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Resilience of Energy Infrastructure and Services:
Modeling, Data Analytics and Metrics

Chuanyi Ji, Yun Wei, and H. Vincent Poor

Abstract—Large scale power failures induced by severe
weather have become frequent and damaging in recent years,
causing millions of people to be without electricity service for
days. Although the power industry has been battling weather-
induced failures for years, it is largely unknown how resilient the
energy infrastructure and services really are to severe weather
disruptions. What fundamental issues govern the resilience? Can
advanced approaches such as modeling and data analytics help
industry to go beyond empirical methods? This paper discusses
the research to date and open issues related to these questions.
The focus is on identifying fundamental challenges and advanced
approaches for quantifying resilience. In particular, a first aspect
of this problem is how to model large-scale failures, recoveries
and impacts, involving the infrastructure, service providers,
customers, and weather. A second aspect is how to identify
generic vulnerability (i.e., non-resilience) in the infrastructure
and services through large-scale data analytics. And, a third is
to understand what resilience metrics are needed and how to
develop them.

Index Terms—Power distribution infrastructure, services to
customers, failure, recovery, non-stationary spatiotemporal mod-
els, data analytics, resilience metrics.

I. INTRODUCTION

Severe weather events such as storms, flooding and ex-
treme temperatures have been occurring across the United
States and the world in recent years, increasingly threatening
places where large populations and economic activities are
heavily concentrated [1]–[4]. Among the most affected are
the energy infrastructure and services to customers, where
weather-induced failures have affected millions of people for
days [2], [5], [6]. In response to these disruptions, nation-wide
efforts have been initiated on resilience [2], [4], [6]–[8]. Here
resilience refers to the ability to reduce failures under external
disruptions and to recover rapidly once failures occur [2], [4],
[8].

However, as pointed out by the taskforce report [8], the
current understanding of resilience is limited for the power
infrastructure under severe weather. It is largely unknown how
resilient our infrastructure really is to severe weather [2]. In
fact, the problem is not just about fixing the physical infras-
tructure. Services (i.e., electricity supplies to customers) are
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pertinent that involve users, service providers (i.e., distribution
system operators, or DSOs) and policy makers [9].

This paper discusses research to date and challenges on
resilience. The focus is on how to quantify resilience of
the energy infrastructure and services to customers. Here the
infrastructure refers to power distribution grids that deliver
electricity directly to users. Power distribution grids are found
particularly vulnerable to severe weather disruptions, where
90% of failures have occurred [4]. Furthermore, the current
power distribution infrastructure is not yet fully equipped
with the state-of-art technologies for efficient monitoring
and protection [10]–[12]. Services at power distribution grids
that involve a large number of customers in disjoint service
regions managed by disparate distribution system operators
and regulators are particularly challenging. A severe weather
event can have a wide geographical span. For example, Super
Storm Sandy affected eight million customers in 21 DSO
service regions in the United States. In the face of these
issues, quantifying resilience remains a challenging problem,
involving both infrastructure and services [2], [9], [13]–[15].

Notably, resilience centers on complex and interacting
networks involving weather, the power distribution infras-
tructure, and a community of customers, service providers
and policy makers [2], [4]. The failure aspect of resilience
relates to the interactions between the physical infrastructure
and weather. The recovery aspect relates mainly to services.
Services depend on complex factors, not only the infrastructure
but also DSOs, customers and policies. Both aspects require
advanced modeling to incorporate a large number of dependent
variables, and data analysis to gain knowledge about what
determines resilience. Thus resilience involves a multitude of
complex factors from weather to the physical infrastructure,
customers, services providers and policy makers. These issues
call for not only new thinking and actions from industry
but also research that can address fundamental problems
underlying the challenges.

We identify three technical challenges within this context.
A first challenge is how to model complex interactions among
weather, failures at the infrastructure, and recoveries by service
providers governed by policies. Mathematical models are
needed to describe these important factors, from a large num-
ber of local and dependent failures and recoveries, to customer
responses and weather [9], [14], [16], [17]. Meanwhile, it
is pertinent to incorporate multiple spatiotemporal scales in
these models that span a distribution system locally to service
areas regionally [9], [14], [16]. A second challenge is the
development of data analytics that can learn how resilient the
infrastructure and services really are from measurements. The
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Fig. 1: Illustration of three inter-related challenges.

power industry has been collecting data on failures and restora-
tion. Such data can potentially be turned into knowledge to
guide resilience enhancement. A challenge is the availability of
detailed data at a large scale across service territories. Detailed
data are owned by DSOs. Large-scale data studies thus call
for active participation of DSOs and policy makers. Here, we
describe the granularity, scale, paucity and inaccuracy of ex-
isting data, from which we learn what new information should
be collected. Furthermore, data analytics, although at an early
stage for resilience, suggests what knowledge can be learned
from the available measurements. Finally, a third challenge
is how to measure resilience in a way that incorporates the
infrastructure, services, customers and weather. Such resilience
metrics are needed for the community to be able to quantify
threats and system-wide performance.

These three aspects are inter-related as illustrated in Fig. 1.
Modeling lays a foundation to guide data analytics (i.e., on
what simple quantities to evaluate from complex failure and
recovery processes, and what data to use to gain knowledge on
resilience). Meanwhile, modeling provides a basis from which
resilience metrics can be derived as system-wide performance.
Data analytics provides knowledge and insights on resilience
of operational distribution grids and services. Data also un-
derlay measures of resilience metrics and model parameters.
Such knowledge should in turn improve modeling and data
analytics.

The rest of this paper is organized as follows. The funda-
mental aspects of the problem and challenges are described in
Section II. Modeling is discussed in Section III. Data analytics
are reviewed in Section IV. Resilience metrics are described in
Section V. Challenges and open issues are discussed through-
out the paper and are summarized in Section VI.

II. PROBLEM DESCRIPTION AND FUNDAMENTAL
CHALLENGES

The quantification of resilience depends on characterization
of the performance of power systems. Resilience can be
understood as the ability of the power systems to avoid or
reduce power failures and to recover quickly after failure
occurrences. These two aspects are inter-related through the
concepts of resilience across multiple spatiotemporal scales as
stated below.

A. Infrastructure

A first aspect of resilience is that of reducing failures in the
energy infrastructure. Here, as noted above, the infrastructure
refers to power distribution systems, the last stage of the grid
[18]. Severe weather events (e.g., high winds and flooding)
damage power components such as down-wires from fallen
debris, damaged transformers or non-functional distribution
substations. Component failures in a power distribution system
are local (i.e., do not cascade for radial topology) but can
involve large numbers of customers and span a wide geograph-
ical area [19]. Protective devices, activated by failures or fault
currents, are also considered as infrastructural failures since
they interrupt electricity supplies to customers [18]. Examples
of activated protective devices include open switches and
blown fuses [20]. Outages are further caused by failures within
a distribution system, where devices downstream lose power
but are not damaged [9], [16].

B. Services

The second aspect of resilience relates to services (i.e.,
maintaining electricity supplies to customers). Recovery from
failures thus signifies the service aspect of resilience. DSOs
are responsible for restoring electricity supplies to customers
when disruptions occur. Thus, services are provided in a
decentralized fashion, where individual DSOs are responsible
for their own managed territories. Services are also governed
by policies in the form of guidelines from state and federal
governments [21]. Policy makers also participate actively in
recovery processes (i.e., help guide restoration crews as shown
in Super Storm Sandy and Hurricane Matthew). Hence cus-
tomers, DSOs and policy makers form a community relevant
to resilient energy services.

C. Multiple Spatiotemporal Scales

Resilience involves interactions among power distribution
grids, services to customers, the community and weather as il-
lustrated in Fig. 2. Such interactions occur dynamically across
multiple spatiotemporal scales. For example, high winds cause
fallen debris that induce failures to overhead power distribution
lines in minutes [14]. Outages caused by failures occur in
seconds or sub-seconds within a distribution infrastructure
[16], [22]. Recovery occurs in seconds for restoring outages
and in days for difficult manual repairs [9], [14]. Spatial
scales vary from components in a local distribution system to
townships, one service region and multiple service territories
[23].

