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Abstract24

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change highlights that 25

climate change and ocean acidification are challenging the sustainable management of living 26

marine resources (LMRs). Formal and systematic treatment of uncertainty in existing LMR 27

projections, however, is lacking. We synthesize knowledge on how to address different sources 28

of uncertainty by drawing from climate model inter-comparison efforts. We suggest an ensemble 29

of available models and projections, informed by observations, as a starting point to quantify 30

uncertainties.  Such an ensemble must be paired with analysis of the dominant uncertainties over 31

different spatial scales, time horizons and metrics. We use two examples, (1) global and regional 32

projections of Sea Surface Temperature and (2) projection of changes in potential catch of 33

sablefish (Anoplopoma fimbria) in the 21st century, to illustrate this ensemble model approach to 34

explore different types of uncertainties. Further effort should prioritize understanding dominant, 35

under-sampled dimensions of uncertainty, as well as the strategic collection of observations to 36

quantify, and ultimately reduce, uncertainties. Our proposed framework will improve our 37

understanding of future changes in LMR and the resulting risk of impacts to ecosystems and the 38

societies under changing ocean conditions.39

40

Living marine resources projections under climate change41

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) 42

highlights that changes in ocean temperature, oxygen, carbonate system, and other ocean43

properties are contributing to the challenges of sustainable ocean management (IPCC, 2014). The 44

importance of a comprehensive assessment of the impact of climate change on the ocean is 45

highlighted by two new ocean-specific chapters within the IPCC AR5 Working Group II (WGII) 46
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on impacts, adaptation and vulnerability (IPCC, 2014). In relation to living marine resources 47

(LMR), the IPCC Report concludes with medium to high confidence that marine species have 48

been shifting their ranges, seasonal activities and periodicities, migration patterns, abundances49

and inter-/intra- specific interactions that result in changes in trophodynamics in response to 50

changing ocean conditions (Pörtner et al., 2014). These changes are projected to lead to altered 51

patterns of ocean productivity, biodiversity and fisheries catch potential in the 21st century52

(Kirby and Beaugrand, 2009). 53

One of the advances in assessing the impacts of climate change on LMR in the IPCC AR5 WGII54

over previous assessment reports is the wider availability and use of ecosystem model 55

projections. These quantitative model projections include shifts in net primary productivity, the 56

distribution of exploited populations and changes in potential fisheries production and ecosystem 57

structure at local and global scales (Pörtner et al., 2014). Projections have been generated from 58

modelling approaches that range from global coupled atmosphere-ocean-biogeochemistry earth 59

system models (e.g., Bopp et al., 2013), to species distribution models (e.g., Cheung et al., 60

2009), single-species population dynamic models (e.g., Lehodey et al., 2010), and whole 61

ecosystem models (e.g., Ainsworth et al., 2011; Griffith et al., 2011).  The scope, objectives, 62

assumptions, scales (spatial and temporal) and degree of validation with empirical data vary 63

widely across these models, and approaches range from highly empirical to highly mechanistic 64

(Barange et al., 2010; Fulton, 2010; Plagányi et al., 2011; Stock et al., 2011). 65

Statements of confidence concerning the impacts of climate change on LMRs within the IPCC-66

AR5 WGII report were based on a qualitative assessment of observational evidence and 67

individually published projections encompassing the diversity of LMR models described above. 68

While this is a necessary starting point, more quantitative confidence estimates for projections 69



4

can increase their utility for policy formulation and evaluation. There is therefore a need for a 70

quantitative framework for systematically exploring uncertainties in LMR projections. Such a 71

framework would also help identify where investment in further theoretical development,72

observational measurements, and model development are needed, ultimately improving the 73

reliability of climate-LMR projections (Cheung et al., 2013a; Brander, 2015). Systematic 74

exploration of uncertainties have been undertaken for climate and oceanographic projections 75

(e.g., the Atmospheric Model Intercomparison Project (Gates, 1992) and the Coupled Model 76

Intercomparison Project (Meehl et al., 2000; Taylor et al., 2011) and for impact assessments of 77

selected sectors (e.g., Agricultural Model Intercomparison and Improvement Project 78

(Rosenzweig et al., 2013)).  Exploration of uncertainties are also an important component in 79

traditional fisheries resource assessment, while the increasing demand for ecosystem-based 80

fisheries management raises additional challenges to systematically understanding projection 81

uncertainties (e.g., Hill et al., 2007; Link et al., 2012). More recently, initiatives on comparing 82

fisheries models (e.g., Fisheries Model Intercomparison Project, ICES-PICES Strategic Initiative 83

on Climate Change Impacts on Marine Ecosystems) have also been started. 84

While challenges in quantifying uncertainty in climate-LMR projections for global change 85

assessment parallel those considered in modelling other complex natural systems such as 86

climate, there are additional sets of complexity that are specific to LMRs. Climate-LMR 87

projections require linking physical, biological and human sub-systems across different temporal 88

and spatial scales. Such inter-linkages lead to additional uncertainties that originate from 89

particular systems or scales (Planque, 2015). In addition, the behavior of some components of 90

LMR systems is difficult to predict, such as the responses of fishing activities to changes in 91

climate and fisheries resources). Moreover, many LMR models require large number of input 92
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parameters relative to the available observational data that are available to calibrate and validate 93

the model outputs. Techniques for assessing model uncertainties that are commonly applied to 94

conventional fisheries assessment (e.g., Bayesian estimates of process and observation errors) are 95

thus difficult to apply to climate-LMR projections.96

This paper aims to synthesize our knowledge of the uncertainties of LMR projections under 97

climate change and propose a framework to systematically assess such uncertainty. Our paper98

complements that of Payne et al. (this volume), which reviews existing approaches in addressing 99

uncertainties in LMR. Here, we focus on the following: firstly, we characterize different types of 100

uncertainty in climate and LMR projections, highlighting the challenges of the large uncertainty 101

space; secondly, drawing from the experience of physical climate model inter-comparisons, we 102

explore how multi-model comparison and ensemble frameworks can be used to systematically 103

identify and quantify uncertainties in LMR projections.  Through an example, we highlight the 104

relative roles of uncertainty linked to climate variability, climate model uncertainty and future 105

emissions scenarios as a function of time horizon and spatial scale.  This is followed by a 106

discussion of the role of observations in refining uncertainty estimates. Finally, we discuss how 107

outcomes from this model-assessment framework can be used to evaluate the risk of climate 108

change to LMRs and inform the design of management and conservation measures to reduce 109

such risk.110

111

Sources of uncertainty112

Climate-LMR models that estimate the impacts of climate change generally have three model113

components that are linked to describe the responses of marine resources, fisheries, and human 114
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society to climate systems. These components generally include an atmosphere-ocean-115

biogeochemical and lower-trophic level models, a fish or upper-trophic level model (Holt et al., 116

