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Abstract

We consider online learning when the time hori-
zon is unknown. We apply a minimax analy-
sis, beginning with the fixed horizon case, and
then moving on to two unknown-horizon set-
tings, one that assumes the horizon is chosen
randomly according to some known distribution,
and the other which allows the adversary full
control over the horizon. For the random hori-
zon setting with restricted losses, we derive a
fully optimal minimax algorithm. And for the
adversarial horizon setting, we prove a nontriv-
ial lower bound which shows that the adversary
obtains strictly more power than when the hori-
zon is fixed and known. Based on the minimax
solution of the random horizon setting, we then
propose a new adaptive algorithm which “pre-
tends” that the horizon is drawn from a distribu-
tion from a special family, but no matter how the
actual horizon is chosen, theworst-caseregret is
of the optimal rate. Furthermore, our algorithm
can be combined and applied in many ways, for
instance, to online convex optimization, follow
the perturbed leader, exponential weights algo-
rithm and first order bounds. Experiments show
that our algorithm outperforms many other ex-
isting algorithms in an online linear optimization
setting.

1. Introduction

We study online learning problems with unknown time
horizon with the aim of developing algorithms and ap-
proaches for the realistic case that the number of time steps
is initially unknown.

We first adopt the standard Hedge setting
(Freund & Schapire, 1997) where the learner chooses
a distribution overN actions on each round, and the losses
for each action are then selected by an adversary. The

learner incurs loss equal to the expected loss of the actions
in terms of the distribution it chose for this round, and its
goal is to minimize the regret, the difference between its
cumulative loss and that of the best action afterT rounds.

Various algorithms are known to achieve the optimal (up
to a constant) upper boundO(

√
T lnN) on the regret.

Most of them assume that the horizonT is known ahead
of time, especially those which are minimax optimal.
When the horizon is unknown, the so-called doubling
trick (Cesa-Bianchi et al., 1997) is a general technique
to make a learning algorithm adaptive and still achieve
O(

√
T lnN) regret uniformly for anyT . The idea is to

first guess a horizon, and once the actual horizon exceeds
this guess, double it and restart the algorithm. Although, in
theory, it is widely applicable, the doubling trick is aesthet-
ically inelegant, and intuitively wasteful, since it repeatedly
restarts itself, entirely forgetting all the preceding informa-
tion. Other approaches have also been proposed, as we dis-
cuss shortly.

In this paper, we study the problem of learning with un-
known horizon in a game-theoretic framework. We con-
sider a number of variants of the problem, and make
progress toward a minimax solution. Based on this ap-
proach, we give a new general technique which can also
make other minimax or non-minimax algorithms adaptive
and achieve low regret in a very general online learning set-
ting. The resulting algorithm is still not exactly optimal,but
it makes use of all the previous information on each round
and achieves much lower regret in experiments.

We view the Hedge problem as a repeated game between
the learner and the adversary.Abernethy et al.(2008b), and
Abernethy & Warmuth(2010) proposed an exact minimax
optimal solution for a slightly different game with binary
losses, assuming that the loss of the best action is at most
some fixed constant. They derived the solution under a very
simple type of loss space; that is, on each round only one
action suffers one unit loss. We call this the basis vector
loss space. As a preliminary of this paper, we also derive
a similar minimax solution under this simple loss space for
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our setting where the horizonT is fixed and known to the
learner ahead of time.

We then move on to the primary interest of this paper, that
is, the case when the horizon is unknown to the learner.
We study this unknown horizon setting in the minimax
framework, with the aim of ultimately deriving game-
theoretically optimal algorithms. Two types of models are
studied. The first one assumes the horizon is chosen ac-
cording to some known distribution, and the learner’s goal
is to minimize the expected regret. We show the exact min-
imax solution for the basis vector loss space in this case.
It turns out that the distribution the learner should choose
on each round is simply the conditional expectation of the
distributions the learner would have chosen for the fixed
horizon case.

The second model we study gives the adversary the power
to decide the horizon on the fly, which is possibly the most
adversarial case. In this case, we no longer use the regret as
the performance measure. Otherwise the adversary would
obviously choose an infinite horizon. Instead, we use a
scaled regret to measure the performance. Specifically, we
scale the regret at timet by the optimal regret under fixed
horizont. The exact optimal solution in this case is unfortu-
nately not found and remains an open problem, even for the
extremely simple case. However, we give a lower bound for
this setting to show that the optimal regret is strictly greater
than the one in the fixed horizon game. That is, the adver-
sary does obtain strictly more power if allowed to pick the
horizon.

We then propose our new adaptive algorithm based on the
minimax solution in the random horizon setting. One might
doubt how realistic a random horizon is in practice. Even if
the true horizon is indeed drawn from a fixed distribution,
how can we know this distribution? We address these prob-
lems at the same time. Specifically, we prove that no matter
how the horizon is chosen, if we assume it is drawn from a
distribution from a special family, and let the learner play
in a way similar to the one in the random horizon setting,
then theworst-caseregret at any timeT (not the expected
regret) can still be of the optimal order. In other words,
although the learner is behaving as if the horizon is ran-
dom, its regret will be small even if the horizon is actually
controlled by an adversary. Moreover, the results hold for
not just the Hedge problem, but a general online learning
setting that includes many interesting problems.

Our idea can be combined not only with the minimax algo-
rithm, but also the “follow the perturbed leader” algorithm
and the exponential weights algorithm. In addition, our
technique can not only deal with unknown horizon, but also
other unknown information such as the loss of the best ac-
tion, thus leading to a first order regret bound that depends
on the loss of the best action (Cesa-Bianchi & Lugosi,

2006). Like the doubling trick, this seems to be a quite
general way to make an algorithm adaptive. Furthermore,
we conduct experiments showing that our algorithm out-
performs many existing algorithms, including the doubling
trick, in an online linear optimization setting within anℓ2
ball where our algorithm has an explicit closed form.

The rest of the paper is organized as follows. We define the
Hedge setting formally in Section2, and derive the mini-
max solution for the fixed horizon setting as the prelimi-
nary of this paper in Section3. In Section4, we study two
unknown horizon settings in the minimax framework. We
then turn to a general online learning setting and present
our new adaptive algorithm in Section5. Implementation
issues, experiments, and applications are discussed in Sec-
tion 6. We omit most of the proofs due to space limitations,
but all details can be found in the supplementary material.

Related work Besides the doubling trick, other adaptive
algorithms have been studied (Auer et al., 2002; Gentile,
2003; Yaroshinsky et al., 2004; Chaudhuri et al., 2009).
Auer et al. (2002) showed that for algorithms such as
the exponential weights algorithm (Littlestone & Warmuth,
1994; Freund & Schapire, 1997; 1999), where a learning
rateη should be set as a function of the horizon, typically
in the form

√

(b lnN)/T for some constantb, one can sim-
ply set the learning rate adaptively as

√

(b lnN)/t, where
t is the current number of rounds. In other words, this al-
gorithm always pretends the current round is the last round.
Although this idea works with the exponential weights al-
gorithm, we remark that assuming the current round is the
last round does not always work. Specifically, one can
show that it will fail if applied to the minimax algorithm
(see Section6.4). In another approach to online learning
with unknown horizon,Chaudhuri et al.(2009) proposed
an adaptive algorithm based on a novel potential function
reminiscent of the half-normal distribution.

Other performance measures different from the usual re-
gret were studied before.Foster & Vohra(1998) intro-
duced internal regret comparing the loss of an online al-
gorithm to the loss of a modified algorithm which consis-
tently replaces one action by another.Herbster & Warmuth
(1995), and Bousquet & Warmuth(2003) compared the
learner’s loss with the bestk-shifting expert, while
Hazan & Seshadhri(2007) studied the usual regret within
any time interval. To the best of our knowledge, the form
of scaled regret that we study is new. Lower bounds on
anytime regret in terms of the quadratic variations for any
loss sequence (instead of the worst case sequence this paper
considers) were studied byGofer & Mansour(2012).
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2. Repeated Games

We first consider the following repeated game between a
learner and an adversary. The learner has access toN ac-
tions. On each roundt = 1, . . . , T , (1) the learner chooses
a distributionPt over the actions; (2) the adversary reveals
the loss vectorZt = (Zt,1, . . . , Zt,N) ∈ LS, whereZt,i is
the loss for actioni for this round, and theloss spaceLS is
a subset of[0, 1]N ; (3) the learner suffers lossℓt = Pt · Zt

for this round.

Notice that the adversary can choose the losses on roundt
with full knowledge of the historyP1:t andZ1:t−1 ,that is,
all the previous choices of the learner and the adversary (we
use notationa1:t to denote the multiset{a1, . . . , at}). We
also denote the cumulative loss up to roundt for the learner
and the actions byLt =

∑t
t′=1 ℓt′ andMt =

∑t
t′=1 Zt′

respectively. The goal for the learner is to minimize the
difference between its total loss and that of the best action
at the end of the game. In other words, the goal of the
learner is to minimizeReg(LT ,MT ), where we define the
regret functionReg(L,M) , L−miniMi, forL ∈ R and
M ∈ R

N . The number of roundsT is called thehorizon.

Regarding the loss spaceLS, perhaps the simplest one is
{e1, . . . , eN}, theN standard basis vectors inN dimen-
sions. Playing with this loss space means that on each
round, the adversary chooses one single action to incur one
unit loss. In order to show the intuition of our main results,
we mainly focus on this basis vector loss space in Sections
3 and4, but we return to the most general case[0, 1]N later.

3. Minimax Solution for Fixed Horizon

Although our primary interest in this paper is the case when
the horizon is unknown to the learner, we first present
some preliminary results on the setting where the horizon is
known to both the learner and the adversary ahead of time.
These will later be useful for the unknown horizon case.

If we treat the learner as an algorithmAlg that takes the in-
formation of previous rounds as inputs, and outputs a distri-
butionPt = Alg(P1:t−1,Z1:t−1) that the learner is going
to play with, then finding the optimal solution in this fixed
horizon setting can be viewed as solving the minimax ex-
pression

inf
Alg

sup
Z1:T

Reg(LT ,MT ). (1)

Alternatively, we can recursively define:

V (M, 0) , −min
i

Mi ;

V (M, r) , min
P∈∆(N)

max
Z∈LS

(P · Z+ V (M+ Z, r − 1)) ,

whereM ∈ R
N is a loss vector,r is a nonnegative inte-

ger, and∆(N) is theN dimensional simplex. By a simple

argument, one can show that the value ofV (M, r) is the
regret of a game withr rounds starting from the situation
that each action has initial lossMi, and assuming both the
learner and the adversary will play optimally. In fact, the
value of Eq. (1) is exactlyV (0, T ), and the optimal learner
algorithm is the one that chooses theP∗ which realizes the
minimum in the definition ofV (M, r) when the actions’
cumulative loss vector isM and there arer rounds left. We
call V (0, T ) thevalueof the game.

