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Abstract—In this work, a likelihood encoder is studied in the
context of lossy source compression. The analysis of the likelihood
encoder is based on a soft-covering lemma. It is demonstrated
that the use of a likelihood encoder together with the soft-covering
lemma gives alternative achievability proofs for classical source
coding problems. The case of the rate-distortion function with
side information at the decoder (i.e. the Wyner-Ziv problem) is
carefully examined and an application of the likelihood encoder
to the multi-terminal source coding inner bound (i.e. the Berger-
Tung region) is outlined.

I. I NTRODUCTION

Rate-distortion theory, founded by Shannon in [1] and [2],
provides the fundamental limits of lossy source compression.
The minimum rate required to represent an independent and
identically distributed (i.i.d.) source sequence under a given
tolerance of distortion is given by the rate-distortion function.
Related problems such as source coding with side informa-
tion available only at the decoder [3] and distributed source
coding [4], [5], [6] have also been heavily studied in the past
decades. Standard proofs [7], [8] of achievability for these rate-
distortion problems often use joint-typicality encoding,i.e. the
encoder looks for a codeword that is jointly typical with the
source sequence. The distortion analysis involves bounding
several “error” events which may come from either encoding
or decoding. These bounds use the joint asymptotic equiparti-
tion principle (J-AEP) and its immediate consequences as the
main tool. In the cases where there are multiple information
sources, such as side information at the decoder, intricacies
arise, such as the need for a Markov lemma [7] and [8]. These
subtleties also lead to error-prone proofs involving the analysis
of error caused by random binning, which have been pointed
out in several existing works [9] [10].

In this paper, we propose using a likelihood encoder to
achieve classical source coding results such as the Wyner-
Ziv rate-distortion function and Berger-Tung inner bound.This
encoder has been used in [11] to achieve the rate-distortion
function for point-to-point communication and in [12] and [13]
to achieve strong coordination. The advantage of the likelihood
encoder over a joint-typicality encoder becomes crucial in
secrecy systems [14].

Just as the joint-typicality encoder relies on the J-AEP, the
likelihood encoder relies on the soft-covering lemma. The idea
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of soft-covering was first introduced in [15] and was later used
in [16] for channel resolvability.

The application of the likelihood encoder together with the
soft-covering lemma is not limited to only discrete alphabet.
The proof for sources from continuous alphabets is readily
included, since the soft-covering lemma imposes no restriction
on alphabet size. Therefore, no extra work, i.e. quantization
of the source, is needed to extend the standard proof for
discrete sources to continuous sources as in [8]. This advantage
becomes more desirable for the multi-terminal case, since
generalization of the type-covering lemma and the Markov
lemma to continuous alphabets is non-trivial. Strong versions
of the Markov lemma on finite alphabets that can prove
the Berger-Tung inner bound can be found in [8] and [17].
However, generalization to the continuous alphabets is still an
ongoing research topic. Some work, such as [18], has been
dedicated to making this transition, yet is not strong enough
to be applied to the Berger-Tung case.

II. PRELIMINARIES

A. Notation

A sequenceX1, ..., Xn is denoted byXn. Limits taken with
respect to “n → ∞” are abbreviated as “→n”. Inequalities
with lim supn→∞ hn ≤ h and lim infn→∞ hn ≥ h are
abbreviated ashn ≤n h andhn ≥n h, respectively. WhenX
denotes a random variable,x is used to denote a realization,X
is used to denote the support of that random variable, and∆X

is used to denote the probability simplex of distributions with
alphabetX . The symbol| · | is used to denote the cardinality.
A Markov relation is denoted by the symbol−. We useEP ,
PP , and IP (X ;Y ) to indicate expectation, probability, and
mutual information taken with respect to a distributionP ;
however, when the distribution is clear from the context, the
subscript will be omitted. To keep the notation uncluttered, the
arguments of a distribution are sometimes omitted when the
arguments’ symbols match the subscripts of the distribution,
e.g. PX|Y (x|y) = PX|Y . We use a bold capital letterP to
denote that a distributionP is random. We useR to denote
the set of real numbers andR+ to denote the nonnegative
subset.

For a distortion measured : X × Y 7→ R
+, we use

E [d(X,Y )] to measure the distortion ofX incurred by rep-
resenting it asY . The maximum distortion is defined as

dmax = max
(x,y)∈X×Y

d(x, y).
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The distortion between two sequences is defined to be the
per-letter average distortion

d(xn, yn) =
1

n

n
∑

t=1

d(xt, yt).

