]\/flUlnXl"Xg”(mlvulna'Tln7$2n) o]
1 _
]].{’U,ln = Uln(ml)}len‘Uln (x1"|u1")

Qle”Xz"Ul"M1M2M§NT§Y1"Y2" = Ql]\/flUlnXl”Xz"PQ

2nR1

FX2"\X1”’(J;2”|$1”) [10]

(26)

where P, was defined earlier in25). Applying the soft- [11]
covering lemma, sinc&; > I5(X1;Uy),
[12]

Econ [1Qixp = Pxpllrv| < e = 0. 13

Consequently,
Een [1Q1 ~ Pllzv] < 1, .
[15]

where Q; and P are distributions over random variables
X1n7 XQn) Uln) Ml) M27 Mé) Mé) Yln) and}/Qn
2) Taking the expectation over codebo@ﬂ?), we define

(27)

[16]
[17]

(28]

*
Q1X1"’XQ"UlT"]\/IQJ\/IQ’]\/IQ’YlnYQ”

E (28)

clm |:Q1X1"X2"U1"M21WéNféYlnYQ"} :

1),
Ecén) |:EC§TL) [EP [dk(an7 Ykn)]]:| S Dk+dmax(eln+e2n+5n)-
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