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Abstract

The success of generative modeling in continuous domains has led to a surge of
interest in generating discrete data such as molecules, source code, and graphs.
However, construction histories for these discrete objects are typically not unique
and so generative models must reason about intractably large spaces in order to
learn. Additionally, structured discrete domains are often characterized by strict
constraints on what constitutes a valid object and generative models must respect
these requirements in order to produce useful novel samples. Here, we present a
generative model for discrete objects employing a Markov chain where transitions
are restricted to a set of local operations that preserve validity. Building off of
generative interpretations of denoising autoencoders, the Markov chain alternates
between producing 1) a sequence of corrupted objects that are valid but not from
the data distribution, and 2) a learned reconstruction distribution that attempts to
fix the corruptions while also preserving validity. This approach constrains the
generative model to only produce valid objects, requires the learner to only discover
local modifications to the objects, and avoids marginalization over an unknown
and potentially large space of construction histories. We evaluate the proposed
approach on two highly structured discrete domains, molecules and Laman graphs,
and find that it compares favorably to alternative methods at capturing distributional
statistics for a host of semantically relevant metrics.

1 Introduction

Many applied domains of optimization and design would benefit from accurate generative modeling
of structured discrete objects. For example, a generative model of molecular structures may aid drug
or material discovery by enabling an inexpensive search for stable molecules with desired properties.
Similarly, in computer-aided design (CAD), generative models may allow an engineer to sample
new parts or conditionally complete partially-specified geometry. Indeed, recent work has aimed to
extend the success of learned generative models in continuous domains, such as images and audio, to
discrete data including graphs [38, 25], molecules [14, 21], and program source code [37, 30].

However, discrete domains present particular challenges to generative modeling. Discrete data
structures often exhibit non-unique representations, e.g., up to n! equivalent adjacency matrix
representations for a graph with n nodes. Models that perform additive construction—incrementally
building a graph from scratch [38, 25]—are flexible but face the prospect of reasoning over an
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Figure 1: Reconstruction model processing given an input molecule. Location-specific representations
computed via message passing are passed through fully-connected layers outputting probabilities for
each legal operation.

intractable number of possible construction paths. For example, You et al. [38] leverage a breadth-
first-search (BFS) to reduce the number of possible construction sequences, while Simonovsky and
Komodakis [34] avoid additive construction and instead directly decode an adjacency matrix from a
latent space, at the cost of requiring approximate graph matching to compute reconstruction error.

In addition, discrete domains are often accompanied by prespecified hard constraints denoting what
constitutes a valid object. For example, molecular structures represented as SMILES strings [36]
must follow strict syntactic and semantic rules in order to be decoded to a real compound. Recent
work has aimed to improve the validity of generated samples by leveraging the SMILES grammar
[21, 7] or encouraging validity via reinforcement learning [18]. Operating directly on chemical
graphs, Jin et al. [19] leverage chemical substructures encountered during training to build valid
molecular graphs and De Cao and Kipf [8] encourage validity for small molecules via adversarial
training. In other graph-structured domains, strict topological constraints may be encountered. For
example, Laman graphs [23], a class of geometric constraint graphs, require the relative number of
nodes and edges in each subgraph to meet certain conditions in order to represent well-constrained
geometry.

In this work we take the broad view that graphs provide a universal abstraction for reasoning about
structure and constraints on discrete spaces. This is not a new take on discrete spaces: graph-based
representations such as factor graphs [20], error-correcting codes [12], constraint graphs [28], and
conditional random fields [22] are all examples of ways that hard and soft constraints are regularly
imposed on structured prediction tasks, satisfiability problems, and sets of random variables.

We propose to model discrete objects by constructing a Markov chain where each possible state
corresponds to a valid object. Learned transitions are restricted to a set of local inductive moves,
defined as minimal insert and delete operations that maintain validity. Leveraging the generative
model interpretation of denoising autoencoders [2], the chain employed here alternatingly samples
from two conditional distributions: a fixed distribution over corrupting sequences and a learned
distribution over reconstruction sequences. The equilibrium distribution of the chain serves as the
generative model, approximating the target data-generating distribution.

This simple framework allows the learned component—the reconstruction model—to be treated as
a standard supervised learning problem for multi-class classification. Each reconstruction step is
parameterized as a categorical distribution over adjacent objects, those that are one inductive move
away from the input object. Given a local corrupter, the target reconstruction distribution is also local,
containing fewer modes and potentially being easier to learn than the full data-generating distribution
[2]. In addition, various hard constraints, such as validity rules or requiring the inclusion of a specific
substructure, are incorporated naturally.
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Figure 2: Corruption and subsequent reconstruction of a molecular graph. Our method generates
discrete objects by running a Markov chain that alternates between sampling from fixed corruption
and learned reconstruction distributions that respect validity constraints.