D. Challenges and Open Issues

The following challenges emerge:
(a) Modeling: How can we quantify resilience, i.e., starting

with modeling, for large-scale weather events? As resilience
should be a property of dynamic and dependent networks,
models are necessary for integrating local but dependent
failures, recoveries, the community and weather at a large
scale. Such models are challenging to obtain across multiple
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Fig. 2: Illustration of interactions among weather, infrastruc-
ture, and community.

spatiotemporal scales for the infrastructure and services jointly
(see Section III for detailed discussions).

(b) Data Analysis: How resilient are our power distribution
grids and services in the first place? What should be en-
hanced for resilience? Data are needed from operational power
distribution grids and services to aid in understanding what
fundamentally governs resilience. A challenge is to obtain both
detailed and large-scale data from the grid and about weather.
Data are owned by individual DSOs governed by policies.
Hence data analytics call for collaboration from DSOs and
policy makers (see Section IV).

(c) Resilience metrics: How can we measure resilience
at the network-level involving both the infrastructure and
services? Reliability metrics have been used as standards [24].
However, these metrics are designed for daily operations rather
than severe weather events. Resilience metrics are required to
incorporate dynamic characteristics at multiple spatiotemporal
scales (see Section V).

III. MODELING

An objective of modeling is to characterize relationships
among a large number of dependent variables. Such variables
include weather, failures at the distribution grid level, recover-
ies, impacts on customers and the community overall. To date,
there does not exist such a model that incorporates all these
pertinent factors. Different aspects have been studied in prior
work, from static models to non-stationary spatiotemporal
random processes.

A. Static Models in Machine Learning

A large body of prior work addresses the modeling of
how severe weather induces initiating failures [20], [25]–[27].
These models are static, focusing on finding a mapping be-
tween weather variables and failures. Such models pioneered
the work in this area, starting with one node (e.g., a power
distribution line or a component), and one to multiple weather
variables [20], [26], [28]. For example, the failure rate, which
is the average number of new failures occurring per mile
per hour of overhead power lines, is modeled as a quadratic
function of wind intensity in [18]. Fragility, which is the
conditional probability of a component failure given weather

Fig. 3: Machine Learning View of Static Models.

variables, is modeled as a function of wind intensity or gust,
precipitation, and surge elevation respectively in [29] and [30].

These models, although diverse, can be unified through
machine learning as illustrated in Fig. 3. Consider an n-
dimensional vector of exogenous variables x ∈ Rn at a given
location for 1 ≤ n. Modeling can be viewed as finding a static
mapping, f(x; a) : x → y, between exogenous variables x
and targets y ∈ Rm for 1 ≤ m. Here y describes failures
(i.e., as the number of failures or failure durations, or the
probability of failures/durations), and a ∈ Rl is a vector of
unknown parameters for 1 ≤ l. The data set D = {x(k), y(k)}
is obtained on pairs of exogenous and failure variables, where
(x(k), y(k)) are the k-th sample of the exogenous input x and
desired output y of the learning machine. The goal of learning
is to obtain either f or the parameter a for a chosen f using
data D so that f approximates an underlying mapping from
x to y. This is clearly a context of supervised learning [31].
The models are static, where neither f nor the parameters a
nor the inputs and outputs (x, y) vary with time.

The input variables x mainly represent weather, including
wind-intensity, speed and gust; as well as precipitation. Several
example models on f have been studied:

(a) Poisson generalized linear model (GLM) [32]: The
number of power failures in a grid cell is modeled as a Poisson
random variable with mean µ, where ln(µ) is assumed to be
a linear function of weather variables x.

(b) Negative binomial generalized linear model (NBGLM)
[20]: An error term ε is introduced into the GLM to model
the dispersion (i.e., the inconsistency between the mean and
the variance).

(c) Generalized additive model (GAM) [28]: The linear
function is replaced by a non-linear mapping f , including
cubic splines and non-parametric models.

(d) Spatially dependent Poisson linear models [33]: Spatial
correlation is included in GLM as a multivariate normal
distribution across different grid cells.

The above models have been used widely in subsequent
works [34]–[37]. Resulting models identify fallen trees as
major causes of power failures [20], [38]; and transformers
as affected most by severe storms [32], [34].

Other learning methods have been applied, including clas-
sification and regression trees, Bayesian additive regres-
sion trees, and multivariate adaptive regression splines [26].
Bayesian additive regression trees are found to be most accu-
rate in predicting durations of failures given weather variables
[26]. Principal Component Analysis (PCA) is found to be
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effective in learning from correlated weather variables [34].
The static models assume that failures occur independently

of time and locations [20], [33]. This assumption on tem-
poral independence is reasonable if evolution of failures is
not considered. The assumption on spatial independence can
be invalid since locations at sufficiently close proximities
may experience similar weather impacts [33]. In addition,
certain geo-locations exhibit a higher likelihood of weather-
induced failures than the others [2]. Due to these assumptions,
certain static models are obtained by aggregating over time
and service regions [20]. However, the aggregation may lose
spatiotemporal information needed for failure and recovery
studies (see Section IV for further discussions).

B. Spatiotemporal Random Processes

When sufficiently fine spatial and temporal scales are taken
into consideration, failures and recoveries need to be modeled
as spatiotemporal random processes [9], [14], [39]–[41]. Such
models characterize dynamic interactions of infrastructural
failures, services and customers, which are not quantified by
static models [9], [14].

1) Dynamic Models for Cascading Failures: The prior
works motivate such modeling albeit the problem they con-
sider is on cascading failures that occur at power transmission
rather than distribution grids [42], [43]. For example, dynamic
models are developed for cascading failures through Branching
processes [42], [44], Markov decision processes [45], hybrid
system models for random and sporadic failures [46], and other
probabilistic temporal models (see [47]–[49] and references
therein).

These models are based on stationary probability distri-
butions while weather-induced failure-recovery processes are
non-stationary [9], [14]. Furthermore, severe-weather induced
disruptions span a wide geographical area. Therefore, spa-
tiotemporal processes are needed for weather-induced failures
and recoveries.

2) Non-Stationary Failure-Recovery-Impact Processes:
Some recent work has developed a spatiotemporal non-
stationary model for dependent failure-recovery processes
[14], [16]. This model is motivated by non-stationary queues
[50]. Such models have been applied to failure-recovery pro-
cesses from severe weather events [14], [17]. However, the
queuing model is inapplicable when a finer spatiotemporal
scale is considered for impacts on customers by each failure
and recovery; and restoration is conducted with priorities for
critical customers [51].

A formulation is then developed from bottom-up, starting
with failures at the power distribution infrastructure, incorpo-
rating service recovery through failure durations, and impacts
on customers [9]. Such models integrate a large number of
interdependent variables at the finest spatiotemporal scale.

To consider this model, assume failures are already detected.
I
(d)
i (t) (d = f, o) is an indicator function, representing a

failure (f ) or an outage (o) for I
(d)
i (t) = 1; otherwise,

I
(d)
i (t) = 0. i includes the type, geo-location and system-

location of device i. Service is characterized by how rapidly
power supply is restored to customers [2]; thus represented by

downtime duration Di(v) for failure or outage i that occurs at
time v. An indicator function I[Di(v) > t− v] represents the
recovery event, where failure or outage i is not yet recovered
at t, 0 < v < t. Finally, the impact to customers evaluated
at time t is modeled via a function Gi(v, t) for disruption
i, which occurs at time v for v < t. As a simple example,
Gi(v, t) is the customer downtime resulting from failure or
outage i.