2014), and a model for the extraction and availability of ecosystem services from marine 117

ecosystems (see Fulton, 2010; Plagányi et al., 2011; Stock et al., 2011). The three components 118

are either related “off-line”, where each model component is run separately with the outputs 119

from one component used as inputs for another (Cheung et al., 2011; Blanchard et al., 2012; 120

Christensen et al., 2015), or dynamically (i.e., "on-line") with the models incorporating fully 121

interactive processes and, in some cases, feedbacks among the three components (Fulton, 2010; 122

Lefort et al., 2015). 123

Research on physical climate projections, biodiversity and ecological modelling has recognized 124

numerous topologies of uncertainties (Regan et al., 2002; Link et al., 2012). Modelling of 125

physical and biogeochemical properties of atmospheric and ocean systems in climate change 126

assessments have commonly categorized uncertainties, for any time horizon and spatial scale,127

into three components: (1) internal variability, (2) model uncertainty, and (3) scenario 128

uncertainty (Table 1) (Hawkins and Sutton, 2009). In our discussion of the uncertainties 129

associated with climate-LMR projections, we adopt this terminology to leverage the knowledge 130

and experience of the climate modelling communities. 131

Internal variability is caused by natural physical and ecological processes that are intrinsic to 132

climate and ecological systems. It arises in both temporal and spatial dimensions, even in the 133

absence of any external (e.g., anthropogenic) perturbations and includes phenomena such as the134

El Niño Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the Atlantic 135

Multidecadal Oscillation (AMO), variations in gyre boundaries not correlated to major climate 136

models, and predator-prey cycles etc. (Day, 1982). Century-scale climate change projections 137
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developed in association with the IPCC realistically resolve many modes of internal climate 138

variability, but these simulations are not designed to simulate a specific observed event or predict 139

a future event, and will not capture all aspects of spatial and temporal scales of these modes 140

(Guilyardi et al., 2009). For ecological systems, natural fluctuations that are driven by 141

environmental variability and dynamics of ecological interactions are often difficult to predict 142

(Beckage et al., 2011; Deser et al., 2012), causing systematic or seemingly random variations in 143

ecological states that may persist for a decade or more (Deser, 2013; Stocker et al., 2014).144

Different initial conditions of the climate or LMR models, representing different realizations of 145

the climatic and ecological systems, will generate different patterns of internal variability. Thus, 146

one method to explore internal variability is to analyze simulation results generated from 147

ensemble members of climate and ecological models that have different initial conditions.148

Model uncertainty is comprised of two sub-categories: parameter and structural uncertainty 149

(Tebaldi and Knutti, 2007). Parameter uncertainty relates to the specific parameter values used in 150

the formulae that influence the behavior of a model (Tebaldi and Knutti, 2007; Knutti et al., 151

2010). For parameters that are estimated from observations, parameter uncertainty stems from 152

our limited ability to precisely measure or estimate specific physical or ecological processes and 153

quantities (Link et al., 2012), as well as from the inherent variability in certain processes (e.g. 154

growth rates that vary across individuals) that are not resolved within the models.155

Structural uncertainty relates to the spatial, temporal, and mathematical resolution employed by a156

model and the types of processes that are represented. Structural uncertainty includes the 157

function forms of equations used to describe mechanistic processes and the types of interactions 158

assumed to influence climate-LMR processes.  Such uncertainties cannot be explored via 159

parameter perturbations.  For example, explicit trophic relationships that are not described by 160
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size-structured interactions are not represented in size-based trophodynamic models (e.g., 161

Blanchard et al., 2012; Watson et al., 2014), while such relationships may be included in162

functional-group type food web models (e.g., Christensen and Walters, 2004).163

Scenario uncertainty relates to the many possible futures comprising different socio-economic 164

policies and technological developments likely occurring over the course of a model projection 165

(e.g., Moss et al., 2010; Nakicenovic et al., 2014). Climate-LMR model drivers include the 166

spatial and temporal changes in greenhouse gas and aerosol concentrations, fishing effort, and 167

other human social-economic activities. Scenario uncertainty is not completely independent of 168

internal variability in the climate-LMR system, as future decisions on the utilization and 169

conservation of resources are sensitive to natural variation in the availability and distribution of 170

LMR (e.g., the fishing quota decided on for the next management cycle are dependent on the 171

productivity and abundance of the resources, as well as on how neighboring countries or regions 172

are managing their resources). 173

The full range of possible future states for a given LMR reflects contributions from all of the 174

sources of uncertainty outlined above, with potential cascades of uncertainties interacting and 175

accumulating over components of the climate-LMR models (Figure 1). For any particular 176

scenario, LMR models that differ in their structure and parameter values will simulate a range of 177

future changes in ocean biogeochemistry, fish and fisheries. Additionally, an individual model 178

with a fixed set of parameters will display variability in projections as a result of the internal 179

variability associated with natural fluctuations of the climatic or ecological systems. 180

Uncertainties that originate from different climate-LMR model sub-components may be additive 181

or multiplicative. Thus, the final scope of uncertainties of LMR projections is expected to be 182

different from the uncertainty scope of each model sub-component.183
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[Figure 1.   ]

184

The width of the envelope of uncertainty is dependent on the nature of interactions between 185

linked models; the types of interactions include linearity of the linkages, existence of threshold 186

responses, and positive/negative feedbacks (Peters and Herrick, 2004). When the processes 187

linking two or more models are non-linear, uncertainties may be dampened or magnified 188

through model linkages, for example, through attenuation or amplification of changes in higher 189

trophic level production in marine ecosystems driven by climate change (Chust et al., 2014; 190

Stock et al., 2014a). Feedbacks in social-ecological systems can be positive or negative, and 191

uncertainties propagated in models that are linked dynamically with feedbacks resulting in 192

emergent dynamics are difficult to predict. 193

194

Here, we draw experience from the large body of research on exploring uncertainties of climate 195

projections to propose that the envelope of uncertainties of climate-LMR projection can be 196

explored by systematically quantifying the three categories of uncertainty that we discussed 197

above: internal variability, model uncertainty and scenario uncertainty. Review on specific 198

techniques to explore each source of uncertainties can be found in Payne et al. (this volume). 199

200

Experiences from quantifying uncertainty of climate projections201

For ocean-atmospheric general circulation models and biogeochemical models, the Coupled 202

Model Intercomparison Project Phase 5 (CMIP5) multi-model database allows assessment of203

uncertainty in climate change projections across the dimensions illustrated in Fig. 1. Climate204



10

change projections were produced from more than 30 models, developed by different modelling205

groups with a standard set of scenario experiments (Flato et al., 2013). The CMIP5 database 206

allows some exploration of uncertainty, but comprehensive categorization of uncertainty into 207

structural uncertainty, parameter uncertainty, and internal variability is not possible. The main 208

challenges include the limited number of modeling groups that were able to contribute ensembles 209

of runs, some models are fully independent of one another, and a lack of exploration of 210

parameter uncertainty. Ideally, the ensemble should consist of a random sample across the 211

uncertainty components in Fig. 1. For complex inter-linked models such as climate or climate-212