One limitation of the proposed approach is its expensive sampling procedure, requiring Gibbs
sampling at deployment time. Nevertheless, in many areas of engineering and design, it is the
downstream tasks following initial proposals that serve as the time bottleneck. For example, in drug
design, wet lab experiments and controlled clinical trials are far more time intensive than empirically
adequate mixing for the proposed method’s Markov chain. In addition, as an implicit generative
model, the proposed approach is not equipped to explicitly provide access to predictive probabilities.
We compare statistics for a host of semantically meaningful features from sets of generated samples
with the corresponding empirical distributions in order to evaluate the model’s generative capabilities.

We test the proposed approach on two complex discrete domains: molecules and Laman graphs [23],
a class of geometric constraint graphs applied in CAD, robotics, and polymer physics. Quantitative
evaluation indicates that the proposed method can effectively model highly structured discrete
distributions while adhering to strict validity constraints.

2 Reversible Inductive Construction

Let p(x) be an unknown probability mass function over a discrete domain, D, from which we have
observed data. We assume there are constraints on what constitutes a valid object, where V ⊆ D
is the subset of valid objects in D, and ∀x /∈ V, p(x) = 0. For example, in the case of molecular
graphs, an invalid object may violate atom-specific valence rules. Our goal is to learn a generative
model pθ(x), approximating p(x), with support restricted to the valid subset.

We formulate our approach, generative reversible inductive construction (GenRIC)1, as the equi-
librium distribution of a Markov chain that only visits valid objects, without a need for inefficient
rejection sampling. The chain’s transitions are restricted to legal inductive moves. Here, an inductive
move is a local insert or delete operation that, when executed on a valid object, results in another
valid object. The Markov kernel then needs to be learned such that its equilibrium distribution
approximates p(x) over the valid subspace.

2.1 Learning the Markov kernel

The desired Markov kernel is formulated as successive sampling between two conditional distributions,
one fixed and one learned, a setup originally proposed to extract the generative model implicit
in denoising autoencoders [2]. A single transition of the Markov chain involves first sampling
from a fixed corrupting distribution c(x̃ | x) and then sampling from a learned reconstruction
distribution pθ(x | x̃). While the corrupter is free to damage x, validity constraints are built into
both conditional distributions. The joint data-generating distribution over original and corrupted
samples is defined as p(x, x̃) = c(x̃ | x)p(x), which is also uniquely defined by the corrupting
distribution and the target reconstruction distribution, p(x | x̃). We use supervised learning to train a
reconstruction distribution model pθ(x | x̃) to approximate p(x | x̃). Together, the corruption and
learned reconstruction distributions define a Gibbs sampling procedure that asymptotically samples
from marginal pθ(x), approximating the data marginal p(x).

Given a reasonable set of conditions on the support of these two conditionals and the consistency of
the employed learning algorithm, the learned joint distribution can be shown to be asymptotically
consistent over the Markov chain, converging to the true data-generating distribution in the limit of
infinite training data and modeling capacity [2]. However, in the more realistic case of estimation

1https://github.com/PrincetonLIPS/reversible-inductive-construction
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with finite training data and capacity, a valid concern arises regarding the effect of an imperfect
reconstruction model on the chain’s equilibrium distribution. To this end, Alain et al. [1] adapts
a result from perturbation theory [32] for finite state Markov chains to show that as the learned
transition matrix becomes arbitrarily close to the target transition matrix, the equilibrium distribution
also becomes arbitrarily close to the target joint distribution. For the discrete domains of interest here,
we can enforce a finite state space by simply setting a maximum object size.