As a concrete illustration of these ideas, we now consider
the basis vector loss space1, that is,LS = {e1, . . . , eN}.
It turns out that under this loss space, the value function
V has a nice closed form. Similar to the results from
Cesa-Bianchi et al.(1997) and Abernethy et al.(2008b),
we show thatV can be expressed in terms of a random
walk. SupposeR(M, r) is the expectation of the loss of the
best action if the adversary chooses eachei uniformly ran-
domly for the remainingr rounds, starting from loss vector
M. Formally,R(M, r) can be defined in a recursive way:
R(M, 0) , mini Mi ;R(M, r) , 1

N

∑N
i=1 R(M+ei, r−

1). The connection betweenV andR, and the optimal al-
gorithm are then shown by the following theorem.

Theorem 1. If LS = {e1, . . . , eN}, then for any vectorM
and integerr ≥ 0,

V (M, r) =
r

N
−R(M, r).

Let cN = 1
N

√

2(N − 1) lnN . Then the value of the game
satisfies

V (0, T ) ≤ cN
√
T . (2)

Moreover, on roundt, the optimal learner algorithm is the
one that chooses weightPt,i = V (Mt−1, r)− V (Mt−1 +
ei, r − 1) for each actioni, whereMt−1 is the current
cumulative loss vector andr is the number of remaining
rounds, that is,r = T − t+ 1.

Theorem1 tells us that under the basis vector loss space,
the best way to play is to assume that the adversary is play-
ing uniformly randomly, becauser/N andR(M, r) are ex-
actly the expected losses for the learner and for the best
action respectively. In practice, computingR(M, r) needs
exponential time. However, we can estimate it by sampling
(see similar work inAbernethy et al., 2008b). Note thatcN
is decreasing whenN ≥ 4 (with maximum value about
0.72). So contrary to theO(

√
T lnN) regret bound for the

general loss space[0, 1]N which is increasing inN , here
V (0, T ) is of orderO(

√
T ).

1For other loss spaces, finding minimax solutions seems diffi-
cult. However, we show the relation of the values of the game for
different loss spaces in the supplementary file, see Theorem10.
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4. Playing without Knowing the Horizon

We turn now to the case in which the horizonT is unknown
to the learner, which is often more realistic in practice.
There are several ways of modeling this setting. For ex-
ample, the horizon can be chosen ahead of time according
to some fixed distribution, or it can even be chosen by the
adversary. We will discuss these two variants separately.

4.1. Random Horizon

Suppose the horizonT is chosen according to some fixed
distributionQ which is known to both the learner and the
adversary. Before the game starts, a randomT is drawn,
and neither the learner nor the adversary knows the actual
value ofT . The game stops afterT rounds, and the learner
aims to minimize the expectation of the regret. Using our
earlier notation, the problem can be formally defined as

inf
Alg

sup
Z1:∞

ET∼Q[Reg(LT ,MT )],

where we assume the expectation is always finite. We
sometimes omit the subscriptT ∼ Q for simplicity.

Continuing the example in Section3 of the basis vector
loss space, we can again show the exact minimax solution,
which has a strong connection with the one for the fixed
horizon setting.

Theorem 2. If LS = {e1, . . . , eN}, then

inf
Alg

sup
Z1:∞

ET∼Q[Reg(LT ,MT )]

= ET∼Q[inf
Alg

sup
Z1:T

Reg(LT ,MT )].
(3)

Moreover, on roundt, the optimal learner plays with the
distributionPt = ET∼Q[P

T
t |T ≥ t], wherePT

t is the op-
timal distribution the learner would play if the horizon isT ,
that is,PT

t,i = V (Mt−1, T − t+1)−V (Mt−1+ei, T − t).

Eq. (3) tells us that if the horizon is drawn from some dis-
tribution, then even though the learner does not know the
actual horizon before playing the game, as long as the ad-
versary does not know this information either, it can still do
as well as the case when they are both aware of the horizon.

However, so far this model does not seem to be quite use-
ful in practice for several reasons. First of all, the horizon
might not be chosen according to a distribution. Even if it
is, this distribution is probably unknown. Secondly, what
we really care about is the performance which holds uni-
formly for any horizon, instead of the expected regret. Last
but not least, one might conjecture that the similar result
stated in Theorem2 should hold for other more general loss
spaces, which is in fact not true (see Example1 in the sup-
plementary file), making the result seem even less useful.

Fortunately, we address all these problems and develop new
adaptive algorithms based on the result in this section. We
discuss these in Section5 after first introducing the fully
adversarial model.

4.2. Adversarial Horizon

The most adversarial setting is the one where the horizon
is completely controlled by the adversary. That is, we let
the adversary decide whether to continue or stop the game
on each round according to the current situation. However,
notice that the value of the game is increasing in the hori-
zon. So if the adversary can determine the horizon and its
goal is still to maximize the regret, then the problem would
not make sense because the adversary would clearly choose
to play the game forever and never stop leading to infinite
regret. One reasonable way to address this issue is to scale
the regret by the value of the fixed horizon gameV (0, T ),
so that the scaled regretReg(LT ,MT )/V (0, T ) indicates
how many times worse is the regret compared to the one
that is optimal given the horizon. Under this setting, the
corresponding minimax expression is

Ṽ = inf
Alg

sup
T

sup
Z1:T

Reg(LT ,MT )

V (0, T )
. (4)

Unfortunately, finding the minimax solution to this setting
seems to be quite challenging, even for the simplest case
N = 2. It is clear, however, that̃V is at most some con-
stant due to the existence of adaptive algorithms such as the
doubling trick, which can achieve the optimal regret bound
up to a constant without knowingT . Another clear fact is
Ṽ ≥ 1, since it is impossible for the learner to do better
than the case when it is aware of the horizon. Below, we
derive a nontrivial lower bound that is greater than1, thus
proving that the adversary does gain strictly more power
when it can stop the game whenever it wants.

Theorem 3. If N = 2 andLS = [0, 1]2, thenṼ ≥
√
2.

That is, for every algorithm, there exists an adversary and a
horizonT such that the regret of the learner afterT rounds
is at least

√
2V (0, T ).

5. A New General Adaptive Algorithm

We study next how the random-horizon algorithm of Sec-
tion 4.1can be used when the horizon is entirely unknown
and furthermore, for a much more general class of online
learning problems. In Theorem2, we proposed an algo-
rithm that simply takes the conditional expectation of the
distributions we would have played if the horizon were
given. Notice that even though it is derived from the ran-
dom horizon setting, it can still be used in any setting as
an adaptive algorithm in the sense that it does not require
the horizon as a parameter. However, to use this algorithm,
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we should ask two questions: What distribution should we
use? And what can we say about the algorithm’s perfor-
mance for an arbitrary horizon instead of in expectation?

As a first attempt, suppose we use a uniform distribution
over 1, . . . , T0, whereT0 is a huge integer. From what
we observe in some numerical calculations,E[PT

t |T ≥ t]
tends to be a uniform distribution in this case. Clearly
it cannot be a good algorithm if for each round, it just
places equal weights for each action regardless of the ac-
tions’ behaviors. In fact, one can verify that the exponen-
tial distribution (that is,Pr[T = t] ∝ αt for some constant
0 < α < 1) also does not work. These examples show that
even though this algorithm gives us the optimal expected
regret, it can still suffer a big regret for a particular trial of
the game, which we definitely want to avoid.

Nevertheless, it turns out that there does exist a family of
distributions that can guarantee the regret to be of order
O(

√
T ) for anyT . Moreover, this is true for a very general

online learning problem that includes the Hedge setting we
have been discussing. Before stating our results, we first
formally describe this general setting, which is sometimes
called theonline convex optimizationproblem (Zinkevich,
2003; Shalev-Shwartz, 2011). Let S be a compact convex
set, andF be a set of convex functions defined onS. On
each roundt = 1, . . . , T : (1) the learner chooses a point
xt ∈ S; (2) the adversary chooses a loss functionft ∈ F ;
(3) the learner suffers lossft(xt) for this round. The regret
afterT rounds is defined by

Reg(x1:T , f1:T ) =
T∑

t=1

ft(xt)−min
x∈S

T∑

t=1

ft(x).

It is clear that the Hedge problem is a special case of the
above setting withS being the probability simplex, andF
being a set of linear functions defined by a point in the loss
space, that is,F = {f(x) = x ·w : w ∈ LS}. Similarly,
to study the minimax algorithm we define the following
VS,F function of the multisetM of loss functions we have
encountered and the number of remaining roundsr:

VS,F(M, 0) , −min
x∈S

∑

f∈M
f(x);

VS,F(M, r) , min
x∈S

max
f∈F

(f(x) + VS,F(M⊎ {f}, r− 1)) ,

where⊎ denotes multiset union. We omit the subscript of
VS,F whenever there is no confusion. LetxT

t be the output
of the minimax algorithm on roundt. In other words,xT

t

realizes the minimum in the definition ofV (f1:t−1, T −
t + 1). We will adapt the idea in Section4.1 and study
the adaptive algorithm that outputsET∼Q[x

T
t |T ≥ t] ∈ S

on roundt for a distributionQ on the horizon. One mild
assumption needed is

Assumption 1. ∀M andr > 0, V (M, r) ≥ V (M, 0) .

Roughly speaking, this assumption implies that the game
is in the adversary’s favor: playing more rounds leads to
greater regret. It holds for the Hedge setting with basis
vector loss space (see Property7 in the supplementary file).
In fact, it also holds as long asF contains the zero function
f0(x) ≡ 0. To see this, simply observe that

V (M, r) = min
x∈S

max
f∈F

(f(x) + V (M⊎ {f}, r − 1))

≥ V (M⊎{f0}, r − 1)

≥ . . . ≥ V (M⊎ {f0, . . . , f0}, 0) = V (M, 0).

So the assumption is mild and will hold for all the examples
we consider.

Below, we first give a general upper bound on the regret
that holds for any distribution and has no dependence on the
choices of the adversary. After that we will show what the
appropriate distributions are to make this boundO(

√
T ).

Theorem 4. Let V̄t(M) = ET∼Q[V (M, T−t+1)|T ≥ t]
and qt = PrT∼Q[T = t|T ≥ t]. Suppose Assump-
tion 1 holds, and on roundt the learner choosesxt =
ET∼Q[x

T
t |T ≥ t] wherexT

t is the output of the minimax
algorithm as described above. Then for anyTs, the regret
afterTs rounds is at most

V̄1(∅) +
Ts∑

t=1

qtV̄t+1(∅).

To prove Theorem4, we first show the following lemma.

Lemma 1. For anyr ≥ 0 and multisetM1 andM2,

V (M1 ⊎M2, r)− V (M1, 0) ≤ V (M2, r). (5)

Proof. If r = 0, then Eq. (5) holds since

min
x∈S

∑

f∈M1

f(x)+min
x∈S

∑

f∈M2

f(x) ≤ min
x∈S

∑

f∈M1⊎M2

f(x).