LMR models, exploring their full scope of uncertainty would require substantial computational213

time and other resources. Thus, a systematic approach is needed to efficiently explore the 214

envelope of uncertainties.215

To further explore the uncertainty contributed by internal variability for each model, ensembles216

of climate simulations have been run under identical forcing, but with each simulation initialized 217

with slightly different, but equally plausible, conditions (Rodgers et al., 2015). The chaotic 218

nature of climate variability quickly produces different climate trajectories in each ensemble 219

member (Wittenberg et al., 2014). By considering each of the trajectories as a plausible outcome, 220

the ensemble can be used to isolate that part of projection uncertainty due to internal variability221

(Frölicher et al., 2009; Deser et al., 2012).222

Hawkins and Sutton (Hawkins and Sutton, 2009) analyze CMIP3 (i.e., the precursor of CMIP5)223

projections to explore the contribution of internal variability and model and scenario 224

uncertainties to climate projections at global and regional scales. They showed that the dominant 225

sources of uncertainty in surface air temperature projections vary with spatial scale and time 226

horizon, noting the importance of model uncertainty and internal variation for mid-21st century 227
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regional projections.  To further illustrate the application of the framework used by Hawkins and 228

Sutton (2009) in the oceanic realm, we analyzed the projection uncertainties for sea surface 229

temperature by combining CMIP5 projections and a large ensemble projections from the Earth 230

System Model of the Geophysical Fluid Dynamic Laboratory (GFDL ESM2M model; Dunne et 231

al., 2012; Dunne et al., 2013; Rodgers et al., 2015). 232

233

We used the projection of SST as an example of exploring the sensitivity of model projections to 234

different sources of uncertainties. Scenario uncertainty is estimated to be the difference between 235

the multi-model mean of projections from 15 CMIP5 models of two 21st century emissions 236

scenarios: the low-emissions scenario RCP2.6 with an increased radiative forcing that peaks at 237

approximately 3 W/m2 before 2100 and then declines to 2.6 W/m2 by 2100, and the high-238

emissions scenario RCP8.5, with an increased radiative forcing of >8.5 W/m2 by year 2100 239

(Meinshausen et al., 2011). Model uncertainty is estimated as the standard deviation of changes 240

in SST (10-year running mean) from each model projections. The internal variability is estimated 241

as the standard deviation of projections from 30 ensemble member simulations of GFDL 242

ESM2M (Rodgers et al., 2015).243

244

[Figure 2.]245

Globally, the analysis shows that model uncertainty is dominant in the medium term SST 246

projection (2030 - 2050), while the long-term (2080 - 2100) projection is dominated by scenario 247

uncertainty (Fig. 2). The large model uncertainty over the medium term reflects the large 248

variations in regional scale biases in the models. Although the importance of internal variability 249
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is second to model uncertainty in near term projection (2010 – 2030), its relative importance 250

decreases rapidly further into the future.  251

The relative importance of different uncertainty sources varies between different regions. In the 252

Northeast Atlantic (North Sea Large Marine Ecosystem, (Pauly et al., 2008)), the importance of 253

scenario uncertainty is smaller compared to those projections at the global scale, while model254

uncertainties and internal variability become the dominant uncertainty sources. The internal 255

variability in the Northeast Atlantic may represent known properties of interannual and 256

multidecadal climate and oceanographic variability such as North Atlantic Oscillation (NAO) 257

and Atlantic Multidecadal Oscillation (AMO) (Viles and Goudie, 2003; Beaugrand and Kirby, 258

2010). In the Northeast Pacific (Gulf of Alaska Large Marine Ecosystem), internal variability 259

becomes a dominant source of uncertainty representing properties, such as ENSO and Pacific 260

Decadal Oscillation (PDO). In both basin scale examples, the internal variability of SST is a 261

bigger contribution to projection uncertainty than in the global scale projection (Fig. 3).262

Moreover, in the short to medium term, the projected increase in SST is not sensitive to different 263

emission scenarios, both globally and in the NE Atlantic and NE Pacific (Fig. 3). However, long-264

term warming is much more sensitive to different emission scenarios, particularly at the global 265

scale. We anticipate the increased importance of internal variability observed at the basin scale 266

may be even more prominent when examining even smaller spatial scales.267

[Figure 3.]268

In addition to highlighting the relative contribution of different sources of uncertainty, this 269

exploration of uncertainty suggests strategies to prioritize investment in order to improve our 270

understanding of specific types of uncertainties. In the example presented here, the large model 271
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uncertainties in the projections of SST in the Northeast Atlantic call for better understanding of 272

key processes that may be represented differently among models. In the Northeast Pacific, where273

large internal variability is difficult to reliably predict, the medium term effects of greenhouse 274

gas emission will be difficult to separate from natural variability. This further highlights the need 275

for better understand inter-annual variability and thus the need for longer-term observational 276

records.277

278

Systematic exploration of climate-LMR projection uncertainties279

Systematic exploration of the components of uncertainty in both space and time dimensions in a 280

manner analogous to examples from physical climate model projections (Figure 3) is critical for 281

moving quickly toward refined uncertainty bounds on climate-LMR projections. Thus, 282

exploration of uncertainties within climate-LMR projections would include: (1) making 283

projections from ensemble members of models with different properties of intenral temporal or 284

spatial variability; (2) making projections from ensemble members of models with different 285

model structure and parameter values, and (3) generating projections that are based on different 286

climate and fishing scenarios.287

The conditions to systematically explore uncertainties within climate-LMR projections already 288

exist. For fish and fisheries models, attempts to explore the full matrix of uncertainties 289

(particularly model uncertainty with scenario uncertainty) have been made for a limited number 290

of fisheries or stocks (Table 2). Existing examples mainly involve Management System 291

Evaluations in which the performance of different models is assessed under different 292

management scenarios (Link et al., 2012). Methods such as Monte Carlo simulation, Bayesian 293
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statistical frameworks, and a plethora of quantitative methods also provide a basis for exploring 294

both the parameter and structural components of model uncertainty (Hill et al., 2007; Hollowed295

et al., 2013).  Moreover, various statistical approaches are available to analyze the properties of 296

different components of uncertainty, and how they contribute to the full scope of uncertainty 297

(Saltelli et al., 2000). Furthermore, initiatives such as the fisheries component of the Inter-298