2.2 Sampling training sequences

Let c(s |x) be a fixed conditional distribution over a sequence of corrupting opera-
tions s = [s1, s2, ..., sk] where k is a random variable representing the total number of steps and
each si ∈ Ind(x̃i) where Ind(x̃i) is a set of legal inductive moves for a given x̃i. The probability of
arriving at corrupted sample x̃ from x is

c(x̃ | x) =
∑
s

c(x̃, s | x) =
∑

s∈S(x,x̃)

c(s | x), (1)

where S(x, x̃) denotes the set of all corrupting sequences from x to x̃. Thus, the joint data-generating
distribution is

p(x, s, x̃) = c(x̃, s | x)p(x) (2)

where c(x̃, s | x) = 0 if s /∈ S(x, x̃).
Given a corrupted sample, we aim to train a reconstruction distribution model pθ(x | x̃) to maximize
the expected conditional probability of recovering the original, uncorrupted sample. Thus, we wish
to find the parameters θ∗ that minimize the expected KL divergence between the true p(x, s | x̃) and
learned pθ(x, s | x̃),

θ∗ = argmin
θ

Ep(x,s,x̃) [DKL(p(s, x | x̃) ‖ pθ(s, x | x̃))] , (3)

which amounts to maximum likelihood estimation of pθ(s, x | x̃) and likewise pθ(x | x̃). The above
is an expectation over the joint data-generating distribution, p(x, s, x̃), which we can sample from by
drawing a data sample and then conditionally drawing a corruption sequence:

x ∼ p(x), x̃, s ∼ c(x̃, s | x). (4)

2.3 Fixed corrupter

In general, we are afforded flexibility when selecting a corruption distribution, given certain condi-
tions for ergodicity are met. We implement a simple fixed distribution over corrupting sequences
approximately following these steps: 1) Sample a number of moves k from a geometric distribution.
2) For each move, sample a move type from {Insert, Delete}. 3) Sample from among the legal
operations available for the given move type. We make minor adjustments to the weighting of
available operations for specific domains. See Appendix F for full details.

The geometric distribution over corruption sequence length ensures exponentially decreasing support
with edit distance, and likewise the support of the target reconstruction distribution is local to the
conditioned corrupted object. The globally non-zero (yet exponentially decreasing) support of both
the corruption and reconstruction distributions trivially satisfy the conditions required in Corollary
A2 from Alain et al. [1] for the chain defined by the corresponding Gibbs sampler to be ergodic.
Alternatively, one could employ conditional distributions with truncated support after some edit
distance and still satisfy ergodicity conditions via the stronger Corollary A3 from Alain et al. [1].

Unless otherwise stated, the results reported in Sections 3 and 4, use a geometric distribution with
five expected steps for the corruption sequence length. In general, we observe shorter corruption
lengths lead to better samples, though we did not seek to specially optimize this hyperparameter for
generation quality. See Appendix A for some results with other step lengths.

2.4 Reconstruction distribution

A sequence of corrupting operations s = [s1, s2, ..., sk] corresponds to a sequence of visited corrupted
objects [x̃1, x̃2, ..., x̃k] after execution on an initial sample x. We enforce the corrupter to be Markov
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such that its distribution over the next corruption operation to perform depends only on the current
object. Likewise, the target reconstruction distribution is then also Markov, and we factorize the
learned reconstruction sequence model as the product of memoryless transitions culminating with a
stop token:

pθ(srev | x̃) = pθ(stop | x)pθ(x | x̃1)
k−1∏
i=1

pθ(x̃i | x̃i+1) (5)

where srev = [skrev , sk−1rev , ..., s1rev , stop], the reverse of the corrupting operation sequence. If a stop
token is sampled from the model, reconstruction ceases and the next corruption sequence begins. For
the molecule model, an additional “revisit” stop criterion is also used: the reconstruction ceases when
a molecule is revisited (see Appendix D.1 for details).

For each individual step, the reconstruction model outputs a large conditional categorical distribution
over Ind(x̃), the set of legal modification operations that can be performed on an input x̃. We describe
the general architecture employed and include domain-specific details in Sections 3 and 4.

Any operation in Ind(x̃) may be defined in a general sense by a location on the object x̃ where
the operation is performed and a vocabulary element describing which vocabulary item (if any) is
involved (Fig. 1). The prespecified vocabulary consists of domain-specific substructures, a subset of
which may be legally inserted or deleted from a given object. The model induces a distribution over
all legal operations (which may be described as a subset of the Cartesian product of the locations
and vocabulary elements) by computing location embeddings for an object and comparing those to
learned embeddings for each vocabulary element.

For the graph-structured domains explored here, location embeddings are generated using a message
passing neural network structure similar to Duvenaud et al. [9], Gilmer et al. [13] (see Appendix C). In
parallel, the set of vocabulary elements is also given a learned embedding vector. The unnormalized
log-probability for a given modification is then obtained by computing the dot product of the
embedding of the location where the modification is performed and the embedding of the vocabulary
element involved. For most objects from the molecule and Laman graph domains, this defines a
distribution over a discrete set of operations with cardinality in the tens of thousands.