Now assume Eq. (5) holds forr − 1. By induction one has

V (M1 ⊎M2, r)− V (M1, 0)

=min
x∈S

max
f∈F

(f(x) + V (M1 ⊎M2 ⊎ {f}, r − 1))− V (M1, 0)

≤min
x∈S

max
f∈F

(f(x) + V (M2 ⊎ {f}, r− 1)) = V (M2, r),

concluding the proof.

Proof of Theorem4. By definition ofxT
t , we have

V (f1:t−1, T − t+ 1)

=max
f∈F

(f(xT
t ) + V (f1:t−1 ⊎ {f}), T − t)

≥ft(x
T
t ) + V (f1:t, T − t).
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Therefore, by convexity and the fact thatPr[T = t′|T ≥
t] = (1 − qt) Pr[T = t′|T ≥ t+ 1] for anyt′ > t, the loss
of the algorithm on roundt is

ft(xt) = ft(E[x
T
t |T ≥ t]) ≤ E[ft(x

T
t )|T ≥ t]

≤E[V (f1:t−1, T − t+ 1)− V (f1:t, T − t)|T ≥ t]

=V̄t(f1:t−1)− qtV (f1:t, 0)− (1− qt)V̄t+1(f1:t)

≤V̄t(f1:t−1)− V̄t+1(f1:t) + qtV̄t+1(∅),

where the last equality holds becausēVt+1(f1:t) −
V (f1:t, 0) = E[V (f1:t, T − t) − V (f1:t, 0)|T ≥ t + 1] ≤
E[V (∅, T−t)|T ≥ t+1] = V̄t+1(∅) by Lemma1. We con-
clude the proof by summing upft(xt) overt = 1, . . . , Ts

and pointing out that̄VTs+1(f1:Ts) = E[V (f1:Ts , T −
Ts)|T ≥ Ts + 1] ≥ E[V (f1:Ts , 0)|T ≥ Ts + 1] =

−minx∈S

∑Ts

t=1 ft(xt) by Assumption1.

As a direct corollary, we now show an appropriate choice
of Q. We assume that the optimal regret under the fixed
horizon setting is of orderO(

√
T ). That is:

Assumption 2. For any T , V (∅, T ) ≤ cN
√
T for some

constantcN that might depend onN .

This is proven to be true in the literature for all the exam-
ples we consider, especially whenF contains linear func-
tions.

Theorem 5. Under Assumption2 and the same conditions
of Theorem4, if Pr[T = t] ∝ 1/td whered > 3

2 is a
constant, then for anyTs, the regret afterTs rounds is at
most

Γ(d− 3
2 )

Γ(d)
(d− 1)2cN

√

πTs + o(
√

Ts),

whereΓ is the gamma function. Choosingd ≈ 2.35 ap-
proximately minimizes the main term in the bound, leading
to regret approximately3cN

√
Ts + o(

√
Ts).

Theorem5 tells us that pretending that the horizon is drawn
from the distributionPr[T = t] ∝ 1/td (d > 3/2) can al-
ways achieve low regret, even if the actual horizonTs is
chosen adversarially. Also notice that the constant3 in the
bound for the termcN

√
Ts is less than the one for the dou-

bling trick with the fixed horizon optimal algorithm, which
is 2 +

√
2 (Cesa-Bianchi & Lugosi, 2006). We will see in

Section6.1an experiment showing that our algorithm per-
forms much better than the doubling trick.

It is straightforward to apply our new algorithm to differ-
ent instances of the online convex optimization framework.
Examples include Hedge with basis vector loss space, pre-
dicting with expert advice (Cesa-Bianchi et al., 1997), on-
line linear optimization within anℓ2 ball (Abernethy et al.,
2008a) or an ℓ∞ ball (McMahan & Abernethy, 2013).
These are examples where minimax algorithms for fixed

horizon are already known. In theory, however, our algo-
rithm is still applicable when the minimax algorithm is un-
known, such as Hedge with the general loss space[0, 1]N .

6. Implementation and Applications

In this section, we discuss the implementation issue of our
new algorithm, and also show that the idea of using a “pre-
tend prior distribution” is much more applicable in online
learning than we have discussed so far.

6.1. Closed Form of the Algorithm

Among the examples listed at the end of Section5, we are
especially interested in online linear optimization within an
ℓ2 ball since our algorithm enjoys an explicit closed form in
this case. Specifically, we consider the following problem
(all the norms areℓ2 norms): takeS = {x ∈ R

N : ‖x‖ ≤
1}, andF = {f(x) = x ·w : w ∈ S}. In other words, the
adversary also chooses a point inS on each round, which
we denote bywt. Abernethy et al.(2008a) showed a sim-
ple but exact minimax optimal algorithm for the fixed hori-
zon setting (forN > 2): on each roundt, choose

xT
t = −Wt−1

/√

‖Wt−1‖2 + (T − t+ 1) , (6)

whereWt =
∑t

t′=1 wt′ . This strategy guarantees the re-
gret to be at most

√
T . To make this algorithm adaptive,

we again assign a distribution over the horizon. However,
in order to get an explicit form forE[xT

t |T ≥ t], a continu-
ous distribution onT is necessary. It does not seem to make
sense at first glance since the horizon is always an integer,
but keep in mind that the random variableT is merely an
artifact of our algorithm, and Eq. (6) is well defined with
T ≥ t being a real number. As long as the output of the
learner is in the setS, our algorithm is valid. The analysis
for our algorithm also holds with minor changes. Specifi-
cally, we show the following:

Theorem 6. Let T ≥ 1 be a continuous random vari-
able with probability densityf(T ) ∝ 1/T 2. If the learner
choosesxt = E[xT

t |T ≥ t] on round t, wherexT
t is de-

fined by Eq.(6), then the regret afterTs rounds is at most
π
√
Ts+o(

√
Ts) for anyTs. Moreover,xt has the following

explicit form

xt =







(
t·tanh−1

(√
1−t/c

)

(c−t)3/2
−

√
c

c−t

)

Wt−1 if c 6= t

− 2t
3c3/2

Wt−1 else,
(7)

wherec = 1 + ‖Wt−1‖2.

The algorithm we are proposing in Eq. (7) looks quite in-
explicable if one does not realize that it comes from the ex-
pressionE[xT

t |T ≥ t] with an appropriate distribution. Yet
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the algorithm not only enjoys a low theoretic regret bound
as shown in Theorem6, but also achieves very good per-
formance in simulated experiments.

To show this, we conduct an experiment that compares the
regrets of four algorithms at any time step within 1000
rounds against an adversary that chooses points inS uni-
formly at random (N = 10). The results are shown in Fig-
ure 1, where each data point is the maximum regret over
1000 randomly generated adversaries for the correspond-
ing algorithm and horizon. The four algorithms are: the
minimax algorithm in Eq. (6) (OPT); the one we proposed
in Theorem6 (DIST); online gradient descent, a general
algorithm for online optimization (seeZinkevich, 2003)
(OGD); and the doubling trick with the minimax algorithm
(DOUBLE). Note that OPT is not really an adaptive algo-
rithm: it “cheats” by knowing the horizonT = 1000 in
advance, and thus performs best at the end of the game.
We include this algorithm merely as a baseline. Figure1
shows that our algorithm DIST achieves consistently much
lower regret than any other adaptive algorithm, including
OGD which seems to enjoy a better constant in the regret
bound (2

√
2Ts, seeZinkevich, 2003). Moreover, for the

first 450 rounds or so, our algorithm performs even better
than OPT, implying that using the optimal algorithm with a
large guess on the horizon is inferior to our algorithm. Fi-
nally, we remark that although the doubling trick is widely
applicable in theory, in experiments it is beaten by most of
the other algorithms.
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Figure 1.Comparison of four algorithms.

6.2. Randomized Play and Efficient Implementation

Implementation is an issue for our algorithm when there is
no closed form forE[xT

t |T ≥ t], which is usually the case.
One way to address this problem is to compute the sum of

the first sufficient number of terms in the series, which can
be a good estimate since the weight for each term decreases
rapidly.

However, there is another more natural way to deal with the
implementation issue when we are in a similar setting but
allowed to play randomly. Specifically, consider a modi-
fied Hedge setting where on each roundt, the learner can
bet on one and only one actionIt, and then the loss vector
Zt ∈ [0, 1]N is revealed with the learner suffering lossZt,It

for this round. It is well known that in this kind of prob-
lem, randomization is necessary for the learner to achieve
sub-linear regret. That is,It is a random variable andZt is
decided without knowing the actual draw ofIt. In addition,
supposePt, the conditional distribution ofIt given the
past, only depends onZ1:t−1, and the learner achieves sub-
linear regret in the usual Hedge setting (sometimes called
pseudo-regret):

T∑

t=1

Pt · Zt −min
i

MT,i ≤ cN
√
T (8)

(recallMt =
∑t

t′=1 Zt′ ) for anyZ1:T and a constantcN .
Then the learner also achieves sub-linear regret with high
probability in the randomized setting. That is, with proba-
bility at least1− δ, the actual regret satisfies:

T∑

t=1

Zt,It −min
i

MT,i ≤ cN
√
T +

√

T

2
ln

1

δ
. (9)

We refer the interested reader to Lemma 4.1 of
Cesa-Bianchi & Lugosi(2006) for more details.

Therefore, in this setting we can implement our algorithm
in an efficient way: on roundt, first draw a horizonT ≥ t
according to distributionPr[T = t′] ∝ 1/t′d, then drawIt
according toPT

t . It is clear that the marginal distribution of
It of this process is exactlyE[PT

t |T ≥ t]. Hence, Eq. (8)
is satisfied by Theorem5 and as a result Eq. (9) holds.

6.3. Combining with the FPL algorithm

Even if we have an efficient randomized implementation,
or sometimes even have a closed form of the output, it is
still too constrained if we can only apply our technique to
minimax algorithms since they are usually difficult to de-
rive and sometimes even inefficient to implement. It turns
out, however, that the “pretend prior distribution” idea is
applicable for many other non-minimax algorithms, which
we will discuss from this section on.

Continuing the randomized setting discussed in the previ-
ous section, we study the well-known “follow the perturbed
leader (FPL)” algorithm (Kalai & Vempala, 2005), which
choosesIt ∈ argmini(Mt−1,i + ξt,i) whereξt ∈ RN is a
random variable drawn from some distribution. This distri-
bution sometimes requires the horizonT as a parameter. If
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this is the case, applying our technique would have a sim-
ple Bayesian interpretation: put a prior distribution on an
unknown parameter of another distribution. Working out
the marginal distribution ofξt would then give an adaptive
variant of FPL.