Sectoral Impact Model Intercomparison Project (ISI-MIP) (Warszawski et al., 2014), which aim299

to develop LMR projection databases for climate-fisheries assessment that are similar in nature 300

to CMIP now been established. Such a database would facilitate collaborative efforts of LMR 301

research communities to explore the full scope of uncertainties.302

A remaining knowledge gap in climate-LMR uncertainty exploration is the limited 303

understanding of uncertainties arising from internal variations in the ecological system or fishing 304

scenarios in projecting LMR changes, as well as their interactions with internal variability at 305

different temporal and spatial scales. The linkages between physical and biogeochemical ocean 306

changes and ecosystem responses are likely to be non-linear and may also involve thresholds; 307

thus the resulting pattern of internal variability of climate-LMR model projections are likely to 308

be more complex. For example, the actual response of LMRs to a particular level of 309

environmental change may be limited by predator – prey interactions, or altered by species-310

specific sensitivity and adaptability to environmental fluctuations (Foden et al., 2013). 311

Exploration of internal variability in climate-LMR projections can be done by comparing 312

projections from ensemble members of a single model with different sets of initial conditions. 313

For example, we used three versions of Dynamic Bioclimate Envelope Model (DBEM) (Cheung314

et al., 2011; Cheung et al., in review) to project changes in maximum potential catch of sablefish315

(Anoplopoma fimbria) in the Northeast Pacific (Gulf of Alaska Large Marine Ecosystem) from 316
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2000 to 2060 (Figure 4). Specifically, we explored the effects of internal variability of ocean 317

conditions using 20 different ensemble member projections from the GFDL ESM2M (Rodgers et 318

al., 2015). We also compared the relative contribution of uncertainties from internal variability 319

of ocean conditions, structural uncertainties of DBEM, and uncertainty from different climate 320

scenarios (RCP 2.6 and 8.5). 321

The results suggest that internal variability is a dominant source of uncertainty for sablefish in 322

the Northeast Pacific (Gulf of Alaska Large Marine Ecosystem) by 2060 relative to 2000, 323

followed by the structural uncertainties of DBEM. Scenario uncertainty contributes less than 324

10% of the total uncertainty. This is broadly consistent with the projected SST changes in this 325

region, with internal variability contributing around 40% to 70% of the total uncertainty over the 326

time frame of 2000 - 2060 (Figure 2). However, model uncertainty is substantially lower for 327

sablefish projections relative to SST projections, possibly because the structural difference 328

between CMIP5 models (used in SST projection) is much larger than those between the three 329

versions of DBEM (used in sablefish projection). Also, in addition to SST, DBEM projections 330

are driven by other ocean biogeochemical variables, such as oxygen and net primary production 331

(Cheung et al., 2011). Internal variability of multiple oceanographic properties may have 332

magnified the internal variability of the DBEM projections.333

[Figure 4.]334

Since DBEM outputs represents mainly long-term trend of potential catches, inter-annual 335

variation of reported catches is substantially higher than the internal-variability of the projections 336

(Fig. 5). DBEM does not represent some processes that contribute to inter-annual variability of 337

catches such as recruitment variability and changes in fishing effort. Besides spawning stock 338
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abundance, recruitment variability could be dependent on both physical (temperature, wind, 339

current) and/or biological (primary productivity, predation pressure) at different spatial and 340

temporal scales (Houde, 2008). The relative importance of these factors and the processes 341

contributing to recruitment vary between species. In addition, catches are also dependent on 342

changes in fishing effort which can be dependent fisheries management (e.g., quota), social-343

economics factors (e.g., price of fish and cost of fishing), and fishers’ behavior. DBEM does not 344

resolve many of these processes and does not have species-specific recruitment sub-model. 345

Therefore, DBEM is not expected to represent the actual inter-annual variability of the catch. On 346

the other hand, DBEM is structured to represent the long-term trends of resource productivity.347

The long-term trend (20-year running mean) of the reported catch of sablefish falls within the 348

range of trajectories of the projections (Fig. 5). 349

[Figure 5]350

The example of the sablefish highlights the need to carefully consider the actual processes that 351

are represented by the sample of LMR models in quantifying uncertainty from model ensembles. 352

This challenge applies to both ocean biogeochemical and LMR models. For instance, the 353

relatively coarse-resolution Earth System Models do not capture potentially large random 354

variability associated with submesoscale and mesoscale ocean features such as fronts, eddies and 355

filaments (Stock et al. 2011). 356

A standardized set of climate-LMR scenarios is needed to quantify scenario uncertainty for 357

climate-LMR projections.  These scenarios must be reconciled with a range of different 358

realizations of future emission (e.g., IPCC AR5’s Representative Concentration Pathways, or 359

RCPs) (Moss et al., 2010) and social-economic development (e.g., Shared Socio-economic 360
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Pathways or the Sustainable Development Goals) (Griggs et al., 2013; Hunter and O’Neill, 361

2014). However, emissions scenarios only describe broad-brush societal changes in the 21st
362

century. Fishing sector-specific storylines concerning management, aquaculture and 363

technological development, and demand for fish in countries across the economic development 364

spectrum at global and regional scales are also needed.  Such factors would ultimately affect the 365

magnitude and distribution of fishing effort. Trajectories of other human marine-related activities 366

that drive changes in marine ecosystems should also be included (Figure 6). Development of 367

these scenarios requires interdisciplinary collaboration between natural and social scientists368

(Österblom et al., 2013). Although, there are currently independent efforts to develop such 369

scenarios at global and regional scales (e.g., Barange et al., 2014; Jones et al., 2014),370

community-wide effort in developing standardized sets of scenarios would facilitate consistent 371

comparison of LMR projections.372

[Figure 6]373

374

Building confidence and constraining the scope of plausible projections with observations375

Observations across different scales are critical for building confidence in projections and 376

reducing the scope of LMR uncertainty by constraining parameters, model structures, and 377

eliminating implausible solutions. Model metrics are observations that can be compared to model 378

outputs in order to obtain a quantitative assessment of model skill. Model metrics that are of 379

particular interest for LMR models include species distributions, and the composition and380

abundance of fisheries catches (Table 3). These data are generally available for broad-scale 381

evaluation.382
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Different LMR models may vary in their ability to represent seasonal cycles, inter-annual 383

variability and/or long-term (decadal or longer) trends, with skill at one scale not always384

implying skill at others (Table 3). To assess confidence in the temporal properties of climate-385

LMR projections, we suggest three possible tiers of evaluation that involve the use of 386

observational data to assess consistency with: (1) mean observed spatial patterns or seasonal 387

climatologies across the scale of interest; (2) previously observed responses to climate 388

variability; and (3) observed long-term trends attributable to climate change, fishing and other 389

human drivers. In practice, the ability to assess models across all three tiers is often limited by 390

data availability, particularly the paucity of the long-term, comprehensive, and high-quality data 391

sets required to assess models against the often subtle trends in tier 3 (see next section).  392

Comparisons between LMR data and model projections are also challenging due to issues of 393

consistency between timeframe and spatial scales, as well as the confounding effects of multiple 394

human pressures, such as climate and fishing (McOwen et al., 2014). These challenges should 395

not, however, preclude improving confidence in LMR-climate projections.396

Confidence in climate-LMR model projections can arise from model evaluation across a subset 397

of tiers, as well as the reliance of models on robust physiological and ecological principles398