Failures, outages, recoveries and costs are dependent for a
given weather event, evolving in time and locations. Incorpo-
rating randomness from weather disruptions, the spatiotem-
poral non-stationary random processes model a collection
of dependent infrastructural failures, recoveries and costs as
coupled processes:

(a) Failure (and outage): {I(d)i (v), i ∈ S(v), v > 0},
(b) Recovery: {I[Dk(v) > t− v], k ∈ S(t), 0 < v < t},
(c) Cost: {Gj(v, t), j ∈ S(v), 0 < v < t}.
Here, S(v) and S(t) consist of nodes in normal operation

at time v and disruptions at time t, respectively. While such
a model starts from the finest spatial scale of individual com-
ponents and customers, aggregation can be done to an area, a
township, one service region and multiple DSO territories as
illustrated in Fig. 2.

Quantifying completely the spatiotemporal non-stationary
random processes is prohibitive since that requires joint prob-
ability distributions at all time epochs. The first moments are
used in an initial effort, including the time-varying failure rates
and marginal conditional probability of downtime duration
given failure occurrence time [9]. These simple quantities
guide data analytics in Section IV.

C. Open Issues and Challenges
The first open issue emerges on how to characterize two

generic properties of resilience (Section II): (a) dependent
“networks” from the infrastructure to customers and service
providers impacted by weather, and (b) non-stationarity across
multiple spatiotemporal scales. Different models have charac-
terized different aspects of the problem. There are no models
yet that characterize all the generic properties. A potential
approach is to combine strengths from the machine learning
models and spatiotemporal random processes to incorporate
diverse factors in a networked setting.

The second open issue is the complexity of modeling.
Models can become prohibitively complex when involving
spatiotemporal uncertainty, the physical infrastructure and ser-
vices [52], [53]. For example, questions arise whether power
flows should be incorporated for studying resilience [47],
[54]–[56]; or whether failures can be assumed as detected
already so that failure and recovery processes are on (failed,
outaged or normal) states of components [9], [11]. The afore-
mentioned models do not involve power flows, which makes
the formulation analytically tractable. Such models also allow
data analytics to be conducted using available measurements
(see the next section). However, starting from power flows
enables failure detection and grid reconfiguration [11], [54].
A challenge is to identify appropriate granularity in modeling
dependent variables based on objectives from weather, the
infrastructure, services and impacts on customers.
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Storm Track

Storm Track

Fig. 4: Geo-locations and occurrences of failures, and the
storm track during Super Storm Sandy.

The third open issue is on the community. While the roles
of DSOs and policy makers are embedded in service (and the
infrastructure enhancement), the existing approaches have not
modeled such influence explicitly.

IV. DATA ANALYTICS

Data analytics learn knowledge from measurements on
failures, recoveries and weather variables. Knowledge learned
helps to answer such questions as how resilient the infrastruc-
ture and services really are; and what governs resilience or
the lack thereof. Here modeling provides a pertinent role of
guiding data analytics (i.e., on what measurements to use and
what quantities to estimate).

A. Data

Data determines significantly what knowledge can be
learned about resilience.

1) Data on Failure and Recovery: The power industry has
been collecting data on failures, restoration and impacts to
customers [18]. The objectives of this collection have been for
outage management, customer communication and reporting
[21]. Data analysis is yet to become a focus.

As a typical example of granular data, an item on a fail-
ure includes “occurrence- and restoration-time, geo-location,
system-location, the type of activated protective device, the
number of customers affected” [9], [14], [28]. Here activated
protective devices signify the actual failed components, and
themselves interrupt electricity service to customers [32], [34].

One minute is the finest temporal resolution of the available
data for failure occurrence and restoration time. Resulting from
customer reports on service interruptions, such a time scale is
consistent with that of weather-induced failures from dynamic
evolution of severe storms [9], [14], [20], [32]. Failures can
further cause outages in a distribution system, where certain
components lose power but are not damaged [16]. Outages
occur in seconds or less [16], [22]. Therefore, the temporal
scale of failure data should ideally be less than a second.

Such a fine temporal scale is not yet achieved in current data
collection. Advanced technologies are required to attain such
granularity beyond customer reports. The current resolution on
restoration time is also a minute, where failure durations vary
from minutes to hours and days.

Geo-locations of failures and outages are provided in exact
coordinates of (latitude, longitude) [9]. The location informa-
tion is usually available on activated protective devices rather
than actual failed components [9], [16], [33]. Data on locations
of failed power components are more informative for studying
relationships between failures and weather variables [33], [36].
Although not usually available for research, the information on
failed devices is known in principle after restoration. Detecting
power failures and identifying their locations in real-time
have been of research interest, especially with deployment of
smart meters, (micro) phasor measurement units (PMUs) for
distribution systems, field sensors, and control units [11], [57]–
[60]. Overall, accurate geo-locations together with downtime
of both failed components and activated protective devices
are desirable for studying spatiotemporal variability of severe
weather impacts (Fig. 4).

Accuracy of the data is another pertinent issue. Existing
collection methods can fail to generate high resolution data,
especially in severely impacted service regions [61]. For ex-
ample, a large number customer calls in a short time duration
hinders failure isolation [61]. Repair crews are typically busy
fire-fighting to restore services to customers; data collection on
recovery time is thus not a priority [61]. Therefore, automated
approaches are pertinent for accurate data collection.

Impacts on customers provide another important source of
information on resilience. Available data on the impact is
currently measured as the number of customers affected by
each failure [9], [28], [32]. Total customer down-time can
then be obtained, reflecting impacts from both failures and
recoveries [9].

B. Data on Weather Variables

Data on weather variables offer pertinent information on
external causes of failures and delays on recovery. Commonly-
used data on severe storms have been collected on wind in-
tensity and gust, precipitation, moisture, and temperature [28],
[32]. Such data are usually provided by additional sources
outside DSO service regions. While an extensive survey of
weather data is beyond the scope of this work, well-known
example data on wind and precipitation are from the National
Oceanic and Atmospheric Administration (NOAA) [9], [32],
[34], [62]. The spatiotemporal granularity of the data varies.
For example, the wind speed is measured in minutes and at
the centroid of each zip code [38]. The resolution for gust
wind-speed is estimated at three-second intervals and each
3.66 km × 2.44km grid cell [34]. Weather data with a coarse
spatiotemporal resolution can be insufficient for terrains with
dynamically varying weather conditions. Recent data collec-
tion and forecasting techniques improve spatial resolution by
incorporating community weather-stations [62], [63].

Several DSOs have installed densely distributed weather sta-
tions in their service regions, where existing regional weather
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service is insufficient for dynamic local-conditions. This al-
lows data to be collected on both weather and power failures at
comparable spatiotemporal scales [25]. For instance, National
Grid has deployed weather stations, each of which covers five
square miles in a service area [25]. Central Hudson Electric
and Gas has weather stations needed for the varying terrain
conditions in the service region [64]. San Diego Gas and
Electric has sensors and mini weather stations for predicting
wildfires and the resulting power failures [65]. Furthermore, a
commercial product (Deep Thunder) by IBM offers localized
weather prediction at a spatial scale of city blocks [63].

Storm surge and flooding result in damages on power
components [61]. However, data on surge and flooding are
available at a fewer sources [66]. Synthetic data have been
generated from simulation on storm surge and flooding as
well as high winds when detailed data are difficult to obtain
[67], [68]. A challenge is for simulated data to be sufficiently
accurate relating to failures in the infrastructure.

Other exogenous variables include land cover, where resi-
dential, forest, commercial, industrial, and transportation land
use seem to be related to impacts of service interruptions on
customers [20], [32], [33]. For example, tree density is an
exogenous variable used in prior work that results in down-
wire and other initiating failures from high winds [20], [32],
[33].

C. Analytics

As modeling and available measurements lay foundations
for data analytics, a pertinent question is what knowledge can
be learned from data.