For simplicity, consider drawingξTt uniformly at ran-
dom from the hypercube[0,∆T ]

N (see Chapter 4.3 of
Cesa-Bianchi & Lugosi, 2006). If ∆T =

√
TN , then

the pseudo-regret is upper bounded by2
√
TN (whose de-

pendence onN is not optimal). Now again letT ≥ 1
be a continuous random variable with probability density
f(T ) ∝ 1/T d(d > 3/2), andξt be obtained by first draw-
ing T given T ≥ t, and then drawing a point uniformly
from [0,∆T ]

N . We show the following:

Lemma 2. If ∆t =
√
btN for some constantb > 0, the

marginal density function ofξt is

ft(ξ) ∝







0 if mini ξi < 0

min

{

1,
(

∆t

‖ξ‖∞

)2d−2+N
}

else.

(10)
The normalization factor is d−1

d−1+N/2∆
−N
t .

Theorem 7. Suppose on roundt, the learner chooses

It ∈ argmin
i
(Mt−1,i + ξt,i),

whereξt is a random variable with density function(10).
Then the pseudo-regret afterTs rounds is at most

(

d− 1√
b(d− 1/2)

+

√
b(d− 1)2

d− 3/2

)

2
√

TsN.

Choosingb = d−3/2
(d−1/2)(d−1) andd = 1+

√
3
2 minimizes the

main term in the bound, leading to about4.6
√
TsN .

By the exact same argument, the actual regret is bounded

by the same quantity plus
√

T
2 ln 1

δ with probability1− δ.

6.4. Generalizing the Exponential Weights Algorithm

Now we come back to the usual Hedge setting and
consider another popular non-minimax algorithm (note
that it is trivial to generalize the results to the random-
ized setting). When dealing with the most general loss
space[0, 1]N , the minimax algorithm is unknown even
for the fixed horizon setting. However, generalizing
the weighted majority algorithm ofLittlestone & Warmuth
(1994), Freund & Schapire(1997; 1999) presented an algo-
rithm using exponential weights that can deal with this gen-
eral loss space and achieve theO(

√
T lnN) bound on the

regret. The algorithm takes the horizonT as a parameter,
and on roundt, it simply choosesPt,i ∝ exp(−ηMt−1,i),
whereη =

√

(8 lnN)/T is the learning rate. It is shown

that the regret of this algorithm is at most
√

(T lnN)/2.
Auer et al.(2002) proposed a way to make this algorithm
adaptive by simply setting a time-varying learning rate
η =

√

(8 lnN)/t, wheret is the current round, leading
to a regret bound of

√
T lnN for anyT (see Chapter 2.5 of

Bubeck, 2011). In other words, the algorithm always treats
the current round as the last round. Below, we show that
our “pretend distribution” idea can also be used to make
this exponential weights algorithm adaptive, and is in fact
a generalization of the adaptive learning rate algorithm by
Auer et al.(2002).

Theorem 8. Let LS = [0, 1]N , Pr[T = t] ∝ 1/td (d >
3/2) andηT =

√

(b lnN)/T , whereb is a constant. If on
round t, the learner assigns weightET∼Q[P

T
t,i|T ≥ t] to

each actioni, wherePT
t,i ∝ exp(−ηTMt−1,i), then for any

Ts, the regret afterTs rounds is at most
(√

b(d− 1)

4(d− 1/2)
+

d− 1

(d− 3/2)
√
b

)
√

Ts lnN+o(
√

Ts lnN).

Settingb = 4d−2
d−3/2 minimizes the main term, which ap-

proaches1 asd → ∞.

Note that ifd → ∞, our algorithm simply becomes the
one ofAuer et al.(2002), becausePr[T = τ |T ≥ t] is 1
if τ = t and0 otherwise. Therefore, our algorithm can be
viewed as a generalization of the idea of treating the cur-
rent round as the last round. However, we emphasize that
the way we deal with unknown horizon is more applicable
in the sense that if we try to make a minimax algorithm
adaptive by treating each round as the last round, one can
construct an adversary that leads to linear— and therefore
grossly suboptimal—regret, whereas our approach yields
nearly optimal regret. (See Example2 and3 in the supple-
mentary file for details.)

6.5. First Order Regret Bound

So far all the regret bounds we have discussed are in
terms of the horizon, which are also calledzeroth order
bounds. More refined bounds have been studied in the
literature (Cesa-Bianchi & Lugosi, 2006). For example,
the first order boundfor Hedge, that depends on the loss
of the best actionm∗ at the end of the game, usually
is of orderO(

√
m∗ lnN). Again, using the exponential

weights algorithm with a slightly different learning rate
η = ln(1+

√

(2 lnN)/m∗), one can show that the regret is
at most

√
2m∗ lnN + lnN . Here,m∗ is prior information

on the loss sequence similar to the horizon. To avoid ex-
ploiting this information that is unavailable in practice,one
can again use techniques like the doubling trick or the time-
varying learning rate. Alternatively, we show that the “pre-
tend distribution” technique can also be used here. Again
it makes more sense to assign a continuous distribution on
the loss of the best action instead of a discrete one.
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Theorem 9. LetLS = [0, 1]N , mt = miniMt,i+1, ηm =
√

(lnN)/m, andm ≥ 1 be a continuous random variable
with probability densityf(m) ∝ 1/md (d > 3/2). If on
round t, the learner assigns weightE[Pm

t,i|m ≥ mt−1] to
each actioni, wherePm

t,i ∝ exp(−ηmMt−1,i), then for any
Ts, the regret afterTs rounds is at most

3(d− 7/6)(d− 1)

(d− 3/2)(d− 1/2)

√
m∗ lnN

+(1 + (d− 1) ln(m∗ + 1)) lnN + o(
√
m∗ lnN),

wherem∗ = mini MTs,i is the loss of the best action after
Ts rounds. Settingd = 5/2+

√
2 minimizes the main term,

which becomes(3/2 +
√
2)
√
m∗ lnN .
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Through all the proofs, we denote the set{1, . . . ,m} by
[m].

A. Proof of Theorem 1

We first state a few properties of the functionR:

Proposition 1. For any vectorM of N dimensions and
integerr,

Property 1. R(M, r) = a+R((M1−a, . . . ,MN −a), r)
for any real numbera andr ≥ 0.

Property 2. R(M, r) is non-decreasing inMi for each
i = 1, . . . , N .

Property 3. If r > 0, R(M, r)−R(M, r − 1) ≤ 1/N .

Property 4. If r > 0, andPi =
1
N +R(M+ ei, r − 1)−

R(M, r) for eachi = 1, . . . , N , thenP = (P1, . . . , PN )
is a distribution in the simplex∆(N).

Proof of Proposition1. We omit the proof for Property1
and2, since it is straightforward. We prove Property3 by
induction. For the base caser = 1, let S = {j : Mj =
mini Mi}. If |S| = 1, thenR(M+ei, 0) isR(M, 0) for i /∈
S andR(M, 0)+1 otherwise. If|S| > 1, thenR(M+ei, 0)
is simplyR(M, 0) for all i. In either case, we have

R(M, 1) =
1

N

N∑

i=1

R(M+ ei, 0) ≤
1

N
(1 +

N∑

i=1

R(M, 0))

=
1

N
+R(M, 0),

proving the base case. Now forr > 1, by definition ofR
and induction,

R(M, r)−R(M, r − 1)

=
1

N

N∑

j=1

(R(M+ ei, r − 1)−R(M+ ei, r − 2))

≤ 1

N

N∑

j=1

1

N
=

1

N
,

completing the induction. For Property4, it suffices to
provePi ≥ 0 for eachi and

∑N
i=1 Pi = 1. The first part

can be shown using Property2 and3:

Pi =
1

N
+R(M+ ei, r − 1)− R(M, r)

≥ 1

N
+R(M, r − 1)− (

1

N
+R(M, r − 1)) = 0.

The second part is also easy to show by definition ofR:

N∑

i=1

Pi = 1 +

N∑

i=1

R(M+ ei, r − 1)−NR(M, r)

= 1 +NR(M, r)−NR(M, r) = 1.
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Proof of Theorem1. First inductively proveV (M, r) =
r/N − R(M, r) for any r ≥ 0. The base caser = 0 is
trivial by definition. Forr > 0,

V (M, r) = min
P∈∆(N)

max
Z∈LS

(P · Z+ V (M+ Z, r − 1))

= min
P∈∆(N)

max
i∈[N ]

(Pi + V (M + ei, r − 1))

(LS = {e1, . . . , eN})

= min
P∈∆(N)

max
i∈[N ]

(

Pi +
r − 1

N
−R(M + ei, r − 1)

)

(by induction)

DenotePi + (r − 1)/N − R(M + ei, r − 1) by g(P, i).
Notice that the average ofg(P, i) over all i is irrelevant
to P : 1

N

∑N
i=1 g(P, i) = r/N − R(M, r). Therefore,

maxi g(P, i) ≥ r/N −R(M, r) for anyP, and

V (M, r) = min
P

max
i

g(P, i) ≥ r/N −R(M, r). (11)

On the other hand, from Proposition1, we know thatP ∗
i =

1/N + R(M + ei, r − 1)− R(M, r) (i ∈ [N ]) is a valid
distribution. Also,

V (M, r) = min
P

max
i

g(P, i) ≤ max
i

g(P∗, i)

= max
i

( r

N
−R(M, r)

)

=
r

N
−R(M, r).

(12)

So from Eq. (11) and (12) we have V (M, r) =
r/N − R(M, r), and alsoP ∗

i = 1/N + R(M + ei, r −
1) − R(M, r) = V (M, r) − V (M + ei, r − 1) realizes
the minimum, and thus is the optimal strategy.

It remains to proveV (0, T ) ≤ cN
√
T . Let Z1, . . . ,ZT

be independent uniform random variables taking values in
{e1, . . . , eN}. By what we proved above,

V (0, T ) =
T

N
−E[min

i∈[N ]

T∑

t=1

Zt,i] = E[max
i∈[N ]

T∑

t=1

(1/N−Zt,i)].

Let yt,i = 1/N − Zt,i. Then eachyt,i is a random
variable that takes value1/N with probability 1 − 1/N
and1/N − 1 with probability 1/N . Also, for a fixedi,
y1,i, . . . , yT,i are independent (note that this is not true for
yt,1, . . . , yt,N for a fixedt). It is shown in Lemma 3.3 of
Berend & Kontorovich(2013) that eachyt,i satisfies

E[exp(λyt,i)] ≤ exp(
λ2σ2

2
), ∀λ > 0,

whereσ2 = (N − 1)/N2 is the variance ofyt,i. So if we
let Yi =

∑T
t=1 yt,i, by the independence of each term, we

have∀λ > 0,

E[exp(λYi)] = E[

T∏

t=1

exp(λyt,i)] =

T∏

t=1

E[exp(λyt,i)]

≤ exp(
λ2σ2T

2
).

Now using Lemma A.13 fromCesa-Bianchi & Lugosi
(2006), we arrive at

E[max
i∈[N ]

Yi] ≤ σ
√
2T lnN = cN

√
T .