We note that although our model induces a distribution over a large discrete set, it does not do so
through a traditional fully-connected softmax layer. Indeed, the action space of the model is heavily
factorized, ensuring that the computation is efficient. The factorization is present at two levels: the
actions are separated into broad categories (e.g., insert at atom, insert at bond, delete, for molecules),
that do not interact except through the normalization. Additionally, actions are further factorized
through a location component and vocabulary component, that only interact through a dot product,
further simplifying the model.

3 Application: Molecules

Molecular structures can be defined by graphs where nodes represent individual atoms and edges
represent bonds. In order for such graphs to be considered valid molecular structures by standard
chemical informatics toolkits (e.g., RDKit [24]), certain constraints must be satisfied. For example,
aromatic bonds can only exist within aromatic rings, and an atom can only engage in as many bonds
as permitted by its valence. By restricting the corruption and reconstruction operations to a set of
modifications that respect these rules, we ensure that the resulting Markov chain will only visit valid
molecular graphs.

3.1 Legal operations

When altering one valid molecular graph into another, we restrict the set of possible modifications to
the insertion and deletion of valid substructures. The vocabulary of substructures consists of non-ring
bonds, simple rings, and bridged compounds (simple rings with more than two shared atoms) present
in training data. This is the same type of vocabulary proposed in Jin et al. [19]. The legal insertion
and deletion operations are set as follows:

Insertion For each atom and bond of a molecular graph, we determine the subset of the vocabulary
that would be chemically compatible for attachment. Then, for each compatible vocabulary sub-
structure, the possible assemblies of it with the atom or bond of interest are enumerated (keeping its

5



already-connected neighbors fixed). For example, when inserting a ring from the vocabulary via one
of its bonds, there is often more than one valid bond to select from. Here, we only specify the 2D
configuration of the molecular graph and do not account for stereochemistry.

Deletion We define the leaves of a molecule to be those substructures that can be removed while
the rest of the molecular graph remains connected. Here, the set of leaves consists of either non-ring
bonds, rings, or bridged compounds whose neighbors have a non-zero atom intersection. The set of
possible deletions is fully specified by the set of leaf substructures. To perform a deletion, a leaf is
selected and the atoms whose bonds are fully contained within the leaf node substructure are removed
from the graph.

These two minimal operations provide enough support for the resulting Markov chain to be ergodic
within the set of all valid molecular graphs constructible via the extracted vocabulary. As Jin et al.
[19] find, although an arbitrary molecule may not be reachable, empirically the finite vocabulary
provides broad coverage over organic molecules. Further details on the location and vocabulary
representations for each possible operation are given in the appendix.

3.2 Data

For molecules we test the proposed approach on the ZINC dataset, which contains about 250K
drug-like molecules from the ZINC database [35]. The model is trained on 220K molecules according
to the same train/test split as in Jin et al. [19], Kusner et al. [21].

3.3 Distributional statistics

While predictive probabilities are not available from the implicit generative model, we can perform
posterior predictive checks on various semantically relevant metrics to compare our model’s learned
distribution to the data distribution. Here, we leverage three commonly used quantities when assessing
drug molecules: the quantitative estimate of drug-likeness (QED) score (between 0 and 1) [4], the
synthetic accessibility (SA) score (between 1 and 10) [11], and the log octanol-water partition
coefficient (logP) [6]. For QED, a higher value indicates a molecule is more likely to be drug-
like, while for SA, a lower value indicates a molecule is more likely to be easily synthesizable.
logP measures the hydrophobicity of a molecule, with a higher value indicating more hydrophobic.
Together these metrics take into account a wide array molecular features (ring count, charge, etc.),
allowing for an aggregate comparison of distributional statistics.

Our goal is not to optimize these statistics but to evaluate the quality of our generative model by
comparing the distribution that our model implies over these quantities to those in the original data. A
good generative model would have novel molecules but those molecules would have similar aggregate
statistics to real compounds. In Fig. 3, we display Gaussian kernel density estimates (KDE) of
the above metrics for generated sets of molecules from seven baseline methods, in addition to our
own (see Appendix D for chain sampling details). A normalized histogram of the ZINC training
distribution is shown for visual comparison. For each method, we obtain 20K samples either by
running pre-trained models [19, 14, 21], by accessing pre-sampled sets [26, 34, 25], or by training
models from scratch [33]2. Only novel molecules (those not appearing in the ZINC training set) are
included in the metric computation, to avoid rewarding memorization of the training data. In addition,
Table 1 displays bootstrapped Kolmogorov–Smirnov (KS) distances between the samples for each
method and the ZINC training set.