(Stock et al., 2011).  Real caveats, however, are needed.  Observational limitations also suggest 399

that great care should to be taken eliminating particular projections from consideration within an 400

ensemble framework.  That is, a coarse culling of grossly inconsistent simulations (Overland et 401

al., 2011) is suggested rather than attempting to finely weight models based on nuanced 402

differences in model-data fit. Even if model projections fit well with observational data, it does 403

not guarantee that the model can accurately predict future changes, particularly when future 404

conditions (environmental conditions or human activities) lie outside the bounds of historical 405
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conditions. In addition, a good fit between model projections and observational data could, on 406

occasion, be more indicative of over-parameterization rather than prediction skill.407

408

Observation data and model metrics409

In the paragraphs that follow, we review available LMR data and their potential use as model 410

metrics for evaluating LMR projections across the three tiers of evaluation described previously.  411

We focus on the utility of three broad categories of LMR observations: fisheries dependent data, 412

scientific surveys, and species occurrence records. Similar efforts focusing on metrics for413

physical climate models (Knutti and Sedláček, 2013) and biogeochemical/plankton food web 414

models (Stock et al., 2014b) are also being undertaken. We also identify key uncertainties 415

associated with such observational data, as these would complicate their use in assessing the 416

reliability of LMR projections.417

a. Fisheries dependent data418

Fisheries catch data are particularly useful for Tier 1 and 2 evaluations as they are of direct 419

relevance to LMRs and their broad spatial, temporal and taxonomic coverage. Total catch 420

potential can be estimated from the maximum catch of historical time-series, under certain 421

assumptions concerning fishing effort (Cheung et al., 2008; Friedland et al., 2012). Moreover, 422

spatial patterns and temporal changes in catch volume (Cheung et al., 2013c) and functional and 423

taxonomic composition (Cheung et al., 2013b) of fisheries catch can be obtained from global 424

fisheries databases. Species composition can be aggregated by body size-classes (for size-based 425

LMR models (Blanchard et al., 2012)), functional role (for functional group trophodynamic 426

models (Christensen and Walters, 2004)), and by species (for species distribution models427



20

(Cheung et al., 2011)). Fisheries catch data can be obtained from the Sea Around Us project428

(SAU) (www.seaaroundus.org), which provides spatially explicit estimates of global catches 429

from 1950 onward. In addition, the recent effort of SAU to reconstruct catches that are not 430

reported in the United Nations Food and Agriculture Organization (FAO) landings statistics 431

further improves the utility of such data for use as a metric for model comparisons (e.g., Zeller et 432

al., 2006). For example, in the Northeast Atlantic, fisheries catch and effort data since the early 433

20th century can be used to understand the ability of LMR models to reproduce changes driven 434

by the Atlantic Multi-decadal Oscillation and the North Atlantic Oscillation (Kerby et al., 2013).435

Similar examples of the potential use of long-term series of fish and fisheries data are also 436

available in the Northeast Pacific (Lindegren et al., 2013), and large pelagic long-line catch data 437

are also available for ocean basins. As such datasets are spatially-explicit, the estimated catch-438

per-unit-effort can be used as an indicator of the distribution of large pelagic fishes, including 439

tunas, billfishes, and sharks (Myers and Worm, 2003). Annual and decadal patterns of catches440

and their compositions can be assessed to understand the ability of the model to reproduce 441

interannual and long-term changes in fisheries catches.  Interpretation of fisheries catch data, 442

however, must be done with care as changes or differences in fishing effort, gear, regulations,443

taxonomic identification, economics, or human behavior can strongly affect the quantity, 444

composition, and location of catches (Pinsky and Fogarty, 2012). For this reason, determining 445

whether observed changes in catch data are caused by climate, ecology, or human behavior can 446

be complicated. Fisheries dependent data have substantial uncertainties because of inconsistent 447

data quality and biases in sampling methods, timing and location. Fisheries catches and landings 448

data may be under-reported (Zeller et al., 2006), over-reported (Watson and Pauly, 2001) or 449

mis-reported (Pascoe et al., 2001), and the reliability and accuracy of the data may change over 450

http://www.seaaroundus.org/
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time. Also, biases in the location and timing of fishing activities render it challenging to 451

standardize and use fisheries dependent catch-per-unit-effort data as an index of abundance 452

(Maunder et al., 2006). There may therefore be biases in using such data to interpret resource 453

abundance and distribution (Walters, 2003).454

b. Scientific survey data455

Scientific surveys are useful across all three tiers of evaluation. They can provide spatial and 456

temporal patterns of abundance, biomass, biodiversity and distribution. Among the benefits of 457

scientific surveys is the use of standardized and repeatable methods, stratified random or fixed 458

design to facilitate statistical inference, and documented survey locations so that both species 459

presence and absence can be known. These properties make it more likely to attribute observed 460

changes to particular drivers, such as fishing, pollution and climate change, compared to fisheries 461

data. For example, data from the California Cooperative Oceanic Fisheries Investigations 462

(CalCOFI) (Bograd et al., 2003) for the California Current Large Marine Ecosystem, which is 463

strongly affected by decadal to multidecadal atmospheric oscillations, such as ENSO and PDO, 464

provide detailed documentation of ecological changes since 1951. The CalCOFI data describe 465

the abundance of plankton, including larval fishes. A time series of larval fish abundance provide 466

a useful proxy for adult fish abundance (Koslow et al., 2013). Some surveys further record 467

information on oceanographic conditions, which might be useful for simultaneously assessing 468

the skill of the climatic and ecological components of LMR models. Although a number of 469

surveys available have been sampling for more than four decades, care must be taken to ensure 470

that large changes in survey methods have not biased the time-series. A common standardization 471

is to ensure that the same region has been surveyed consistently through time. Also, bias 472



22

correction factors may be available to account for changes in survey methods (e.g., Ohman and 473

Smith, 1995).474

Although survey data can provide estimates of large-scale changes in the distribution of relative 475

abundance or biomass of LMR (e.g., Pinsky et al., 2013), they are regional in scale, typically 476

conducted during a certain season, and are designed to sample a specific set of species or size-477

classes (e.g., large groundfishes). Different surveys also vary in timeframe, and availability of 478

long time-series survey data is limited. On the other hand, survey data are available for a range 479

of ecosystem types (from the tropics to high latitudes), thereby allowing the examination of 480

model performance across ecological gradients. 481

c. Species occurrence records482

A major biological response to ocean changes is a shift in the distributions of marine species483

(Pinsky et al., 2013; Poloczanska et al., 2013), which can have further implications for marine 484

ecosystems and LMR (Cheung et al., 2010; Cheung et al., 2013b). It is thus desirable for LMR 485

models to realistically predict distributions for a wide range of species. A range of species 486

distribution models have been applied to model LMRs under climate change (e.g., Jones and 487