We conclude the proof by pointing out

V (0, T ) = E[max
i∈[N ]

T∑

t=1

(1/N−Zt,i)] = E[max
i∈[N ]

Yi] ≤ cN
√
T .

As a direct corollary of Proposition1 and Theorem1, be-
low we list a few properties of the functionV for later use.

Proposition 2. If LS = {e1, . . . , eN}, then for any vector
M and integerr,

Property 5. V (M, r) = V ((M1−a, . . . ,MN −a), r)−a
for any real numbera andr ≥ 0.

Property 6. V (M, r) is non-increasing inMi for eachi =
1, . . . , N .

Property 7. V (M, r) is non-decreasing inr.

B. Proof of Theorem2

Proof. DefineV̄t(M) = E[V (M, T − t + 1)|T ≥ t] and
q(t′, t) = Pr[T = t′|T ≥ t]. We will prove an important
property of theV̄ function:

V̄t(M) = min
P∈∆(N)

max
i∈[N ]

(Pi + q(t, t)V (M+ ei, 0)+

(1− q(t, t)) V̄t+1(M + ei)).

(13)

This equation shows that̄Vt(M) is the conditional expec-
tation of the regret givenT ≥ t, starting from cumulative
loss vectorM and assuming both the learner and the
adversary are optimal. This is similar to the functionV
in the fixed horizon case, and again the value of the game
infAlg supZ1:∞

ET∼Q[Reg(LT ,MT )] is simplyV̄1(0).

To prove Eq. (13), we plug the definition of̄Vt+1(M +
ei) into the right hand side and getminP maxi g(P, i)
where g(P, i) = Pi + q(t, t)V (M + ei, 0) +
(1− q(t, t))E[V (M + ei, T − t)|T ≥ t + 1]. Using the
fact that for anyt′ ≥ t+ 1,

(1− q(t, t))q(t′, t+ 1)

=Pr[T > t|T ≥ t] Pr[T = t′|T ≥ t+ 1]

=Pr[T = t′|T ≥ t] = q(t′, t),
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g(P, i) can be simplified in the following way:

g(P, i) (14)

=Pi + q(t, t)V (M+ ei, 0)+

(1− q(t, t))

∞∑

T=t+1

(q(T, t+ 1)V (M+ ei, T − t))

=Pi + q(t, t)V (M+ ei, 0)+
∞∑

T=t+1

(q(T, t)V (M+ ei, T − t))

=Pi + E[V (M+ ei, T − t)|T ≥ t]. (15)

Also, the average ofg(P, i) over alli is independent ofP:

1

N

N∑

i=1

g(P, i)

=
1

N
+

1

N

N∑

i

E[V (M + ei, T − t)|T ≥ t]

=E

[

1

N
+

1

N

N∑

i

V (M + ei, T − t)|T ≥ t

]

=E

[

1

N
+

1

N

N∑

i

(
T − t

N
−R(M+ ei, T − t)

)

|T ≥ t

]

=E[
T − t+ 1

N
−R(M, T − t+ 1)|T ≥ t]

(by definition of R)

=E[V (M, T − t+ 1)|T ≥ t],

which implies

min
P∈∆(N)

max
i∈[N ]

g(P, i) ≥ E[V (M, T − t+1)|T ≥ t]. (16)

On the other hand, letP∗ = E[PT |T ≥ t], wherePT
i =

V (M, T − t + 1) − V (M + ei, T − t). P∗ is a valid
distribution sincePT is a distribution for anyT . Also, by
plugging into Eq. (15),

g(P∗, i) = E[V (M, T − t+ 1)− V (M+ ei, T − t)|T ≥ t]

+ E[V (M+ ei, T − t)|T ≥ t]

= E[V (M, T − t+ 1)|T ≥ t].

Therefore,

min
P∈∆(N)

max
i∈[N ]

g(P, i) ≤ max
i∈[N ]

g(P∗, i)

= E[V (M, T − t+ 1)|T ≥ t].
(17)

Eq. (16) and (17) show that minP maxi g(P, i) =
E[V (M, T − t + 1)|T ≥ t], which agrees with
the left hand side of Eq. (13). We thus prove
inf
Alg

sup
Z1:∞

ET∼Q[Reg(LT ,MT )] = E[V (0, T )|T ≥ 1] =

ET∼Q[inf
Alg

sup
Z1:T

Reg(LT ,MT )], and P∗ is the optimal

strategy.

C. Proof of Theorem3

To prove Theorem3, we need to find out whatV (0, T ) is
under the general loss space[0, 1]2. Note that Theorem1
only tells us the case of the basis vector loss space. For-
tunately, it turns out that they are the same ifN = 2. To
be more specific, we will show later in Theorem10 that if
N = 2 andLS = [0, 1]2, thenV (0, T ) = T/2−R(0, T ),
which can be further simplified as

V (0, T ) =
T

2
− 1

2T

T∑

m=0

(
T

m

)

min{m,T −m}

=
T

2T

(
T − 1

⌊T
2 ⌋

)

.

We can now prove Theorem3 using this explicit scaling
factor, denoted byS(T ) for simplicity.

Proof of Theorem3. Again, solving Eq. (4) is equivalent
to finding the value functioñV defined on each state of
the game, similar to the functionsV andV̄ we had before.
The difference is that̃V should be a function of not only
the index of the current roundt and the cumulative loss
vectorM, but also the cumulative lossL for the learner.
Moreover, to obtain a base case for the recursive definition,
it is convenient to first assume thatT is at mostT0, where
T0 is some fixed integer. Under these conditions, we define
Ṽ T0

t (L,M) recursively as:

Ṽ T0

T0
(L,M) , min

P∈∆(N)
max
Z∈LS

Reg(L +P · Z,M+ Z)

V (0, T0)
,

Ṽ T0

t (L,M) , min
P∈∆(N)

max
Z∈LS

max

{
Reg(L+P · Z,M + Z)

V (0, t)
,

Ṽ T0

t+1(L+P · Z,M + Z)

}

,

which is the scaled regret starting from roundt with cu-
mulative lossL for the learner andM for the actions, as-
suming both the learner and the adversary will play opti-
mally from this round on. The value of the gameṼ is now
lim

T0→+∞
Ṽ T0

1 (0,0).

To simplify this value function, we will need three facts.
First, the base case can be related toV (M, 1):

Ṽ T0

T0
(L,M)

= min
P∈∆(N)

max
Z∈LS

Reg(L+P · Z,M + Z)

V (0, T0)

=

(

L+ min
P∈∆(N)

max
Z∈LS

Reg(P · Z,M + Z)

)/

V (0, T0)

=

(

L+ min
P∈∆(N)

max
Z∈LS

P · Z+ V (M + Z, 0)

)/

V (0, T0)

=
L+ V (M, 1)

V (0, T0)
.
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Second, for anyL andM, one can inductively show that

Ṽ T0

t (L,M) = Ṽ T0

t (L −R(M, 0),M′), (18)

whereM ′
i = Mi − R(M, 0). (We omit the details since it

is straightforward.)

Third, whenM = 0, by symmetry, one has withPu =
( 1
N , . . . , 1

N )

Ṽ T0

t (L,0)

= max
Z∈LS

max

{
Reg(L+Pu · Z,Z)

V (0, t)
, Ṽ T0

t+1(L+Pu · Z,Z)
}

≥max

{
L+ 1

N

V (0, t)
, Ṽ T0

t+1(L +
1

N
, e1)

}

. (19)

Now we can make use of the conditionN = 2 to lower
boundṼ . The key point is to consider a restricted adver-
sary who can only place one unit more loss on one of the
action than the other, if not stopping the game. Clearly
the value of this restricted game serves as a lower bound
of Ṽ . Specifically, consider the value of̃V T0

t (L, e1) for
t ≤ T0 − 2:

Ṽ T0

t (L, e1)

≥ min
p∈[0,1]

max

{
Reg(L+ p, 2e1)

S(t)
, Ṽ T0

t+1(L+ 1− p, e1 + e2)

}

(restricted adversary)

= min
p∈[0,1]

max

{
L+ p

S(t)
, Ṽ T0

t+1(L− p,0)

}

(by Eq. (18))

≥ min
p∈[0,1]

max

{
L+ p

S(t)
,
L+ 1/2− p

S(t+ 1)
, Ṽ T0

t+2(L+
1

2
− p, e1)

}

(by Eq. (19))

≥min
p∈R

max

{
L+ p

S(t)
, Ṽ T0

t+2(L +
1

2
− p, e1)

}

Therefore, if we assumeT0 is even without loss of general-
ity and define functionGT0

t (L) recursively as:

GT0

T0
(L) , Ṽ T0

T0
(L, e1) =

L+ V (e1, 1)

S(T0)
=

L

S(T0)

GT0

t (L) , min
p∈R

max

{
L+ p

S(t)
, GT0

t+2(L+
1

2
− p)

}

,

then it is clear that̃V T0

t (L, e1) ≥ GT0

t (L), and thus by
(19),

Ṽ T0

1 (0,0) ≥ max{1, Ṽ T0

2 (
1

2
, e1)} ≥ max{1, GT0

2 (
1

2
)}.

It remains to computeGT0

2 (12 ). By some elemen-
tary computations and the fact that for two linear func-
tions h1(p) and h2(p) of different signs of slopes,

minp max{h1(p), h2(p)} = h1(p
∗) wherep∗ is such that

h1(p
∗) = h2(p

∗), one can inductively prove that fort =
2, 4, . . . , T0,

GT0

t (L) =
2

T0−t
2 (L + 1

2 )− 1
2

S(T0) +
(T0−t)/2∑

k=1

(2k−1S(T0 − 2k))

.

PluggingS(t) = t
2t

(
t−1
⌊t/2⌋

)
and lettingT0 → ∞, we arrive

at

lim
T0→∞

GT0

2 (1/2)

= lim
T0→∞





T0/2−1
∑

k=1

(

2k−T0/2S(T0 − 2k)
)





−1

= lim
T0→∞





T0/2−1
∑

k=1

(
S(2k)

2k

)




−1

=





∞∑

j=0

j

8j

(
2j

j

)




−1

.

DefineG(x) =
∑∞

j=0

(
2j
j

)
xj andF (x) = x ·G′(x). Note

that what we want to compute above is exactly1/F (18 ).
Lehmer(1985) showed thatG(x) = (1 − 4x)−1/2. There-
fore,F (x) = 2x · (1− 4x)−3/2 and

lim
T0→∞

GT0

2 (1/2) = 1/F (1/8) =
√
2.

We conclude the proof by pointing out

Ṽ = lim
T0→∞

Ṽ T0

1 (0,0)

≥ max{1, lim
T0→∞

GT0

2 (1/2)} =
√
2.

As we mentioned at the beginning of this section, the last
thing we need to show is that the valueV (0, T ) is the same
under the two loss spaces. In fact, we will prove stronger
results in the following theorem claiming that this is true
only if N = 2.