1) Outage Management: DSOs have long been collecting
data on failures and recoveries [18]. A major use of data
is on outage management [18], [61]. For example, customer
reports on service interruption are combined with outage
management systems to localize failures. Such information is
then used for guiding repair crews. Outage maps are generated
for customers on evolution of failures and restoration [69].
Aggregated information on failure and recovery is used for
reporting impacts and performance on service restoration [70].
Data analytics have not been a significant part of standard
outage management in practice.

2) Failure Prediction in One Service Region: Failure pre-
diction has been studied by the prior works [25], [26], [32]
and [27]. One of the first works, although mainly focused
on reliability rather than resilience, applies machine learning
to predict equipment failures in the New York City power
grid [27]. An objective is to enable proactive maintenance for
reducing severe impacts of power failures resulting in events
such as explosions or fires. Data on failures and assets are
collected from manholes in multiple years. Reactive point
processes are used to learn model parameters from the data
[71]. Although the power grid in New York City is complex,
the data analytics showed promise for failure prediction [27],
[71].

Several other prior works pioneered failure prediction using
weather data and regression models (see Section III). The
premise is that if the likelihood of failures can be obtained

given weather variables, failures can be predicted through
weather forecasts [25], [26], [32]. Data on failures and weather
from one service region are used for parameter estimation and
model validation [20], [25], [26], [28]–[30], [34], [36], [38].

A challenge is that detailed data is often unavailable on
failures due to security issues [36]. As such, the early works
have had to use aggregated failure data [20], [28]–[30], [34].
Temporal aggregation results in the number of failures, ranging
from one day to an entire period of a hurricane [20], [29],
[72]. Spatial aggregation of failure locations ranges from a
small grid cell of 0.42 km2 to an area specified by a geocode
or zip-code [20], [29], [36], [73].

On other occasions failure and weather data have different
granularity [20]. Failure data are then aggregated to match
the coarser geographic resolution of measurements on weather
and other exogenous variables [20]. Overall, aggregated infor-
mation over time and locations cannot specify exactly when
and where individual failures occur and recover. Thus data on
weather and failures, when either are aggregated, can affect
the accuracy of a learned model and consequently prediction.

With densely-installed weather stations in a service territory,
several recent works have been able to use detailed data on
both weather and power failures, resulting in a few failure
prediction systems for DSOs [25], [63], [65].

D. Regression Study at National Scale
As a severe weather event often spans multiple service

regions, a question is how to extend data analysis from one
service territory to a regional or national scale. Granular
data on power failure and recovery are owned privately by
individual DSOs. A recent work explores a novel option
of publicly available data [74]. Such data result from DSO
annual report on the IEEE standard reliability indices: System
Average Interruption Frequency Index (SAIFI) and System
Average Interruption Duration Index (SAIDI) [24]. SAIFI and
SAIDI are the average number of power failures and downtime
durations per customer per year. Thus such data are aggregated
with a spatial resolution of a service region and temporal scale
of a year [70].

The data are collected at the national scale across the US
over the past 13 years [74]. Data on exogenous variables are
also obtained on weather, DSO expenses on reliability, and the
density of power lines. The data from all sources are used to
learn parameters of regression models [74]. The failure and
duration indices are found to correlate with weather variables,
especially when major weather events occurred.

While this approach explores new large-scale data sources,
stationarity of the variables may be required so that regression
using aggregated data can equivalent to using detailed mea-
surements. Intuitively, the approach is expected to perform
well for daily operations when the stationarity is natural for
failures and restorations. When including a severe weather
event, detailed data are needed at sufficiently fine spatiotem-
poral scales.

E. Infrastructure and Service Resilience in Multiple Regions
Owned by individual DSOs, detailed and large-scale data

require collaboration from multiple service providers. As a
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Disruptions            Customers

Top 20% 

Others 1        3,000

(a)

Category            CMI (x 1,000 h)

1 (Large/Early) 

2 (Small) 

2 (Large/Late)
0.01      300

(b)

Fig. 5: Geographical distribution of failures and customer down-time in Upstate New York during Super Storm Sandy. (a) Top
20% and the remaining failures. (b) Customer interruption hours (CMI), where the colors represent the down-time for large
(top percentage) failures that recovered rapidly versus the remaining disruptions. Each marker represents a failure or an outage.
Map reproduced using OpenStreetMap and ArcGIS software. The figures are adopted from [9].

first step, four DSOs and policy makers have collaborated in a
recent work, providing detailed data on failure and recovery in
Upstate New York [9]. The data span four service regions over
50, 000 square miles that serve two million customers. The
granularity of the data is the finest that the current collection
can offer [9]. The data consist of failures and recoveries that
occurred during Super Storm Sandy and daily operations in
2012. Weather data are not used for the study.

Such detailed data at the large scale enable complementary
questions to be studied: whether data analysis can help identify
generic vulnerabilities (i.e., non-resilience) in the infrastruc-
ture and services. If so, how can data collected by DSOs ben-
efit long-term prediction of resilience through enhancement?
A recent work studying these questions is summarized below
[9].

Guided by the non-stationary spatiotemporal model (Sec-
tion III-B), the analysis of detailed data focuses on a few
simple model parameters such as failure rates and conditional
probability of downtime durations. The data analysis reveals
infrastructural vulnerability illustrated in Fig. 5(a), where local
failures, although they do not cascade within power distribu-
tion systems, have non-local impacts (i.e., affecting a large
number of customers) [9]. A scaling law further characterizes
systematically how local failures impact customers: A point of
scaling obeys the 20-80 rule [75], where the top 20% failures
affect 80% of the customers. Importantly, such infrastructural
vulnerability was not caused by Super Storm Sandy but
exists all along in daily operations. The hierarchical structure
of power distribution systems relates to the infrastructural
vulnerability, where the majority of the top failures were seen
to occur at the higher level of the hierarchy and thus affected

a large number of customers. Super Storm Sandy exacerbated
such infrastructural vulnerability by increasing the likelihood
of such failures. The large scale spanning the four service
regions confirms that the vulnerability is common across four
DSO service territories.

In contrast, recovery patterns on customer services are
different from those failures (Fig. 5(b)). A large number
(i.e., 89% of all) small failures that affected the bottom
34% customers aggregate to 56% of total down-time. This
illustrates challenges for services and requires further study
[9].

F. Challenges and Possible Directions

The first challenge is how to obtain sufficiently detailed
and accurate data. Research to date suggests the necessity
of collecting data with sufficient spatiotemporal granularity.
A temporal resolution should be comparable with that of
failure and outage occurrences, i.e., at seconds for outages,
and minutes for weather-induced failures. Desired spatial res-
olution corresponds to exact failure and restoration locations.
Additionally, large scale (and detailed) data are needed to
understand whether knowledge learned is widely applicable.
The best available data so far attain accurate spatial resolution,
a minute as the time scale, and across several multiple service
regions. Aggregated data have been used at the national level.
Data acquisition for power recoveries is also insufficient. This
is because repair crews have a high priority of restoring
services rather than data collection.

Advanced collection systems can help circumvent the data
paucity and inaccuracy. A next-generation collection system
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can potentially gather high resolution data, using widely-
deployed micro PMUs in power distribution systems, Ad-
vanced Metering Infrastructure and intelligent devices [12],
[15], [58], [59], [76]–[79]. Advanced detection algorithms can
then accurately detect and locate failures in real-time to replace
customer reporting [11].

The second challenge is for data on weather and other
exogenous variables to have a sufficiently fine spatiotemporal
scale. When weather data has a coarser spatial temporal
resolution compared to that from the grid [20], the pertinent
and detailed information on infrastructural failures may be
wasted [14], [20]. An open issue is how to obtain data with
sufficient resolution from diverse sources (i.e., the infrastruc-
ture, services and weather).

The third challenge is how to enable collaboration on data
analysis. Large-scale and detailed data from multiple DSOs
are severely lacking for research due to security and privacy
concerns [2]. An important issue is to actively involve DSOs
and policy makers to collaborate on data analytics. As shown
in the prior study [9], resilience is for everyone; thus it is
possible for DSOs, policy makers and academia to collaborate
on data analytics. Procedures that support security and privacy
will help enable and expand such collaboration.