B. Total Variation Distance

The total variation distance between two distributionsP and
Q on the same alphabetX is defined as

‖P −Q‖TV , sup
A

|P (A)−Q(A)|,

whereA ranges over all subsets of the sample space.

Property 1 (Property 2 [14]). The total variation distance
satisfies the following properties:
(a) Let ε > 0 and letf(x) be a function in a bounded range

with width b ∈ R. Then

‖P−Q‖TV < ε =⇒
∣

∣EP [f(X)]−EQ[f(X)]
∣

∣ < εb. (1)

(b) Total variation satisfies the triangle inequality. For any
R ∈ ∆X ,

‖P −Q‖TV ≤ ‖P −R‖TV + ‖R−Q‖TV . (2)

(c) Let PXPY |X and QXPY |X be two joint distributions on
∆X×Y . Then

‖PXPY |X −QXPY |X‖TV = ‖PX −QX‖TV . (3)

(d) For anyP,Q ∈ ∆X×Y ,

‖PX −QX‖TV ≤ ‖PXY −QXY ‖TV . (4)

C. The Likelihood Encoder

We define the likelihood encoder, operating at rateR, which
receives a sequencex1, ..., xn and maps it to a messageM ∈
[1 : 2nR]. In normal usage, a decoder then usesM to form an
approximate reconstruction of thex1, ..., xn sequence.

The encoder is specified by a codebook ofyn(m) sequences
and a joint distributionPXY . Consider the likelihood function
for each codeword, with respect to a memoryless channel from
Y to X , defined as follows:

L(m|xn) , PXn|Y n(xn|yn(m)).

A likelihood encoder is a stochastic encoder that determines
the message index with probability proportional toL(m|xn),
i.e.

PM|Xn(m|xn) =
L(m|xn)

∑

m′∈[1:2nR] L(m
′|xn)

∝ L(m|xn).

D. Soft-Covering Lemma

Now we introduce the core lemma that serves as the
foundation for this analysis. One can consider the role of the
soft-covering lemma in analyzing the likelihood encoder as
analogous to that of the J-AEP which is used for the analysis of
joint-typicality encoders. The general idea of the soft-covering
lemma is that the distribution induced by selecting uniformly
from a random codebook and passing the codeword through
a memoryless channel is close to an i.i.d. distribution as long
as the codebook size is large enough.

Lemma 1 (Lemma 1.1 [11] and Lemma IV.1 [12]). Given
a joint distribution PXY , let C(n) be a random collection
of sequencesY n(m), with m = 1, ..., 2nR, each drawn
independently and i.i.d. according toPY . Denote byPXn the
output distribution induced by selecting an indexm uniformly
at random and applyingY n(m) to the memoryless channel
specified byPX|Y . Then ifR > I(X ;Y ),

ECn‖PXn −

n
∏

t=1

PX‖TV ≤ ǫn →n 0.

E. Approximation Lemma

Lemma 2. For a distributionPUV X and0 < ε < 1, if P[U 6=
V ] ≤ ε, then

‖PUX − PV X‖TV ≤ ε.

The proof is omitted due to a lack of space.

III. PROBLEM SETUP AND RESULT REVIEW

A. Wyner-Ziv Model Review

The source and side information(Xn, Bn) is distributed
i.i.d. according to(Xt, Bt) ∼ PXB. The system has the
following constraints:

• Encoderfn : Xn 7→ M (possibly stochastic).
• Decodergn : M×Bn 7→ Yn (possibly stochastic).
• Compression rate:R, i.e. |M| = 2nR.

The system performance is measured according to the follow-
ing distortion metric:

• Average distortion:d(Xn, Y n) = 1
n

∑n

t=1 d(Xt, Yt).

Definition 1. A rate distortion pair(R,D) is achievable if
there exists a sequence of rateR encoders and decoders
(fn, gn), such thatE [d(Xn, Y n)] ≤n D.

Definition 2. The rate distortion function isR(D) ,

inf{(R,D) is achievable} R.

The above mathematical formulation is illustrated in Fig. 1.