Theorem 10. Let LS1,LS2,LS3 be the three loss
spaces{e1, . . . , eN}, {0, 1}N and[0, 1]N respectively, and
VLS(0, T ) be the value of the gameV (0, T ) under the loss
spaceLS. If N > 2, we have for anyT ,

VLS1
(0, T ) < VLS2

(0, T ) = VLS3
(0, T ).

However, the three values above are the same ifN = 2.
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Proof. We first inductively show that for anyM and r,
VLS2

(M, r) = VLS3
(M, r) andVLS3

(M, r) is convex in
M. For the base caser = 0, by definition,VLS2

(M, 0) =
VLS3

(M, 0) = −miniMi. Also, for any two loss vectors
M andM′, andλ ∈ [0, 1],

VLS3
(λM+ (1 − λ)M′, 0)

=−min
i

(λMi + (1− λ)M ′
i)

≤−min
i

(λMi)−min
i

((1− λ)M ′
i)

=λVLS3
(M, 0) + (1− λ)VLS3

(M′, 0),

showingVLS3
(M, 0) is convex inM. Forr > 0,

VLS3
(M, r) = min

P∈∆(N)
max
Z∈LS3

(P · Z+ VLS3
(M+ Z, r − 1)) .

Notice thatP · Z + VLS3
(M + Z, r − 1) is equal toP ·

Z+ VLS2
(M+Z, r − 1) and is convex inZ by induction.

Therefore the maximum is always achieved at one of the
corner points ofLS3, which is inLS2. In other words,

VLS3
(M, r) = min

P∈∆(N)
max
Z∈LS2

(P · Z+ VLS2
(M+ Z, r − 1))

= VLS2
(M, r).

On the other hand, by introducing a distributionQ over all
the elements inLS2, we have

VLS3
(M, r)

= min
P∈∆(N)

max
Z∈LS2

(P · Z+ VLS3
(M+ Z, r − 1))

= min
P∈∆(N)

max
Q

EZ∼Q [P · Z+ VLS3
(M+ Z, r − 1)]

=max
Q

min
P∈∆(N)

EZ∼Q [P · Z+ VLS3
(M+ Z, r − 1)]

=max
Q

(

EZ∼QVLS3
(M+ Z, r − 1) + min

P∈∆(N)
P · EZ∼Q[Z]

)

where we switch the min and max by Corollary 37.3.2
of Rockafellar(1970). Note that the last expression is
the maximum over a family of linear combinations of
convex functions inM, which is still a convex function
in M, completing the induction step. To conclude,
VLS2

(0, T ) = VLS3
(0, T ) for anyN andT .

We next prove ifN = 2, VLS1
(0, T ) = VLS2

(0, T ).
Again, we inductively proveVLS1

(M, r) = VLS2
(M, r)

for anyM andr. The base case is clear. Forr > 0, let
P ∗
i = VLS1

(M, r) − VLS1
(M + ei, r − 1) (i = 1, 2). By

induction,

VLS2
(M, r)

= min
P∈∆(2)

max
Z∈LS2

(P · Z+ VLS1
(M+ Z, r − 1))

≤ max
Z1,Z2∈{0,1}

(P ∗
1Z1 + P ∗

2Z2 + VLS1
(M+ (Z1, Z2), r − 1))

=max{VLS1
(M, r − 1), 1 + VLS1

(M+ (1, 1), r − 1),

VLS1
(M, r)}

=max {VLS1
(M, r − 1), VLS1

(M, r)}
(by Property5 in Proposition2)

=VLS1
(M, r). (by Property7 in Proposition2)

However, it is clear thatVLS2
(M, r) ≥ VLS1

(M, r).
Therefore,VLS1

(M, r) = VLS2
(M, r).

Finally, to proveVLS1
(0, T ) < VLS2

(0, T ) for N > 2, we
inductively proveVLS1

((T−r)e1, r) < VLS2
((T−r)e1, r)

for r = 1, . . . , T . For the base caser = 1, VLS1
((T −

1)e1, 1) = 1/N −R((T − 1)e1, 1) = 1/N , while

VLS2
((T − 1)e1, 1)

= min
P∈∆(N)

max
Z∈LS2

(P · Z+ VLS2
((T − 1)e1 + Z, 0))

≥ min
P∈∆(N)

max
i∈[N ]

(1− Pi + VLS2
((T − 1)e1 + 1− ei, 0))

= min
P∈∆(N)

max {−P1, 1− P2, . . . , 1− PN} .

We claim that the value of the last minimax expression
above, denoted byv, is (N − 2)/(N − 1), which is strictly
greater than1/N if N > 2 and thus proves the base case.
To show that, notice that for anyP ∈ ∆(N), there must
existi ∈ {2, . . . , N} such thatPi ≤ 1/(N − 1) and

max {−P1, 1− P2, . . . , 1− PN} ≥ 1− Pi ≥
N − 2

N − 1
,

showing v ≥ (N − 2)/(N − 1). On the other
hand, the equality is realized by the distributionP∗ =
(0, 1

N−1 , . . . ,
1

N−1 ).

Forr > 1, we have

VLS2
((T − r)e1, r)

= min
P∈∆(N)

max
Z∈LS2

(P · Z+ VLS2
((T − r)e1 + Z, r − 1))

≥ min
P∈∆(N)

max
i∈[N ]

(Pi + VLS2
((T − r)e1 + ei, r − 1))

≥ min
P∈∆(N)

1

N

N∑

i=1

(Pi + VLS2
((T − r)e1 + ei, r − 1))

=
1

N
+

1

N

N∑

i=1

VLS2
((T − r)e1 + ei, r − 1)

>
1

N
+

1

N

N∑

i=1

VLS1
((T − r)e1 + ei, r − 1)

=VLS1
((T − r)e1, r).

Here, the last strict inequality holds because fori = 1,
VLS2

((T − r+1)e1, r− 1) > VLS1
((T − r+1)e1, r− 1)

by induction; fori 6= 1, it is trivial thatVLS2
((T − r)e1 +
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ei, r − 1) ≥ VLS1
((T − r)e1 + ei, r − 1). Therefore, we

complete the induction step and thus proveVLS1
(0, T ) <

VLS2
(0, T ).

D. Proof of Theorem5

The proof (and the one of Theorem8) relies heavily on a
common technique to approximate a sum using an integral,
which we state without proof as the following claim.

Claim 1. Let f(x) be a non-increasing nonnegative func-
tion defined onR+. Then the following inequalities hold
for any integer0 < j ≤ k.

∫ k+1

j

f(x) dx ≤
k∑

i=j

f(i) ≤
∫ k

j−1

f(x) dx

Proof of Theorem5. By Theorem4, it suffices to upper
boundV̄1(0) and

∑Ts

t=1 qtV̄t+1(0). LetSt =
∑∞

t′=t 1/t
′d.

By applying Claim1 multiple times, we have

1

St
≤
(∫ ∞

t

dx

xd

)−1

= td−1(d− 1); (20)

qt =
1

St · td
≤ d− 1

t
;

V̄1(0) = E[V (0, T )|T ≥ 1]

≤cN
S1

∞∑

T=1

1

T d− 1
2

(by Theorem1)

≤cN
S1

(

1 +

∫ ∞

1

dx

xd− 1
2

)

(by Claim1)

=
cN(d− 1

2 )

S1(d− 3
2 )

≤cN(d− 1)(d− 1
2 )

d− 3
2

= O(1). (by Eq. (20))

For

V̄t+1(0) = E[V (0, T − t)|T ≥ t+ 1]

=
cN
St+1

∞∑

k=1

√
k

(t+ k)d
,

Claim 1 does not readily apply since the functiong(k) =√
k/(t + k)d is increasing on[0, t/(2d− 1)] and then de-

creasing on[t/(2d − 1),∞). However, we can still ap-
ply the claim to these two parts separately. Letx0 =
⌊t/(2d − 1)⌋ andx1 = ⌈t/(2d − 1)⌉. For simplicity, as-
sume1 ≤ x0 < x1 andg(x0) ≤ g(x1) (other cases hold
similarly). Then we have

V̄t+1(0) =
cN
St+1

(

g(x1) +

x0∑

k=1

g(k) +

∞∑

k=x1+1

g(k)

)

≤ cN
St+1

(

g(x1) +

∫ x1

0

g(x)dx +

∫ ∞

x1

g(x)dx

)

=
cN
St+1

(

g(x1) +
Γ(d− 3

2 )

2Γ(d)
·
√
π

td−
3
2

)

≤ (d− 1)cN
√
π · Γ(d−

3
2 )

2Γ(d)
·
√
t+ o(

√
t).

So finally we have

Ts∑

t=1

qtV̄t+1(0)

≤(d− 1)2cN
√
π · Γ(d−

3
2 )

2Γ(d)

Ts∑

t=1

(
1√
t
+ o(

1√
t
)

)

≤Γ(d− 3
2 )

Γ(d)
(d− 1)2cN

√

πTs + o(
√

Ts),

which proves the theorem.

E. Proof of Theorem6

Proof. Let ΦT
t =

√

‖Wt−1‖2 + (T − t+ 1) be the po-
tential function for this setting. The key property of the
minimax algorithm Eq. (6) shown by Abernethy et al.
(2008a) is the following:

xT
t ·wt ≤ ΦT

t − ΦT
t+1.

Based on this property, the loss of our algorithm afterTs

rounds is

Ts∑

t=1

E[xT
t |T ≥ t] ·wt =

Ts∑

t=1

E[xT
t ·wt|T ≥ t]

≤
Ts∑

t=1

E[ΦT
t − ΦT

t+1|T ≥ t].

Now defineUt = E[ΦT
t |T ≥ t] andqt = Pr[T < t+1|T ≥

t]. By the fact thatfT≥t(t
′) = (1 − qt)fT≥t+1(t

′) for any
t′ ≥ t+1, wherefT≥t andfT≥t+1 are conditional density
functions, we have

Ts∑

t=1

E[xT
t |T ≥ t] ·wt

≤
Ts∑

t=1

(
Ut − E[ΦT

t+1|T ≥ t]
)

=

Ts∑

t=1

(

Ut −
∫ t+1

t

ΦT
t+1fT≥t(T )dT − (1 − qt)Ut+1

)

≤
Ts∑

t=1

(

Ut − Φt
t+1

∫ t+1

t

fT≥t(T )dT − (1− qt)Ut+1

)

(∵ ΦT
t+1 increases inT )
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=

Ts∑

t=1

(Ut − Ut+1 + qt(Ut+1 − ‖Wt−1‖))

(∵ Φt
t+1 = ‖Wt−1‖)

= U1 − UTs+1+

Ts∑

t=1

qtE
[√

‖Wt−1‖2 + (T − t)− ‖Wt−1‖ | T ≥ t+ 1
]

≤ U1 − UTs+1 +

Ts∑

t=1

qtE
[√

T − t | T ≥ t+ 1
]

.

