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We study the conditions for Bloch bands to be spanned by symmetric and strictly compact
Wannier states that have zero overlap with all lattice sites beyond a certain range. Similar to
the characterization of topological insulators in terms of an algebraic (rather than exponential)
localization of Wannier states, we find that there may be impediments to the compact localization
even of topologically “trivial” obstructed atomic insulators. These insulators admit exponentially-
localized Wannier states centered at unoccupied orbitals of the crystalline lattice. First, we establish
a sufficient condition for an insulator to have a compact representative. Second, for C2 rotational
symmetry, we prove that the complement of fragile topological bands cannot be compact, even if
it is an atomic insulator. Third, for C4 symmetry, our findings imply that there exist fragile bands
with zero correlation length. Fourth, for a C3-symmetric atomic insulator, we explicitly derive that
there are no compact Wannier states overlapping with less than 18 lattice sites. We conjecture that
this obstruction generalizes to all finite Wannier sizes. Our results can be regarded as the stepping
stone to a generalized theory of Wannier states beyond dipole or quadrupole polarization.

In band theory, Wannier states are the Fourier trans-
forms of Bloch states. They have multifold applica-
tions ranging from chemical bonding to ab-initio calcu-
lations. The gauge freedom in defining Bloch states can
be exploited to construct maximally localized Wannier
states [1–4]. Recently, the notion of topological insu-
lators was reformulated in terms of an obstruction to
exponentially-localized Wannier states, which allowed for
a systematic classification of topological band structures
in all symmetry classes [5–8]. In this Letter, we study
Wannier states satisfying an even more stringent local-
ization requirement. These are compact Wannier states
that are strictly local and have zero overlap with all lat-
tice sites outside of a finite domain. They are symmetric
when they share the symmetries of the lattice restricted
to the site-symmetry group that leaves their Wannier
center invariant [5, 6, 9–13]. In the following, we assume
that all Wannier states are symmetric. Moreover, we re-
quire that compact states originating from different unit
cells are orthogonal [14]. This criterion was not enforced
in previous works, which instead studied compact local-
ized states (compact Wannier-type states) [15–25] that
need not be orthogonal.

A Bloch band induced from a delta-function Wannier
state at any atomic site of the unit cell – resulting in a
trivial or unobstructed atomic insulator [5, 6] – can al-
ways be adiabatically transformed to have compact Wan-
nier states. Conversely, a topological band cannot – by
definition – be written in terms of exponentially-localized
Wannier states, much less compact ones [6, 26–30]. The
same holds for fragile topological bands that can be triv-
ialized upon mixing with non-topological bands [31–38].

There is so far one known category of insulators allow-
ing for exponentially-localized Wannier states which are
necessarily not delta-function-like: delicate topological
insulators [39], which are characterized by Hopf invari-
ants and returning Thouless pumps. Here, we explore a

second category of non-delta-function insulators that are
obstructed atomic insulators (OAIs) [5, 6, 40–44], whose
Wannier states may only be exponentially-localized away
from the atomic orbitals. Surprisingly, we find that not
all OAIs have a compact representation: there are topo-
logical obstructions to compactness. We call the resulting
phases non-compact atomic insulators. The condition of
non-compactness is stronger than the “multicellularity”
of delicate topological insulators, meaning that the Wan-
nier states cannot be completely localized in a primitive
unit cell: non-compact Wannier states cannot be com-
pletely localized in any, potentially non-primitive, unit
cell. (Presently, it is not known if delicate topological in-
sulators ultimately satisfy the stronger condition.) While
the general theory of non-compact atomic insulators is
still outstanding, our paper proves their existence.
Compact Wannier states— We denote the atomic or-

bitals on a lattice with space group G by |Rjµ〉. Here,
R indicates the unit cell coordinate, while j labels the
atomic site tj ∈ A within the unit cell. We assume all
atomic sites contained in A to be maximal Wyckoff po-
sitions [6, 45]. The index µ labels the orbitals at a given
site, which respect the site-symmetry group. To form
Wannier states for an OAI, we construct obstructed or-
bitals at the positions tα ∈ B:

|WR,α〉 =
∑

R′jµ

Sjµ,α(R−R′) |R′jµ〉 . (1)

If B ∩ A = ∅, the OAI has a spatial obstruction, in
that its Wannier states are centered at empty posi-
tions of the crystalline lattice. If B ∩ A 6= ∅, the OAI
has a representation obstruction, in that the transfor-
mation behavior of its Wannier states under the crys-
talline symmetry differs from that of all atomic orbitals
present at the same site. While spatial and representa-
tion obstructions were treated on equal footing in previ-
ous works [5, 6, 31, 34, 38], we must distinguish between
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FIG. 1. Mobile clusters with C4 symmetry. A mobile cluster
is a minimal set of physical orbitals |Rjµ〉 whose transforma-
tion behavior under the crystalline symmetry is compatible
with being located at any (possibly non-maximal) Wyckoff
position. For spinless C4 symmetry, the mobile clusters on
maximal Wyckoff positions 1a and 1b contain four orbitals
with C4 eigenvalues {1,−1, i,−i}. (a) We begin with mobile
clusters centered at the 1b Wyckoff position. (b) Next, we
locally change bases to obtain the states |Rjξ〉 that do not
have well-defined C4 eigenvalues, but instead are cyclically
permuted by the action of C4. (c, d) These states can be used
to construct new mobile clusters |Rj′µ′〉 that are centered
around Wyckoff position 1a.

them when studying the real-space structure of Wannier
states. The functions Sjµ,α(R−R′) ∈ C must respect the
space group symmetry. Furthermore, the states |WR,α〉
have compact support when Sjµ,α(R−R′) is strictly zero
for all |R+ tα−R′− tj | greater than a certain distance.
For the obstructed orbitals |WR,α〉 to form a Wannier
basis, they must also be orthonormal:

〈WR,α|WR′,β〉 = δRR′δαβ . (2)

The interplay between orthogonality, symmetry, and
compact support is already nontrivial in two-dimensional
systems where G contains a single Cn rotation (and trans-
lations), which we focus on in the following. Assuming
spinless rotational symmetries, so that (Cn)n = 1, the
rotation eigenvalues γµ take values

γµ = ei 2π
n l, l = 0 . . . n− 1. (3)

|W0⟩

|W2R̄+2tj̄
⟩

R̄ + t j̄

1a

1c

1b

1d

FIG. 2. Overlap of compact trial Wannier states with C2 ro-
tational symmetry. For any compact state |W1〉 = |W0〉 of
an OAI, there is another translated Wannier state |W2〉 =
|W2R̄+2tj̄

〉 that shares a single lattice site of non-zero over-

lap. Orthogonality 〈W1|W2〉 = 0 is impossible when this site
carries a single orbital. (Here, the OAI is centered at Wyckoff
position 1a, while the atomic orbitals locate at 1b, 1c, 1d.)

We call a mobile cluster a configuration of orbitals whose
Cn eigenvalues exhaust all l = 0 . . . n − 1, with each l
appearing exactly once. These configurations are special
in that they can be used to construct compact basis states
at any Wyckoff position, not just at the atomic positions
hosting the mobile cluster orbitals [6, 45]. For instance,
given that |Rjµ〉, µ = 1 . . . n is a mobile cluster, there
exists a strictly local unitary effecting

|Rjµ〉 → |Rj′µ′〉 , (4)

where j, j′ label two Wyckoff positions with Cn symme-
try, and µ′ labels a new set of orbitals that also forms a
mobile cluster [47]. (See Fig. 1.)

Fragile phases are the band complements of other frag-
ile phases or OAIs [31–38]. In the latter case, they are a
difference of atomic insulators:

FP = AI	OAI, (5)

where FP denotes the fragile phase, and AI is the (un-
obstructed) atomic insulator induced from the lattice.
Now, let N(AI) count the number of mobile clusters in
the unit cell. That is, for every group of n orbitals con-
taining all eigenvalues in Eq. (3) present in the unit cell
of AI, we increase N(AI) by one, starting from zero. If
only a part of the orbitals required for a mobile cluster
is present (in addition to the orbitals already counted),
N(AI) is unaffected and remains integer-valued. For ex-
ample, for the unit cell in Fig. 1a, we have N(AI) = 1.
Furthermore, let N̄(OAI) count the minimal number of
mobile clusters containing all orbitals of the OAI. That
is, we envision an atomic limit ÃI whose unit cell con-
tains all orbitals of OAI just once and whose full set of
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FIG. 3. Compact OAI with C4 rotational symmetry and fragile complement. (a) Real-space illustration of the fragile state.
The unit cell (UC) contains three orbitals at Wyckoff position 1b (s, dx2−y2 , and px − ipy orbitals carry C4 eigenvalues 1, −1,
and i, respectively). (b) Brillouin zone (BZ) decomposition of the corresponding Bloch bands into irreducible representations.
(Representation labels follow the Bilbao Crystallographic Server [46].) (c) Compact Wannier state for the OAI, supported on
four unit cells (blue) surrounding the 1a position (yellow) of the unit cell at R = 0. The vectors 〈R|W0〉 at each site contain
the overlaps (〈R|W0〉)µ ≡ 〈R, 1b, µ|W0〉 of the Wannier state |W0〉 with the on-site orbitals at Wyckoff position 1b, which are

indexed by µ (orbital labels are shown in green).

orbitals can be grouped into mobile clusters without any
missing or remaining orbitals: then, N̄(OAI) = N(ÃI).
Now, for FP to be fragile, we need N(AI) < N̄(OAI):
otherwise, the OAI could be built from a subset of
the mobile cluster orbitals, potentially using Eq. (4),
while the remaining orbitals form a compact and sym-
metric Wannier basis for FP. Conversely, we see that
N(AI) ≥ N̄(OAI) is a sufficient condition for the OAI
to be compact and to have an OAI (not fragile) com-
plement. For instance, in wallpaper group p2, we have
N [((A)1a ⊕ (B)1a) ↑ G] = N̄ [(A)1b ↑ G] = 1 [48], imply-
ing that the OAI (A)1b ↑ G has a compact representative,
and so does its complement (B)1b ↑ G.
C2 symmetry— OAIs with C2 symmetry and a fragile

complement are non-compact. Consider the OAI induced
from an s orbital on Wyckoff position 1a of wallpaper
group p2 (t1a = 0), where the lattice hosts s orbitals
located at Wyckoff positions 1b, 1c and 1d [so that tj ∈
{(1/2, 0), (1/2, 1/2), (0, 1/2)} is the position of the jth
atomic s orbital]. The complement of the OAI is [48]

[(A)1b ⊕ (A)1c ⊕ (A)1d] ↑ G	 (A)1a ↑ G = FP. (6)

We first note that N [((A)1b ⊕ (A)1c ⊕ (A)1d) ↑ G] = 0
(the unit cell does not contain a full mobile cluster) and
N̄ [(A)1a ↑ G] = 1 (we need at least one mobile cluster to
reproduce the OAI). Therefore, the necessary condition
N(AI) < N̄(OAI) for a non-compact OAI with fragile
complement is satisfied. And indeed, FP in Eq. (6) is
the simplest possible fragile state, requiring the small-
est crystalline symmetry (wallpaper group p2), and the
smallest number of bands (two occupied and one empty
band) [34]. Eq. (6) does not involve complex represen-
tations and is therefore compatible with (spinless) time-
reversal symmetry (TRS). We will next show that the

OAI (A)1a ↑ G is non-compact. Let us assume that
|WR〉 are compact Wannier states: then, the overlap
〈R′j|WR〉 is nonzero only for a finite number of sepa-
rations |R − R′ − tj |. Moreover, C2 symmetry implies
C2 |W0〉 = |W0〉, where C2 represents a C2 rotation about
Wyckoff position 1a of the unit cell at R = 0. Now, con-
sider an orbital |R̄j̄〉 at maximal distance |R̄ + tj̄ | from
the origin which still has a nonzero overlap 〈R̄j̄|W0〉 6= 0
with |W0〉. Then, by C2 symmetry, it follows that

0 6= 〈R̄j̄|C†2C2|W0〉 = 〈(−R̄− 2tj̄)j̄|W0〉 (7)

is also nonzero. But this implies that 〈W2R̄+2tj̄
|W0〉 6= 0,

because these two Wannier functions have finite overlap
on exactly one s orbital, located at R̄ + tj̄ . (See Fig. 2.)
We conclude that a compact set of Wannier states |WR〉
satisfying Eq. (2) cannot exist. This argument does not
make any assumptions on the size of the Wannier states,
as long as it is finite. Therefore, the OAI (A)1a ↑ G in
Eq. (6) is non-compact. In the Supplemental Material
(SM) [47], we show that in fact all C2-symmetric OAIs
with fragile complement are non-compact.

C4 symmetry— Any OAI that is non-compact with
C2 symmetry remains non-compact when the symme-
try group is enlarged to contain C4 rotations: because
(C4)2 = C2, C4-symmetric compact Wannier states inherit
the constraints imposed by C2, and additionally need to
form a representation under C4. In the SM [47], we more-
over explicitly construct C4-symmetric compact Wannier
states for all spatially-obstructed OAIs that have a com-
pact representation when C4 symmetry is relaxed to C2
symmetry. As a consequence, there exist C4-protected
fragile phases – these are necessarily trivial with respect
to C2 symmetry – that have a compact OAI complement.
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Consider the fragile state [49]

[
(A)1b ⊕ (B)1b ⊕ (2E)1b

]
↑ G	 (A)1a ↑ G = FP, (8)

which is illustrated in Fig. 3a,b. The 1-band OAI (A)1a ↑
G admits a compact Wannier basis |WR〉, with |W0〉
shown in Fig. 3c. These compact states can be used to
build a strictly local Hamiltonian whose ground state is
FP, H =

∑
R |WR〉 〈WR|. H has zero correlation length

and a flat band spectrum [17, 18, 20–22, 24, 50–58]. We
note that Eq. (8) involves the unpaired complex repre-
sentation 2E and hence assumes broken TRS, implying
that its realization requires magnetism.

In contrast, some representation-obstructed (not
spatially-obstructed) OAIs are non-compact only due to
constraints imposed by C4 symmetry. Consider

[(A)1b ⊕ (B)1b ⊕ (B)1a] ↑ G	 (A)1a ↑ G = FP, (9)

which unlike Eq. (8) is compatible with TRS and there-
fore non-magnetic. In the SM [47], we prove that
the representation-obstructed OAI (A)1a ↑ G is non-
compact. Nevertheless, it becomes unobstructed (and
thereby compact) when C4 symmetry is relaxed to C2
symmetry: the C4 representations (A) and (B) both map
into the same C2 representation (A).
C3 symmetry—All spatially obstructed 1- and 2-band

OAIs with C3 symmetry are compact, irrespective of
whether their band complement is another OAI or a frag-
ile state. For lattices where N(AI) ≥ N̄(OAI), compact-
ness of the OAI (and its complement) follows directly
from the reasoning below Eq. (5). More nontrivially, con-
sider the following TRS-broken fragile states in wallpaper
group p3:

[
(γ)1b ⊕ (ei 2π

3 γ)1b ⊕ (ei 2π
3 γ)1c

]
↑ G	 (γ)1a ↑ G = FP,

(10)
where (µ)1x is an orbital with C3 eigenvalue µ at Wyckoff

position 1x, and γ ∈ {1, ei 2π
3 , e−i 2π

3 } is a free parameter.
The compact Wannier state for the OAI at R = 0 is

|W0γ〉 =
1

3

[
|w0γ〉+ γ∗C3 |w0γ〉+ (γ∗C3)2 |w0γ〉

]
,

|w0γ〉 = |0, 1b, γ〉+ |0, 1b, ei 2π
3 γ〉+ |0, 1c, ei 2π

3 γ〉 ,
(11)

where C3 rotates about Wyckoff position 1a of the unit
cell at R = 0. Similarly, we construct the compact states
of all further C3-symmetric 1- and 2-band OAIs with spa-
tial obstruction in the SM [47] (there, we also discuss
C3-symmetric OAIs with a representation-obstruction).

In contrast, ascertaining the compactness properties
of 3-band OAIs with C3 symmetry is a challenging yet
unsolved problem. Consider the TRS-broken fragile
state [59]

[
2(A1)1b ⊕ (2E)1b ⊕ 2(A1)1c ⊕ (2E)1c

]
↑G

	
[
(A1)1a ⊕ 2(2E)1a

]
↑G = FP.