Fig. 1: The Wyner-Ziv problem: rate-distortion for source coding with
side information at the decoder

B. Rate-Distortion Function of Wyner-Ziv

The solution to this source coding problem is given in
[3]. The rate-distortion function with side information atthe
decoder is

R(D) = min
PV |XB∈M(D)

IP (X ;V |B), (5)

where

M(D) =

{

PV |XB : V −X −B, |V| ≤ |X |+ 1,

and there exists

a functionφ s.t.E [d(X,Y )] ≤ D,Y , φ(V,B)

}

. (6)



IV. A CHIEVABILITY PROOF USING THE L IKELIHOOD

ENCODER

Our proof technique involves using the likelihood encoder
and a channel decoder and showing that the behavior of the
system is approximated by a well-behaved distribution. Exact
bounds are obtained by using the soft-covering lemma to
analyze how well the approximating distribution matches the
system. For the readers’ reference, a very short and simple
achievability proof for point-to-point lossy compressionwas
provided in [11], which will serve to familiarize the reader
with the proof techniques in this paper using the likelihood
encoder.

We will introduce a virtual message which is produced by
the encoder but not physically transmitted to the receiver so
that this virtual message together with the actual message gives
a high enough rate for applying the soft-covering lemma. Then
we show that this virtual message can be reconstructed with
vanishing error probability at the decoder by using the side
information. This is analogous to the technique of random
binning.

Let R > R(D), whereR(D) is from (5). We prove thatR
is achievable for distortionD. Let M ′ be a virtual message
with rate R′ which is not physically transmitted. By the
rate-distortion formula(5), we can fix PV |XB ∈ M(D),
(PV |XB = PV |X ) such thatR + R′ > IP (X ;V ) and
R′ < IP (V ;B). We will use the likelihood encoder derived
from PXV and a random codebook{vn(m,m′)} generated
according toPV to prove the result. The decoder will first
use the transmitted messageM and the side informationBn

to decodeM ′ as M̂ ′ and reproducevn(M, M̂ ′). Then the
reconstructionY n is produced as a function ofBn andV n.

The distribution induced by the encoder and decoder is

P
XnBnMM′M̂′Y n

, PXnBnPMM′ |XnP
M̂′|MBnPY n|MM̂′Bn (7)

, PXnBnPLE(m,m
′|xn)PD(m̂′|m, b

n)PΦ(y
n|m, m̂

′
, b

n) (8)

where PLE is the likelihood encoder;PD(m̂′|m, bn) is
the first part of the decoder that estimatesm′ as m̂′; and
PΦ(y

n|m, m̂′, bn) is the second part of the decoder that
reconstructs the source sequence. Note that the distributions
are random due to the random codebook.

We now concisely restate the behavior of the encoder and
decoder, as components of the induced distribution.

Codebook generation: We independently generate
2n(R+R′) sequences inVn according to

∏n

i=1 PV (vi) and
index by (m,m′) ∈ [1 : 2nR] × [1 : 2nR

′

]. We useC(n) to
denote the random codebook.

Encoder: The encoderPLE(m,m′|xn) is the likelihood
encoder that choosesM andM ′ stochastically with probability
proportional to the likelihood function given by

L(m,m′|xn) = PXn|V n(xn|V n(m,m′)).

Decoder: The decoder has two steps. LetPD(m̂′|m, bn) be
a good channel decoder (e.g. the maximum likelihood decoder)
with respect to the sub-codebookC(n)(m) = {vn(m, a)}a and
the memoryless channelPB|V . For the second part of the

decoder, letφ(·, ·) be the function corresponding to the choice
of PV |XB in (6), that isY = φ(V,B) andEP [d(X,Y )] ≤ D.
Defineφn(vn, bn) as the concatenation{φ(vt, bt)}nt=1 and set
the decoderPΦ to be the deterministic function

PΦ(y
n|m, m̂′, bn) , 1{yn = φn(V n(m, m̂′), bn)}.

Analysis: We will need three distributions for the analysis,
the induced distributionP and two approximating distributions
Q(1) andQ(2). The idea is to show that 1) the system has nice
behavior for distortion underQ(2); and 2)P and Q(2) are
close in total variation (averaged over the random codebook)
throughQ(1).