Our method is capable of generating novel molecules that have statistics closely matched to the
empirical QED and logP distributions. The SA distribution seems to be more challenging, although
we still report lower mean KS distance than some recent methods. Because we allow the corrupter to
uniformly select from the vocabulary, even if a particular vocabulary element occurs very rarely in
training data, it can sometimes introduce molecules without an accessible synthetic route that the
reconstructor does not immediately recover from. One could alter the corrupter and have it favor
commonly appearing vocabulary items to mitigate this. We also note that our approach lends itself to
Markov chain transitions reflecting known (or learned) chemical reactions.

Interestingly, the SMILES-based LSTM model [33] is effective at matching the ZINC dataset statistics,
producing a substantially better-matched SA distribution than the other methods. However, as noted in

2We use the implementation provided by [5] for the SMILES LSTM [33].
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Figure 3: Distributions of QED (left), SA (middle), and logP (right) for sampled molecules and
ZINC.

Source QED KS SA KS logP KS % valid

ChemVAE [14] 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.7
GrammarVAE [21] 0.94 (0.00) 0.95 (0.00) 0.95 (0.00) 7.2

GraphVAE [34] 0.52 (0.00) 0.23 (0.00) 0.54 (0.00) 13.5
DeepGAR [25] 0.20 (0.00) 0.15 (0.00) 0.062 (0.002) 89.2

SMILES LSTM [33] 0.022 (0.003) 0.051 (0.004) 0.052 (0.004) 96.1
JT-VAE [19] 0.090 (0.003) 0.21 (0.00) 0.20 (0.00) 100
CG-VAE [26] 0.27 (0.00) 0.56 (0.00) 0.064 (0.002) 100

GenRIC 0.045 (0.003) 0.28 (0.00) 0.057 (0.002) 100

Table 1: Molecular property distributional statistics. For each source, 20K molecules are sampled and
compared to the ZINC dataset. For SA, QED, and logP, we compute the two-sample Kolmogorov-
Smirnov statistic (and its bootstrapped standard error) compared to the ZINC dataset. (Lower is better
for the KS statistic.) Self-reported validity percentages are also shown (the value for [14] is obtained
from [21]).

[26], by operating on the linear SMILES representation, the LSTM has limited ability to incorporate
structural constraints, e.g., enforcing the presence of a particular substructure.

In addition to the above metrics, we report a validity score (the percentage of samples that are
chemically valid) for each method in Table 1. A sample is considered to be valid if it can be
successfully parsed by RDKit [24]. The validity scores displayed are the self-reported values from
each method. Our method, like Jin et al. [19], Liu et al. [26], enforces valid molecular samples, and
the model does not have to learn these constraints. See Appendix G for additional evaluation using
the GuacaMol distribution-learning benchmarks [5].

We might also inquire how the reconstructed samples of the Markov chain compare to the corrupted
samples. See Fig. 6 in the supplementary material for a comparison. On average, we observe
corrupted samples that are less druglike and less synthesizable than their reconstructed counterparts.
In particular, the output reconstructed molecule has a 21% higher QED relative to the input corrupted
molecule on average. Running the corrupter repeatedly (with no reconstruction) leads to samples that
severely diverge from the data distribution.

4 Application: Laman Graphs

Geometric constraint graphs are widely employed in CAD, molecular modeling, and robotics. They
consist of nodes that represent geometric primitives (e.g., points, lines) and edges that represent
geometric constraints between primitives (e.g., specifying perpendicularity between two lines). To
allow for easy editing and change propagation, best practices in parametric CAD encourage keeping a
part well-constrained at all stages of design [3]. A useful generative model over CAD models should
ideally be restricted to sampling well-constrained geometry.

Laman graphs describe two-dimensional geometry where the primitives have two degrees of freedom
and the edges restrict one degree of freedom (e.g., a system of rods and joints) [23]. Representing
minimally rigid systems, Laman graphs have the property that if any single edge is removed, the
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Source DoD KS % valid

E-R [10] 0.95 (0.03) 0.08 (0.02)
GraphRNN [38] 0.96 (0.00) 0.15 (0.03)

GenRIC 0.33 (0.01) 100 (0.00)

Table 2: Laman graph distributional statistics.
The mean and, in parentheses, the standard
deviation, of the bootstrapped KS distance
between the DoD distribution for each set
of sampled graphs and the training data are
shown. In addition, we display mean and
standard deviations for bootstrapped validity
scores.