(12)

1a
1c

Γ K

KA

⊖
1b

1c1a
= FP

⊖
4Γ1,2Γ2

KA1,2KA3,3KA2

K1,2K2,3K3 Γ K

KA
Γ1,2Γ2

= Γ K

KA

UC

BZ

1
1b

1

ω

ω
1

1 ωω

K1,2K2

KA1,2KA3 3KA2

3Γ1

3K3

a

b

c

n = 3 n = 6 n = 9 n = 12 n = 15

1a
1b
1c

1

FIG. 4. Non-compact OAI with C3 rotational symmetry and
fragile complement. (a) Real-space illustration of the frag-
ile state. The unit cell (UC) contains three orbitals each at
Wyckoff positions 1b and 1c (orbitals are labelled by their C3
eigenvalue, ω = ei 2π

3 ). (b) Brillouin zone (BZ) decomposition
of the corresponding Bloch bands into irreducible represen-
tations. (Representation labels follow the Bilbao Crystallo-
graphic Server [46].) (c) Trial state support for the OAI,
labelled by size. Each colored atomic site indicates that the
trial states for all three bands may have non-zero overlap with
orbitals on that site. For all support sizes shown, there are no
trial states that satisfy the requirements for an orthonormal
Wannier basis [Eq. (2)].

Here, FP is obtained as the complement of a 3-band
OAI built from Wannier states at Wyckoff position 1a
that have C3 eigenvalues λ1 = 1, λ2 = λ3 = ei 2π

3 . (See
Fig. 4a,b for an illustration.) To obtain a compact ba-
sis, we must impose the constraints in Eq. (2), where
α = 1, 2, 3 belongs to the obstructed orbital with C3
eigenvalue λα. For C3-symmetric trial Wannier states
that have overlap with n lattice sites (located at the
1b and 1c Wyckoff positions and carrying three orbitals
each), Eq. (2) is a system of coupled quadratic equations
in N = 6n complex variables. The problem of deter-
mining whether solutions to general systems of quadratic
equations exist is NP-complete [60], and the runtime of
all (currently known) algorithms scales exponentially in
N . For OAIs with C2 and C4 symmetry, we were able to
circumvent this difficulty: for C2-symmetric OAIs with
fragile complement, a solution to Eq. (2) can be ruled out
by a single translation (Fig. 2), proving non-compactness.
For all spatially-obstructed C4-symmetric OAIs, and like-
wise all spatially-obstructed C3-symmetric OAIs with 1
and 2 bands, we found explicit solutions to Eq. (2), prov-
ing compactness. In the present case, however, both
strategies fail [61]. Nevertheless, we prove in the SM [47]
that Eq. (2) cannot be solved by states overlapping with
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n < 18 lattice sites (see Fig. 4c). We conjecture that
there is also no solution for n ≥ 18.

Discussion— The existence of non-compact atomic in-
sulators suggests to explore non-compactness as a new
ordering principle for gapped phases. Promising di-
rections of future study are the generalization of our
analysis to arbitrary finite Wannier state sizes, larger
symmetry groups, and higher dimensions. Moreover,
it is fruitful to investigate the observable consequences
of non-compactness. In particular, both the superfluid
weight [62, 63] and the conductivity in presence of dis-
order [64] of a set of bands directly depends on Wannier
spread. Hence, we expect that both are enhanced in the
non-compact case.
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I. BASIC NOTIONS

This section pedagogically introduces the concept of compact Wannier states, and serves as a basis for all further
derivations.

A. Real space construction

We begin by constructing compact trial states for an obstructed atomic insulator (OAI) in real space. Throughout
this section, we denote the physical atomic orbitals on a lattice of sites R with space group G by |Rj〉, j ∈ A, where
A is the set of orbitals in the unit cell. These orbitals respect the symmetries of the little group of their respective
Wyckoff position.

Out of the atomic orbitals, we construct obstructed orbitals at the unoccupied orbitals α ∈ B, B ∩ A = ∅ of the
lattice:

|WR,α〉 =
∑

R′,j∈A
|R′j〉Sjα(R−R′). (1)

Translational invariance guarantees that S depends only on R − R′. The matrix S(R − R′), whose elements are
complex numbers, also must respect the space group symmetry. Note that S(R − R′) is generically not a unitary
transformation, as the cardinality (number of orbitals) of B is usually smaller than that of A. Also, generally,
S(R−R′) is chosen by requiring compact support, so that it is strictly zero for any |R−R′| greater than a certain
distance.

In general, the obstructed orbitals |WR,α〉 may not be orthonormal and hence do not, in general, form a Wannier
basis. An orthonormalization procedure renders the orbitals without compact support. We will hence see that there is
a tradeoff between orthogonalizing the obstructed orbitals and keeping S(R−R′) finite-range. A systematic method
to obtain an orthonormal and translationally invariant Wannier basis (which may or may not be compact) is to exploit
the orthogonality of momentum eigenstates in Fourier space, which we turn to next.

B. Momentum space orthogonalization

We perform a Fourier transform to obtain the momentum-space representation

Sjα(k) =
∑

R

Sjα(R)eik·(R+tα−tj), (2)

where tj , tα are the positions of the physical (∈ A) and obstructed (∈ B) orbitals in the unit cell, respectively.
Introducing the momentum basis states

|kj〉 =
1√
V

∑

R

eik·(R+tj) |Rj〉 , |Rj〉 =
1√
V

∑

k

e−ik·(R+tj) |kj〉 , (3)

where V is the (dimensionless) volume, the projected Bloch state reads

|uk,α〉 = eik·tα
∑

j

|kj〉 〈kj|W0,α〉 =
∑

j

|kj〉Sjα(k). (4)

The projected Bloch states are orthogonal at different momenta by default, but not yet fully orthornormal. We can
compute their equal-momentum overlap

〈uk,α|uk,β〉 = Mαβ(k) = [S†(k)S(k)]αβ . (5)

The trial states |WR,α〉 have to be chosen such that M(k) is invertible at every k (does not have zero eigenvalues at
all k). This is always possible if the state we want to construct is non-topological, and if the number of unoccupied
positions α is smaller than the number of occupied positions j, as is the case for an OAI. Note that M(k) is also
positive semidefinite by construction, and hence, since it does not have zero eigenvalues, it is positive definite. Then,
computing its square-root proceeds straightforwardly by diagonalizing M(k):

M(k) = U(k)D(k)U†(k), D(k) > 0, (6)
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so that the orthonormalized eigenstates of the OAI are

|ũk,α〉 =
∑

β

|uk,β〉 [U(k)D−
1
2 (k)]βα ≡

∑

j

|kj〉 S̃jα(k), (7)

where S̃(k) = S(k)U(k)D−
1
2 (k).

C. Compact support

The Wannier functions |W̃R,α〉 of a generic OAI, obtained as the Fourier transforms of Eq. (7), although exponen-
tially localized in real space, do not in general have compact support. We now track down the cause of non-compact
support. The matrix S(R) has compact support by construction. Hence, the entries of S(k) are finite-degree Lau-
rent polynomials in eik. However, generically D−1/2(k) is not such a polynomial. For example, for the case of one
obstructed band |B| = 1, we have that

D−
1
2 (k) =

1√
S†(k)S(k)

. (8)

We see that normalization is the source of non-compactness of |W̃R,α〉: The inverse square root of a Laurent matrix
polynomial is in general not any Laurent matrix polynomial of finite degree. In the Fourier transform back to real
space, this infinite sum of harmonics will give rise to infinite range contributions, and hence does not yield compact-
support Wannier states.

However, this immediately suggests a strategy for constructing compact states: S(R) needs to be chosen such that

S†(k)S(k) = 1. This choice, if possible, guarantees that S̃(R) = S(R) has compact support, and so the states |W̃R,α〉
span an obstructed atomic limit.

We show in the following that whether such a construction is possible for a given OAI depends on both the OAI
(on the set B), and on the physical lattice hosting it (on the set A). This is because A determines the Hilbert space
in which we must find local, symmetric, and orthogonal Wannier states for all elements of B. If A is much larger
than B, such compact Wannier states can usually be constructed in a straightforward manner, because the available
Hilbert space is large enough to accommodate for all constraints imposed by compactness. However, on lattices A
with few atomic orbitals per unit cell, the problem may be overconstrained. In this case, any Wannier states for B
are necessarily non-compact. These notions will be made precise in the following.

We note that there is so far one known category of insulators allowing for exponentially-localized Wannier states
which are necessarily not delta-function-like: delicate topological insulators [1], which are characterized by Hopf
invariants and returning Thouless pumps. In our work, we explore OAIs as a second category of non-delta-function
insulators. Surprisingly, we find that not all OAIs have a compact representation: there are topological obstructions
to compactness. We call the resulting phases non-compact atomic insulators. The condition of non-compactness is
stronger than the “multicellularity” of delicate topological insulators, meaning that the Wannier states cannot be
completely localized in a primitive unit cell: non-compact Wannier states cannot be completely localized in any,
potentially non-primitive, unit cell. (Presently, it is not known if delicate topological insulators ultimately satisfy the
stronger condition.) Non-compact atomic insulators and delicate topological insulators satisfy qualitatively similar
stability conditions: their non-localizability can be nullified by the addition of particular trivial bands to the conduction
subspace. In fact, this has to be true according a theorem that all band representations can be represented by delta-
function Wannier states if the conduction subspace can be arbitrarily enlarged [2]. One distinction is that the
conduction subspace of non-compact atomic insulators is necessarily fragile topological, but this is not true of delicate
topological insulators.

II. OBSTRUCTED ATOMIC INSULATORS AND THEIR COMPLEMENTS

We first derive some general results for OAIs with rotational symmetry. Unless otherwise mentioned, we assume the
Wannier states of all OAIs to be centered at empty Wyckoff positions of the lattice, resulting in a spatial obstruction.
The case of a representation obstruction, where the OAI Wannier centers coincide with the positions of physical
orbitals, while the OAI symmetry representation does not, is discussed separately in Sec. VII.
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1a
1b

|Rjμ⟩

→

|Rjξ⟩

→

|Rj′￼μ′￼⟩

a b c

1a
1b

d

≡

|Rj′￼μ′￼⟩

FIG. 1. Mobile clusters with C4 rotational symmetry. A mobile cluster is defined as a minimal set of physical orbitals |Rjµ〉
whose transformation behavior under the crystalline symmetry group is compatible with being located at any (possibly non-
maximal) Wyckoff position. For spinless C4 symmetry, the mobile clusters on maximal Wyckoff positions 1a and 1b contain 4
orbitals with eigenvalues γ1...4 = (1,−1, i,−i). (a) We begin with mobile clusters centered at the 1b Wyckoff position. (b) Next,
we locally change bases to obtain the states |Rjξ〉 [Eq. (13)] that do not have well-defined C4 eigenvalues, but instead are
cyclically permuted by the action of C4. (c, d) These states can be used to construct new mobile clusters |Rj′µ′〉 that are
centered around Wyckoff position 1a. Note that the transformation fully preserves translational symmetry.

A. Mobile clusters of physical orbitals

We begin by introducing the notion of mobile clusters, which are sets of orbitals that characterize the underlying
physical lattice of a band structure in presence of crystalline symmetry. This notion will provide us with a real-space
condition for fragile topology, in addition to allowing for general statements about the compactness of atomic bands.

In the following, we denote the orbitals of the unit cell at position R by |Rjµ〉, j ∈ A. In comparison to the
states |Rj〉 appearing in Sec. I, we have introduced the refined orbital label µ, so that j now only distinguishes
between inequivalent Wyckoff positions in the unit cell, while µ labels the orbitals at a given position. Without loss
of generality, we assume that all orbitals are located at maximal Wyckoff positions. Indeed, if the states |Rj̃µ̃〉 are
located at non-maximal positions, they must form an orbit under the space group symmetry. It is then always possible
to find a basis transformation Ojµ,j̃µ̃ so that the states

|Rjµ〉 =
∑

j̃µ̃

Ojµ,j̃µ̃ |Rj̃µ̃〉 (9)

are centered at maximal Wyckoff positions [3]. Because Ojµ,j̃µ̃ is a strictly local unitary transformation (it does not

induce mixing between different unit cells) that preserves the crystalline symmetry, any such basis change does not
affect our conclusions on compact support: applying Ojµ,j̃µ̃ does not change the range of compact Wannier states

(when defined with respect to full unit cells), and preserves their symmetry and orthonormality. The orbitals |Rjµ〉
can then be chosen to form a representation of the site-symmetry group. In presence of Cn rotational symmetry, they
are eigenstates:

Cn|R,j |Rjµ〉 = γµ |Rjµ〉 , (10)

where Cn|R,j rotates about the Cn-symmetric Wyckoff position j of the unit cell at R. Assuming spinless rotational
symmetries, so that (Cn|R,j)n = 1, the Cn eigenvalues γµ take values in the n-th roots of unity:

γµ = ei 2πn l, l = 0 . . . n− 1. (11)

We call a mobile cluster a configuration of orbitals whose Cn eigenvalues exhaust all l = 0 . . . n − 1, with each l
appearing exactly once. These configurations are special in that they can be used to construct local basis states at
any particular maximal Wyckoff position, not just at the atomic positions hosting the mobile cluster orbitals [3]. That
is, given that |Rjµ〉, µ = 1 . . . n is a mobile cluster, there exist strictly local unitary transformations that effect a
transformation

|Rjµ〉 → |Rj′µ′〉 , (12)
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where j, j′ are two (sets of) Wyckoff positions with isomorphic site-symmetry groups, and µ′ labels a new set of
orbitals that forms a mobile cluster as well. We pictorially illustrate the unitary transformation between Wyckoff
positions for the case of C4 rotational symmetry in Fig. 1. To prove Eq. (12) in general, we first note that mobile
clusters have the defining property that they can be transformed into a set of featureless orbitals (without local
symmetry)

|Rjξ〉 =
∑

µ

Uξµ |Rjµ〉 , Cn|R,j |Rjξ〉 = |Rj(ξ + 1 mod n)〉 , (13)

by an on-site unitary

Uξµ = (γµ)ξ, ξ = 0 . . . n− 1. (14)

Instead of being eigenstates of the site-symmetry operation Cn|R,j , the orbitals |Rjξ〉 are cyclically permuted by its
action. We can always also arrange them so that

Cn|R,j′ |Rjξ〉 = |R′j(ξ + 1 mod n)〉 (15)

holds for a suitable choice of R′ 6= R (see Fig. 1b,c). But this implies that we may now form orbitals µ′ centered
around j′ as follows:

|Rj′µ′〉 =
n−1∑

m=0

(µ′∗Cn|R,j′)m |Rj(ξ = 0)〉 ≡
∑

R′ξ

VRj′µ′,R′jξ |R′jξ〉 . (16)

(Note that j is not summed over, and we have used that all Cn eigenvalues lie on the unit circle so that |µ′|2 = 1.)
Now, the unitary transformations VRj′µ′,R′jξ at different unit cells R act on disjoint sets of orbitals: for example, in
Fig. 1c, VRj′µ′,R′jξ only acts on the orbitals drawn within the unit cell at R (with different unit cells demarcated by
black lines). Therefore, the unitary transformations VRj′µ′,R′jξ at different unit cells R all commute with each other
and give rise to a strictly local unitary acting on the entire lattice. In conclusion, we have shown that given a mobile
cluster |Rjµ〉, the basis change

∀R : |Rjµ〉 → |Rj′µ′〉 =
∑

R′µ


∑

ξ

VRj′µ′,R′jξUξµ


 |R′jµ〉 (17)

can be effected by a strictly local unitary transformation VRj′µ′,R′jξUξµ. This means that from a mobile cluster, we
can construct strictly local and symmetric basis states at any Wyckoff position of the unit cell; moreover, their union
will also form a mobile cluster.

B. Necessary condition for fragile bands

Fragile topological phases are obtained as the band complements of other fragile phases or OAIs [3, 4]. In the
former case, both sets of bands cannot be expressed in terms of exponentially localized symmetric Wannier functions,
so that compact Wannier states are impossible. In the latter case, the fragile set of bands can be formally expressed
as a difference of atomic insulators [5]:

FP = AI	OAI, (18)

where FP denotes the fragile phase, and AI is the (unobstructed) atomic limit corresponding to the physical lattice.
We will often refer to a relationship of this form as an OAI subtraction. Now, let N(AI) count the number of mobile
clusters in the unit cell (in the set A introduced in Sec. I). For instance, the inversion-symmetric SSH model in
1D, when defined on two sites that lie at general Wyckoff positions of the unit cell, or on a lattice hosting an s
and a p orbital at either of the two maximal Wyckoff positions, has N(AI) = 1. Conversely, let N̄(OAI) count the
minimal number of mobile clusters that contains all orbitals of the OAI [potentially making use of the transformation
in Eq. (12)]. For instance, in wallpaper group p2, we have N̄ [(A)1a ↑ G] = 1, because we need one mobile cluster
[(A)1a ⊕ (B)1a] ↑ G to supply (A)1a ↑ G. Next, N̄ [(A)1a ↑ G⊕ (A)1b ↑ G] = 2, because we need two mobile clusters,
[(A)1a ⊕ (B)1a] ↑ G and [(A)1b ⊕ (B)1b] ↑ G, to support both orbitals. Moreover, N̄ [(A)1a ↑ G ⊕ (A)1a ↑ G] = 2,
because we again need the two mobile clusters, 2[(A)1a⊕ (B)1a] ↑ G, this time at the same Wyckoff position. Finally,
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|w1⟩

|W0,1⟩
unit
cell

FIG. 2. Support of the asymmetric part |w1〉 [defined in Eq. (24)] of a C3-symmetric trial Wannier state |W0,1〉, centered at
Wyckoff position 1a of the unit cell at R = 0. The full trial state support (indicated in black) is obtained by successively
applying C3 rotations on |w1a〉. Importantly, the support of neither |W0,1〉 nor |w1a〉 needs to be confined to a unit cell of the
lattice, or coincide with an integer multiple of unit cells (in the present example, the primitive unit cell hosts two lattice sites).