Fig. 2: Auxiliary distribution with test channelPXB|V

Now we will design an auxiliary distributionQ through a
test channel as shown in Fig. 2. The joint distribution under
Q in Fig. 2 can be written as

QXnBnV nMM′

= QMM′QV n|MM′QXnBn|MM′

=
1

2n(R+R′)
1{vn = V

n(m,m
′)}

n
∏

t=1

PXB|V (xt, bt|Vt(m,m
′))

=
1

2n(R+R′)
1{vn = V

n(m,m
′)}

n
∏

t=1

PX|V (xt|vt)PB|X (bt|xt) (9)

where(9) follows from the Markov chain underP , V −X−B.
In fact, the reason for choosing the likelihood encoder liesin

QMM ′|Xn = PLE . (10)

Furthermore, it can be verified that

EC(n) [QXnBnV n(xn, bn, vn)] = PXnBnV n(xn, bn, vn), (11)

wherePXnBnV n denotes the i.i.d. distribution
∏n

t=1 PXBV .
Define two distributionsQ(1) and Q(2) based onQ as

follows:

Q
(1)

XnBnV nMM′M̂′Y n
, QXnBnV nMM′PDPΦ(y

n|m, m̂
′
, b

n) (12)

Q
(2)

XnBnV nMM′M̂′Y n
, QXnBnV nMM′PDPΦ(y

n|m,m
′
, b

n). (13)

Notice thatQ(2) differs fromQ(1) by allowing the decoder
to usem′ rather thanm̂′ when forming its reconstruction
throughφn.

Therefore, on account of(11),

EC(n)

[

Q
(2)
XnBnV nY n(x

n
, b

n
, v

n
, y

n)
]

= PXnBnV nY n(xn
, b

n
, v

n
, y

n).

Consequently,

EC(n)

[

EQ(2) [d(Xn, Y n)]
]

= EP [d(X,Y )] . (14)

Now applying the soft-covering lemma, sinceR + R′ >

IP (B,X ;V ) = IP (X ;V ), we have

EC(n)

[

‖PXnBn −QXnBn‖TV

]

≤ ǫn →n 0.



And with (8), (10), (12), and Property 1(c), we obtain

EC(n)

[

‖P
XnBnMM ′M̂ ′Y n −Q

(1)

XnBnMM ′M̂ ′Y n
‖TV

]

≤ ǫn (15)

Since by definitionQ(1)

XnBnMM ′M̂ ′
= Q

(2)

XnBnMM ′M̂ ′
,

Υ , PQ(1) [M̂ ′ 6= M ′] = PQ(2) [M̂ ′ 6= M ′].

Also, sinceR′ < I(V ;B), the codebook is randomly gen-
erated, andM ′ is uniformly distributed underQ, it is well
known that the maximum likelihood decoderPD (as well as
a variety of other decoders) will drive the error probability to
zero asn goes to infinity. Specifically,

EC(n)

[

PQ(1) [M ′ 6= M̂ ′]
]

≤ δn →n 0.

Applying Lemma 2, we obtain

EC(n)‖Q
(1)

XnBnMM̂ ′
−Q

(2)
XnBnMM ′‖TV ≤ EC(n) [Υ] ≤ δn. (16)

Thus by Property 1(c) and definitions(12) and (13),

EC(n)

[

‖Q
(1)

XnBnMM̂ ′Y n
−Q

(2)
XnBnMM ′Y n‖TV

]

≤ δn. (17)

Combining(15) and(17) and using Property 1(b) (d), we have

EC(n)

[

‖PXnY n −Q
(2)
XnY n‖TV

]

≤ ǫn + δn, (18)

whereǫn andδn are the error terms introduced from the soft-
covering lemma and channel coding, respectively.

Using Property 1(a) and(14) and (18), we have

EC(n) [EP[d(X
n, Y n)]] ≤ EP [d(X,Y )] + dmax(ǫn + δn). (19)

Therefore, there exists a codebook under which

EP [d(X
n, Y n)] ≤n D.

V. EXTENSION TO DISTRIBUTED LOSSYSOURCE

COMPRESSION

The application of the likelihood encoder can go beyond
single-user communications. In this section, we will outline an
alternative proof for achieving the Berger-Tung inner bound.

A. Berger-Tung Model Review

We now assume a pair of correlated sources(X1
n, X2

n),
distributed i.i.d. according to(X1t, X2t) ∼ PX1X2 , indepen-
dent encoders, and a joint decoder, satisfying the following
constraints:

• Encoder 1f1n : X1
n 7→ M1 (possibly stochastic).

• Encoder 2f2n : X2
n 7→ M2 (possibly stochastic).

• Decoder gn : M1 × M2 7→ Y1
n × Y2

n (possibly
stochastic).