Henneberg type 1

Henneberg type 2

Figure 4: The legal inductive moves for
Laman graphs, derived from Henneberg con-
struction [16].

system becomes under-constrained. For a graph with n nodes to be a valid Laman graph, the following
two simple conditions are necessary and sufficient: 1) the graph must have exactly 2n− 3 edges,
and 2) each node-induced subgraph of k nodes can have no more than 2k − 3 edges. Together, these
conditions ensure that all structural degrees of freedom are removed (given that the constraints are all
independent), leaving one rotational and two translational degrees of freedom. In 3D, although the
corresponding Laman conditions are no longer sufficient, they remain necessary for well-constrained
geometry.

4.1 Legal operations

Henneberg [16] describes two types of node-insertion operations, known as Henneberg moves, that
can be used to inductively construct any Laman graph (Fig. 4). We make these moves and their
inverses (the delete versions) available to both the corrupter and reconstruction model. While moves
#1 and #2 can always be reversed for any nodes of degree 2 and 3 respectively, a check has to be
performed to determine where the missing edge can be inserted for reverse move #2 [15]. Here, we
use the O(n2) Laman satisfaction check described in [17] to determine the set of legal neighbors. At
the rigidity transition, it runs in only O(n1.15).

4.2 Data

For Laman graphs, we generate synthetic graphs randomly via Algorithm 7 from Moussaoui [29],
originally proposed for evaluating geometric constraint solvers embedded within CAD programs. This
synthetic generator allows us to approximately control a produced graph’s degree of decomposability
(DoD), a metric which indicates to what extent a Laman graph is composed of well-constrained sub-
graphs. Such subsystems are encountered in various applications, e.g., they correspond to individual
components in a CAD model or rigid substructures in a protein. The degree of decomposability is
defined as DoD = g/n, where g is the number of well-constrained, node-induced subgraphs and n is
the total number of nodes. We generate 100K graphs each for a low and high decomposability setting
(see Appendix E.1 for full details).

4.3 Distributional statistics

Table 2 displays statistics for Laman graphs generated by our model as well as by two baseline
methods all trained on the low decomposability dataset (we observe similar results in the high
decomposability setting). For each method, 20K graphs are sampled. The validity metric is defined
the same as for molecules (Section 3.3). In addition, bootstrapped KS distance between the sampled
graphs and training data for DoD distribution is shown for each method.

While it is unsurprising that the simple Erdős–Rényi model [10] fails to meet validity requirements
(< 0.1% valid), we see that the recently proposed GraphRNN [38] fails to do much better. While deep
graph generative models have proven to be very effective at reproducing a host of graph statistics,
Laman graphs represent a particularly strict topological constraint, imposing necessary conditions on
every subgraph. Today’s flexible graph generative models, while effective at matching local statistics,
are ill-equipped to handle this kind of global constraint. By leveraging domain-specific inductive
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moves, the proposed method does not have to learn what a valid Laman graph is, and instead learns
to match the distributional DoD statistics within the set of valid graphs.

5 Conclusion and Future Work

In this work we have proposed a new method for modeling distributions of discrete objects, which
consists of training a model to undo a series of local corrupting operations. The key to this method
is to build both the corruption and reconstruction steps with support for reversible inductive moves
that preserve possibly-complicated validity constraints. Experimental evaluation demonstrates that
this simple approach can effectively capture relevant distributional statistics over complex and highly
structured domains, including molecules and Laman graphs, while always producing valid structures.
One weakness of this approach, however, is that the inductive moves must be identified and specified
for each new domain; one direction of future work is to learn these moves from data. In the case of
molecules, restricting the Markov chain’s transitions to learned chemical reactions could improve
the synthesizability of generated samples. Future work can also explore enforcing additional hard
constraints besides structural validity. For example, if a particular core structure or scaffold with
some desired baseline functionality (e.g., benzodiazepines) should be included in a molecule, chain
transitions can be masked to respect this. Coupled with other techniques such as virtual screening,
conditional generation may enable efficient searching of candidate drug compounds.
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A Geometric Distribution for Corrupter

Fig. 3 displays distributions for molecular samples from models trained with varying geometric
distributions for the corruption sequence length. As the sequence length increases (and the corruptions
become less local), the models produces worse samples. A short average corruption sequence length
of one step seems to lead to a better-matched SA distribution, albeit with slower observed mixing for
the Markov chain.

Figure 5: Distributions of QED (left), SA (middle), and logP (right) for the ZINC dataset and models
trained with varying expected length corruption sequences.