Finally, data analytics, although showing promise of learn-
ing knowledge on generic vulnerabilities and predicting fail-
ures, are still at an early stage. The potential of data analytics
for resilience is yet to be fully explored when measurements
become more and more available.

V. RESILIENCE METRICS

Modeling and data analytics lay a foundation for resilience
metrics. Such metrics are expected to characterize system-
wide performance by including all factors from weather to
the infrastructure, services and community. Thus resilience
metrics need to be derived from models and measured from
data. While such metrics are yet to be fully developed, the
research to date shows the necessity for new metrics. Open
issues include what pertinent variables and how to derive the
performance metrics.

A. Invalidity of Standard Metrics

Are new metrics needed for resilience in the first place?
Two IEEE reliability standards for daily operations (SAIFI
and SAIDI) have been extended to severe weather events:
Storm Average Interruption Frequency Index (STAIFI) and
Storm Average Interruption Duration Index (STAIDI) [80],
[81]. Given a severe weather event, STAIFI and STAIDI are
defined as [81]

STAIFI = Total Number of Customers Interrupted
Total Number of Customers Served , (1)

STAIDI = Total Customer Storm Interruption Minutes
Total Number of Customers Served . (2)

Now consider a data set from a service region during Super
Storm Sandy in Upstate New York. Each data sample is on

a failure signified by an activated protective device with the
occurrence time, duration and number of customers affected.
There are 1334 failures from October 28, 2012 to October 31,
2012 (see [9] for details). The STAIFI and STAIDI values and
their standard deviations are obtained using Equations (1) and
(2) and shown in Fig. 6. The standard deviations are so large
for both indices that they allow a negative quantity when the
error bars are taken into consideration. Such large deviations
suggest that STAIFI and STAIDI exhibit too much uncertainty
to be valid for characterizing resilience. Therefore, extending,
by brute force, the reliability standards to resilience metrics is
not viable.

Having the large standard deviation is not a coincidence
but results naturally from non-stationary failure-recovery pro-
cesses. Non-stationary random processes can of course exhibit
time-varying mean functions [9], [14], [50]. This is clearly
shown by the time-varying version of STAIFI and STAIDI
from Equations (1) and (2) that are computed using samples
at one-hour intervals in Fig. 6. In contrast, the STAIFI and
STAIDI are static sample averages by definition, thus insuf-
ficient for representing non-stationary failure and recovery
processes.

B. Other Metrics and On-Going Studies

Estimated Time of Restoration (ETR) is another metric used
by industry [61]. ETR informs customers of the expected time
needed for restoring services after failures. While appealing
to users, ETR is difficult to estimate accurately because of
the uncertainty and dynamics from non-stationary failure and
recovery processes.

Fragility and its variations relate failures to weather vari-
ables [36], [73], [81], [82]. Such a relationship is necessary to
view resilience through potential threats, and thus is promising
to characterize a performance metric. A challenge is how to
include dynamics and system-wide performance in such a
resilience measure.

Dynamic metrics such as Quality and its variations (i.e.,
Robustness and Rapidity) characterize over time parts of a
system or the number of customers in normal operations [83]–
[85]. These metrics include dynamic evolution of resilience but
are based on pre-assumed functions of time.

Questions arising include, what factors should a resilience
metric include; and how to derive such a metric. In principle,
a resilience measure should include pertinent factors from
weather to failures, recoveries, impacts on customers, DSOs
and policy makers [86]. As resilience quantifies system-wide
performance, a fundamental approach is to derive such a
metric from bottom-up based on modeling, including weather
variables as potential causes, then failures, recoveries, and
impacts as consequences [16], [17].

Grounded by the spatiotemporal model, resilience metrics
in recent work are derived from the bottom-up to incorporate
parts of the factors: non-stationary failure-recovery processes
and impacts to customers [16], [17]. However, weather and
other exogenous variables are not included. A metric R(t) is
defined as

R(t) = 1− 1

C0
E
{
C(t; d)

}
, (3)
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Fig. 6: STAIFI and STAIDI from a service region at Upstate New York during Hurricane Sandy. The histograms show the
percentage of the affected customers versus (a) time, and (b) interruption duration. The error bars correspond to the standard
deviations.

where E
{
C(t; d)

}
is the expected cost/impact in time t [16],

[17]. d > 0 is a threshold on tolerable delays for recovery. C0

is a normalization factor. R(t) = 1 indicates the best resilience
and R(t) = 0 is non-resilience. 1 − R(t) is the percentage
of cost or impact, evolving with occurrences of failures and
recoveries.

The impact/cost has been derived using failure-recovery
processes developed through non-stationary queuing models
[16], [17]. Data from Hurricane Ike has been used to obtain
the value of the metric for an operational power distribution
grid [16], [17]. The failure-recovery-cost processes in Section
III [9] can potentially be used to evaluate the impact/cost
on customers. Thus resilience metrics depend critically on
modeling and data.

C. Challenges and Discussions
Despite the progress made to date, there are yet to be

performance measures that incorporate all three intrinsic char-
acteristics at the system level: Spatiotemporal non-stationary
failure-recovery; weather variables; service providers, cus-
tomers and the community overall. Static metrics such as
STAIFI and STAIDI characterize average behaviors of failures
and recoveries but not the spatiotemporal evolutions during a
severe weather event. The dynamic metrics recently developed
include failure-recovery processes and impacts on customers
but not weather. The following research questions relating to
resilience metrics arise.

(a) What resilience metrics can encompass cohesively the
three pertinent characteristics: Exogenous weather variables,
spatiotemporal non-stationary failures in the infrastructure, and
recoveries of services for customers?

(b) What approaches can lead to such resilience metrics
at the system-level, combining weather with failure-recovery-
impact processes?

(c) What (additional) data are needed to evaluate resilience
of the infrastructure and services?

Answers to those questions are expected to result from
both development of system-wide metrics and modeling that
incorporates the variables from bottom-up. Extensive data
analytics are also needed to obtain values of newly developed
metrics and to compare them with the standards.

VI. CONCLUSION

Quantifying resilience of the energy infrastructure and ser-
vices under severe weather is pertinent but understudied, as
shown by the prior works. An immediate need is to understand
how resilient the energy infrastructure and services really
are. Such understanding enables fundamental enhancement of
resilience beyond responding to severe weather. In this context,
unique characteristics emerge involving weather, failure and
recovery processes in the infrastructure and services, as well as
impacts on community. These characteristics are inter-related
and impact resilience together. Therefore, modeling, data
analytics and resilience metrics need to be studied cohesively
and at a large scale.

Models, when developed for separate aspects of the prob-
lem, are found incapable of characterizing these unique proper-
ties jointly. Formulating the problem from bottom-up through
spatiotemporal random processes has the potential to char-
acterize the interactions of failure-recovery-impact processes.
While the modeling framework extends to customers as parts
of community, roles of service providers and policy mak-
ers have been insufficiently studied. Relationships between
weather variables and failures have been studied in a separated
context. Models are yet to be developed to incorporate all
pertinent factors.

Data analytics, although at an early stage, have started to
show promise in learning knowledge about resilience. Data
collected by DSOs, when sufficiently detailed, have shown
potential in identifying generic vulnerabilities of the infrastruc-
ture and services. Large-scale and detailed data are particularly
needed from multiple service territories. This provides an
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opportunity for collaboration among DSOs, policy makers,
and researchers. After all, resilience is for the benefit of the
entire community. As big data is prospering in many fields of
engineering, the resilience problem presents a new application
area.