• Compression rates:R1, R2, i.e. |M1| = 2nR1 , |M2| =
2nR2 .

The system performance is measured according to the follow-
ing distortion metric:

• E[dk(Xk
n, Yk

n)] = 1
n

∑n

t=1 dk(Xkt, Ykt), k = 1, 2,
where dk(·, ·) can be different distortion measures for
differentk.

Definition 3. (R1, R2) is achievable under distortion level
(D1, D2) if there exists a sequence of rate(R1, R2) encoders
and decoders(f1n, f2n, gn) such that

E[d1(X1
n, Y1

n)] ≤n D1,

E[d2(X2
n, Y2

n)] ≤n D2.

The achievable rate region is not yet known in general. But
an inner bound, reproduced below, was given in [4] and [5] and
is known as the Berger-Tung inner bound. The rates(R1, R2)
are achievable if

R1 > IP (X1;U1|U2), (20)

R2 > IP (X2;U2|U1), (21)

R1 +R2 > IP (X1, X2;U1, U2) (22)

for some PU1X1X2U2 = PX1X2PU1|X1
PU2|X2

, and func-
tions φk(·, ·) such thatE[dk(Xk, Yk)] ≤ Dk, where Yk ,

φk(U1, U2), k = 1, 2. 1

B. Proof Sketch Using the Likelihood Encoder

For simplicity, we will focus on the corner
points, C1 , (IP (X1;U1), IP (X2;U2|U1)) and
C2 , (IP (X1;U1|U2), IP (X2;U2)), of the region given
in (20) through(22) and use convexity to claim the complete
region. Below we demonstrate how to achieveC1. The point
C2 follows by symmetry.

Fix a PU1U2|X1X2
= PU1|X1

PU2|X2
and functionsφk(·, ·)

such thatYk = φk(U1, U2) and EP [dk(Xk, Yk)] < Dk.
Note that U1 − X1 − X2 − U2 forms a Markov chain
underP . We must show that any rates(R1, R2) satisfying
R1 > IP (X1;U1) andR2 > IP (X2;U2|U1) are achievable.

First we will use the likelihood encoder derived fromPX1U1

and a random codebook{u1
n(m1)} generated according to

PU1 for Encoder 1. Then we will use the likelihood en-
coder derived fromPX2U2 and another random codebook
{u2

n(m2,m
′
2)} generated according toPU2 for Encoder 2.

The decoder will use the transmitted messageM1 to decode
U1

n, as in the point-to-point case, and use the transmitted
messageM2 along with the decodedU1

n to decodeM ′
2 asM̂ ′

2,
as in the Wyner-Ziv case, and reproduceun

2 (M2, M̂
′
2). Finally,

the decoder outputs the reconstructionsYk
n as functions of

U1
n andU2

n.
The distribution induced by the encoders and decoder is

P
X1

nX2
nU1

nM1M2M
′
2M̂

′
2Y1

nY2
n = PX1

nX2
nP1P2

P1 , PM1|X1
nPU1

n|M1
(23)

P2 , PM2M
′
2|X2

nP
M̂ ′

2|M2U1
n

∏

k=1,2

PYk
n|U1

nM2M̂
′
2
(24)

, PM2M
′
2|X2

nPD

∏

k=1,2

PΦ,k, (25)

where againM ′
2 plays the role of the virtual message that is

not physically transmitted as in the Wyner-Ziv case.

1This region, after optimizing over auxiliary variables, isin fact not convex,
so it can be improved to the convex hull through time-sharing.



Codebook generation: We independently generate2nR1

sequences inU1
n according to

∏n

t=1 PU1(u1t) and index them
by m1 ∈ [1 : 2nR1 ], and independently generate2n(R2+R′

2)

sequences inU2
n according to

∏n

t=1 PU2(u2t) and index them
by (m2,m

′
2) ∈ [1 : 2nR2 ]× [1 : 2nR

′
2 ]. We useC(n)

1 andC(n)
2

to denote the two random codebooks, respectively.
Encoders: Encoder 1PM1|X1

n is the likelihood encoder

according toPX1
nU1

n and C
(n)
1 . Encoder 2PM2M

′
2|X2

n is

the likelihood encoder according toPX2
nU2

n andC(n)
2 .