(∵
√
a+ b−√

a ≤
√
b)

Note that UTs+1 ≥ ‖WT ‖, and thus it remains
to plug in the distribution and computeU1 and
∑Ts

t=1 qtE[
√
T − t | T ≥ t + 1], which is almost the same

process as what we did in the proof of Theorem5 if one re-
alizesqt ≤ (d− 1)/t also holds here. In a word, the regret
can be bounded by

Γ(d− 3
2 )

Γ(d)
(d− 1)2

√

πTs + o(
√

Ts),

which isπ
√
Ts + o(

√
Ts) if d = 2. The explicit form in

Eq. (7) comes from a direct calculation.

F. Proof of Lemma 2 and Theorem7

Proof of Lemma2. The results follow by a direct cal-
culation. The conditional distribution ofξt given T
is 1

∆N
T

1{ξ ∈ [0,∆T ]
N}. Let St =

∫∞
t

1/T ddT =
(
(d− 1)td−1

)−1
. The marginal distribution forξ that has

negative coordinates is clearly0. Otherwise, witht̄ =

max{t, ‖ξ‖
2
∞

bN } one has

ft(ξ) =
1

St

∫ ∞

t

1

T d∆N
T

1{ξ ∈ [0,∆T ]
N}dT

=
1

St

∫ ∞

t̄

1

T d∆N
T

dT

=
(d− 1)td−1

(
√
bN)N

∫ ∞

t̄

1

T d+N/2
dT

=
d− 1

d− 1 +N/2
∆−N

t min

{

1,

(
∆t

‖ξ‖∞

)2d−2+N
}

.

Proof of Theorem7. Applying Theorem 4.2 of
Cesa-Bianchi & Lugosi (2006), the pseudo-regret of
the FPL algorithm is bounded by

E[max
i

ξTs,i] +

Ts∑

t=1

E[max
i

(ξt−1,i − ξt,i)]

+

Ts∑

t=1

∫

RN

Ft(ξ)(ft(ξ)− ft(ξ − Zt))dξ,

where we defineξ0 = 0 andFt(ξ) = Zt,Iξ with Iξ ∈
argmini(Mt−1,i + ξi). Now the key observation is that
the pseudo-regret remains the same if we replace random
variablesξ1, . . . , ξTs with ξ′1, . . . , ξ

′
Ts

as long asξt andξ′t
have the same marginal distribution for anyt. Specifically,
we can letξ′Ts

= ξTS , and for1 < t ≤ Ts, let ξ′t−1 = ξ′t
with probability St/St−1 = (1 − 1/t)d−1 (recall St =
∫∞
t

1/T ddT ), or with1−St/St−1 probability be obtained
by first drawingT ∈ [t− 1, t] according to densityf(T ) ∝
1/T d, and then drawing a point uniformly in[0,∆T ]

N . It
is clear thatξt andξ′t have the same marginal distribution.
So the pseudo-regret can be in fact bounded by three terms:

A = E[max
i

ξTs,i],

B =

Ts∑

t=1

E[max
i

(ξ′t−1,i − ξ′t,i)],

C =

Ts∑

t=1

∫

RN

Ft(ξ)(ft(ξ)− ft(ξ − Zt))dξ.

A can be further bounded by

1

STs

∫ ∞

Ts

∆T

T d
dT =

d− 1

d− 3/2

√

bTsN.

ForB, by construction ofξ′t, we have

B ≤
Ts∑

t=2

(
∆t

St−1

∫ t

t−1

dT

T d
+

St

St−1
· 0
)

=

Ts∑

t=2

∆t

td−1

(
td−1 − (t− 1)d−1

)

≤
Ts∑

t=2

∆t

td−1
· (d− 1)td−2 (by convexity)

≤ 2(d− 1)
√

bTsN.

For C, let H = {ξ : ft(ξ) > ft(ξ − Zt)}. Since0 ≤
Ft(ξ) ≤ 1, we haveC ≤ ∑Ts

t=1

∫

H
ft(ξ)dξ. Now observe

that whenmini ξi ≥ 0, ft(ξ) is non-increasing in eachξi.
So the only possibility thatft(ξ) > ft(ξ − Zt) holds is
when there exists ani such thatξi is strictly smaller than
Zt,i. That is

H = {ξ : min
i

ξi ≥ 0 and∃i, s.t. ξi < Zt,i}

So we have

C ≤
Ts∑

t=1

1

St

∫ ∞

t

dT

T d

∫

H

1{ξ ∈ [0,∆T ]
N}

∆N
T

dξ
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≤
Ts∑

t=1

1

St

∫ ∞

t

N

T d

Zt,i∆
N−1
T

∆N
T

dT

≤ d− 1

d− 1/2

√

N

b

Ts∑

t=1

1√
t

≤ 2(d− 1)√
b(d− 1/2)

√

TsN.

CombiningA,B andC proves the theorem.

G. Proof of Theorem8

Proof. We will first show that

Reg(LTs ,MTs) ≤ (lnN) · E
[
1

ηT
|T ≥ TS + 1

]

︸ ︷︷ ︸

A

+
1

8

Ts∑

t=1

E[ηT |T ≥ t]

︸ ︷︷ ︸

B

.

(21)

LetΦT
t = 1

ηT
ln
(
∑N

i=1 exp(−ηTMt−1,i)
)

. The key point

of the proof for the non-adaptive version of the exponential
weights algorithm is to useΦT

t as a “potential” function,
and bound the change in potential before and after a single
round (Cesa-Bianchi & Lugosi, 2006). Specifically, they
showed that

PT
t · Zt ≤

ηT
8

+ ΦT
t − ΦT

t+1.

We also base our proof on this inequality. The total loss of
the learner afterTs rounds is

LTs =

Ts∑

t=1

E[PT
t |T ≥ t] · Zt =

Ts∑

t=1

E[PT
t · Zt|T ≥ t]

≤ B +

Ts∑

t=1

E[ΦT
t − ΦT

t+1|T ≥ t].

DefineUt = E[ΦT
t |T ≥ t]. We do the following transfor-

mation:

E[ΦT
t − ΦT

t+1|T ≥ t]

=Ut − ET [Φ
T
t+1|T ≥ t]

=Ut − qtΦ
t
t+1 − (1− qt)Ut+1

=Ut − Ut+1 + qt(Ut+1 − Φt
t+1)

=Ut − Ut+1 + qt · E[ΦT
t+1 − Φt

t+1|T ≥ t+ 1]

=Ut − Ut+1 + qt · E[FT,t(Mt)|T ≥ t+ 1],

where we define

FT,t(M) =
ln (
∑

i exp(−ηTMi))

ηT
− ln (

∑

i exp(−ηtMi))

ηt
.

A key observation is

max
M∈RN

+
ηT <ηt

FT,t(M) =
lnN

ηT
− lnN

ηt
, (22)

which can be verified by a standard derivative analysis that
we omit. (An alternative approach using KL-divergence
can be found in Chapter 2.5 ofBubeck, 2011.)

We further define another potential function̄ΦT
t =

(lnN)/ηT and alsoŪt = E[Φ̄T
t |T ≥ t]. Note that the new

potentialΦ̄T
t has no dependence ont and thusΦ̄T

t = Φ̄T
t′

for anyt, t′. We now have

Ts∑

t=1

E[ΦT
t − ΦT

t+1|T ≥ t]

=

Ts∑

t=1

(
Ut − Ut+1 + qt · E[ΦT

t+1 − Φt
t+1|T ≥ t+ 1]

)

= U1 − UTs+1 +

Ts∑

t=1

(
qt · E[ΦT

t+1 − Φt
t+1|T ≥ t+ 1]

)

︸ ︷︷ ︸

C

(23)

≤ U1 − UTs+1 +

Ts∑

t=1

(

qt · E[
lnN

ηT
− lnN

ηt
|T ≥ t+ 1]

)

(by Eq. (22))

= Ū1 − ŪTs+1 +

Ts∑

t=1

(
qt · E[Φ̄T

t+1 − Φ̄t
t+1|T ≥ t+ 1]

)

︸ ︷︷ ︸

D

+ ŪTs+1 − UTs+1. (∵ U1 = Ū1)

Notice thatD has the exact same form asC except for a
different definition of the potential, and also Eq. (23) is an
equality. Therefore, by a reverse transformation, we have

Ts∑

t=1

E[ΦT
t − ΦT

t+1|T ≥ t]

=

Ts∑

t=1

E[Φ̄T
t − Φ̄T

t+1|T ≥ t] + ŪTs+1 − UTs+1

=ŪTs+1 − UTs+1 (∵ Φ̄T
t = Φ̄T

t+1)

ŪTs+1 is exactlyA in Eq. (21), andUTs+1 can be related
to the loss of the best action:

UTs+1 = E

[

1

ηT
ln

N∑

i=1

exp(−ηTMTs,i) | T ≥ Ts + 1

]

≥ E

[
1

ηT
ln exp(−ηTR(MTs , 0)) | T ≥ Ts + 1

]

= −R(MTs , 0).
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The regret is therefore

Reg(LTs ,MTs) = LTS −R(MTs , 0)

≤ A+B − UTs+1 −R(MTs , 0)

≤ A+B,

proving Eq. (21).

The rest of the proof is merely to plug in the distribution
andηT =

√

(b lnN)/T , and upper bound Eq. (21) using
Claim 1. Adopting the notationSt =

∑∞
t′=t 1/t

′d and the
result of Eq. (20) in the proof of Theorem5, we have

A =

√
lnN

STs+1

√
b

∞∑

T=Ts+1

1

T d−1/2

≤ (d− 1)
√
lnN√

b
(Ts + 1)d−1·

(∫ ∞

Ts+1

dx

xd−1/2
+

1

(Ts + 1)d−1/2

)

=
d− 1

(d− 3/2)
√
b

√

Ts lnN + o(
√

Ts lnN);

B =

√
b lnN

8

Ts∑

t=1

1

St

∞∑

T=t

1

T d+1/2

≤ (d− 1)
√
b lnN

8

Ts∑

t=1

td−1

(∫ ∞

t

dx

xd+1/2
+

1

td+1/2

)

≤ (d− 1)
√
b lnN

8

Ts∑

t=1

(
1

(d− 1/2)
√
t
+

1

td+3/2

)

≤
√
b(d− 1)

4(d− 1/2)

√

Ts lnN + o(
√

Ts lnN).

Combining the bounds above forA andB proves the theo-
rem.

H. Proof of Theorem 9

Proof. The main idea resembles the one of Theorem8, but
the details are much more technical. Let us first define sev-
eral notations:

St ,

∫ ∞

mt

dm

md
=

1

(d− 1)md−1
t

,

qt , Pr[m < mt|m ≥ mt−1] =
1

St−1

∫ mt

mt−1

dm

md

= 1−
(
mt−1

mt

)d−1

,

Y m
t ,

N∑

i=1

exp(−ηmMt−1,i),

Φm
t ,

(

1 +
1

ηm

)

lnY m
t , Ut , E[Φm

t |m ≥ mt−1].