N̄ [(A)1a ↑ G⊕ (B)1a ↑ G] = 1, because this configuration already corresponds to a single mobile cluster (this situation
is equivalent to the occupied and unoccupied band of the SSH model discussed above). Here, we have labelled the
site-symmetry representations of the OAIs following the conventions of the Bilbao crystallographic server [6].

Then, for FP to be a fragile phase, that is, to be inexpressible in terms of localized Wannier functions, we clearly
need

N(AI) < N̄(OAI). (19)

Otherwise, the OAI can be built from Wannier states that are equal to a subset of the mobile cluster orbitals [Eq. (16)]
of each unit cell. Moreover, the remaining orbitals – those that are not used up to build the OAI – would form a
compact and symmetric basis for the bands of FP (since the transformation in Eq. (17) is unitary, all orbitals of a
mobile cluster are mutually orthogonal even when they are not located at the original atomic Wyckoff position).

C. Sufficient condition for compact bands

We have seen that N(AI) ≥ N̄(OAI) leads to

AI	OAI = OAI′, (20)

where OAI′ is another obstructed atomic insulator. Moreover, by the basis transformation in Eq. (17), we can always
find a compact set of Wannier states for the OAI set of bands. Conversely, by rewriting Eq. (20) as

AI	OAI′ = OAI, (21)

we see that OAI′ also admits a compact Wannier representation. In conclusion, when N(AI) ≥ N̄(OAI) holds, the
OAI is the band complement of another OAI and is guaranteed to have a compact representative. On the other hand,
we will see in the following that OAIs that are the band complements of fragile phases may or may not admit a
compact representation.

III. COMPACTNESS CONSTRAINTS

We next discuss the necessary and sufficient conditions for compactness, that is, for atomic bands to be spanned
by strictly local, symmetric, and orthonormal Wannier states. For this, we start with a set of parametrized trial
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Wannier states |WR,α〉 [Eq. (1)], and then derive the quadratic constraint equations for compactness. We formulate
these equations in both real and momentum space – the momentum space constraints are ultimately equivalent to
the real space constraints, but give rise to an insightful geometric interpretation.

Although the task of establishing whether solutions to systems of quadratic equations of the form discussed here
exist is in general exponentially difficult in the total number of variables, we systematically solve the compactness
constraints (in the case of spatial obstructions) for all OAIs protected by C2 and C4 symmetry in Secs. IV and V,
respectively, as well as for 1- and 2-band OAIs with C3 symmetry in Sec. VI. We conjecture that the symmetry of
the point groups makes the problem solvable for all space groups, but have not yet been able to find the general
formalism.

A. Real space

We derive the real-space compactness constraints for systems with Cn rotational symmetry. The orthonormality
conditions on a set of trial Wannier states are given by

〈W0,α|WR,β〉 = 〈W0,α|TR|W0,β〉 = δαβδR,0, (22)

where TR translates all sites of the unit cell by the lattice vector R.
In presence of Cn symmetry, the Wannier states at Cn-symmetric maximal Wyckoff positions can be chosen as

eigenstates of the rotation

Cn |W0,α〉 = λα |W0,α〉 , (23)

where Cn is the rotation operator around the obstructed site. They can then be expressed in a manifestly symmetric
fashion:

|W0,α〉 =
n−1∑

m=0

(λ∗αCn)
m |wα〉 . (24)

Here, |wα〉 denotes the asymmetric part of the Wannier state that in Cn-symmetric groups has overlap with (1/n)-th
of the sites of |W0,α〉, an example is shown in Fig. 2 (we assume |W0,α〉 to form an OAI centered on an empty Wyckoff
position of the lattice). We have also used that Cn eigenvalues lie on the unit circle, so that |λα|2 = 1.

Inserting the symmetric decomposition of Eq. (24) into Eq. (22) yields

〈wα| T̃R,αβ |wβ〉 = δαβδR,0, T̃R,αβ =
n−1∑

l,m=0

(λ∗αCn)
†l
TR
(
λ∗βCn

)m
. (25)

Now, due to the normalization

〈W0,α|W0,β〉 = δαβ → 〈wα|wα〉 =
1

n
, (26)

we obtain

〈wα|
(
T̃R,αβ − nδαβδR,01

)
|wβ〉 = 0. (27)

To simplify the algebra, it is instructive to to view Eq. (27) as a linear constraint

∑

ij

Nαβ
R,ij (w∗αiwβj) = 0, Nαβ

R,ij = 〈i|
(
T̃R,αβ − nδαβδR,01

)
|j〉 , (28)

on the space of element-wise products (w∗αiwβj), where we use the components wαi = 〈i|wα〉. Here, |i〉 are the
orbitals of the asymmetric part of the trial state, i.e., the on-site orbitals used to create the Wannier state. Now,
numerically, the minimal set of constraints can be generated by applying row reduction (Gaussian elimination) to the

set of matrices (Nαβ)R,ij = Nαβ
R,ij [where rows are labelled by R and columns by the composite index (ij)], after

which we arrive at equations of the form
∑

ij

Nαβ
λ,ij (w∗αiwβj) = 0, λ = 1 . . . rαβ , (29)

where the number of irreducible equations rαβ ∈ N depends on the problem in question.
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B. Momentum space

We next re-derive the compactness constraints in momentum-space. It was shown in Sec. I C that for the trial
states |WR,α〉 to be compact Wannier states, their momentum space projections must satisfy

V 〈uk,α|uk,β〉 eik·(tα−tβ) = V 〈W0,α|Pk |W0,β〉 = δαβ , Pk =
∑

j

|kj〉 〈kj| , (30)

for all values of k in the Brillouin zone, where V is the volume appearing in the Fourier transform in Eq. (3). Inserting
the symmetric decomposition of Eq. (24) into Eq. (30) yields

〈wα| P̃k,αβ |wβ〉 = δαβ , P̃k,αβ = V
n−1∑

l,m=0

(λ∗αCn)
†l
Pk

(
λ∗βCn

)m
. (31)

Now, due to the normalization choice of Eq. (26), we obtain

〈wα|
(
P̃k,αβ − nδαβ1

)
|wβ〉 = 0. (32)

When this set of equations is enforced at all momenta k, the |WR,α〉 that result as translates of |W0,α〉 in Eq. (24)
form a compact Wannier basis.

It is again fruitful to view the constraints as linear equations

∑

ij

Mαβ
k,ij (w∗αiwβj) = 0, Mαβ

k,ij = 〈i|
(
P̃k,αβ − nδαβ1

)
|j〉 (33)

on the space of element-wise products (w∗αiwβj). Then, a necessary criterion for compactness is that the vectors

( ~Mαβ
k )ij = Mαβ

k,ij , with entries labelled by the composite index (ij), must share at least one common normal vector

[so that they lie in a (hyper-)plane]: Since (w∗αiwβj) does not depend on k, it must be such a normal vector in order
to satisfy the compactness constraints. When this assumption holds, the constraints reduce to equations of the form

∑

ij

Mαβ
λ,ij (w∗αiwβj) = 0, λ = 1 . . . sαβ , (34)

where the vectors ~Mαβ
λ span the (hyper-)plane containing all ~Mαβ

k , and sαβ ∈ N is its dimension. These constraints
are equivalent to the real-space constraints, Eq. (29).

1. Example: C2 symmetry

Consider a lattice in wallpaper group p2 that has Wyckoff positions 1b, 1c, 1d occupied with a single s orbital (our
conventions for wallpaper group p2 are explicitly stated at the beginning of Sec. IV). We now form the fragile root [5]
state

FP = [(A)1b ⊕ (A)1c ⊕ (A)1d] ↑ G	 (A)1a ↑ G, (35)

where the C2 site-symmetry representation labels follow the Bilbao crystallographic server [6]. The fragile phase FP
is the band complement of an OAI at Wyckoff position 1a with C2 eigenvalue λ1 = 1 (we label the Wannier state
by α = 1). Let us assume that the trial Wannier states of this OAI are supported on C2-related pairs of 1b, 1c, and
1d positions surrounding 1a (so that |w1〉, defined in Eq. (24), overlaps with 3 lattice sites). On this support, the
momentum basis states |kj〉, where j = 1, 2, 3 denote the s-orbital at 1b, 1c, and 1d, respectively, are given by

|k, 1〉 =
1√
2

(
eikx/2 |(0, 0), 1〉+ e−ikx/2 |(−1, 0), 1〉

)
,

|k, 2〉 =
1√
2

(
ei(kx+ky)/2 |(0, 0), 2〉+ e−i(kx+ky)/2 |(−1,−1), 2〉

)
,

|k, 3〉 =
1√
2

(
eiky/2 |(0, 0), 3〉+ e−iky/2 |(0,−1), 3〉

)
.

(36)
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⃗M11
k

⃗M11
k

a b

FIG. 3. Compactness manifolds for OAIs with C2 and C4 symmetry. (a) The set of all vectors ~M11
k for the constraint matrix

in Eq. (40). Since this set does not lie in any 2D plane, there is no single vector that is orthogonal to all of the ~M11
k , implying

that the OAI (A)1a ↑ G in Eq. (35) can never be made compact. (b) The set of all vectors ~M11
k for the constraint matrix in

Eq. (44). The vectors ~M11
k form a 2D plane in 3D space, implying that there is a compact representative of the OAI (A)a

in Eq. (41): according to Eq. (34), the squared overlap of |w1〉 [Eq. (24)] with the three lattice orbitals is given by the plane
normal vector ~n = (1, 1, 2)T (see also Fig. 4b).

Correspondingly, in the basis |Rj〉 ∈ {|(0, 0), 1〉 , |(0, 0), 2〉 , |(0, 0), 3〉 , |(−1, 0), 1〉 , |(−1,−1), 2〉 , |(0,−1), 3〉}, we have

Pk =
1

2




1 0 0 eikx 0 0
0 1 0 0 ei(kx+ky) 0
0 0 1 0 0 eiky

e−ikx 0 0 1 0 0
0 e−i(kx+ky) 0 0 1 0
0 0 e−iky 0 0 1



. (37)

C2 symmetry is represented by

C2 =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



. (38)

Then, for the OAI (A)1a ↑ G in Eq. (35), we find from Eq. (31) that (V = 2)

P̃k,11 = 2




1 + cos kx 0 0 1 + cos kx 0 0
0 1 + cos(kx + ky) 0 0 1 + cos(kx + ky) 0
0 0 1 + cos ky 0 0 1 + cos ky

1 + cos kx 0 0 1 + cos kx 0 0
0 1 + cos(kx + ky) 0 0 1 + cos(kx + ky) 0
0 0 1 + cos ky 0 0 1 + cos ky



. (39)

Consulting Eq. (33), the constraint matrix in the basis |i〉 ∈ {|(0, 0), 1〉 , |(0, 0), 2〉 , |(0, 0), 3〉} is given by

M11
k,ij = 〈i|

(
P̃k,11 − 21

)
|j〉 = 2




cos kx 0 0
0 cos (kx + ky) 0
0 0 cos ky



ij

. (40)

Because only the diagonal entries are nonzero, the manifold of vectors ( ~M11
k )i = M11

k,ii can be visualized in 3D space

and is shown in Fig. 3a. The resulting manifold is not a (hyper-)plane, implying that there is no choice of |w1〉 in

Eq. (24) that has w∗1iw1i ≡ (~w11)i orthogonal to all ~M11
k . We conclude that there is no compact Wannier basis with

support on 6 lattice sites. In fact, as we will see in Sec. IV, the absence of a compact representation is a general
property of C2-protected fragile band complements.
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1a 2c

2c
1b

Γ X

X′￼ M

Γ1, Γ2, Γ3 X1,2X2

M1, M2, M4

Γ X

X′￼ M

Γ1 X1

M1
⊖ =

Γ X

X′￼ M

Γ2, Γ3 2X2

M2, M4

1a 2c

2c 1b
⊖ = FP

a

c

dx2−y2

px − ipy

s

s

UC UC

BZ BZ BZ

FIG. 4. (a) Subtracting an OAI to obtain a fragile root with C4 rotational symmetry. (b) Compact Wannier state for the
OAI [also obtained from Eq. (61) for λ = 1], having support on four unit cells (indicated in blue) surrounding the 1a position
(indicated in yellow) of the home unit cell at R = 0. The vectors shown at each site contain the (non-normalized up to a factor
of 4) overlaps of the Wannier state |W0,1〉 with the on-site orbitals (the corresponding orbital labels are indicated for the home
unit cell). (c) Brillouin zone decomposition of the relevant bands into irreducible representations. (Representation labels follow
the Bilbao Crystallographic Server [6].)

2. Example: C4 symmetry

Consider a lattice in wallpaper group p4 that has Wyckoff position 1b occupied with three physical orbitals: s,
dx2−y2 , and px− ipy (our conventions for wallpaper group p4 are explicitly stated at the beginning of Sec. V). We can
form a fragile root state via the subtraction

FP =
[
(A)1b ⊕ (B)1b ⊕ (2E)1b

]
↑ G	 (A)1a ↑ G, (41)

where we again used the Bilbao crystallographic server [6] conventions. The same subtraction is depicted in Fig. 4a
and c. The fragile phase FP is the band complement of an OAI at Wyckoff position 1a with C4 eigenvalue λ = 1. Let
us assume that the trial Wannier states of this OAI are supported on four lattice sites (which are the four C4-related
1b positions surrounding 1a, so that |w1〉 has support on 1 lattice site). On this support, the momentum basis states
|kj〉, where j = 1, 2, 3 denote the s, dx2−y2 , and px − ipy orbital at 1b, respectively, are given by

|k, 1〉 =
1√
2

(
ei(kx+ky)/2 |(0, 0), 1〉+ ei(−kx+ky)/2 |(−1, 0), 1〉+ e−i(kx+ky)/2 |(−1,−1), 1〉+ ei(kx−ky)/2 |(0,−1), 1〉

)
,

|k, 2〉 =
1√
2

(
ei(kx+ky)/2 |(0, 0), 2〉+ ei(−kx+ky)/2 |(−1, 0), 2〉+ e−i(kx+ky)/2 |(−1,−1), 2〉+ ei(kx−ky)/2 |(0,−1), 2〉

)
,

|k, 3〉 =
1√
2

(
ei(kx+ky)/2 |(0, 0), 3〉+ ei(−kx+ky)/2 |(−1, 0), 3〉+ e−i(kx+ky)/2 |(−1,−1), 3〉+ ei(kx−ky)/2 |(0,−1), 3〉

)
.

(42)
Correspondingly, in the basis

|Rj〉 ∈ { |(0, 0), 1〉 , |(0, 0), 2〉 , |(0, 0), 3〉 , |(−1, 0), 1〉 , |(−1, 0), 2〉 , |(−1, 0), 3〉 ,
|(−1,−1), 1〉 , |(−1,−1), 2〉 , |(−1,−1), 3〉 , |(0,−1), 1〉 , |(0,−1), 2〉 , |(0,−1), 3〉}, (43)

we can find Pk, C4, and P̃k,11 exactly as was done in the C2 example of Sec. III B 1 (using that the orbitals labelled
by j = 1, 2, 3 have C4 eigenvalues 1, −1, and i, respectively). The resulting constraint matrix in the unit cell basis
|i〉 ∈ {|(0, 0), 1〉 , |(0, 0), 2〉 , |(0, 0), 3〉} is then given by

M11
k,ij = 〈i|

(
P̃k,11 − 41

)
|j〉 = 4




cos kx + cos ky + cos kx cos ky 0 0
0 − cos kx − cos ky + cos kx cos ky 0
0 0 − cos kx cos ky



ij

.

(44)

The manifold of vectors ( ~Mαβ
k )i = Mαβ

k,ii can be visualized in 3D space and is shown in Fig. 3b. In contrast to the

example of Sec. III B 1, it lies in a 2D plane, implying that a compact representative of the OAI (A)1a ↑ G corresponding
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to the plane normal direction ~n = (1, 1, 2)T exists. The corresponding compact Wannier state is obtained from the
plane normal and is depicted in Fig. 4b. In fact, as we will show in Sec. V, all (spatially-obstructed) C4-protected
fragile complements have a compact representative as long as they are not already non-compact due to C2 symmetry.