Modeling lays a foundation for deriving resilience met-
rics. Widely-used IEEE standards are mostly developed for
reliability in daily operations. Those metrics, when directly
extended to severe weather disruptions, are found to exhibit too
much uncertainty to be reliable. Resilience metrics developed
from bottom-up can incorporate non-stationary spatiotemporal
failure-recovery-impact processes across multiple spatiotem-
poral scales. However, such metrics do not yet include weather
variables. The metrics with weather variables are developed in
a separate context. An open issue is how to derive resilience
metrics, combining weather with the infrastructure and ser-
vices.

Full of open issues and challenges, the problem of resilience
provides a fertile ground for technical study. Modeling, data
analytics and metrics are still very much open for develop-
ment. Models and metrics are yet to include cohesively a
wide range of exogenous variables. More details from the
infrastructure such as power flows may be needed in the study
of resilience.

In a broader context, while the methods discussed here
focus on the power distribution infrastructure and services
under severe weather, the approaches for quantifying resilience
can be generalized to other dependent networks in a natural
environment.

ACKNOWLEDGMENT

The authors would like to thank Ling Wang for help with
our literature review on modeling, and Amir H. Afsharinejad,
Scott Backhaus, Russel Bent, Steve Church, Timothy Hayes,
John Love, Henry Mei, Debasis Mitra, Brian Nugent, Maria
Rodriguez, Thomas Spatz, Gregory Stella, Matthew Wallace,
Robert Wilcox, Michael Worden and Meng Yue for insightful
discussions.

REFERENCES

[1] P. Hoffman and W. Bryan, “Comparing the Impacts of the 2005 and 2008
Hurricanes on U.S. Energy Infrastructure,” Office of Electricity Delivery
and Energy Reliability of U.S. Department of Energy, OE/ISER Report,
February 2009.

[2] M. R. Bloomberg, “A Stronger, More Resilient New York,” City of New
York, PlaNYC Report, June 2013.

[3] J. A. Sathaye, L. L. Dalea, P. H. Larsena, G. A. Fittsa, K. Koyc,
S. M. Lewisd, and A. F. Lucena, “Estimating Impacts of Warming
Temperatures on California’s Electricity System,” Global Environmental
Change, vol. 23, no. 2, pp. 499–511, 2013.

[4] Executive Office of the President, “Economic Benefits of Increasing
Electric Grid Resilience to Weather Outages,” President’s Council of
Economic Advisers and the U.S. Department of Energy’s Office of
Electricity Delivery and Energy Reliability, Washington, DC, Technical
Report, August 2013.

[5] U.S. Department of Energyy, “U.S. Energy Sector Vulnerabilities to
Climate Change and Extreme Weather,” Tech. Rep. DOE-PI-0013, July
2013.

[6] H. Rudnick, “Natural Disasters Their Impact on Electricity Supply,”
IEEE Power and Energy Magazine, vol. 9, no. 2, pp. 22–26, March/April
2011, 2011.

[7] Committee on Increasing National Resilience to Hazards and Disasters,
Committee on Science, Engineering, and Public Policy, Disaster Re-
silience: A National Imperative. National Academies Press, 2012.

[8] Office of Governor Martin O’Malley, “Weathering The Storm: Report
of the Grid Resiliency Task Force,” Tech. Rep., September 2012.

[9] C. Ji, Y. Wei, H. Mei, J. Calzada, M. Carey, S. Church, T. Hayes,
B. Nugent, G. Stella, M. Wallace, J. White, and R. Wilcox, “Resilience
of Power Grid: Large-Scale Data Analysis across Multiple Service
Regions,” Nature Energy, vol. 1, no. 5, p. 16052, 2016.

[10] A. G. Phadke and J. S. Thorp, Synchronized Phasor Measurements and
Their Applications. Springer Science & Business Media, 2008.

[11] Y. Zhao, J. Chen, A. Goldsmith, and V. Poor, “Identification of Outages
in Power Systems with Uncertain States and Optimal Sensor Locations,”
IEEE Journal Selected Topics in Signal Processing, vol. 8, no. 6, pp.
1140–1153, 2014.

[12] B. P. Wiseman, Y. Chen, L. Xie, and P. R. Kumar, “PMU-Based
Reduced-Order Modeling of Power System Dynamics via Selective
Modal Analysis,” in 2016 IEEE/PES Transmission and Distribution
Conference and Exposition, May 2016, pp. 1–5.

[13] Workshop on Resilient Smart Grid Customers, Brookhaven National
Laboratory, Long Island, New York, April 3 - 4 2014. [Online].
Available: http://bnl.gov/rcsg2014/

[14] Y. Wei, C. Ji, F. Galvan, S. Couvillon, G. Orellana, and J. Momoh,
“Learning Geotemporal Nonstationary Failure and Recovery of Power
Distribution,” Neural Networks and Learning Systems, IEEE Transac-
tions on, vol. 25, no. 1, pp. 229–240, 2014.

[15] Z. Zhong, C. Xu, B. Billian, L. Zhang, S. Tsai, R. Conners, V. Cen-
teno, A. Phadke, and Y. Liu, “Power System Frequency Monitoring
Network (FNET) Implementation,” Power Systems, IEEE Transactions
on, vol. 20, no. 4, pp. 1914–1921, Nov 2005.

[16] Y. Wei, C. Ji, F. Galvan, S. Couvillon, and G. Orellana, “Dynamic Mod-
eling and Resilience for Power Distribution,” in IEEE SmartGridComm
2013 Symposium - Cyber-Physical Wide-Area Monitoring,Protection &
Control (Cyber-Physical WAMPAC), Vancouver, Canada, October 2013,
pp. 85–90.

[17] Y. Wei, C. Ji, F. Galvan, S. Couvillon, G. Orellana, and J. Momoh,
“Non-Stationary Random Process for Large-Scale Failure-Recovery and
Resilience of Power Distribution,” Applied Mathematics, vol. 7, no. 3,
pp. 233–249, 2016.

[18] R. E. Brown, Electric Power Distribution Reliability, 2nd ed. CRC
Press, 2008.

[19] P. Hoffman, W. Bryan, A. Lippert, M. Farber-DeAnda, M. Cleaver,
C. Lewandowski, and K. Young, “Hardening and Resiliency: U.S.
Energy Industry Response to Recent Hurricane Seasons,” Office of
Electricity Delivery and Energy Reliability, U.S. Department of Energy,
OE/ISER Final Report, August 2010.

[20] H. Liu, R. A. Davidson, D. V. Rosowsky, and J. R. Stedinger, “Negative
Binomial Regression of Electric Power Outages in Hurricanes,” Journal
of Infrastructure Systems, vol. 11, no. 4, pp. 258–267, 2005.

[21] Edison Electric Institute, “Before and After the Storm: A Compilation
of Recent Studies, Programs, and Policies Related to Storm Hardening
and Resiliency,” Washington, D.C., Tech. Rep., January 2013.

[22] M. Amin and J. Stringer, “The Electric Power Grid: Today and Tomor-
row,” MRS Bulletin, vol. 33, no. 4, pp. 399–407, Apr. 2008.

[23] Office of Electric, Gas, and Water, “2011 Electric Reliability Perfor-
mance Report,” Department of Public Service of State of New York,
Technical Report, June 2012.

[24] “IEEE Draft Guide for Electric Power Distribution Reliability Indices,”
IEEE P1366/D6, November 2011, pp. 1–40, 2011.

[25] M. Angalakudati, J. Calzada, V. Farias, J. Gonynor, M. Monsch,
A. Papush, G. Perakis, N. Raad, J. Schein, C. Warren, S. Whipple,
and J. Williams, “Improving Emergency Storm Planning Using Machine
Learning,” in T& D Conference and Exposition, 2014 IEEE PES, April
2014, pp. 1–6.

[26] R. Nateghi, S. D. Guikema, and S. M. Quiring, “Comparison and
Validation of Statistical Methods for Predicting Power Outage Durations
in the Event of Hurricanes,” Risk Analysis, vol. 31, no. 12, pp. 1897–
1906, December 2011.