B Molecular Reconstruction Model Operations

We describe the representation assigned to each inductive operation. As described in Section 3, each
modification is associated with a location (molecule dependent) and an operation type (molecule
independent).

1. Stop: a global operation, naturally associated with the entire molecule. The location
embedding is produced by embedding the entire molecule.

2. Delete atom leaf: a deletion operation where the deletion target is a single atom. The
vocabulary is unique, and the location is associated with a single atom.

3. Delete ring leaf: a deletion operation where the deletion target is a ring or bridged compound.
The vocabulary is unique, and the location is associated with a ring.

4. Insert via atom fusion: an insertion operation where the insertion is performed by attaching
at an existing atom. The vocabulary is given by all atoms in each molecule of the vocabulary,
and the location is associated with a single atom.

5. Insert via bond fusion: an insertion operation where the insertion is performed by attaching
at an existing bond. The vocabulary is given by all bonds belonging to rings in each molecule
of the vocabulary, and the location is associated with a single bond in a ring.

Embeddings for locations are computed in the following fashion. We follow a message passing archi-
tecture similar to Duvenaud et al. [9], Gilmer et al. [13], which produces a message for each bond and
for each atom. The atom messages are transformed and pooled to produce the molecule embedding
(used for stop prediction). Messages for each leaf atom are also transformed to produce embeddings
for delete leaf atom actions. Messages for each bond in a leaf ring are transformed and pooled
to produce embeddings for delete leaf ring. Messages for atoms and bonds are transformed to
produce embeddings for insert via atom fusion and insert via bond fusion.

C Training Details

In this section we give a brief description of the choices of parameters in training. We refer the reader
to the source code3 for a full description of the model architecture and parameters.

3https://github.com/PrincetonLIPS/reversible-inductive-construction
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C.1 Molecule model

Molecules are converted into graphs in a manner identical to the representation used by [19]. The
message passing model runs five steps of message passing. An embedding for the molecule is
produced by transforming atom-level messages through a two-layer fully connected network, and
aggregating the result through an average-pooling and a max-pooling operation (concatenated). For
each task-relevant location, an embedding is produced by transforming and pooling the relevant
messages, concatenating those with the molecule representation, and transforming with a two-layer
fully-connected network. All messages and hidden layers have size 384.

We train each model for 50 epochs, with the Adamax optimizer and a base learning rate of 2× 10−3

at batch size 128. The base learning rate is scaled linearly with the batch size. We also apply a
learning rate schedule, dividing the learning rate by 10 after epochs 12, 24 and 36. Additionally, we
apply learning rate warm-up by linearly scaling the learning rate from 0 to its base value during the
first five epoch. The training is performed with a batch size of 1024, although we did not see any
difference with smaller batch sizes (we did notice some issues with larger batches).

C.2 Laman model

Laman graphs are encoded for the message passing model with a single node degree feature. That
feature is encoded with a Fourier encoding of the node degree. The message passing model runs
five step of message passing. An embedding for the graph is produced by transforming the node
messages with a two-layer fully-connected network, and aggregated using average and max pooling.
Location-specific embeddings are produced in the same fashion as in the molecule model.

We train each model for 30 epochs, with the same optimizer settings as in the molecule model. We
use a batch size of 256.

All models are trained using a Nvidia Titan X Pascal (12 GB) graphics card.

D Sampling Details

Our proposed models require a Markov sampling step. We describe the details below.

For both the molecule and Laman models, we sample from the chain defined by the trained recon-
structor by starting from a random object in the training dataset. The chain then alternatively samples
sequences from the corrupter and the reconstructor. In both cases, the results reported in the main
text use a corrupter that performs an average of 5 moves (with a geometric distribution).

As we sample from a Markov chain, we do not gather i.i.d. samples. In fact, sometimes the
reconstructor returns to the same molecule on adjacent transitions due to perfect reconstruction. The
results reported here use every sample from the Markov chain without thinning.

Although validity is maintained through the inductive moves, for both the molecule and Laman
models, we in fact encode an action space slightly larger than the true set of valid inductive moves
(to make the space more regular). When such an invalid action is sampled by the reconstructor, it
is ignored, and another sample is taken. In some very rare instances, the reconstructor repeatedly
samples invalid actions, in which case the entire transition (including the corruption) is resampled.

For both the molecule and Laman model, a minimal size is set (one leaf for molecules, and three
nodes for Laman), to prevent the chain from deleting the entire object (which would cause problems
in terms of the representation). For molecules, we also set a maximum size (in terms of the number of
atoms), at 25 atoms, although we found values between 25 and 35 to have little effect on the results.