IV. C2 SYMMETRY

A fragile state cannot be written as any atomic insulator. It is the band complement either of another fragile state,
or of an OAI. In this section, we prove that OAIs in wallpaper group p2 which have a fragile complement cannot be
expressed in terms of compactly supported Wannier functions. Our proof can be straightforwardly generalized to d
spatial dimensions with inversion symmetry.

We use conventions where the lattice vectors of the C2-symmetric wallpaper group p2 are given by a1 = x̂ (x̂ is
the unit vector in x-direction) and a2 = ŷ. Correspondingly, the reciprocal lattice vectors are given by b1 = 2πx̂,
b2 = 2πŷ. The maximal Wyckoff positions of the unit cell have coordinates t1a = 0, t1b = x̂/2, t1c = (x̂+ ŷ)/2, and
t1d = ŷ/2. The high-symmetry momenta of the Brillouin zone are defined as Γ = 0, X = b1/2, M = b1/2 + b2/2,
and Y = b2/2. For future reference, we list the elementary band representations (EBRs) of wallpaper group p2 in
Tab. I.

λ(2) WP Γ X M Y

1 1a 1 1 1 1

1b 1 −1 −1 1

1c 1 −1 1 −1

1d 1 1 −1 −1

−1 1a −1 −1 −1 −1

1b −1 1 1 −1

1c −1 1 −1 1

1d −1 −1 1 1

TABLE I. Wyckoff position-resolved EBRs of wallpaper group p2. The site-symmetry representations are labelled by their
(spinless) C2 eigenvalue λ(2). Depending on which Wyckoff position (WP) they are placed at, they give rise to different Bloch
band C2 eigenvalues at the high-symmetry momenta Γ,X,M, and Y, respectively.

A. Overview

In order to prove that fragile complements in wallpaper group p2 are non-compact, we first show in real space
that the maximal number of compact Wannier states of the same C2 eigenvalue (±1) is equal to the number of s⊕ p
pairs of physical orbitals in the unit cell. Then, in momentum space, we go on to prove that the maximal number of
obstructed bands with the same C2 eigenvalue at Γ that has an atomic (in contrast to a fragile) complement is also
equal to the number of s⊕ p pairs in the unit cell. By applying the necessariy condition N(AI) < N̄(OAI) for fragile
bands that was derived in Sec. II B, we therefore conclude that fragile bands cannot be the complements of compact
bands, or else they would be atomic.

B. Compactly localizing Wannier states

We begin by analyzing the conditions for compact and obstructed Wannier states in real space. We again denote
the basis states by |Riµ〉, where the index µ = 1 . . . D identifies a particular orbital at site i = 1 . . . N in the unit cell
at R. Let ti ∈ {(0, 0), (1/2, 0), (1/2, 1/2), (0, 1/2)} denote the position of the ith orbital as measured from the center
of the unit cell. Our restriction to maximal Wyckoff positions (explained at the beginning of Sec. II A) means that
each basis state is mapped to a translated copy of itself when acted upon by C2 symmetry:

C2|r |R′iµ〉 = γµ |Riµ〉 whenever R′ + ti = r − (R + ti − r). (45)

Here, r is any C2 center of the infinite lattice (we can choose it to be r = 0), and γµ = ±1 is the C2 eigenvalue of the
orbital labelled by µ.
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|W1⟩

|W2⟩

R̄ + t j̄ −
t α

FIG. 5. C2 rotational symmetry ensures that for a compact Wannier state |W1〉, there is another translated Wannier state |W2〉
that shares a single lattice site of nonzero overlap. Orthogonality 〈W1|W2〉 = 0 then implies that this site needs to host at least
one s⊕ p pair of orbitals. Note that here we have chosen the lattice to contain orbitals at the 1b, 1c, and 1d Wyckoff positions,
so that the Wannier states at 1a belong to an OAI.

We now consider an arbitrary set of OAI bands on this lattice. We denote their Wannier states by |WRα〉, α =
1 . . .M , where M ≤ DN is the number of bands that make up the OAI. It is always possible to choose these Wannier
states in an C2-symmetric fashion, so that

C2|tα |W0α〉 = λα |W0α〉 (46)

holds for the C2 center at r = tα, where λα = ±1 is the C2 eigenvalue of the respective Wannier function, and tα is the
Wannier center. By translational symmetry, all further Wannier states |WRα〉 are C2-symmetric about their centers
tRα ≡ R + tα.

For compactness to be a nontrivial property, it is crucial that the Wannier states belong to an OAI and not
to a trivial (unobstructed) atomic insulator: otherwise we could just choose a subset of the basis states |Riµ〉 as
orthonormal and compact Wannier states. For a spatially-obstructed OAI, the Wannier centers

tRα = 〈WRα|x̂|WRα〉 =
∑

Riµ

(R + ti) |〈Riµ|WRα〉|2 , (47)

where x̂ is the position operator, take values that are not lattice sites: tRα 6= (R′ + ti) for any choice of R′,i.
Conversely, if the OAI is representation-obstructed, lattice orbitals with C2 eigenvalue γµ = −λα might be present
at tRα, however, these cannot lie in the support of |WRα〉 as they have a different C2 eigenvalue. Since the Wannier
states are C2-symmetric, t0α ≡ tα must necessarily be a maximal Wyckoff position of multiplicity 1, and thereby a C2
center of the infinite system.

Let us now assume that |W0α〉 is compact and has overlap at most with orbitals at R̄ + tj̄ , that is, |R̄ + tj̄ − tα|
is the maximal radius of each |WRα〉 (here, R̄ is a given lattice vector, and tj̄ is a given site in the unit cell). This

radius is nonzero because we assume the Wannier states to be obstructed, so even for R̄ = 0 we have tj̄ 6= tα. Then,

R̄ + tj̄ is the only site of overlap of |W0α〉 with |WR′α〉, where

R′ = 2R̄ + 2tj̄ − 2tα. (48)

This is because translational symmetry implies that

tR′α − (R̄ + tj̄) = (R̄ + tj̄)− tα, (49)



13

while C2 symmetry implies the shared overlap. If the two Wannier states had more than one site in common, our
assumption that |WRα〉 is supported only up to a distance |R̄ + tj̄ − tα| would be violated. When the choice of

R̄ + tj̄ is not unique (even after excluding the C2-related partner), we may choose any maximal R̄ + tj̄ : since all

equivalent choices lie on a circle of radius |R̄ + tj̄ − tα| around tα (shown in green in Fig. 5), the state |WR′α〉 will

only overlap with |W0α〉 on a single site. See Fig. 5 for a visual representation in the case where |R̄+ tj̄ − tα| extends
to next-next-next-nearest neighbor sites.

We then evaluate the overlap

〈WR′α|W0α〉 =
∑

µ

〈WR′α|R̄j̄µ〉 〈R̄j̄µ|W0α〉 =
∑

µ

〈W0α|(R̄−R′)j̄µ〉 〈R̄j̄µ|W0α〉 (by translational symmetry)

=
∑

µ

γµ 〈W0α|C2|tα |R̄j̄µ〉 〈R̄j̄µ|W0α〉 = λα
∑

µ

γµ
∣∣〈R̄j̄µ|W0α〉

∣∣2 .

(50)

This is a sum of strictly positive numbers
∣∣〈R̄j̄µ|W0α〉

∣∣2 that are weighted by the C2 eigenvalues γµ = ±1 (s or p) of
physical orbitals. For |WRα〉 to be compact and orthonormal 〈WR′α|W0α〉 = 0, we then need at least one s⊕ p pair
of physical orbitals, so that 〈WR′α|W0α〉 can be made to vanish (a Wannier basis is required to be orthonormal).

Moreover, when the unit cell indeed hosts an s⊕p pair at tj̄ , we can immediately find a compact representation for
both |WRα〉 and another set of Wannier states |WRα̃〉, also localized at Wyckoff position tα but with C2 eigenvalue
λα̃ = −λα: the s⊕ p pair forms a mobile cluster (see Sec. II A) and can be used to construct compact states of s⊕ p
character at tα (or, in fact, any maximal Wyckoff position). More concretely, we form the covalent bond states

|WRα〉 =
1

2
[(|R, j̄, 1〉+ |R, j̄, 2〉) + λα (|R + 2tα, j̄, 1〉 − |R + 2tα, j̄, 2〉)] ,

|WRα̃〉 =
1

2
[(|R, j̄, 1〉+ |R, j̄, 2〉)− λα (|R + 2tα, j̄, 1〉 − |R + 2tα, j̄, 2〉)] ,

(51)

where µ = 1, 2 labels the s and the p orbital at site tj̄ , respectively. These states satisfy

〈WRα|WR′α〉 = 〈WRα̃|WR′α̃〉 = δR,R′ , 〈WRα|WR′α̃〉 = 0, (52)

as required for a compact Wannier basis. Any further compact Wannier states cannot have support on the same
s⊕ p pair: since for each unit cell, we have constructed two compact Wannier states (|WRα〉 and |WRα̃〉) out of two
physical orbitals, the Hilbert space provided by the s ⊕ p pair is fully exhausted. Hence, in order to find additional
compact Wannier states that are orthogonal to all |WRα〉 and |WRα̃〉, more s ⊕ p pairs of orbitals are required. We
conclude that, in order to construct M compact obstructed Wannier states of the same C2 eigenvalue λ, we require a
unit cell hosting (at least) M s⊕p pairs of physical orbitals. Given M s⊕p pairs, we may then additionally construct
M compact and obstructed Wannier states of C2 eigenvalue −λ.

C. Trivializing obstructed band complements

We now examine the momentum-space conditions for a given set of obstructed bands to have a fragile complement.
The same conditions can also be obtained from arguments based on real-space indicators (RSIs) [5] or Wilson loops [7].
We begin by recalling that an atomic insulator can be decomposed into EBRs that are induced from atomic orbitals
at maximal Wyckoff positions in the unit cell [8]. The relationship between unit cell (UC) orbitals and Brillouin zone
(BZ) symmetry eigenvalues is encoded in the EBR matrix [5, 9], whose columns contain the BZ eigenvalue content
of a given atomic orbital (s or p) at a given Wyckoff position (1a, 1b, 1c, or 1d). In particular, let n±k denote the

multiplicity of ±1 C2 eigenvalues at the C2-symmetric momentum k in the Brillouin zone, and let n+
1x (n−1x) count the

s (p) orbitals at maximal Wyckoff position 1x in the unit cell. Consulting Tab. I, we have



n+
Γ

n+
X

n+
Y

n+
M

n−Γ
n−X
n−Y
n−M




=




1 1 1 1 0 0 0 0

1 0 0 1 0 1 1 0

1 1 0 0 0 0 1 1

1 0 1 0 0 1 0 1

0 0 0 0 1 1 1 1

0 1 1 0 1 0 0 1

0 0 1 1 1 1 0 0

0 1 0 1 1 0 1 0







n+
1a

n+
1b

n+
1c

n+
1d

n−1a
n−1b
n−1c
n−1d




, (53)
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which we abbreviate by

nBZ = ΞnUC. (54)

Here, Ξ is the EBR matrix of wallpaper group p2 [8]. All insulators with equal symmetry indicators nBZ can be
adiabatically transformed into one another. Insulators exhibiting symmetry indicators that are not of the form of
Eq. (54) are topological, in that they cannot be deformed to any atomic limit.

When the crystal is built from a certain set of orbitals at maximal Wyckoff positions of the lattice, these together
give rise to a specific multiplicity vector nUC formed of non-negative integers. Importantly det(Ξ) = 0, and so Ξ is in
general not invertible: there are multiple real-space configurations nUC that correspond to the same momentum-space
eigenvalues nBZ. The null space of Ξ is spanned by the three vectors

n
(1)
kerΞ =

(
−1 0 0 1 −1 0 0 1

)T

, n
(2)
kerΞ =

(
−1 0 1 0 −1 0 1 0

)T

, n
(3)
kerΞ =

(
−1 1 0 0 −1 1 0 0

)T

.

(55)
Their physical interpretation is that any s ⊕ p pair of orbitals (a mobile cluster) can be moved around the unit cell
adiabatically, and so can equally well (with respect to the resulting nBZ) locate at any maximal Wyckoff position.
This is just the statement that an s ⊕ p pair forms a mobile cluster for C2 symmetry as discussed in Sec. II A.
Correspondingly, subtracting an s (a p) orbital from any site is equivalent to adding a p (an s) orbital to the same
site and subtracting an s⊕ p pair from any other site.

The complement of an OAI band is fragile topological when its nBZ cannot be expressed in terms of a nUC

corresponding to a positive sum of EBRs [4]. All nUC vectors belonging to physically realizable atomic insulators are
comprised of non-negative integers, while a fragile nUC necessarily involves negative entries. We can exclude the case
of strong topology, where the entries of nUC cannot be chosen integer-valued at all, because the complement of any
strong topological set of bands is itself strong topological [4]. We now formally write

C = AI	OAI, (56)

where AI denotes the atomic insulator formed of the unobstructed lattice bands, OAI is the obstructed atomic
insulator, and C its band complement. Taking the band complement corresponds to a subtraction on both sides of
Eq. (54), so that we have

nBZ(C) = nBZ(AI)− nBZ(OAI) = Ξ[nUC(AI)− nUC(OAI)] (57)

Note that nUC(AI) − nUC(OAI) necessarily has negative elements by virtue of the OAI being obstructed. The
complement is trivial (equivalent to an atomic insulator) if and only if all elements of this vector can be made non-

negative under the equivalence relation of adding linear superpositions of n
(1),(2),(3)
kerΞ – otherwise it is fragile. For

wallpaper group p2, this condition is equivalent to the fragile criteria developed in Ref. 5.
Consider now the complement of M obstructed bands with equal C2 eigenvalue at Γ, these have Wannier states

of equal C2 eigenvalue for rotations about their respective Wannier center. (We choose Γ for convenience, the same
analysis can be carried out with respect to any other of the C2-symmetric momenta in the Brillouin zone.) In order for
nBZ(C) to be equivalent to an OAI, nUC(AI) − nUC(OAI) should be transformable into a vector with non-negative

entries under the equivalence relation of adding linear superpositions of n
(1),(2),(3)
kerΞ . Since each addition of n

(1),(2),(3)
kerΞ

removes an s ⊕ p pair at one Wyckoff position and adds it to another, this is only possible if nUC has at least M
s⊕p pairs available. We conclude that the maximal number of obstructed bands (with equal C2 eigenvalue at Γ) that
has an atomic (in contrast to a fragile) complement is equal to the number of s⊕ p pairs in the unit cell. Moreover,
in presence of M s ⊕ p pairs, the complement of M obstructed bands with equal C2 eigenvalue at Γ will contain M
obstructed bands exhibiting the opposite C2 eigenvalue at Γ.

D. No-go theorem

We have seen that the unit cell of a crystal in wallpaper group p2 needs to host at least M s⊕ p pairs of physical
orbitals in order to support M compact and obstructed Wannier states of the same C2 eigenvalue. Moreover, in
Eq. (51), we provided an explicit construction of compact Wannier states in the case where a sufficient number of
s⊕ p pairs of orbitals is available.

At the same time, we have shown that at least M s⊕ p pairs of physical orbitals per unit cell are required in order
for the complement of M obstructed bands of the same C2 eigenvalue at Γ, or in fact at any other high-symmetry
point of the Brillouin zone, to realize an atomic insulator.
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A fragile set of bands is by definition not trivializable (not expressible as an atomic insulator) without enlarging
the occupied subspace [4]. We therefore conclude that with C2 symmetry, all OAIs having a fragile band complement
cannot be expressed in terms of compactly localized Wannier states (although their Wannier functions can be made
to decay exponentially, because they are topologically trivial [8, 10, 11]). Otherwise, the lattice would host enough
s⊕ p pairs to also trivialize the fragile bands.

Since fragile bands with C2 symmetry either have OAIs or fragile bands as their complement [4] (the latter of which
do not even support exponentially localized Wannier functions), we deduce that the complement of any fragile set of
bands in wallpaper group p2 necessarily has non-compact Wannier functions.

V. C4 SYMMETRY

In this section, we prove that C4-protected OAIs with spatial obstruction are compact if and only if they are
compact when C4 symmetry is relaxed to C2 symmetry. (We have already fully characterized the sets of compact and
non-compact C2-protected OAIs in Sec. IV.) Clearly, an OAI that is non-compact with C2 symmetry must remain non-
compact with C4 symmetry: because (C4)2 = C2 holds, this symmetry only poses additional constraints on any compact
basis candidates (these now also have to respect C4 symmetry in addition to C2 symmetry and orthonormality). To
prove our claim, we must therefore only show that all C4-symmetric, C2-compact OAIs – those built from lattices
containing a sufficient number of s⊕ p pairs of physical orbitals, as explained in Sec. IV – are also guaranteed to have
a C4-symmetric compact Wannier basis.