The proof starts from the following property of the expo-
nential weights algorithm (Cesa-Bianchi & Lugosi, 2006):

Pm
t · Zt ≤

1

1− e−ηm

(
lnY m

t − lnY m
t+1

)

≤ Φm
t − Φm

t+1. (∵ ηm ≥ ln(1 + ηm))

By the fact thatfm≥mt−1
(m′) = (1 − qt)fm≥mt(m

′) for
anym′ ≥ mt, wherefm≥mt−1

andfm≥mt are conditional
density functions, the loss of the learner afterTs rounds
LTs is

Ts∑

t=1

E[Pm
t · Zt|m ≥ mt−1]

≤
Ts∑

t=1

E[Φm
t − Φm

t+1|m ≥ mt−1]

=

Ts∑

t=1

(

Ut −
∫ mt

mt−1

Φm
t+1fm≥mt−1

(m)dm+ (1− qt)Ut+1

)

≤
Ts∑

t=1

(

Ut − Φ
mt−1

t+1

∫ mt

mt−1

fm≥mt−1
(m)dm+ (1− qt)Ut+1

)

=U1 − UTs+1 +

Ts∑

t=1

qt(Ut+1 − Φ
mt−1

t+1 ),

Here the last inequality holds becauseΦm
t is increasing in

m. To show this, we consider the following

(

1 +
1

η

)

ln

N∑

i=1

exp(−ηai)

=

(

1 +
1

η

)(

−ηa1 + ln
N∑

i=1

exp(−η(ai − a1))

)

=− (η + 1)a1 +

(

1 +
1

η

)

ln

N∑

i=1

exp(−η(ai − a1)),

where η, a1, . . . , aN are positive numbers. Since
ln
∑

i exp(−η(ai − a1)) ≥ 0, the expression above is de-
creasing inη, which along with the fact thatηm decreases
in m shows thatΦm

t increases inm.

We now computeU1 andUTs+1:

U1 = E[(1 +
√

m/ lnN) lnN | m ≥ 1]

= lnN +
d− 1

d− 3/2

√
lnN

UTs+1 = E

[

(1 + 1/ηm) ln
∑

i

exp(−ηmMTs,i) | m ≥ mTs

]
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≥ E[(1 + 1/ηm)(−ηmm∗) | m ≥ mTs ]

= −m∗ (1 + E[ηm | m ≥ mTs ])

= −m∗
(

1 +
d− 1

d− 1/2

√

lnN

mTs

)

≥ −m∗ − d− 1

d− 1/2

√
m∗ lnN

(∵ mTs = m∗ + 1)

ForUt+1−Φ
mt−1

t+1 = E[Φm
t+1−Φ

mt−1

t+1 | m ≥ mt], we first
upper bound the part inside the expectation:

Φm
t+1 − Φ

mt−1

t+1

=

(
lnY m

t+1

ηm
− lnY

mt−1

t+1

ηmt−1

)

+ (ηmt−1
− ηm)min

i
Mt,i

+ ln

∑
e−ηm(Mt,i−mini Mt,i)

∑
e−ηmt−1

(Mt,i−mini Mt,i)
.

The first term above is at most
(

1
ηm

− 1
ηmt−1

)

lnN =
√
lnN(

√
m − √

mt−1) by Eq. (22). The second term
is at most

√
lnN( 1√

mt−1
− 1√

m
)mt−1 sincemini Mt,i =

mt − 1 ≤ mt−1, and the last term is at mostlnN since the
numerator is at mostN while the denominator is at least1.
Therefore, we have

Ut+1 − Φ
mt−1

t+1

≤ lnN +
√
lnN · E[√m− mt−1√

m
| m ≥ mt]

= lnN +
√
lnN

(
d− 1

d− 3/2

√
mt −

d− 1

d− 1/2

mt−1√
mt

)

≤ lnN +
√
lnN

(
d− 1

d− 3/2

√
mt −

d− 1

d− 1/2

mt − 1√
mt

)

= lnN +
(d− 1)

√
mt lnN

(d− 3/2)(d− 1/2)
+

d− 1

d− 1/2

√

lnN

mt
.

It remains to compute
∑Ts

t=1 qt(Ut+1−Φ
mt−1

t+1 ), which, us-

ing the above, can be done by computingA =
∑Ts

t=1 qt,
B =

∑Ts

t=1 qt
√
mt andC =

∑Ts

t=1 qt/
√
mt. By inequality

1− x ≤ − lnx for anyx > 0, we have

A =

Ts∑

t=1

(

1−
(
mt−1

mt

)d−1
)

≤ −(d− 1)

Ts∑

t=1

(lnmt−1 − lnmt)

= (d− 1) ln(m∗ + 1).

ForB, we first showqt
√
mt ≤ 2(d− 1)(

√
mt −√

mt−1),

which is equivalent to

qt
√
mt√

mt −√
mt−1

=

(
mt

mt−1

)d−1

− 1
(

mt

mt−1

)d−1

−
(

mt

mt−1

)d−3/2
≤ 2(d−1)

if mt 6= mt−1 (it is trivial otherwise). Defineh(x) =
(xd−1 − 1)/(xd−1 − xd−3/2) for x ∈ [1, 2] (note that
mt/mt−1 is within this interval). One can verify that
h′(x) < 0 and thush(x) ≤ limx→1 h(x) = 2(d − 1).
So we proveqt

√
mt ≤ 2(d− 1)(

√
mt −√

mt−1) and

B ≤ 2(d− 1)

Ts∑

t=1

(
√
mt −

√
mt−1)

= 2(d− 1)(
√
mTs − 1) ≤ 2(d− 1)

√
m∗.

A simple comparison ofB andC showsC = o(
√
m∗). We

finally conclude the proof by combining all we have

Reg(LTs ,MTs)

≤ U1 − UTs+1 +

Ts∑

t=1

qt(Ut+1 − Φ
mt−1

t+1 )−m∗

= (1 + (d− 1) ln(m∗ + 1)) lnN

+

(
d− 1

d− 1/2
+

2(d− 1)2

(d− 3/2)(d− 1/2)

)√
m∗ lnN

+ o(
√
m∗ lnN)

=
3(d− 7/6)(d− 1)

(d− 3/2)(d− 1/2)

√
m∗ lnN

+ (1 + (d− 1) ln(m∗ + 1)) lnN + o(
√
m∗ lnN).

I. Examples

The first example shows that the results stated in Theorem2
can not generalize to other loss spaces.

Example 1. Consider the following Hedge setting:N =
3,LS = {1 − e1,1 − e2,1 − e3} where1 = (1, 1, 1).
Suppose the adversary picked1−e1 and1−e2 for the first
two rounds and we are now on roundt = 3 with M2 =
(1, 1, 2). Also the conditional distribution of the horizon
givenT ≥ 3 is Pr[T = 3] = Pr[T = 4] = 1/2. Let
P∗ be the minimax strategy for this round andPT be the
minimax strategy assuming the horizon to beT . ThenP∗ 6=
E[PT |T ≥ 3], and also

inf
Alg

sup
Z3:∞

E[Reg(LT ,MT )|T ≥ 3]

6= E[inf
Alg

sup
Z3:T

Reg(LT ,MT )|T ≥ 3].
(24)
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Proof. Recall theV function we had in Section3. Ignoring
the loss for the learner for the first two rounds (which is the
same for both sides of Eq. (24)), we point out that the right
hand side of Eq. (24) is essentially

1

2
V (M2, 1) +

1

2
V (M2, 2),

and the left hand side, denoted byV ′, is

min
P

max
Z

(P · Z+
1

2
V (M2 + Z, 0) +

1

2
V (M2 + Z, 1)).

Also P∗ andPT are the distributions that realize the mini-
mum in the definition ofV ′ andV (M2, T−2) respectively.
Below we show the values of these quantities without giv-
ing full details:

V (M2, 1) = min
P

max
i

{1− Pi + V (M2 + 1− ei, 0)}

= min
P

max{−P1,−P2,−P3 − 1}

= −1/2,

with P3 = (1/2, 1/2, 0);

V (M2, 2) = min
P

max
i

{1− Pi + V (M2 + 1− ei, 1)}

= min
P

max{−P1,−P2,−P3 − 1/3}

= −4/9,

with P4 = (4/9, 4/9, 1/9);

V ′ = min
P

max
i

(

1− Pi +
1

2
V (M2 + 1− ei, 0)

+
1

2
V (M2 + 1− ei, 1)

)

= min
P

max{−P1,−P2,−P3 − 2/3}

= −1/2,

with P∗ = (1/2, 1/2, 0). We thus conclude that

E[PT |T ≥ 3] = (17/36, 17/36, 1/18) 6= P∗

and

E[V (M2, T − 2)|T ≥ 3] = −17/36 6= V ′.

The next two examples show that the idea of “treating the
current round as the last round” does not work for minimax
algorithms.

Example 2. Consider the following Hedge setting:N =
2,LS = [0, 1]2 and the horizonT is a even number. Sup-
pose on roundt, the learner choosesPt using the minimax
algorithm assuming horizonT = t. Then the adversary
can make the regret afterT rounds to beT/4 by choosing
e1 ande2 alternatively.

Proof. As shown in Theorem10, whenN = 2, the min-
imax algorithm withLS = [0, 1]2 is the same as the one
with LS = {e1, e2}, which we already know from The-
orem1. If the learner treats the current round as the last
round, thenPt,1 is

V (Mt−1, 1)− V (Mt−1 + e1, 0)

=
1

2

(
1 + min{Mt−1,1 + 1,Mt−1,2}

−min{Mt−1,1,Mt−1,2 + 1}
)
.

Hence, for any roundt wheret is odd, we haveMt−1 =
( t−1

2 , t−1
2 ) and thusPt,1 = Pt,2 = 1/2 and the learner

suffers loss1/2. For any roundt wheret is even, we have
Mt−1 = ( t2 ,

t
2 − 1) and thusPt,1 = 0, Pt,2 = 1 and the

learner suffers loss1 since the adversary will choosee2
for this round. Finally, at the end ofT rounds, the loss
of the best action is clearlyT/2. So the regret would be
3T/4− T/2 = T/4.

Example 3. Consider the online linear optimization prob-
lem described in Section6.1. If horizonT is even and the
learner predicts using the minimax algorithm Eq(6) with
T replaced witht. Then the adversary can make the re-
gret to be

√
2T/4 afterT rounds by choosinge1 and−e1

alternatively.

Proof. For any roundt wheret is odd, we haveWt−1 = 0

and thusxt = 0. So the loss for this round is0. For any
round t wheret is even, we haveWt−1 = e1 and thus
xt = −

√
2
2 e1. So the loss for this round is

√
2/2 since

the adversary will pick−e1. At the end ofT rounds, since
WT = 0, the regret will simply be

√
2T/4.