Cheung, 2015). The reliability of predicted species distributions are often examined using geo-488

referenced species occurrence records and test statistics, such as the Area Under Curve (AUC) of 489

the Receiver Operating Characteristics (ROC). These records are collated from a range of 490

sources including museum collections, scientific expeditions and surveys, and fisheries records. 491

Many are now publicly accessible through databases, such as the Global Biodiversity 492

Information Facility (GBIF) (Robertson et al., 2014) and the Ocean Biodiversity Information 493

System (OBIS) (Costello et al., 2007), and have frequently been standardized for taxonomy and 494

checked for quality. Species occurrence records have the advantage in having a much broader 495
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spatial and taxonomic coverage than any single data source (e.g., from scientific survey only). 496

However, problems with taxonomic misidentification, common names, synonyms, and errors in 497

geo-referencing are still present. Confidence in species occurrence data may also be reduced due 498

to sampling bias (Webb et al., 2010). Specifically, information on locations where unsuccessful499

sampling has occurred is not always available, making it difficult to determine the areas where 500

specific species are absent and therefore to interpret test statistics such as the AUC (Pearce and 501

Boyce, 2006).502

503

To help inform the use of uncertain observational data in assessing model projections, a 504

framework has been proposed to systematically assess the level of uncertainty associated with 505

observational data particularly for climate change impact assessment (O'Connor et al., 2015). 506

This framework is based on evidence combined from theory, experiments and historical data 507

with statistical analysis being undertaken to attribute any signals in observational data to climate 508

change, thereby building confidence in the model. Such a framework will help identify cases 509

where observational data are too uncertain to help assess model outputs e.g., with insufficient 510

temporal and spatial coverage of observational data to reveal underlying trends and patterns.511

512

Post-processing of LMR model outputs is generally needed before they can be compared to 513

empirical data, as there will inevitably be differences between LMR models due to variations in 514

model structure and other factors. For example, output from species-based LMR models will be 515

more directly comparable to empirical data. However, species-based LMR models may only 516

include a subset of species or taxonomic groups that are included in the empirical data. In 517

contrast, output from size-based models can easily be compared with aggregated LMR 518
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production. However, the lack of explicit representation of taxonomic identity in size-based 519

models makes their output difficult to compare to species- or population-specific data. 520

Approximations can be made in some cases to convert information from size- or trophic- based 521

models into taxonomic-based data. For example, the abundance and production of organisms at 522

size > 1 m can be assumed to represent adult large pelagic fishes and can thus be compared to523

data from pelagic long-line catches. Functional group-based LMR models are intermediate 524

between species-based and size-based models, and their outputs can be approximately converted 525

to both taxonomic- or size-based aggregations. Thus, having identified the dominant taxonomic 526

groups in a functional group, the dynamics of that functional group can be assumed to be 527

representative of that taxonomic group. Functional groups that represent specific taxonomic 528

groups of interest can also be included explicitly in the model (deYoung et al., 2004; Griffith and 529

Fulton, 2014). 530

531

From quantifying uncertainty to assessing risk532

Given the large sources of uncertainty discussed in previous sections, a systematic exploration of 533

potential future LMR states and the associated uncertainties is an important step towards a full 534

risk assessment that would allow us to understand the potential impact of climate change on 535

human societies through, for example, diminished food security, income or other ecosystem 536

services. In general, risk consists of two components: (1) the magnitude of potential changes,537

and; (2) the probability of occurrence of such changes. Previous climatic risk assessments have 538

involved both quantitative risk-based approaches and more qualitative, social vulnerability 539

approaches (Dessai and Hulme, 2004), or a combination of both (Brown et al., 2012). 540
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Quantitative assessment generally involves identifying climate hazards and their probability of 541

occurrence.  For example, Li et al. (2009) assessed the drought risk for world crop production 542

under climate change based on ensemble results from 20 GCM and six emission scenarios. The 543

ensemble of projections was used to estimate probability density functions of drought disaster 544

frequency. Their results show a consistent increase in drought risk in the middle and end of the545

21st century under climate change, leading to significant reductions in yield for major crops. In 546

our case study of projecting changes in potential catches of sablefish in the Northeast Pacific547

(Figure 4), the probability of projecting a decrease in catch could be quantified by systematically 548

exploring the envelope of uncertainty. Thorough estimates of risk can facilitate policy discussion 549

for mitigation and/or adaptation in LMR management through the exploration of the potential for 550

regrets/no-regrets policies and the associated costs and benefits (Polasky et al., 2011). This 551

approach to risk-based, ecosystem-based management has been developed for certain marine 552

systems, for example in Australia (Hobday et al., 2011). One area of risk assessment that 553

remains particularly difficult to accurately quantify and yet important for guiding societal 554

choices, is an understanding of “tail risk”, or risk from extreme and high-impact, but low-555

probability, events (Weitzman, 2011). 556

557

Future direction of climate-LMR projections558

The many sources of uncertainty in climate-LMR projections and computational cost will always 559

limit our ability to fully explore uncertainty in climate-LMR projections.  However, the 560

framework described here provides a basis for concerted effort to improve estimation of 561

uncertainty ranges for climate-LMR projections and, eventually, reduce these ranges.  As was the 562
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case for physical climate projections, a climate-LMR ensemble offers a starting point. Systematic 563

exploration of uncertainty space to identify prominent components for a given spatial scale, time 564

horizon and variable of interest can guide research investment and accelerate progress toward 565

more accurate estimates of uncertainty bounds.  More rigorous and standardized comparison 566

with observations (i.e., model metrics) must also play a central role in building confidence in 567

projections. In combination, these steps should produce more robust risk estimates for policy 568

formulation that will promote LMR sustainability in a changing climate.569

While adoption of the framework described herein will improve climate-LMR projections, 570

numerous challenges must still be overcome.  Various unknowns pose a major challenge to571

exploring the real scope of uncertainties. Particularly, adaptive responses in nature to climate 572

change, and by society to changes in LMRs, are difficult to predict and are poorly understood573

(Pinsky and Fogarty, 2012). There are also “unknown-unknowns”, such as ecological tipping 574

points, which contribute to uncertainties and that cannot be assessed with our current knowledge.575

This problem could be partly addressed by developing scenarios that aim to explore the 576

sensitivity of outputs to such uncertainties, such as a scenario incorporating high levels of 577

biological and social adaptation. Additionally, when exploring structural uncertainty of the 578

models, the sample of model structures is often assembled opportunistically based on existing 579

models rather than strategically based on a systematic sampling of all plausible model structures.580

Furthermore, different climate-LMR models may not be entirely independent from one another 581

as the models may be parameterized with similar datasets. This may result in biases in assessing 582

the effects of model uncertainties on projections (Hawkins and Sutton, 2009). On the other hand,583

an ensemble of opportunities would be the most practical way to tackle the challenge of 584

quantifying climate-LMR projection uncertainties and would help examine whether there is a 585
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need for large-scale cooperative initiatives that provide substantial resources and facilities to 586

address these challenges. 587

Observational data that are available for comparison with LMR models generally only cover a 588

short period of time and a limited number of regions. This magnifies the issues regarding 589

uncertainties associated with observation errors, making it more challenging to attribute the 590

reasons for any discrepancies between observations and model predictions. Moreover, many 591