We use conventions where the lattice vectors of the C4-symmetric wallpaper group p4 are given by a1 = x̂, a2 = ŷ.
Correspondingly, the reciprocal lattice vectors are given by b1 = 2πx̂, b2 = 2πŷ. The maximal Wyckoff positions
of the unit cell are located at t1a = 0, t1b = (x̂ + ŷ)/2, and t2c = {x̂/2, ŷ/2}. The high-symmetry momenta of the
Brillouin zone are defined as Γ = 0, X = b1/2, X ′ = b2/2, and M = b1/2 + b2/2. Since spinless C4 symmetry
satisfies (C4)4 = 1, its eigenvalues are taken from the set {1,−1, i,−i}. For future reference, we list the EBRs of
wallpaper group p4 in Tabs. II, III [6].

λ(4) WP Γ M X,X′

1 1a 1 1 1

1b 1 −1 −1

−1 1a −1 −1 1

1b −1 1 −1

i 1a i i −1

1b i −i +1

−i 1a −i −i −1

1b −i i +1

TABLE II. Multiplicity-1 Wyckoff position-resolved EBRs of wallpaper group p4. The site-symmetry representations are
labelled by their C4 eigenvalue λ(4). Depending on which Wyckoff position (WP) they are placed at, they give rise to different
Bloch band C4 and C2 eigenvalues at the high-symmetry momenta Γ,M and X,X′, respectively.

λ(2) WP Γ M X,X′

1 2c 1,−1 i,−i 1,−1

−1 2c i,−i 1,−1 1,−1

TABLE III. Multiplicity-2 Wyckoff position-resolved EBRs of wallpaper group p4. The site-symmetry representations are
labelled by their C2 eigenvalue λ(2). Depending on which Wyckoff position (WP) they are placed at, they give rise to different
Bloch band C4 and C2 eigenvalues at the high-symmetry momenta Γ,M and X,X′, respectively.

A. General observations

In the following we explicitly construct C4-symmetric compact Wannier states for all (spatially-obstructed) OAIs
that have a compact representation when C4 symmetry is relaxed to C2 symmetry. (Recall that in Sec. IV, it was



16

1a 2c

2c 1b

Γ X

X′￼ M

Γ1,2Γ3, Γ4 2X1,2X2

M1,2M2, M4

Γ X

X′￼ M

Γ1 X1

M1
⊖ =

Γ X

X′￼ M

2Γ3, Γ4 X1,2X2

2M2, M4

1a 2c

2c 1b
⊖ = FP

a

c

px s
sUC UC

BZ BZ BZ

py px − ipy

FIG. 6. (a) Subtracting an OAI at Wyckoff position 1a to obtain a fragile phase with C4 rotational symmetry. (b) Compact
Wannier state for the OAI [also obtained from Eq. (62) for λ = 1]. The vectors shown at each site contain the (non-
normalized) overlaps of |W0,1a〉 with all on-site orbitals (the corresponding orbital labels are indicated for the home unit cell).
(c) Brillouin zone decomposition of the relevant bands into irreducible representations. (Representation labels follow the Bilbao
Crystallographic Server [6].)

shown that C2-symmetric compact Wannier bases exist only when the underlying lattice hosts at least as many s⊕ p
pairs of physical orbitals as there are obstructed orbitals in the OAI.)

From the outset, we can exclude from our consideration some OAIs that are guaranteed to have an OAI complement
(these are compact by the results of Sec. II C): for instance, it follows from Tabs. II and III that OAIs constructed
from lattices hosting physical orbitals only at the 2c position always have N(AI) ≥ N̄(OAI) (see Sec. II B), and
therefore also have an OAI complement. This is because the only combination of irreducible representations (irreps)
from Tab. II that reproduces the full set of momentum-resolved C4 eigenvalues of any irrep in Tab. III is one involving
all irreps of Tab. II, which is a mobile cluster.

Up to the exchange 1a↔ 1b, there are then two types of OAIs that may have a fragile complement:

(1) OAIs where 1a is the only Wyckoff position carrying obstructed orbitals,

(2) OAIs where 2c is the only Wyckoff position carrying obstructed orbitals.

(Here we assume the OAI to be spatially obstructed, so that all obstructed Wyckoff positions are empty of physical
orbitals – see also the beginning of Sec. II.) We will show that both of these cases allow for compact representations
if they are also C2-compact. The remaining types of C4-symmetric OAIs do not have a fragile complement (by the
necessary condition of Sec. II B), and so are guaranteed to have a compact representation (by the sufficient condition
of Sec. II C). They clearly remain compact when C4 is relaxed to C2 symmetry, consistent with our general claim about
C4 compactness.

B. 1-band OAIs

To begin with, we discuss the case of OAIs composed of 1 atomic band. First note that there are no 1-band OAIs of
type (2), because Wyckoff position 2c has multiplicity 2 and so can only be populated by C4-related pairs of bands. For
1-band OAIs of type (1), where only 1a carries an obstructed orbital with C4 eigenvalue λ, there are three inequivalent
subtraction patterns that give rise to fragile complements:

[(λ)1b ⊕ (−λ)1b ⊕ (iλ)1b] ↑ G	 (λ)1a ↑ G = FP, (58)
[
(λ)1b ⊕ (iλ)1b ⊕ (−λ2)2c

]
↑ G	 (λ)1a ↑ G = FP, (59)

[
(−λ)1b ⊕ (iλ)1b ⊕ (λ2)2c

]
↑ G	 (λ)1a ↑ G = FP, (60)

λ = 1,−1, i,−i, where we label orbitals at Wyckoff positions 1b and 2c by their C4 and C2 eigenvalues, respectively.
Because we want to treat multiple OAIs simultaneously and keep λ a free variable, this notation is more convenient
than the notation used on the Bilbao crystallographic server [6]. Here, we do not include subtractions that are
obtained by the exchange i ↔ −i in Eqs. (58)- (60) (while leaving λ unchanged). Furthermore, we do not list
configurations containing mobile clusters of orbitals (which are always compact), these contain (at least) one orbital
of each C4 eigenvalue 1,−1, i,−i. We also exclude configurations that do not host enough s⊕ p pairs to guarantee C2
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FIG. 7. (a) Subtracting a 2-band OAI at Wyckoff position 1a to obtain a fragile root with C4 rotational symmetry. (b) Compact
Wannier states for the OAI [also obtained from Eq. (67) for λ = 1]. To minimize clutter, the vectors in this figure only show
the asymmetric part of the (non-normalized) overlaps of the Wannier states with all on-site orbitals, the full states are obtained
by applying C4. (c) Brillouin zone decomposition of the relevant bands into irreducible representations. (Representation labels
follow the Bilbao Crystallographic Server [6].)

compactness, these do not contain an orbital pair with C2 eigenvalues 1 and −1. We also do not consider unit cells
that contain more physical orbitals than are needed to construct the OAI.

Any subtraction of the form listed above can be performed using strictly local Wannier states. For λ = 1, these are
shown explicitly in Fig. 4b for Eq. (58), and in Fig. 6b for Eq. (59). The compact Wannier states for λ = −1, i,−i,
as well as for Eq. (60) follow from accordingly exchanging the underlying lattice orbitals. That is, for the OAI in
Eq. (58), the compact Wannier state at R = 0 reads

|W0λ〉 =
1

4

[
|w0λ〉+ λ∗C4|0,1a |w0λ〉+ (λ∗C4|0,1a)2 |w0λ〉+ (λ∗C4|0,1a)3 |w0λ〉

]
,

|w0λ〉 = |0, (λ)1b〉+ |0, (−λ)1b〉+
√

2 |0, (iλ)1b〉 .
(61)

Here |R, (µ)i〉 denotes the basis state for the orbital with C4 eigenvalue µ at Wyckoff position i of the unit cell at
R, and C4|0,1a implements a C4 rotation about Wyckoff position 1a at the origin. Furthermore, the R = 0 compact
Wannier state for the OAI in Eq. (59) is obtained from

|w0λ〉 = |0, (λ)1b〉+ |0, (iλ)1b〉+
√

2 |0, (−λ2)2c〉 , (62)

where |0, (−λ2)2c〉 importantly only entails one of the two C4-related orbitals at 2c. The compact state for Eq. (60)
follows directly by substituting (λ)1b → (−λ)1b, (−λ2)2c → (λ2)2c.

It is straightforward to verify that the resulting states and their translates are orthonormal,

〈W0λ|WRλ〉 = δR,0, (63)

as required for a compact Wannier basis. We thus conclude that all spatially-obstructed 1-band OAIs with C4
symmetry admit a compact Wannier basis as long as they do so when C4 symmetry is relaxed to C2 symmetry.

C. 2-band OAIs

A straightforward way to obtain 2-band OAIs is to stack (using the ⊕ operation) OAI subtractions of the form of
Eqs. (58)-(60). For instance, by stacking Eqs. (58) and (59), we obtain

[
2(λ)1b ⊕ (−λ)1b ⊕ 2(iλ)1b ⊕ (−λ2)2c

]
↑ G	 2(λ)1a ↑ G = C, (64)

where C is the band complement of an OAI formed by two obstructed orbitals at 1a with equal C4 eigenvalue λ.
Importantly, for general stacks, C need not be fragile, however, it is fragile in the present case. If the individual OAIs
forming the stack are all compact, then their combination will also be compact: since we not only stack OAIs but also
their pertinent lattice orbitals, Wannier states belonging to different OAIs have disjoint support and are orthogonal
to each other.
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FIG. 8. (a) Subtracting 2-band OAI at Wyckoff position 2c to obtain a fragile root with C4 rotational symmetry. (b) Compact
Wannier state for the OAI [also obtained from Eq. (68) for λ = 1]. To minimize clutter, the vectors in this figure only show
the (non-normalized) overlaps of one of the two compact Wannier states with all on-site orbitals, the other state is obtained
by applying the C4 operation as defined in Eq. (68). (c) Brillouin zone decomposition of the relevant bands into irreducible
representations. (Representation labels follow the Bilbao Crystallographic Server [6].)

More interestingly, by inspecting Tabs. II and III, we find that some 2-band OAIs can also be constructed on unit
cells that are not formed from stacks of the orbitals appearing in Eqs. (58)-(60), where stacking is defined with respect
to the ⊕ operation as in Eq. (64). We need to study their compactness properties separately, because the support
of Wannier states belonging to different OAI bands cannot be disjoint, so that the orthogonality between Wannier
states of different bands is not guaranteed.

For 2-band OAIs of type (1), where only 1a carries obstructed orbitals, there is one such subtraction that gives rise
to a fragile complement:

[(λ)1b ⊕ (−λ)1b ⊕ (iλ)1b ⊕ (iλ)1b] ↑ G	 [(λ)1a ⊕ (−λ)1a] ↑ G = FP. (65)

Moreover, for OAIs of type (2), where only 2c carries an obstructed orbital with C2 eigenvalue λ2, there is another
subtraction leading to a fragile complement:

[(λ)1a ⊕ (iλ)1a ⊕ (−λ)1b ⊕ (iλ)1b] ↑ G	 (λ2)2c ↑ G = FP. (66)

Here, we do not include subtractions that are obtained by the exchange i↔ −i, or, in Eq. (66) only, by the exchange
1a↔ 1b. Furthermore, we do not list configurations containing mobile clusters of orbitals (which are always compact),
or those that do not host enough s⊕ p pairs to guarantee C2 compactness (which are always non-compact). We also
do not consider configurations containing more physical orbitals than are needed to construct the OAI.

Any subtraction of the form of Eqs. (65) and (66) can be performed using strictly local and orthogonal Wannier
states. For λ = 1, these are shown explicitly in Fig. 7b for Eq. (65) and in Fig. 8b for Eq. (66). The compact Wannier
states for λ = −1, i,−i follow from accordingly exchanging the underlying lattice orbitals. That is, for the OAIs in
Eq. (65), the compact Wannier states at R = 0 read

|W0λ〉 =
1

4

[
|w0λ〉+ λ∗C4|0,1a |w0λ〉+ (λ∗C4|0,1a)2 |w0λ〉+ (λ∗C4|0,1a)3 |w0λ〉

]
,

|W0(−λ)〉 =
1

4

[
|w0(−λ)〉 − λ∗C4|0,1a |w0(−λ)〉+ (λ∗C4|0,1a)2 |w0(−λ)〉 − (λ∗C4|0,1a)3 |w0(−λ)〉

]
,

|w0λ〉 = |0, (λ)1b〉+ |0, (−λ)1b〉+
√

2 |0, (iλ)1b〉 ,
|w0(−λ)〉 = |0, (λ)1b〉 − |0, (−λ)1b〉+

√
2 |0, ˜(iλ)1b〉 .

(67)

Here |R, (µ)i〉 denotes the basis state for the orbital with C4 eigenvalue µ at Wyckoff position i of the unit cell at

R [we denote the two inequivalent orbitals with C4 eigenvalue iλ by (iλ)1b and ˜(iλ)1b], and C4|0,1a implements a C4
rotation about Wyckoff position 1a at the origin. Finally, the compact states for Eq. (66) are given by

|W0(λ2),1〉 =
1

2
√

2

[
|0, (λ)1a〉+ |0, (iλ)1a〉+ |0, (−λ)1b〉+ |0, (iλ)1b〉

+ |a1, (λ)1a〉 − |a1, (iλ)1a〉+ |(−a2), (−λ)1b〉 − |(−a2), (iλ)1b〉
]
,

|W0(λ2),2〉 =C4|0,1a |W0(λ2),1〉 .

(68)
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It is straightforward to verify that the resulting states and their translates are orthonormal,

〈W0α|WRβ〉 = δαβδR,0, (69)

as required for a compact Wannier basis. We thus conclude that all spatially-obstructed 2-band OAIs with C4
symmetry admit a compact Wannier basis, as long as they do so when C4 symmetry is relaxed to C2 symmetry.

D. OAIs with an arbitrary number of atomic bands

There are no C2-compact n-band OAIs with spatial obstruction and a fragile complement, where n > 2, that are
not obtained by simply stacking (under the ⊕ operation) the 1- and 2-band OAI subtractions discussed in Secs. V B
and V C. To see this, we note that any 1- or 2-band subset of such an n-band OAI must be of the form discussed in
Secs. V B and V C. Adding a single orbital to the 1-band OAIs in Eqs. (58)-(60), together with the lattice orbitals
required to support it, either produces a stack [Eq. (64)] or a 2-band OAI of the form in Eqs. (65) and (66).

Now, let us inspect the momentum-space irrep content of these 2-band OAIs:
(1) Setting λ = 1 without loss of generality in Eq. (65), we find that FP has the momentum-space irreps shown in

Fig. 7c. In order to subtract another OAI band at 1a with C4 eigenvalue ±1, we must add (at least) three supporting
orbitals, giving rise to a stack of subtractions, because the existing momentum-space irreps are incompatible with the
new band (Tab. II). Alternatively, in order to subtract an OAI band at 1a with C4 eigenvalue ±i, we would have to add
a supporting orbital with C4 eigenvalue −i at 1b, giving rise to a mobile cluster and preventing a fragile complement.

(2) Furthermore, setting λ = 1 without loss of generality in Eq. (66), we find that FP has the momentum-space irreps
shown in Fig. 8c. To add another obstructed orbital (1)2c, we must also stack on (under the ⊕) operation another copy
of the supporting orbitals of Eq. (66), giving rise to a stack of subtractions, because the existing momentum-space
irreps are incompatible with the new band (Tab. III). On the other hand, to add an obstructed orbital (−1)2c, we
need a mobile cluster, because the combination (1)2c ⊕ (−1)2c is itself a mobile cluster.

We therefore conclude that all C4-symmetric, C2-compact (n > 2)-band OAI subtractions that give fragile comple-
ments can be decomposed into stacks of disconnected 1- or 2-band OAI subtractions. All such stacks have a compact
Wannier basis: the individual OAIs entering the stack were shown to be compact in Secs. V B and V C, and the Wan-
nier states belonging to different OAIs have disjoint support by construction (recall that when stacking subtractions,
we stack both OAI bands and lattice orbitals). This implies that all C4-protected OAIs with spatial obstruction admit
a compact Wannier basis if and only if they do so when C4 symmetry is relaxed to C2 symmetry.

We note that this decomposition property of C4-symmetric OAI subtractions is markedly different from the case with
C3-symmetry: As we will see in Sec. VI C, the Wannier states of C3-symmetric 3-band OAIs with fragile complement
cannot all be chosen to have mutually disjoint support, that is, they must share some orbitals so that orthogonality
becomes a nontrivial constraint.