D.1 Revisit Stop Criterion

In the molecule setting, we make use of an additional stop criterion which is necessary as our model
exhibits high precision and does not have access to any recurrent state which would enable it to
increase the probability of stopping as the length of the reconstruction sequence increases.

At each reconstruction step, we keep a history of all the molecules visited by the reconstructor so far,
and stop the reconstruction process when the output of the reconstruction model already exists in its
history.
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We interpret this “revisit” as the model implicitly indicating that the obtained molecule is realistic
enough (on average) that it is willing to return to it, despite not indicating stop itself due to the high
precision of the model.

E Dataset Details

E.1 Laman

As we did not find high-quality real-world datasets for Laman graphs, we considered some synthetic
datasets generated by inductively sampling Henneberg moves in a random fashion. More explicitly,
each graph in the dataset is generated using Algorithm 7 of [29], reproduced here as Algorithm 1,
where the size n and the probability of selecting Henneberg type I moves p are sampled randomly.
For all datasets, we sample n from a normal distribution with mean 30 and standard deviation 5.
The distribution of p determines the distribution of the degree of decomposability of the graphs
in the dataset. We choose the following distributions of p for each dataset: p ∼ U(0, 0.1) for low
decomposability and p ∼ U(0.9, 1) for high decomposability.

Algorithm 1: Procedure for Generating Laman Graph
input : n, the number of nodes in the graph. p, the probability of choosing a move of type I.
output : A Laman Graph.
Initialize from complete graph on three elements;
G← K3 ;
for i← 4 to n do

move← Sample (Bernoulli(p));
if move = 0 then

G← ApplyRandomTypeI (G) ;
else

G← ApplyRandomTypeII (G) ;
end

end

F Corrupter Details

F.1 Molecule Corrupter

We use a single fixed corrupter for all molecule models. To corrupt a molecule, we sample a number of
corruption steps from a geometric distribution with the given mean, and iteratively apply Algorithm 2
to the molecule. We made no attempt to optimize the corrupter to produce better samples from the
generative model or ease the learning process.

Algorithm 2: Algorithm for single molecule corruption step
input : mol: molecule to corrupt
output : mol: corrupted molecule
if uniform() < 0.5 then

mol← DeleteRandomLeaf (mol);
else

atom← GetRandomAtom (mol);
if IsInRing (atom) and uniform() < 0.25 then

bond← GetRandomBondAtAtom (atom);
mol← InsertRandomAtBond (mol, bond);

else
mol← InsertRandomAtAtom (mol, atom);

end
end
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F.2 Laman Corrupter

We use a single a single corrupter for all our Laman models. For a single corruption sub-step, this
corrupter first chooses among the four action types (Henneberg type I and type II, and their inverses)
uniformly at random, and then uniformly samples among the valid actions of the chosen type. As
with the molecule corrupter, the number of sub-steps is sampled from a geometric distribution with
given mean.

G GuacaMol Benchmarks

We also evaluate our model on the new GuacaMol distribution-learning benchmarks [5] after training
on the ChEMBL dataset [27]. Using the same hyperparameters as for the ZINC model, we obtain
validity: 1.0, uniqueness: 0.933, novelty: 0.942, KL divergence: 0.771, and FCD: 0.058 (see [5]
for a description of each metric and comparisons with a few other methods). Note that the FCD
score [31] is not directly applicable to our model’s samples due to inherent autocorrelation in the
generated chains. In part, the FCD score assesses diversity of samples compared to the training set
by computing the activation covariance of the penultimate layer of ChemNet. The autocorrelation
limits the sample diversity but may be addressed by standard techniques for Markov chains such as
thinning. Here, we report results using the same sampling framework as for the ZINC model.

H Reconstructed vs. Corrupted Samples

In Fig. 6, we display QED and SA score distributions for the reconstructed molecules (x) and the
corrupted molecules (x̃) visited during Gibbs sampling as well as molecules generated by solely
running the corrupter (with no reconstruction). The corruption-only samples severely diverge from
the data distribution.
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Figure 6: Distributions of QED (left) and SA (right) scores for reconstructed molecules (x) and
corrupted molecules (x̃) visited during Gibbs sampling as well as molecules generated via corruption-
only.

I Example Chains

Below, we display three example chains for the molecular model.
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Figure 7: Example chain. The molecule is displayed after each transition of the Markov chain.
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Figure 8: Example chain. The molecule is displayed every five transitions.
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Figure 9: Example chain. The molecule is displayed every ten transitions.
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