LMR models use available observational data for parameterization, thus the scope of using 592

additional data for model testing is limited. Careful selection of statistical and cross-validation 593

techniques can help mitigate this problem (Arlot and Celisse, 2010). Further discussion and 594

consensus amongst LMR modelers is needed to develop criteria to identify unrealistic models 595

(i.e., what type and how many discrepancies are needed before a model is excluded from an 596

ensemble). These challenges reiterate the need to improve the sharing of observational data 597

between scientists, institutes and countries and develop data facilities to support their use in 598

testing climate-LMR projections (Hollowed et al., 2013).599

Scenario development has not matured for LMR assessment. Scenarios specifically tailored for 600

marine-related sectors are very limited, while existing assessments adopt scenarios that are used 601

for more general purposes (Millennium Ecosystem Assessment, 2005). These scenarios may not 602

account for key uncertainties in the projected pathways of LMRs. In relation to this, fisheries 603

models linking fishing to changes in LMRs, and the socio-economic conditions that are used to 604

generate LMR scenarios are only starting to be developed for global- and basin- scale LMRs, 605

although much effort has focused on regional- and local- scale fishing fleet dynamic models (van 606

Putten et al., 2012) and management strategy evaluation (MSE) models. All existing global- or 607

basin-scale LMR models either do not have explicit fisheries components or have simple 608
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assumptions of stock- or region- specific fishing mortality rates. Only recently has a global scale 609

LMR model study included a spatially-explicit fishing dynamics model to simulate changes in 610

fishing effort (Christensen et al., 2015). However, there is a need to improve efforts such as this 611

to develop additional LMR-specific scenarios representing human activities before meaningful 612

comparison of scenario uncertainties can be undertaken.613

Understanding where uncertainty comes from and how it interacts with model components is 614

necessary to improve the interpretation of model projections and to inform policy. Improving 615

the quantification of uncertainties will therefore be a major area of development in climate-LMR 616

projections to inform global and regional assessments of climate change impacts, vulnerability 617

and adaptation on marine ecosystems and related sectors.618

619

Acknowledgement620

We thank Y. Ota, D. Pauly and J. Dunne for their inputs into the discussions that contributed to 621

the content of this manuscript. This is a contribution to the Nippon Foundation – University of 622

British Columbia Nereus Program. The present article is a product of Nereus’ international and 623

interdisciplinary effort towards improving global sustainable fisheries. All authors contributed to 624

the design and writing of the manuscript. T L Frölicher acknowledges financial support from the 625

SNSF (Ambizione grant PZ00P2_142573).626

627

628



29

Table 1. Summary of different types of uncertainties in LMR models. 629

Types of uncertainties Description Examples

Coupled atmospheric, 

ocean and biogeochemical 

models

Fish and fisheries models

Internal variability Natural variations of 

physical, biogeochemical

and ecological processes 

that contribute random

variability to projections of

LMRs

El Niño-Southern 

Oscillation (ENSO) and 

Pacific Decadal Oscillation 

(PDO), North Atlantic 

Oscillation (NAO), Atlantic 

Multidecadal Oscillation 

(AMO), locations of gyre 

boundaries

Predator-prey dynamics, 

spatial and temporal 

variations in fish 

populations not arising 

from deterministically 

modeled climate change 

signal.

Model uncertainty

a. Parameter Specific parameter values 

used in the formulae 

determining the behavior of 

the models

Parameters controlling sub-

grid scale oceanographic 

processes, phytoplankton 

growth, zooplankton 

grazing, biogeochemical

transformations, and 

detritus remineralization.

Values of the parameter 

describing diet 

composition, dispersal rate, 

production and 

consumption rates, trophic 

interactions and other 

ecological/anthropogenic 

processes represented in 

the models. If variations in 

parameter values reflect an

alteration of model 

architecture or design, it 
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should belong to the

structural uncertainty

category. 

b. Structure Differences in abstraction, 

understanding and 

representation of the system 

through different model 

architecture, design and 

assumptions, the method of 

representing space/time,and

the kinds of ecological 

processes, human and 

natural drivers included.

Size-based vs functional group based approaches, grid 

resolution; the number of nutrients included in 

biogeochemical models; the number of functional groups 

included in a lower trophic level or fish model; 

differences in representing food web structure, fish 

movement, and different life history stages in fish models.

Scenario uncertainty Differences in the natural 

and/or anthropogenic 

forcing that drive the model 

simulation

Representative 

Concentration Pathways 

(RCPs) 

Shared Socio-economic 

Pathways (SSPs), spatial 

and temporal changes in 

fisheries, and how all of 

these influence model 

components directly or 

indirectly

630
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Table 2. Selected case studies that explored different aspects of uncertainties in projections of 631

aquatic (marine and freshwater) biological resources under climate change.632

Spatial scale Selected case studies Explored uncertainties and conclusions

Global Variability of projections of distribution 

and patterns of species turnover across 

three different species distribution models 

for over 800 commercially exploited fishes 

and invertebrates in the world under two 

greenhouse gas emission scenarios (Jones 

and Cheung, 2015).

- Structural uncertainties of species 

distribution models;

- Scenario uncertainties of 

greenhouse gas emission 

pathways.

- Larger variability in projections 

exists between greenhouse gas 

emission scenarios (RCP2.6 and 

RCP8.5) than between three 

different species distribution 

models.

Regional (UK 

waters)

Projecting changes in maximum catch 

potential and profitability from fishing 31 

key commercially targeted fish species 

primarily inhabiting UK waters using 

different climate models, species 

distribution modelling approaches and 

socio-economic scenarios (Jones et al., 

2014). Three fisheries and socio-economic 

scenarios were designed based on key 

- Structural uncertainties of species 

distribution models and climate 

models;

- Scenario uncertainties of 

greenhouse gas emission, 

fisheries and socio-economics 

pathways;

- Scenario (climate, fisheries and 

socio-economic) uncertainty 
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variables identified in the Alternative 

Future Scenario for Marine Ecosystems 

(AFMEC) scenarios. 

dominates over structural 

uncertainty of climate and 

biological models.

Regional 

(Central North 

Pacific Ocean)

Uncertainty of a trophodynamic model 

(Ecopath with Ecosim) was explored using 

Monte Carlo simulation. Confidence limits 

of key input parameters were set based on 

the reliability of the data, as indicated by 

the data type. Results from 500 dynamic

simulations (each involving up to several 

thousand iterations to find a balanced 

model) were used to construct 95 % 

confidence intervals for the derived 

biomass time series (Kearney et al., 2012).