VI. C3 SYMMETRY

In this section, we study the compactness properties of OAIs with C3 rotational symmetry and a spatial obstruction.
We define ω = ei 2π3 and ω∗ = e−i 2π3 . Since spinless C3 symmetry satisfies (C3)3 = 1, its eigenvalues are taken from
the set {1, ω, ω∗}. We use conventions where the lattice vectors of the C3-symmetric wallpaper group p3 are given

by a1 = x̂, a2 = x̂/2 +
√

3ŷ/2. Correspondingly, the reciprocal lattice vectors are given by b1 = 2π(
√

3x̂ − ŷ)/
√

3,

b2 = 4πŷ/
√

3. The maximal Wyckoff positions of the unit cell are t1a = 0, t1b = (x̂+ŷ/
√

3)/2, and t1c = (x̂−ŷ/
√

3)/2.
The high-symmetry momenta of the Brillouin zone are defined as Γ = 0, K = 2b1/3 + b2/3, and K ′ = b1/3− b2/3.
For future reference, we also list the elementary band representations of wallpaper group p3 in Tab. IV.

We may always assume the maximal Wyckoff position 1a to be obstructed and empty of physical orbitals, this
assumption does not lose generality: at least one site must be obstructed, and all C3-symmetric Wyckoff positions are
equivalent. Moreover, if only 1b or 1c carries physical orbitals, it follows from Tab. IV that subtracting an n-band OAI
necessitates the presence of n mobile clusters of orbitals, which are each composed of three orbitals with C3-eigenvalues
1, ω, ω∗. The presence of n mobile clusters guarantees compactness and precludes a fragile complement. Therefore,
we only need to investigate compactness on lattices where both 1b and 1c carry physical orbitals.

A. 1-band OAIs

All 1-band atomic insulators with C3 symmetry can be represented by compact Wannier states. First, if they satisfy
N(AI) ≥ N̄(OAI), their compactness follows automatically by the results of Sec. II C. Then, if they are complement
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λ WP Γ K K′

1
1a 1 1 1

1b 1 ω∗ ω

1c 1 ω ω∗

ω
1a ω ω ω

1b ω 1 ω∗

1c ω ω∗ 1

ω∗
1a ω∗ ω∗ ω∗

1b ω∗ ω 1

1c ω∗ 1 ω

TABLE IV. Wyckoff position-resolved elementary band representations of wallpaper group p3. The site-symmetry represen-
tations are labelled by their C3 eigenvalue λ. Depending on which Wyckoff position (WP) they are placed at, they give rise to
different Bloch band C3 eigenvalues at the high-symmetry momenta Γ,K,K′ of the Brillouin zone.
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FIG. 9. (a) Subtracting a 1-band OAI to obtain a fragile root with C3 rotational symmetry. (b) Compact Wannier state for
the OAI [also obtained from Eq. (72) for λ = 1]. Shown is the full symmetric Wannier state, which has overlap with orbitals in
its home unit cell and three nearest-neighbor unit cells. (c) Brillouin zone decomposition of the relevant bands into irreducible
representations. (Representation labels follow the Bilbao Crystallographic Server [6].)

to a fragile set of bands, we show that subtractability (the ability to project out the OAI from the unobstructed lattice
bands with a gap at all momenta) is equivalent to compactness for all 1 band OAIs.

Consulting Tab. IV, we find that all subtractions of an atomic band belonging to Wannier states with C3 eigenvalue
λ, located at Wyckoff position 1a, are of a similar form:

[(λ)1b ⊕ (ωλ)1b ⊕ (ωλ)1c] ↑ G	 (λ)1a ↑ G = FP, (70)

[(ωλ)1b ⊕ (ω∗λ)1b ⊕ (λ)1c] ↑ G	 (λ)1a ↑ G = FP. (71)

Here, we do not list the equivalent physical orbital configurations that can be obtained by exchanging eigenvalues
ω ↔ ω∗ or Wyckoff positions 1b ↔ 1c. Furthermore, we do not list configurations containing mobile clusters of
orbitals (which are always compact), these contain (at least) one orbital of each C3 eigenvalue 1, ω, ω∗. We also do
not consider unit cells that contain more physical orbitals than are needed for constructing the OAI. For Eq. (70) and
λ = 1, Fig. 9a depicts the real-space subtraction, while Fig. 9c shows the momentum-space symmetry representations
of the corresponding Bloch bands.

Any subtraction of the form of Eq. (70), (71) can be performed using strictly local Wannier states. These are shown
explicitly in Fig. 9b for Eq. (70) in the case λ = 1. The compact Wannier states for λ = ω, ω∗, as well as for Eq. (71),
follow from accordingly exchanging the underlying lattice orbitals. That is, for the OAI in Eq. (70), the compact
Wannier state at R = 0 reads

|W0λ〉 =
1

3

[
|w0λ〉+ λ∗C3|0,a |w0λ〉+ (λ∗C3|0,a)2 |w0λ〉

]
,

|w0λ〉 = |0, (λ)1b〉+ |0, (ωλ)1b〉+ |0, (ωλ)1c〉 .
(72)

Here |R, (µ)i〉 denotes the basis state for the orbital with C3 eigenvalue µ at Wyckoff position i of the unit cell at R,
and C3|0,a implements a C3 rotation about Wyckoff position 1a at the origin. Correspondingly, the R = 0 compact
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FIG. 10. (a) Subtracting a 2-band OAI to obtain a fragile root with C3 rotational symmetry. (b) Compact Wannier states for
the OAI [also obtained from Eq. (77) for λ = 1]. To minimize clutter, we only show the asymmetric part of the Wannier state,
the full state is obtained by applying C3. (c) Brillouin zone decomposition of the relevant bands into irreducible representations.
(Representation labels follow the Bilbao Crystallographic Server [6].)

Wannier state for the OAI in Eq. (71) is obtained from

|w0λ〉 = |0, (ωλ)1b〉+ |0, (ω∗λ)1b〉+ |0, (λ)1c〉 . (73)

It is straightforward to verify that the resulting states and their translates are orthonormal,

〈W0λ|WRλ〉 = δR,0, (74)

as required for a compact Wannier basis. We conclude that all 1-band atomic insulators with C3 symmetry allow for
a compact representation, irrespective of whether they have an atomic or fragile complement.

B. 2-band OAIs

A straightforward way to obtain 2-band OAIs is to stack (using the ⊕ operation) OAI subtractions of the form of
Eqs. (70) and (71). The resulting OAIs are clearly compact (in that they are spanned by a strictly local, orthonormal
basis of Wannier states), because the respective Wannier states have disjoint support. (See also the discussion in
Sec. V C.)

More interestingly, some spatially-obstructed 2-band OAI subtractions cannot be obtained from stacking. We need
to study their compactness properties separately, because the support of Wannier states belonging to different OAI
bands must have at least some orbitals in common, so that the orthogonality between Wannier states of different bands
is not guaranteed. Consulting Tab. IV, such 2-band atomic insulators with fragile complements can be obtained as
subtractions of the form

[(λ)1b ⊕ (ωλ)1b ⊕ (λ)1c ⊕ (ωλ)1c] ↑ G	 [(λ)1a ⊕ (ωλ)1a] ↑ G =FP, (75)

[(ω∗λ)1b ⊕ (λ)1b ⊕ (ωλ)1c ⊕ (ω∗λ)1c] ↑ G	 [(λ)1a ⊕ (ωλ)1a] ↑ G =FP, (76)

where we do not list subtractions obtained by exchanging the eigenvalues ω ↔ ω∗ or Wyckoff positions 1b ↔ 1c.
Moreover, we do not list the configurations containing mobile clusters of orbitals, or those that contain more physical
orbitals than are needed to construct the OAI. (Here we assume the OAI to be spatially obstructed, so that the
obstructed Wyckoff position is empty of physical orbitals – see also the beginning of Sec. II.) For Eq. (75), Fig. 10a
and c depict the λ = 1 real and momentum space subtractions, respectively. The two Wannier states with eigenvalues
λ and ωλ can be chosen to form a compact basis, as shown in Fig. 10b. The compact states for λ = ω, ω∗ in Eq. (75),
as well as those for all OAIs in Eq. (76), follow from accordingly exchanging the underlying lattice orbitals. That is,
the R = 0 compact Wannier state for the OAI in Eq. (75) reads

|W0λ〉 =
1

3

[
|w0λ〉+ λ∗C3|0,a |w0λ〉+ (λ∗C3|0,a)2 |w0λ〉

]
,

|W0(ωλ)〉 =
1

3

[
|w0λ〉+ (ω∗λ∗)C3|0,a |w0λ〉+ [(ω∗λ∗)C3|0,a]

2 |w0λ〉
]
,

|w0λ〉 = |0, (ωλ)b〉+ |0, (λ)c〉+ |0, (ωλ)c〉 ,
|w0(ωλ)〉 = |0, (λ)b〉+ |0, (ωλ)b〉 − ω∗ |0, (λ)c〉 .

(77)
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FIG. 11. (a) Subtracting a 3-band OAI to obtain a fragile root with C3 rotational symmetry. (b) Brillouin zone decomposition
of the relevant bands into irreducible representations. (Representation labels follow the Bilbao Crystallographic Server [6].)
(c) Trial Wannier states for the OAI. Shown are the full symmetric Wannier states, which have overlap with orbitals in their
home unit cell and three nearest-neighbor unit cells. As shown in Sec. VI C, there is no compact parameter choice.

Correspondingly, the compact basis for the OAI in Eq. (76) is obtained from

|w0λ〉 = |0, (λ)1b〉+ |0, (ωλ)1c〉+ |0, (ω∗λ)1c〉 , |w0(ωλ)〉 = |0, (ω∗λ)1b〉+ |0, (λ)1b〉 − ω∗ |0, (ωλ)1c〉 . (78)

It is straightforward to verify that the resulting states and their translates are orthonormal,

〈W0α|WRβ〉 = δαβδR,0, α, β ∈ {λ, ωλ}. (79)

We conclude that all spatially-obstructed 2-band atomic insulators with C3 symmetry allow for a compact represen-
tation, irrespective of whether they have an atomic or fragile complement.

C. 3-band OAI: 6-site non-compactness

We next turn to spatially-obstructed 3-band OAIs with C3 symmetry. Interestingly, and in contrast to the 1- and
2-band cases, we find compactness obstructions at least for small trial Wannier states. These arise by a mechanism
that is entirely different from the C2 obstructions governing OAIs with C2 and C4 symmetry.

1. Compactness constraints

Consider a 3-band OAI whose Wannier states are located on the 1a position and have C3 eigenvalues λa = 1,
λb = ω, λc = ω, where ω = ei 2π3 . We can construct such an OAI from a lattice that has 3 orbitals on the 1b position
(with eigenvalues {1, 1, ω}), and another 3 orbitals on the 1c position (also with eigenvalues {1, 1, ω}). For spatial
obstructions, this is the smallest number of orbitals giving rise to a 3-band OAI. These orbitals do not form a mobile
cluster and so the complement of the OAI is necessarily fragile by the results of Sec. II B. Using the representation
labels from the Bilbao crystallographic server [6], the corresponding subtraction is given by,

[
2(A1)1b ⊕ (2E)1b ⊕ 2(A1)1c ⊕ (2E)1c

]
↑ G	

[
(A1)1a ⊕ 2(2E)1a

]
↑ G = FP (80)
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and pictorially represented in Fig. 11a,b.
We now set out to find a compact Wannier basis for this OAI, where for the moment we restrict our attention

to Wannier states that have support on only 6 physical sites arranged in a hexagonal shape (recall from Secs. VI A
and VI B that this support is sufficient for establishing the compactness of all C3-symmetric 1- and 2-band OAIs).
We then define trial Wannier states as shown in Fig. 11c, where |Wa〉 denotes the state with C3 eigenvalue λa = 1,
while |Wb〉, |Wc〉 are the states with C3 eigenvalue λb = λc = ω. By default, these are chosen to transform under C3
symmetry according to their respective eigenvalue, leaving a total of 3× 6 = 18 remaining free complex variables that
are encoded in the three 6-dimensional vectors |wa〉, |wb〉, and |wc〉, defined in Eq. (24). Following the notation of
Fig. 11c, we write

|wa〉 =




a1

a2

a3

a4

a5

a6



, |wb〉 =




b1
b2
b3
b4
b5
b6



, |wc〉 =




c1
c2
c3
c4
c5
c6



. (81)

Orthogonality with all translates implies the constraints

〈wµ| C̃3ν |wν〉 = 0, (82)

where we defined the 6× 6 matrices

C̃3,a =




1

1

ω

1

1

ω∗



, C̃3,b =




ω∗

ω∗

1

ω

ω

1




= C̃3,c. (83)

These constraints have to be supplemented by on-site orthogonality,

〈wb|wc〉 = 0. (84)

(The orthogonality with |wa〉 is already guaranteed by λa 6= λb = λc.) The diagonal constraints give

〈wa| C̃3,a |wa〉 = 0 → |a1|2 + |a2|2 + |a4|2 + |a5|2 = |a3|2 = |a6|2 = 1,

〈wb| C̃3,b |wb〉 = 0 → |b1|2 + |b2|2 = |b3|2 + |b6|2 = |b4|2 + |b5|2 = 1,

〈wc| C̃3,c |wc〉 = 0 → |c1|2 + |c2|2 = |c3|2 + |c6|2 = |c4|2 + |c5|2 = 1,

(85)

where we have fixed the normalization to 〈wµ|wµ〉 = 3. We can rephrase the off-diagonal constraints in simpler terms
by taking linear combinations. For instance,

〈wb|wc〉+ 〈wb|C̃3,c|wc〉+
(
〈wc|C̃3,b|wb〉

)∗
∝ c3b

∗
3 + c6b

∗
6 = 0

〈wb|wc〉+ ω 〈wb|C̃3,c|wc〉+ ω∗
(
〈wc|C̃3,b|wb〉

)∗
∝ c1b

∗
1 + c2b

∗
2 = 0,

〈wb|wc〉+ ω∗ 〈wb|C̃3,c|wc〉+ ω
(
〈wc|C̃3,b|wb〉

)∗
∝ c4b

∗
4 + c5b

∗
5 = 0,

(86)

where ∝ indicates proportionality. We also have that

〈wa| C̃3,b |wb〉 − ω
(
〈wb| C̃3,a |wa〉

)∗
∝ a∗6b6 + ω∗(a∗1b1 + a∗2b2) = 0,

〈wa| C̃3,b |wb〉 − ω∗
(
〈wb| C̃3,a |wa〉

)∗
∝ a∗3b3 + ω(a∗4b4 + a∗5b5) = 0,

〈wa| C̃3,c |wc〉 − ω
(
〈wc| C̃3,a |wa〉

)∗
∝ a∗6c6 + ω∗(a∗1c1 + a∗2c2) = 0,

〈wa| C̃3,c |wc〉 − ω∗
(
〈wc| C̃3,a |wa〉

)∗
∝ a∗3c3 + ω(a∗4c4 + a∗5c5) = 0.

(87)

Eqs (85), (86), and (87) are 10 equations in total, they exhaust all constraints contained in Eqs. (82) and (84).
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2. Proving inconsistency directly

We next show that the combined system of all constraints does not allow for a solution. For this, we first solve
Eqs (85) and (86) for |wb〉 and |wc〉. The most general solution is

|wb〉 =




b1
b2
b3
b4
b5
b6




=




ρge
iφg√

1− ρ2
ge

iφh

ρie
iφi

ρje
iφj√

1− ρ2
je

iφk

√
1− ρ2

i e
iφl




, |wc〉 =




c1
c2
c3
c4
c5
c6




=




√
1− ρ2

ge
i(φg+φm)

−ρgei(φh+φm)
√

1− ρ2
i e

i(φi+φo)
√

1− ρ2
je

i(φj+φp)

−ρjei(φk+φp)

−ρiei(φl+φo)




, (88)

where ρµ ∈ R, 0 ≤ ρµ ≤ 1, and φµ ∈ R. Using Eq. (87), we then compute

1 = |b6|2 + |c6|2 = |a∗1b1 + a∗2b2|2 + |a∗1c1 + a∗2c2|2 = |a1|2 + |a2|2 + 2Re[a∗1a2(b1b
∗
2 + c1c

∗
2)] = |a1|2 + |a2|2,

1 = |b3|2 + |c3|2 = |a∗4b4 + a∗5b5|2 + |a∗4c4 + a∗5c5|2 = |a4|2 + |a5|2 + 2Re[a∗4a5(b4b
∗
5 + c4c

∗
5)] = |a4|2 + |a5|2,

(89)

so that we arrive at

2 = |a1|2 + |a2|2 + |a4|2 + |a5|2, (90)

in contradiction to the first line of Eq. (85). This implies that no solutions exist.