[27] C. Rudin, D. Waltz, R. Anderson, A. Boulanger, A. Salleb-Aouissi,
M. Chow, H. Dutta, P. Gross, B. Huang, and S. Ierome, “Machine
Learning for the New York City Power Grid,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 2, pp. 328–345, Feb. 2012.

[28] S. D. Guikema, S.-R. Han, and S. Quiring, “Estimating Power Out-
ages during Hurricanes Using Semi-Parametric Statistical Methods,” in
Structures Congress, 2008, pp. 1–9.

http://bnl.gov/rcsg2014/


11

[29] D. A. Reed, K. C. Kapur, and R. D. Christie, “Methodology for
Assessing the Resilience of Networked Infrastructure,” Systems Journal,
IEEE, vol. 3, no. 2, pp. 174–180, 2009.

[30] D. A. Reed, M. Powell, and J. Westerman, “Energy Supply System
Performance for Hurricane Katrina,” Journal of Energy Engineering,
vol. 136, no. 4, p. 95102, 2010.

[31] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
Wiley, November 2000.

[32] R. A. Davidson, H. Liu, I. K. Sarpong, P. Sparks, and D. V. Rosowsky,
“Electric Power Distribution System Performance in Carolina Hurri-
canes,” Natural Hazards Review, vol. 4, no. 1, pp. 36–45, 2003.

[33] H. Liu, R. A. Davidson, and T. V. Apanasovich, “Spatial Generalized
Linear Mixed Models of Electric Power Outages Due to Hurricanes and
Ice Storms,” Reliability Engineering & System Safety, vol. 93, no. 6, pp.
897 – 912, 2008.

[34] S.-R. Han, S. D. Guikema, S. M. Quiring, K.-H. Lee, D. Rosowsky, and
R. A. Davidson, “Estimating the Spatial Distribution of Power Outages
During Hurricanes in the Gulf Coast Region,” Reliability Engineering
& System Safety, vol. 94, no. 2, pp. 199 – 210, 2009.

[35] Y. J. Park, “Reliability Assessment of the Florida Electric Power Net-
work System Against Hurricanes,” PHD Thesis, University of Florida,
2012.

[36] J. Winkler, L. Duenas-Osorio, R. Stein, and D. Subramanian, “Perfor-
mance Assessment of Topologically Diverse Power Systems Subjected
to Hurricane Events,” Reliability Engineering & System Safety, vol. 95,
no. 4, pp. 323–336, 2010.

[37] B. J. Cerruti and S. G. Decker, “A Statistical Forecast Model of
Weather-Related Damage to a Major Electric Utility,” Journal of Applied
Meteorology and Climatology, vol. 51, no. 2, pp. 191–204, February
2012.

[38] H. Liu, R. Davidson, and T. Apanasovich, “Statistical Forecasting of
Electric Power Restoration Times in Hurricanes and Ice Storms,” Power
Systems, IEEE Transactions on, vol. 22, no. 4, pp. 2270–2279, 2007.

[39] R. G. Gallager, Stochastic Processes: Theory for Applications. Cam-
bridge University Press, 2014.

[40] B. Hajek, Random Processes for Engineers, 1st ed. Cambridge
University Press, March 2015.

[41] T. Kailath and V. Poor, “Detection of Stochastic Processes,” IEEE
Transactions on Information Theory, vol. 44, no. 6, pp. 2230–2231,
Oct 1998.

[42] I. Dobson, B. A. Carreras, V. E. Lynch, and D. E. Newman, “Complex
Systems Analysis of Series of Blackouts: Cascading Failure, Critical
Points, and Self-Organization,” Chaos: An Interdisciplinary Journal of
Nonlinear Science, vol. 17, no. 2, p. 026103, 2007.

[43] D. Bienstock, Electrical Transmission System Cascades and Vulnerabil-
ity: An Operations Research Viewpoint. Philadelphia, PA: Society for
Industrial and Applied Mathematics, 2015.

[44] I. Dobson, B. A. Carreras, and D. E. Newman, “A Branching Process
Approximation to Cascading Load-Dependent System Failure,” in 37th
Hawaii International Conference on System Sciences, Hawaii, Jan 2004.

[45] Z. Wang, A. Scaglione, and R. J. Thomas, “A Markov-Transition Model
for Cascading Failures in Power Grids,” in System Science (HICSS),
2012 45th Hawaii International Conference on, 2012, pp. 2115–2124.

[46] I. A. Hiskens, “Power System Modeling for Inverse Problems,” Circuits
and Systems I: Regular Papers, IEEE Transactions on, vol. 51, no. 3,
pp. 539–551, 2004.

[47] A. Bernstein, D. Bienstock, D. Hay, M. Uzunoglu, and G. Zuss-
man, “Power Grid Vulnerability to Geographically Correlated Failures
Analysis and Control Implications,” in IEEE INFOCOM 2014-IEEE
Conference on Computer Communications, May 2014, pp. 2634–2642.

[48] P. Hines, J. Apt, and S. Talukdar, “Large Blackouts in North America:
Historical Trends and Policy Implications,” Energy Policy, vol. 37,
no. 12, pp. 5249–5259, December 2009.

[49] M. Ilic, L. Xie, and Q. Liu, Engineering IT-Enabled Sustainable
Electricity Services: The Tale of Two Low-Cost Green Azores Islands,
2013th ed., ser. Power Electronics and Power Systems. Springer, June
2013, vol. 30.

[50] D. Bertsimas and G. Mourtzinou, “Transient Laws of Non-Stationary
Queueing Systems and Their Applications,” Queueing Syst. Theory
Appl., vol. 25, no. 1/4, pp. 115–155, Jan. 1997.

[51] E. Yamangil, R. Bent, and S. Backhaus, “Resilient Upgrade of Electrical
Distribution Grids,” in Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015.

[52] J. Guckenheimer and J. M. Ottino, “Foundations for Complex Systems
Research in the Physical Sciences and Engineering,” National Science
Foundation, NSF Workshop Report, September 2008.

[53] C. D. Brummitt, P. D. H. Hines, I. Dobson, C. Moore, and R. M.
D’Souza, “Transdisciplinary Electric Power Grid Science,” Proceedings
of the National Academy of Sciences, vol. 110, no. 30, p. 12159, 2013.

[54] L. Gan and S. Low, “An Online Gradient Algorithm for Optimal
Power Flow on Radial Networks,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 3, pp. 625–638, March 2016.

[55] J. Lavaei, D. Tse, and B. Zhang, “Geometry of power flows and
optimization in distribution networks,” IEEE Transactions on Power
Systems, vol. 29, no. 2, pp. 572–583, 2014.

[56] H. Zhu and G. B. Giannakis, “Sparse Overcomplete Representations for
Efficient Identification of Power Line Outages,” IEEE Transactions on
Power Systems, vol. 27, no. 4, pp. 2215–2224, Nov 2012.

[57] T. Overbye, P. Sauer, C. DeMarco, B. Lesieutre, and M. Venkatasubra-
manian, “Using PMU Data to Increase Situational Awareness,” Power
Systems Engineering Research Center, Final Project Report PSERC
Publication 10-16, September 2010.

[58] A. von Meier, D. E. Culler, A. McEachern, and R. Arghandeh, “Micro-
Synchrophasors for Distribution Systems,” in Innovative Smart Grid
Technologies Conference (ISGT), 2014 IEEE PES, Feb 2014, pp. 1–5.

[59] H. Tram, “Technical and Operation Considerations in Using Smart
Metering for Outage Management,” in 2008 IEEE/PES Transmission
and Distribution Conference and Exposition, April 2008, pp. 1–3.

[60] G. Madingou, M. Zarghami, and M. Vaziri, “Fault Detection and
Isolation in a DC Microgrid Using a Central Processing Unit,” in
Innovative Smart Grid Technologies Conference (ISGT), 2015 IEEE
Power Energy Society, Feb 2015, pp. 1–5.