- Parameter uncertainty of the 

ecological models.

Regional 

(Eastern U.S. 

coast)

Using experimentally-derived thermal 

tolerance limits to project range shift of 

gray snapper (Lutjanus griseus) in estuaries 

along eastern US coast. Projections were 

driven by temperature simulated from 23 

different climate models, two thermal 

tolerance metrics under three different 

emission scenarios (Hare et al., 2012). 

- Parameter uncertainty of range 

shift model;

- Structural uncertainties of climate 

models;

- Scenario uncertainties of 

greenhouse gas emission 

pathways.

- Different species distribution 

models contributed the largest 
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variation in projections, followed 

by different General Circulation 

Models (GCMs). The contribution 

of variability from different 

GCMs increased over time and to 

a level that is comparable to 

variability from different species 

distribution models for end of 21st

century projections. Different 

observation datasets had a small 

influence on the overall 

variability of the projections.

Regional 

(freshwater 

ecosystems in 

France)

Projection of distribution shifts of 35 

species of freshwater fishes in France 

across 100 random subsets of observation 

data, seven species distribution models and 

climate projections from 12 climate 

models, resulting in 8400 different 

potential futures projections (Buisson et al., 

2010).  

- Parameter uncertainty of species 

distribution models;

- Structural uncertainties of species 

distribution models and climate 

models;

- Scenario uncertainty of 

greenhouse gas emission 

pathways.

- Uncertainty about thermal limits 

of the species dominates over 

model or scenario uncertainties

633
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Table 3. Examples of observation datasets and the model metrics for comparison with LMR 634

model outputs. 635

Data type/

Model metric

Timeframe Spatial aggregation Taxonomic 

resolution

Examples of data 

sources

Fisheries data

Total fisheries catch 

potential

Average from 

1950 - 2010

Global and large 

marine ecosystems

Aggregated Sea Around Us 

project

Species composition of 

catch (or the mean 

temperature of catch)

Annual from 1950 

- 2010

Global and large 

marine ecosystems

Exploited taxa Sea Around Us 

project

CPUE of large pelagic 

fishes

1970s to 2000s Global Large pelagic 

fishes (tunas)

Regional Fisheries 

Management 

Organizations for 

tunas and billfishes 

e.g., Myers and 

Worm (2003)

Survey data

Rate of range shift of 

marine species

Average from 

1970s to 2000s

Regional (North 

America continental 

shelf, North Sea)

By species of 

fishes and 

invertebrates

Pinsky et al.

(2013),

ICES’s 

International 

Bottom Trawl 

Survey

Community composition 1960s to 2010s Regional (continental By species of Worm et al. (2009)
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shelves around the 

world)

fishes and 

invertebrates 

vulnerable to 

bottom trawls

Variability in abundance 

driven by large-scale 

oceanographic changes

1951 – Present

1931 - Present

1970s – 2000s

Regional: 

California Current

North Sea

North America 

continental shelf

Larvae and eggs of 

exploited and 

unexploited fishes

Exploited and 

unexploited fishes

By species of 

fishes and 

invertebrates

CalCOFI (Moser et 

al., 2001)

Continuous 

Plankton Recorder 

(CPR) Survey

Pinsky et al. (2013)

Occurrence record

Occurrence of marine 

species

Mostly since the 

20th century

Global All marine taxa OBIS (Costello et 

al., 2007)

636
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Figure 1. Schematic example illustrating cascades of uncertainties in LMR projection (modified 

from Wilby and Dessai (2010)).  For a particular time horizon and spatial scale, the range, or 

envelope, of possible outcomes includes contributions from scenario uncertainty (green), model 

uncertainty (blue) and internal variability (orange). The cascades of uncertainties apply to each 

of the sub-components of climate-LMR models. Uncertainties from each model sub-component 

may be additive or multiplicative.  In this schematic diagram, the width of each uncertainty level 

does not imply the magnitude of the uncertainty. E.g., internal variability may be larger than 

scenario uncertainty and vice versa.
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Figure 2. The relative importance of each source of uncertainty in annual mean sea surface 

temperature projection is shown by the fractional uncertainty for (a) global mean, (b) northeast 

Atlantic, and (c) northeast Pacific in the 21st century. Uncertainties are separated into three 

components: internal variability (orange), model uncertainty (blue), and scenario uncertainty

(green). The percentage of total uncertainty is calculated from dividing the level of uncertainty 

from the specific component by the sum of the three types of uncertainties. For internal

variability, the standard deviation of annual mean SST from the GFDL ESM2M ensemble is 

calculated year-by-year. The same procedure has been applied for model uncertainty, but a 10-yr 

running mean (longer than the typical ENSO period) is first applied to t he individual CMIP5 

model projections.
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Figure 3. Changes in annual average sea surface temperature (10-year running mean) for (a) 

global mean, (b) northeast Atlantic, and (c) northeast Pacific relative to the 1986-2005

mean. SST observations (black line) are based on Smith et al. (2008). The uncertainty area was 

calculated by adding and subtracting the errors from each uncertainty source (internal variability: 

orange, model uncertainty: blue, scenario uncertainty: green) to and from the ensemble-mean 

projection of 15 CMIP5 models. Errors from different uncertainty sources are assumed to be 

additive.
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Figure 4. Projected changes in maximum potential catches of Anoplopoma fimbria from 2000 to 

2060 under climate change. The projections were generated from using three versions of 

Dynamic Bioclimate Envelope Models (DBEM) (Cheung et al. under review), driven by outputs 

from GFDLESM2M. Internal variability was estimated from projected changes in catch potential 

driven by outputs from 20 ensemble members of GFDL ESM2M (Rodgers et al. 2015). (A) 

Projected changes in maximum potential catch and their standard deviation resulting from the 

three different types of uncertainties. (B) the relative contribution of each type of uncertainty, 

expressed as the proportion of total uncertainty, and (C) the probability of projecting a decrease 

in catch potential of more than 0% (dashed line), 2% (dotted line) and 5% (solid line).Model 

uncertainty represents variation of projections from the three versions of DBEM. Scenario 

uncertainty represents variations in projections between RCP2.6 and RCP8.5. 
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648

Figure 5. Comparison between projected changes in annual mean catch potential (relative to 

1971 – 2000) using the three versions of DBEM and 20 GFDL ESM2M ensemble members 

under the RCP8.5 scenario (grey lines) with the reported catches (from Sea Around Us: 

www.seaaroundus.org) of sablefish in the Northeast Pacific (Gulf of Alaska Large Marine 

Ecosystem) (blue line). Reported catches are also smoothed by a 20-year running mean (red 

line).

649
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651

Figure 6. Schematic diagram showing an example of potential standardized sets of scenarios to 652

be developed to explore scenario uncertainties. The red, yellow and green lines represent 653

different scenario pathways to be explored by climate-LMR models. Anthropogenic impacts may 654

include contaminant level, invasive species and habitat change. 655

656
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