3. Proving inconsistency via the Cauchy–Schwarz inequality

Observe that Eqs. (85) and (87) imply
∣∣∣∣∣∣

(
a1

a2

)†(
b1
b2

)∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

(
a4

a5

)†(
b4
b5

)∣∣∣∣∣∣

2

= |a∗6b6|2 + |a∗3b3|2 = 1. (91)

At the same time, we know from the Cauchy–Schwarz inequality that
∣∣∣∣∣∣

(
a1

a2

)†(
b1
b2

)∣∣∣∣∣∣

2

=

∣∣∣∣∣

(
a1

a2

)∣∣∣∣∣

2 ∣∣∣∣∣

(
b1
b2

)∣∣∣∣∣

2

− ε,

∣∣∣∣∣∣

(
a4

a5

)†(
b4
b5

)∣∣∣∣∣∣

2

=

∣∣∣∣∣

(
a4

a5

)∣∣∣∣∣

2 ∣∣∣∣∣

(
b4
b5

)∣∣∣∣∣

2

− δ, (92)

where ε ≥ 0, δ ≥ 0. Then,

1 =

∣∣∣∣∣∣

(
a1

a2

)†(
b1
b2

)∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

(
a4

a5

)†(
b4
b5

)∣∣∣∣∣∣

2

=

∣∣∣∣∣

(
a1

a2

)∣∣∣∣∣

2 ∣∣∣∣∣

(
b1
b2

)∣∣∣∣∣

2

+

∣∣∣∣∣

(
a4

a5

)∣∣∣∣∣

2 ∣∣∣∣∣

(
b4
b5

)∣∣∣∣∣

2

− ε− δ = 1− ε− δ, (93)

from which we deduce ε = δ = 0. Since the Cauchy–Schwarz inequality is only an equality in the case of linear
dependence, it follows that

(
a1

a2

)
∝
(
b1
b2

)
,

(
a4

a5

)
∝
(
b4
b5

)
(94)

are proportional to each other. In the very same way, we obtain
(
a1

a2

)
∝
(
c1
c2

)
,

(
a4

a5

)
∝
(
c4
c5

)
. (95)

We find
(
b1
b2

)
∝
(
c1
c2

)
,

(
b4
b5

)
∝
(
c4
c5

)
, (96)

in direct contradiction to Eq. (86).
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FIG. 12. Trial Wannier state overlaps for the C3-symmetric 3-band OAI in Eq. (80). By C3 symmetry, all trial states must have
overlap with 3n, n ∈ Z, sites. The even cases n = 2 and n = 4 are extensively treated in Secs. VI C and VI D, respectively.
(a) n = 1. The trial Wannier state (light blue) centered about the 1a position (black x) has overlap with one of its translates
(dark blue) on a single site. Since the translated trial state can also be obtained from a C3 rotation about the overlap site, this
situation is equivalent to that depicted in Fig. 5 for C2 symmetry: for such a C2-symmetric overlap, we have shown in Eq. (50)
that a mobile cluster of orbitals (i.e., a s ⊕ p pair) must be present on the overlap site to ensure orthogonality. By the same
reasoning, to ensure orthogonality in the present case, the overlap site must host a C3-symmetric mobile cluster. Since this is
not the case – instead, each physical site carries the C3 representations {1, 1, ω} of the site-symmetry group, see Eq. (80) – there
is no orthogonal solution. (b) n = 3 and (c) n = 5. Again, we can find a translation that corresponds to a C3 rotation about
a single overlap site. Hence, there is no orthogonal solution in either case. (d) n = 7. The only translated states that overlap
with the trial state on a single site do not correspond to a C3 rotation about that site. Therefore, we cannot immediately
conclude that a compact Wannier basis with support on 3n = 21 sites does not exist.

4. Proving inconsistency via symmetries

We can also show inconsistency directly, and without first solving a part of the equations as done in Sec. VI C 2, by
exploiting the symmetries of the problem.

(I) There are two “internal” U(2) symmetries: on each of the two inequivalent sites of the unit cell, 1b and 1c, we
may freely rotate between the two equivalent orbitals of C3 eigenvalue 1.

(II) There is one “external” U(2) symmetry that rotates between |wb〉 and |wc〉 (these have the same C3 eigenvalue
λb = λc = ω). The unitarily rotated Wannier states are guaranteed to satisfy all constraints, Eqs. (85)-(87).

We first use Symmetry (I) to set a2 = a5 = 0 without loss of generality (that is, we orient our basis along the respective
subvectors of |wa〉). Eq. (87) then gives

|a6|2|b6|2 = |a1|2|b1|2, |a3|2|b3|2 = |a4|2|b4|2,
|a6|2|c6|2 = |a1|2|c1|2, |a3|2|c3|2 = |a4|2|c4|2.

(97)

Together with Eq. (85), these imply

|a1|2|b2|2 + |a4|2|b5|2 = 0,

|a1|2|c2|2 + |a4|2|c5|2 = 0.
(98)

Since a1 and a4 cannot both be zero [Eq. (85)], we get that at least b2 = c2 = 0 or b5 = c5 = 0. In either case, we may
now use Symmetry (II) to ensure b1c1 = 0 or b4c4 = 0, respectively (in general, if two vectors are linearly dependent,
we can unitarily rotate to a basis where one of the new vectors is the zero vector). But any solution of b1c1 = 0 or
b4c4 = 0 gives a contradiction with Eq. (85).
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FIG. 13. 12-site compactness constraints for the OAI shown in Fig. 11a,b. Here, each site carries 3 orbitals with C3 eigenvalues
{1, 1, ω}, so that the C3 matrices used in the constraint equations are given by C3b = C3c = diag(1, 1, ω). Then, we decompose
the asymmetric part of the Wannier states as |wα〉 = (|φα〉 , |ψα〉 , |ξα〉 , |ζα〉), where each component is a 3-dimensional complex
vector. The resultant symmetric Wannier states have C3 eigenvalues λa = 1 and λb = λc = ω, respectively. The choice of state
normalization to 〈φα|φα〉 + 〈ψα|ψα〉 + 〈ξα|ξα〉 + 〈ζα|ζα〉 = 3 is made for convenience. This list of constraints is exhaustive,
further translates only yield linearly dependent constraints.

D. 3-band OAI: 12-site non-compactness

We have proven that an orthonormal 6-site (hexagonal) Wannier basis for the 3-band OAI depicted in Fig. 11a,b
does not exist. In generalization, we now investigate the 12-site problem. By C3 symmetry, all trial states for a
compact Wannier basis have overlap with exactly 3n, n ∈ Z, physical sites. We note that compact 9-site Wannier
states cannot exist: some translates would have a shared overlap on a single site, and can be obtained from a C3
rotation about that site. Then, as shown in Fig. 12, orthogonality with translates necessitates a mobile set of atoms,
which is not present here – instead, each physical site carries the C3 representations {1, 1, ω} of the site-symmetry
group. Similarly, compact 3-site and 15-site Wannier states cannot exist. However, the same argument cannot be used
to exclude all candidate Wannier states overlapping with an odd number of sites: starting at 21 sites, the minimal
shared overlap between translates is not anymore equivalent to a C3 rotation (see Fig. 12).

1. Compactness constraints

Referring to Fig. 13, we make the identification

|wα〉 = (|φα〉 , |ψα〉 , |ξα〉 , |ζα〉),
|φα〉 = (α1, α2, α3)T, |ψα〉 = (α4, α5, α6)T, |ξα〉 = (α7, α8, α9)T, |ζα〉 = (α10, α11, α12)T

(99)

for α = a, b, c. Here, |wα〉 denotes the asymmetric part out of which the C3-symmetric Wannier states are constructed.
(The C3 eigenvalues are given by λa = 1 and λb = λc = ω.) Using the results of Sec. III A, the compactness constraints
depicted in Fig. 13 can then be simplified to yield the following system of equations:
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3 =|a1|2 + |a2|2 + |a3|2 + |a4|2 + |a5|2 + |a6|2 + 3|a9|2,
1 =|a3 + ω∗a12|2,
1 =|a6 + ωa9|2,
0 =a4a

∗
7 + a5a

∗
8 + a10a

∗
1 + a11a

∗
2 + ω∗ (a12a

∗
3 + a6a

∗
9) ,

|a9|2 =|a7|2 + |a8|2 + |a10|2 + |a11|2 = |a12|2,

(100)

In Eq. (100), the last line follows from constraint (3) of Fig. 13 for α = β = a, and the first line follows from this and
constraint (1). The second to fourth lines follow from combining these with constraints (2) and (4).

3 =|b1|2 + |b2|2 + |b3|2 + |b4|2 + |b5|2 + |b6|2 + 3
(
|b7|2 + |b8|2

)
,

1 =|b3 + b12|2 + |b6 + b9|2,
1 =|b4 + ω∗b7|2 + |b5 + ω∗b8|2,
0 =b4b

∗
7 + b5b

∗
8 + b10b

∗
1 + b11b

∗
2 + ω∗ (b12b

∗
3 + b6b

∗
9) ,

|b7|2 + |b8|2 =|b10|2 + |b11|2 = |b9|2 + |b12|2,

(101)

In Eq. (101), the last line follows from constraint (3) of Fig. 13 for α = β = b, and the first line follows from this and
constraint (1). The second to fourth lines follow from combining these with constraints (2) and (4).

3 =|c1|2 + |c2|2 + |c3|2 + |c4|2 + |c5|2 + |c6|2 + 3
(
|c7|2 + |c8|2

)
,

1 =|c3 + c12|2 + |c6 + c9|2,
1 =|c4 + ω∗c7|2 + |c5 + ω∗c8|2,
0 =c4c

∗
7 + c5c

∗
8 + c10c

∗
1 + c11c

∗
2 + ω∗ (c12c

∗
3 + c6c

∗
9) ,

|c7|2 + |c8|2 =|c10|2 + |c11|2 = |c9|2 + |c12|2,

(102)

In Eq. (102), the last line follows from constraint (3) of Fig. 13 for α = β = c, and the first line follows from this and
constraint (1). The second to fourth lines follow from combining these with constraints (2) and (4).

0 = [b1(a1 − 2a10)∗ + b2(a2 − 2a11)∗ − b12a
∗
3] + ω [(b6 − 2b9)a∗6 − b4a∗7 − b5a∗8] ,

0 = [b4(a4 − 2a7)∗ + b5(a5 − 2a8)∗ − b9a∗6] + ω∗ [(b3 − 2b12)a∗3 − b1a∗10 − b2a∗11] ,

0 =b4a
∗
7 + b5a

∗
8 + b10a

∗
1 + b11a

∗
2 + ω∗ (b12a

∗
3 + b6a

∗
9) ,

0 =b7a
∗
4 + b8a

∗
5 + b1a

∗
10 + b2a

∗
11 + ω (b3a

∗
12 + b9a

∗
6)

0 =b7a
∗
7 + b8a

∗
8 + ωb12a

∗
12,

0 =b10a
∗
10 + b11a

∗
11 + ω∗b9a

∗
9,

(103)

In Eq. (103), the last two lines follow from combining constraint (3) of Fig. 13 for (α, β) = (a, b) with the complex-
conjugated version of constraint (3) for (α, β) = (b, a). The first four lines follow from combining these with the
constraints (2) and (4). Constraint (1) is satisfied trivially because the full Wannier states corresponding to a and b
have different C3 eigenvalues.

0 = [c1(a1 − 2a10)∗ + c2(a2 − 2a11)∗ − c12a
∗
3] + ω [(c6 − 2c9)a∗6 − c4a∗7 − c5a∗8] ,

0 = [c4(a4 − 2a7)∗ + c5(a5 − 2a8)∗ − c9a∗6] + ω∗ [(c3 − 2c12)a∗3 − c1a∗10 − c2a∗11] ,

0 =c4a
∗
7 + c5a

∗
8 + c10a

∗
1 + c11a

∗
2 + ω∗ (c12a

∗
3 + c6a

∗
9) ,

0 =c7a
∗
4 + c8a

∗
5 + c1a

∗
10 + c2a

∗
11 + ω (c3a

∗
12 + c9a

∗
6)

0 =c7a
∗
7 + c8a

∗
8 + ωc12a

∗
12,

0 =c10a
∗
10 + c11a

∗
11 + ω∗c9a

∗
9,

(104)

In Eq. (104), the last two lines follow from combining constraint (3) of Fig. 13 for (α, β) = (a, c) with the complex-
conjugated version of constraint (3) for (α, β) = (c, a). The first four lines follow from combining these with the
constraints (2) and (4). Constraint (1) is satisfied trivially because the full Wannier states corresponding to a and c



28

have different C3 eigenvalues.

0 =c1b
∗
1 + c2b

∗
2 + c3b

∗
3 + c4b

∗
4 + c5b

∗
5 + c6b

∗
6 + 3 (c7b

∗
7 + c8b

∗
8) ,

0 =(c3 + c12)(b3 + b12)∗ + (c6 + c9)(b6 + b9)∗,

0 =(c4 + ω∗c7)(b4 + ω∗b7)∗ + (c5 + ω∗c8)(b5 + ω∗b8)∗,

0 =c7b
∗
4 + c8b

∗
5 + c1b

∗
10 + c2b

∗
11 + ω (c3b

∗
12 + c9b

∗
6)

0 =c4b
∗
7 + c5b

∗
8 + c10b

∗
1 + c11b

∗
2 + ω∗ (c12b

∗
3 + c6b

∗
9) ,

c7b
∗
7 + c8b

∗
8 =c10b

∗
10 + c11b

∗
11 = c9b

∗
9 + c12b

∗
12.

(105)

In Eq. (105), the last line follows from combining constraint (3) of Fig. 13 for (α, β) = (b, c) with the complex-
conjugated version of constraint (3) for (α, β) = (c, b). The first line follows from constraint (1). The second to fifth
lines follow from combining these with constraints (2) and (4).

We now want to determine if this system of equations has a solution.

2. Symmetries of the problem

The compactness constraints can be formally written as
∑

αβ

〈wα|Nλ
αβ |wβ〉 = 0, (106)

where Nλ
αβ captures the set of constraints [each line in Eqs. (100)-(105) corresponds to at least one λ].

Let us recall the symmetries of the problem, which are the same as for the 6-site constraints (Sec. VI C 4):

(I) There are two “internal” U(2) symmetries, that is, operations commuting with all Nλ
αβ : on each of the two

inequivalent sites of the unit cell, 1b and 1c, we may freely rotate between the two equivalent orbitals of C3
eigenvalue 1. It then follows that we can always choose a basis where two overlaps entering |wα〉 are set to zero
from the outset, one for each set of equivalent orbitals.

(II) There is one “external” U(2) symmetry that rotates between the Wannier states labelled by b and c (these have
the same C3 eigenvalue λb = λc = ω). The unitarily rotated Wannier states are guaranteed to satisfy the same
constraints. This symmetry allows us to set an arbitrary element of |wb〉 to zero, given that the corresponding
element of |wc〉 is nonzero, and only when this does not interfere with the basis choice made for (1).

3. Proving inconsistency

We first show that one of a7...12, b7...12, or c7...12 must vanish. (The same method proves inconsistency of the 6-site
system, see Sec. VI C 4.) We use Symmetry (I) to set a8 = a11 = 0 from the outset. Then, Eqs. (100), (101), and (103)
give

|a9|2 =|a7|2 + |a10|2 = |a12|2

|b7|2 + |b8|2 =|b10|2 + |b11|2 = |b9|2 + |b12|2

|b7|2|a7|2 =|b12|2|a12|2,
|b10|2|a10|2 =|b9|2|a9|2.

(107)

These can be manipulated to yield

|a7|2|b8|2 + |a10|2|b11|2 = 0. (108)

By the unspoiled Symmetry (II) between b and c, we also have

|a7|2|c8|2 + |a10|2|c11|2 = 0. (109)

There are two options:

a. a7 = a10 = 0. In this case, all a7...12 = 0 have to vanish by Eq. (107).

b. b8 = c8 = 0 or b11 = c11 = 0. In this case, we can use Symmetry (II) to also set b7 = 0 or b10 = 0 without loss of
generality. But in both cases, b7...12 = 0 follows from Eq. (107).

We conclude that one of a7...12 or b7...12 must vanish (if instead c7...12 = 0, we can always relabel c↔ b).
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a. a7...12 = 0 Let us now use Symmetry (I) to set a2 = a5 = 0. Then, Eqs. (100), (101), and (103) give

1 =|a1|2 + |a4|2 = |a3|2 = |a6|2,
|b7|2 + |b8|2 =|b10|2 + |b11|2 = |b9|2 + |b12|2

|b10|2|a1|2 =|b12|2|a3|2,
|b7|2|a4|2 =|b9|2|a6|2,

(110)

from which we deduce

|a4|2|b8|2 + |a1|2|b11|2 = 0. (111)

By the unspoiled symmetry between b↔ c, we also get

|a4|2|c8|2 + |a1|2|c11|2 = 0. (112)

Now, a1 and a4 cannot both be zero by Eq. (110), and so there are two inequivalent solutions: either (1) b8 = c8 =
b11 = c11 = 0, or (2) a4 = b11 = c11 = 0 (the remaining solution a1 = b8 = c8 = 0 is clearly related). In both cases,
we can use Symmetry (II) and Eq. (110) to set b7...12 = 0 without loss of generality.