Decoder: First, let PU1|M1
be a C

(n)
1 codeword lookup

decoder. Then, letPD(m̂′
2|m2, u1

n) be a good channel
decoder with respect to the sub-codebookC(n)

2 (m2) =
{u2

n(m2, a)}a and the memoryless channelPU1|U2
. Last,

defineφk
n(u1

n, u2
n) as the concatenation{φk(u1t, u2t)}

n
t=1

and set the decodersPΦ,k to be the deterministic functions

PΦ,k(yk
n|u1

n,m2, m̂
′
2) , 1{yk

n = φk
n(u1

n, U2
n(m2, m̂

′
2))}.

Analysis: We will need the following distributions: the
induced distributionP and auxiliary distributionsQ1 and
Q∗

1. The general idea of the proof is as follows: Encoder
1 makesP andQ1 close in total variation. DistributionQ∗

1

(random only with respect to the second codebookC
(n)
2 ) is

the expectation ofQ1 over the random codebookC(n)
1 . This is

really the key step in the proof. By considering the expectation
of the distribution with respect toC(n)

1 , we effectively remove
Encoder 1 from the problem and turn the message from
Encoder 1 into memoryless side information at the decoder.
Hence, the two distortions (averaged overC

(n)
1 ) underP are

roughly the same as the distortions underQ∗
1, which is a much

simpler distribution. We then recognizeQ∗
1 as preciselyP in

(8) from the Wyner-Ziv proof of the previous section, with a
source pair(X1, X2), a pair of reconstructions(Y1, Y2) and
U1 as the side information.

1) The auxiliary distributionQ1 takes the following form:

Q1X1
nX2

nU1
nM1M2M

′
2M̂

′
2Y1

nY2
n = Q1M1U1

nX1
nX2

nP2

Q1M1U1
nX1

nX2
n(m1, u1

n, x1
n, x2

n)

=
1

2nR1
1{u1

n = U1
n(m1)}PX1

n|U1
n(x1

n|u1
n)

PX2
n|X1

n(x2
n|x1

n) (26)

where P2 was defined earlier in(25). Applying the soft-
covering lemma, sinceR1 > IP (X1;U1),

E
C
(n)
1

[

‖Q1Xn

1
− PXn

1
‖TV

]

≤ ǫ1n →n 0.

Consequently,

E
C
(n)
1

[‖Q1 −P‖TV ] ≤ ǫ1n, (27)

where Q1 and P are distributions over random variables
X1

n, X2
n, U1

n,M1,M2,M
′
2, M̂

′
2, Y1

n, andY2
n.

2) Taking the expectation over codebookC
(n)
1 , we define

Q∗
1X1

nX2
nU1

nM2M
′
2M̂

′
2Y1

nY2
n

, E
C
(n)
1

[

Q1X1
nX2

nU1
nM2M

′
2M̂

′
2Y1

nY2
n

]

. (28)

Note that under this definition ofQ∗
1, we have

Q
∗
1X1

nX2
nU1

nM2M
′
2M̂

′
2Y1

nY2
n(x1

n
, x2

n
, u1

n
, m2,m

′
2, m̂

′
2, y1

n
, y2

n)

= PX1
nX2

nU1
n(x1

n
, x2

n
, u1

n)P2(m2,m
′
2, m̂

′
2, y1

n
, y2

n|x2
n
, u1

n).

By Property 1(b),

E
C
(n)
1

[EP [dk(Xk
n, Yk

n)]]

≤ E
C
(n)
1

[EQ1 [dk(Xk
n, Yk

n)]] + dmaxǫ1n (29)

= EQ∗
1
[dk(Xk

n, Yk
n)] + dmaxǫ1n. (30)

Note thatQ∗
1 is exactly of the form of the induced distribu-

tionP in the Wyner-Ziv proof of the previous section, with the
inconsequential modification that there are two reconstructions
and two distortion functions. With the same techniques as(12)
through(19), we obtain

E
C
(n)
2

[

EQ∗
1
[dk(Xk

n, Yk
n)]

]

≤ EP [dk(Xk, Yk)] + dmax(ǫ2n + δn), (31)

where ǫ2n and δn are error terms introduced from the soft-
covering lemma and channel decoding, respectively.

Finally, taking the expectation overC(n)
1 and using(30) and

(31),

E
C
(n)
2

[

E
C
(n)
1

[EP [dk(Xk
n, Yk

n)]]
]

≤ Dk+dmax(ǫ1n+ǫ2n+δn).
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