[61] Consolidated Edison Co. of New York and Orange and Rockland
Utilities, “Post Sandy Enhancement Plan,” Tech. Rep., June 20 2013.

[62] National Center for Environmental Information, “Climate
Monitoring,” released September 8, 2016. [Online]. Available:
http://www.ncdc.noaa.gov/climate-monitoring/

[63] E. Berger, “Meet Deep Thunder: IBM’s Next Step in
the Automation of Forecasting,” 2016. [Online]. Avail-
able: http://arstechnica.com/science/2016/06/meet-deep-thunder-ibms-
next-step-in-the-automation-of-forecasting/

[64] J. Foerster, “Hyper-Local Weather Data Provides Accuracy to Central
Hudson Gas & Electric,” Power Engineering, vol. 120, no. 4, April 2016.

[65] San Diego Gas & Electric. (2016) SDG&E Weather Awareness System.
[Online]. Available: http://www.sdgeweather.com/

[66] Federal Emergency Management Agency (FEMA), “FEMA Flood Map
Service Center,” 2016. [Online]. Available: https://msc.fema.gov/portal

[67] N. Lin, K. Emanuel, M. Oppenheimer, and E. Vanmarcke, “Physically
Based Assessment of Hurricane Surge Threat Under Climate Change,”
Nature Clim. Change, vol. 2, no. 6, pp. 462–267, 2012.

[68] F. Zhang, Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, “Cloud-
resolving Hurricane Initialization and Prediction through Assimilation of
Doppler Radar Observations with an Ensemble Kalman Filter: Humberto
(2007),” Monthly Weather Review, vol. 137, pp. 2105–2125, July 2009.

[69] Connecticut Light & Power, “Outage Map.” [Online]. Available:
http://www.cl-p.com/outage/outagemap.aspx

[70] Office of Electric, Gas, and Water, “2012 Electric Reliability Perfor-
mance Report,” Department of Public Service of State of New York,
Technical Report, June 2013.

[71] S. Ertekin, C. Rudin, and T. H. McCormick, “Reactive Point Processes:
A New Approach to Predicting Power Failures in Underground Electrical
Systems,” The Annals of Applied Statistics, vol. 9, no. 1, pp. 122–144,
2015.

[72] R. D. Christie, “Statistical Classification of Major Event Days in
Distribution System Reliability,” Power Delivery, IEEE Transactions on,
vol. 18, no. 4, pp. 1336–1341, Oct 2003.

[73] T. D. O’Rourke, S.-S. Jeon, R. T. Eguchi, and C. K. Huyck, “Advanced
GIS for Loss Estimation and Rapid Post-Earthquake Assessment of
Building Damage,” in MCEER Research Progress and Accomplishments,
2001.

[74] P. H. Larsen, K. H. LaCommare, J. H. Eto, and J. L. Sweeney, “Assessing
Changes in the Reliability of the U.S. Electric Power System,” Lawrence
Berkeley National Laboratory, Report LBNL188741, August 2015.

[75] M. E. J. Newman, “Power Laws, Pareto Distributions and Zipf’s Law,”
Contemporary Physics, vol. 46, pp. 323–351, December 2005.

[76] S. Karnouskos, O. Terzidis, and P. Karnouskos, “An Advanced Metering
Infrastructure for Future Energy Networks,” in New Technologies, Mo-
bility and Security, H. Labiod and M. Badra, Eds. Springer Netherlands,
2007, pp. 597–606.

[77] M. Uddin, A. Kuh, A. Kavcic, T. Tanaka, and D. P. Mandic, “Grid
Monitoring: Bounds on Performances of Sensor Placement Algorithms,”
in ENERGY 2013, The Third International Conference on Smart Grids,

http://www.ncdc.noaa.gov/climate-monitoring/
http://arstechnica.com/science/2016/06/meet-deep-thunder-ibms-next-step-in-the-automation-of-forecasting/
http://arstechnica.com/science/2016/06/meet-deep-thunder-ibms-next-step-in-the-automation-of-forecasting/
http://www.sdgeweather.com/
https://msc.fema.gov/portal
http://www.cl-p.com/outage/outagemap.aspx


12

Green Communications and IT Energy-aware Technologies, Lisbon,
Portugal, March 2013, pp. 89–95.

[78] S. Meliopoulos, V. Madani, D. Novosel, and G. Cokkinides, “Syn-
chrophasor Measurement Accuracy Characterization,” North American
Synchrophasor Initiative Performance & Standards Task Team (CERTS),
Tech. Rep., 2010.

[79] J. Peppanen, M. J. Reno, M. Thakkar, S. Grijalva, and R. G. Harley,
“Leveraging AMI Data for Distribution System Model Calibration and
Situational Awareness,” IEEE Transactions on Smart Grid, vol. 6, no. 4,
pp. 2050–2059, July 2015.

[80] R. E. Brown, S. Gupta, R. D. Christie, S. S. Venkata, and R. Fletcher,
“Distribution System Reliability Assessment: Momentary Interruptions
and Storms,” Power Delivery, IEEE Transactions on, vol. 12, no. 4, pp.
1569–1575, 1997.

[81] D. A. Reed, “Electric Utility Distribution Analysis for Extreme Winds,”
Journal of Wind Engineering and Industrial Aerodynamics, vol. 96,
no. 1, pp. 123 – 140, 2008.

[82] Q. Yan, T. Dokic, and M. Kezunovic, “Predicting Impact of Weather
Caused Blackouts on Electricity Customers Based on Risk Assessment,”
in IEEE Power and Energy Society General Meeting, Boston, MA, July
2016.

[83] M. Bruneau, S. E. Chang, R. T. Eguchi, G. C. Lee, T. D. O’Rourke,
A. M. Reinhorn, M. Shinozuka, K. Tierney, W. A. Wallace, and D. von
Winterfeldt, “A Framework to Quantitatively Assess and Enhance the
Seismic Resilience of Communities,” Earthquake Spectra, vol. 19, no. 4,
pp. 733–752, November 2003.

[84] S. E. Chang and M. Shinozuka, “Measuring Improvements in the
Disaster Resilience of Communities,” Earthquake Spectra, vol. 20, no. 3,
pp. 739–755, 2004.

[85] R. Arghandeh, A. von Meier, L. Mehrmanesh, and L. Mili, “On the
Definition of Cyber-Physical Resilience in Power Systems,” Renewable
and Sustainable Energy Reviews, vol. 58, pp. 1060–1069, May 2016.

[86] J. P. Watson, R. Guttromson, C. Silva-Monroy, R. Jeffers, K. Jones,
J. Ellison, C. Rath, J. Gearhart, D. Jones, T. Corbet, C. Hanley, and
L. T. Walker, “Conceptual Framework for Developing Resilience Metrics
for the Electricity, Oil, and Gas Sectors in the United States,” Sandia
National Laboratories, Sandia Report SAND2014-18019, September
2015.


	I Introduction
	II Problem Description and Fundamental Challenges
	II-A Infrastructure
	II-B Services
	II-C Multiple Spatiotemporal Scales
	II-D Challenges and Open Issues

	III Modeling
	III-A Static Models in Machine Learning
	III-B Spatiotemporal Random Processes
	III-B1 Dynamic Models for Cascading Failures
	III-B2 Non-Stationary Failure-Recovery-Impact Processes

	III-C Open Issues and Challenges

	IV Data Analytics
	IV-A Data
	IV-A1 Data on Failure and Recovery

	IV-B Data on Weather Variables
	IV-C Analytics
	IV-C1 Outage Management
	IV-C2 Failure Prediction in One Service Region

	IV-D Regression Study at National Scale
	IV-E Infrastructure and Service Resilience in Multiple Regions
	IV-F Challenges and Possible Directions

	V Resilience Metrics
	V-A Invalidity of Standard Metrics
	V-B Other Metrics and On-Going Studies
	V-C  Challenges and Discussions

	VI Conclusion
	References