From Eqs. (100), (101), and (103) we then get

1 =|a1|2 + |a4|2 = |a3|2 = |a6|2,
1 =|b1|2 + |b2|2 = |b3|2 + |b6|2 = |b4|2 + |b5|2,

|b1|2|a1|2 =|b6|2|a6|2,
|b4|2|a4|2 =|b3|2|a3|2,

(113)

which enforces

|a1|2|b2|2 + |a4|2|b5|2 = 0. (114)

Now, we can start treating the two cases mentioned earlier separately:
(1) c8 = c11 = 0: Eq. (114) implies b2 = b5 = 0 [or else a4 = 0, which is treated in the following paragraph–

recall that the case a1 = 0 is related, and that both a4 and a1 cannot be zero by Eq. (113)]. Then, we observe that
Eqs. (103)-(105), together with Eq. (113), now imply

|a4|2 =|b3|2 = 1− |b6|2

|c9|2 =|c7|2|a4|2

|c7|2 =|c9|2|b6|2.
(115)

We deduce that |c7|2 = |c7|2(1− |b6|2)|b6|2, and so c7 = 0 must hold [the function (1− x2)x2 is strictly smaller than
1 for all real x ≤ 0]. Together with c8 = 0, this implies c7...12 = 0 by Eq. (102). In conclusion, we have a7...12 = 0,
b7...12 = 0, and c7...12 = 0, the problem therefore reduces to the 6-site system that we know to be inconsistent.

(2) a4 = c11 = 0: From Eqs. (113) and (114), it follows that b2 = b3 = 0. But then Eq. (105) enforces c10 = 0 in its
second-to-last line, which together with c11 = 0 implies c7...12 = 0 by Eq. (102). The problem again reduces to the
6-site system that we know to be inconsistent.

b. b7...12 = 0 We keep a8 = a11 = 0. Then, Eqs. (100)-(104) give

|a9|2 =|a7|2 + |a10|2 = |a12|2

1 =|b1|2 + |b2|2 = |b3|2 + |b6|2 = |b4|2 + |b5|2,
|b4|2|a7|2 =|b6|2|a9|2,
|b1|2|a10|2 =|b3|2|a12|2

|c7|2 + |c8|2 =|c10|2 + |c11|2 = |c9|2 + |c12|2

|c7|2|a7|2 =|c12|2|a12|2,
|c10|2|a10|2 =|c9|2|a9|2.

(116)
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These equations can be manipulated to yield

|a7|2|b5|2 + |a10|2|b2|2 = 0,

|a7|2|c8|2 + |a10|2|c11|2 = 0.
(117)

We already know that setting a7 = a10 = 0 leads to a contradiction. So there are two possibilities: either (1)
b5 = c8 = b2 = c11 = 0, or (2) a7 = b2 = c11 = 0 (the remaining solution a10 = b5 = c8 = 0 is clearly related). Note
that here we cannot use Symmetry (II) anymore to make progress, because we have already used it to set b7...12 = 0.

(1) b5 = c8 = b2 = c11 = 0: Eqs. (116) and (105) give

|a10|2 =|b3|2|a9|2,
|c9|2|a9|2 =|c7|2|a10|2,
|c7|2 =|c9|2|b6|2,

(118)

from which we deduce |c9|2|a9|2 = |c9|2|a9|2(1 − |b6|2)|b6|2, and so |c9|2|a9|2 = 0. Since a9 = 0 sets a7...12 = 0 via
Eq. (116), we must choose c9 = 0. Then, by Eqs. (116) and (118), we also have that c7 = c12 = 0, and so c7...12 = 0.
Using Eq. (105), it follows that c1 = c4 = 0. Finally, Eq. (104) yields c3 = c6 = 0 unless a7...12 = 0, in glaring
inconsistency with Eq. (102).

(2) a7 = b2 = c11 = 0: From Eq. (103) and (104) it follows that c12 = b6 = 0 (again, unless a7...12 = 0, which we
know to yield an inconsistency), and so c7...12 = 0 by the second-to-last line of Eq. (105). Eq. (105) also enforces
c1 = 0. From Eq. (104) we again get c3 = c6 = 0 (unless a7...12 = 0), in contradiction with Eq. (102).

4. Conclusion

To summarize, we have shown that the combination of all 12-site compactness constraints inevitably leads to a
contradiction. If it exists at all, any compact Wannier basis of the 3-band OAI shown in Fig. 11a,b must therefore
have overlap with at least 18 physical sites.

VII. REPRESENTATION OBSTRUCTIONS

In this section, we discuss representation-obstructed OAIs (defined at the beginning of Sec. II). The Wannier centers
of such OAIs coincide with the positions of the physical orbitals of the crystal. However, the Wannier site-symmetry
representation does not coincide with that of any physical orbital on the same site – otherwise, the OAI would be
unobstructed. First, we note that the proof for C2 symmetry in Sec. IV does not distinguish between spatial and
representation obstructions, and so applies equally well to both cases. However, the analyses of Secs. V and VI,
treating C4- and C3-symmetric OAIs, respectively, both exclusively apply to spatial obstruction. Here, we point out
some salient examples where the compactness properties of C4- and C3-symmetric OAIs with spatial and representation
obstructions differ.

We note that it is not possible to determine whether an atomic limit has a spatial or representation obstruction from
symmetry data alone – we must also know the orbitals of the crystalline lattice Λ. Then, we can find the symmetry
data of the atomic insulator A from the relation

B[A] = B[Λ]−B[FP], (119)

where FP is the fragile band complement of the atomic insulator A and B[X] is the symmetry data vector of the set
of bands X [5], which encodes its BZ irrep multiplicities. Now, for the case of spinless time-reversal symmetry which
we focus on in this work, knowledge of B[A] uniquely determines the Wannier centers of A (PRB 99, 245151). If these
do not align with the atomic positions of the crystalline lattice, then A has a spatial obstruction. If they do align,
then A must have a representation obstruction because otherwise FP would not be fragile (we could simply subtract
A from Λ to obtain another a lattice with fewer orbitals in its unit cell).

A. C4 symmetry

Consider the family of C4-symmetric fragile root states

[(γ)1b ⊕ (−γ)1b ⊕ (−γ)1a] ↑ G	 (γ)1a ↑ G = FP, (120)
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where γ ∈ {1,−1, i,−i} is a free parameter. Here, FP is the band complement of a representation-obstructed OAI
at the 1a Wyckoff position. The OAI (γ)1a ↑ G is non-compact: since the physical lattice does not host any s ⊕ p
pairs at the same Wyckoff position (recall that both C4 eigenvalues γ and −γ correspond to the same C2 eigenvalue
γ2), the overlap between translated copies of the OAI Wannier state, which necessarily has non-zero range due to
the representation obstruction, cannot be made to vanish (see Fig. 5 and Sec. IV B). Nevertheless, when relaxing C4
symmetry to C2 symmetry, the orbitals (−γ)1a and (γ)1a both turn into the same orbital (γ2)1a (now labelled by its
C2 eigenvalue), so that we can choose the OAI Wannier state to be located on just a single orbital (zero range): the
OAI in Eq. (120) hence becomes unobstructed. Consequently, we can find C2-symmetric compact Wannier states for
the OAI (γ)1a ↑ G [these are given in Eq. (51)], but not C4-symmetric ones. This finding is in stark contrast to the
case of spatially-obstructed OAIs with C4 symmetry: recall that for these, we showed in Sec. V that they are only
non-compact as long as they remain so upon the relaxation of C4 symmetry to C2 symmetry.

It is interesting to note that the fragile phase FP appearing in Eq. (120) is directly related to the fragile phase
appearing in Eq. (65): we have

FP = [(γ)1b ⊕ (−γ)1b ⊕ (−γ)1a] ↑ G	 (γ)1a ↑ G
= [(γ)1b ⊕ (−γ)1b ⊕ (−γ)1a ⊕ (iγ)1b ⊕ (−iγ)1b] ↑ G	 [(iγ)1b ⊕ (−iγ)1b ⊕ (γ)1a] ↑ G
= [(γ)1a ⊕ (−γ)1a ⊕ (−γ)1a ⊕ (iγ)1a ⊕ (−iγ)1a] ↑ G	 [(iγ)1b ⊕ (−iγ)1b ⊕ (γ)1a] ↑ G
= [(−γ)1a ⊕ (−γ)1a ⊕ (iγ)1a ⊕ (−iγ)1a] ↑ G	 [(iγ)1b ⊕ (−iγ)1b] ↑ G,

(121)

which is equal to Eq. (65) upon the exchange 1a↔ 1b and the substitution γ → −iλ. Here, we have made use of the
Wyckoff position-independence of mobile cluster orbitals (Sec. II A), which for C4 symmetry implies that

[(γ)1a ⊕ (−γ)1a ⊕ (iγ)1a ⊕ (−iγ)1a] ↑ G = [(γ)1b ⊕ (−γ)1b ⊕ (iγ)1b ⊕ (−iγ)1b] ↑ G, (122)

for any choice of γ. We therefore find that the same fragile state can have both a non-compact, representation-
obstructed 1-band OAI complement, or a compact, spatially-obstructed 2-band OAI complement.

One might ask if every representation-obstructed OAI with a fragile complement must be non-compact. That this
is not the case can be seen by considering

[(γ)1b ⊕ (−γ)1b ⊕ (−γ)1a ⊕ (iγ)1a] ↑ G	 (γ)1a ↑ G = FP⊕ (iγ)1a ↑ G, (123)

where we added the orbital (iγ)1a ↑ G on both sides of Eq. (120). Here, the OAI (γ)1a ↑ G is still representation-
obstructed, while its complement is still fragile (although it is not anymore a fragile root state). However, we can
now find a compact Wannier state that (at R = 0) reads

|W0γ〉 =
1

4

[
|w0γ〉+ γ∗C4|0,1a |w0γ〉+ (γ∗C4|0,1a)2 |w0γ〉+ (γ∗C4|0,1a)3 |w0γ〉

]
,

|w0γ〉 = |0, (γ)1b〉+ |0, (−γ)1b〉+ |a1, (−γ)1a〉+ |a1, (iγ)1a〉 .
(124)

Here |R, (µ)i〉 denotes the basis state for the orbital with C4 eigenvalue µ at Wyckoff position i of the unit cell at R,
and C4|0,1a implements a C4 rotation about Wyckoff position 1a at the origin.

In conclusion, the requirement for representation-obstructed OAIs to be compact generally imposes stronger con-
straints than for spatially-obstructed OAIs: the same set of fragile bands may be the complement of a compact
spatially-obstructed OAI, but not that of a compact representation-obstructed OAI. However, we have also seen that
some fragile phases admit compact OAI complements of both types, while others admit no compact complement of
any type (an example for the latter class are fragile phases with C2 symmetry).

B. C3 symmetry

We next discuss representation obstructions with C3 symmetry. Here, there are no representation-obstructed 1-band
OAIs: changing the C3 eigenvalue of an orbital at any maximal Wyckoff position also changes the C3 eigenvalue of the
induced band at all high-symmetry momenta of the Brillouin zone. Therefore, lattice bands induced from any given
Wyckoff position cannot be used to construct C3-symmetric OAIs at the same position. [Contrast this with the case
of C4 symmetry: an s and a dx2−y2 orbital at 1a (1b) both yield a C2 eigenvalue +1 at the high-symmetry momentum
X, this fact allows for the construction of the representation-obstructed 1-band OAI of Eq. (120) (when γ = 1).]

Consider then the family of representation-obstructed 2-band OAIs

[(ωγ)1b ⊕ (ωγ)1c ⊕ 2(γ)1a ⊕ (ωγ)1a] ↑ G	 [(γ)1b ⊕ (γ)1c] ↑ G = FP, (125)
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FIG. 14. Trial Wannier states for a 2-band representation-obstructed OAI with C3 symmetry, overlapping with 6 lattice
sites. (a) The two trial states, |Wa〉 and |Wb〉, are centered at the 1b and 1c Wyckoff positions of the unit cell, respectively,
and both carry C3 eigenvalue 1. When acting on the atomic orbitals, C3 is represented by the matrices C3a = diag(1, 1, ω),
C3b = C3c = diag(ω) [see Eq. (125) for γ = 1]. (b) Two examples of translated copies of |Wb〉 that have a nonzero overlap
with |Wa〉. These two overlaps, together with the constraint that each individual trial state be orthogonal to its translates, are
sufficient to rule out a compact Wannier basis.

Let us set γ = 1 for clarity and without loss of generality. We define the trial Wannier states of the OAI as |Wα〉,
where α = a corresponds to the orbital (1)1b while α = b corresponds to the orbital (1)1c. Assuming trial states that
overlap with 6 lattice sites and implementing C3 symmetry, we obtain the states shown in Fig 14 (a), where |Ψα〉
are one-dimensional vectors pertaining to the overlap of |Wα〉 with the orbital (ω)1c for α = a, or (ω)1b for α = b.
Furthermore,

|φα〉 = (α1, α2, α3) (126)

are 3-dimensional vectors containing the overlaps of |Wα〉 with the two (1)1a orbitals (equal to α1 and α2) and the
orbital (ω)1a (equal to α3). We know from Secs. VI A-VI C, first line of Eq. (85), that for |Wα〉 to be individually
compact, it is required that

|α1|2 + |α2|2 = |α3|2 = 〈Ψα|Ψα〉 . (127)

Then, without loss of generality, we can set |φa〉 = (1, 0, 1). Here, we fixed the state normalization, exploited the
U(2) symmetry that rotates between the two (γ)1a orbitals [see also Symmetry (I) in Sec. VI C 4] to set a2 = 0, and
absorbed all phase factors by a redefinition of the Hilbert space basis states. The condition that the two overlaps
shown in Fig 14 (b) vanish, as required by Wannier state orthogonality, then translates to

b1 + ωb3 = 0, 2b1 + (1 + ω∗)b3 = 0 → b1 = b3 = 0, (128)

where we used the C3 representation matrix C3a = diag{1, 1, ω}. But this result is incompatible with Eq. (127)
(Wannier states cannot have zero norm), so that the OAI [(γ)1b ⊕ (γ)1c] ↑ G in Eq. (125) does not admit compact
Wannier states that overlap with 6 lattice sites. This finding is in stark contrast to the case of spatially obstructed
2-band OAIs with C3 symmetry, all of which were shown in Sec. VI B to admit a 6-site Wannier basis. The system
of equations constraining 12-site Wannier states (see Sec. VI D) for the representation-obstructed 2-band OAI in
Eq. (125) becomes much more involved, and we have not yet found a solution to it, nor proven its inconsistency.

Interestingly, the fragile state FP in Eq. (125) can be related to the fragile state in Eq. (80): we have

FP = [(ωγ)1b ⊕ (ωγ)1c ⊕ 2(γ)1a ⊕ (ωγ)1a] ↑ G	 [(γ)1b ⊕ (γ)1c] ↑ G
= [(ωγ)1b ⊕ (ωγ)1c ⊕ 2(γ)1a ⊕ 2(ωγ)1a ⊕ 2(ω∗γ)1a] ↑ G	 [(γ)1b ⊕ (γ)1c ⊕ (ωγ)1a ⊕ 2(ω∗γ)1a] ↑ G
= [(ωγ)1b ⊕ (ωγ)1c ⊕ (γ)1b ⊕ (ωγ)1b ⊕ (ω∗γ)1b ⊕ (γ)1c ⊕ (ωγ)1c ⊕ (ω∗γ)1c] ↑ G
	 [(γ)1b ⊕ (γ)1c ⊕ (ωγ)1a ⊕ 2(ω∗γ)1a] ↑ G

= [2(ωγ)1b ⊕ (ω∗γ)1b ⊕ 2(ωγ)1c ⊕ (ω∗γ)1c] ↑ G	 [(ωγ)1a ⊕ 2(ω∗γ)1a] ↑ G,

(129)
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which is equal to Eq. (80) for the choice γ = ω∗. Here, we have made use of the Wyckoff position-independence of
mobile cluster orbitals (Sec. II A).

We conclude that the same fragile state can be expressed as the complement of a representation-obstructed 2-band
OAI, or a spatially-obstructed 3-band OAI. In both cases, there is an obstruction to find a compact Wannier basis
for the OAI, at least for short-ranged Wannier states.
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