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Abstract—The proliferation of distributed generation and
storage units is leading to the development of local, small-
scale distribution grids, known as microgrids (MGs). In this
paper, the problem of optimizing the energy trading decisions
of MG operators (MGOs) is studied using game theory. In the
formulated game, each MGO chooses the amount of energy that
must be sold immediately or stored for future emergencies, given
the prospective market prices which are influenced by other
MGOs’ decisions. The problem is modeled using a Bayesian
game to account for the incomplete information that MGOs
have about each others’ levels of surplus. The proposed game
explicitly accounts for each MGO’s subjective decision when
faced with the uncertainty of its opponents’ energy surplus.
In particular, the so-called framing effect, from the framework
of prospect theory (PT), is used to account for each MGO’s
valuation of its gains and losses with respect to an individual
utility reference point. The reference point is typically different
for each individual and originates from its past experiences and
future aspirations. A closed-form expression for the Bayesian
Nash equilibrium is derived for the standard game formulation.
Under PT, a best response algorithm is proposed to find the
equilibrium. Simulation results show that, depending on their
individual reference points, MGOs can tend to store more or less
energy under PT compared to classical game theory. In addition,
the impact of the reference point is found to be more prominent
as the emergency price set by the power company increases.

I. I NTRODUCTION

The emerging concept of microgrids (MGs) will play a
major role in the modernization of the power grid. Micro-
grids are small-scale local power grids which are, typically,
composed of renewable generation units, storage devices, and
energy consumers [1]. MGs are managed by various MG
operators (MGOs) and can operate in either connected or
islanded modes, and are expected to bring forth innovative
solutions for the smart grid by enhancing power management
and providing energy reserves via storage.

Indeed, the storage capability of MGs can be used to assist
in the energy management of the smart grid as investigated
by a number of recent works [2]–[4]. However, more recently,
there has been considerable interest in using the storage
abilities of MGs to enhance the resilience of the smart grid
against emergency events such as natural disasters or security
breaches. In this regard, various academic, industrial, and
federal reports [5]–[7] have proposed leveraging the MGs’
storage capacity to mitigate the effect of loss of generation
during emergencies by meeting the smart grid’s most critical
loads. Indeed, distributed storage and generation units, the
integral constituents of MGs, have played an essential role
in preserving the operation of hospitals and police stations, as
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well as fire fighting and rescue services centers in many recent
emergency situations in the United States [7]. For instance,
this has been the case during natural disasters such as hurri-
canes Katrina and Rita, and the wildfires which interrupted the
transmission of electricity to parts of Utah in 1995 and 2003,
as well as in the 2003 North American Northeast blackout [7].
In addition to the various reports in [5]–[7] that encourage
the use of MG storage to enhance grid resilience, other works
such as [8] and [9] have also investigated the issues relatedto
power quality that might arise when a critical load is supplied
by MG energy sources. However, there is a lack of works that
analyze the willingness and ability of MGOs to participate in
covering the power grid’s critical loads.

To this end, in order to leverage the distributed storage
units across MGs, the power companies must offer significant
financial incentives for the MGOs to keep a portion of their
energy surplus in storage for potential emergency use. The
MGOs are hence faced with the choice of selling their excess
at the current market price, or storing it and potentially selling
it at the significantly higher emergency price, in the future.
Moreover, given the fact that the energy bought in case
of emergency is limited, competition will arise between the
different MGOs who seek to take advantage of the incentives
offered by the power company for emergency energy.

In this regard, game theory [10] can be used to model the
interdependency between MGOs and predict the outcomes of
their competitive behavior. In fact, game-theoretic analysis has
been a popular tool for understanding the interactions between
storage owners in smart grid energy management [2]–[4].
However, these works do not investigate the aforementioned
scenarios in which storage is used for improving resilience.
Moreover, these works typically rely on games with complete
information, which are not practical for smart grid scenarios.

Another key drawback of existing game-theoretic analysis
is the assumption that all players are rational and thus seek
to maximize their expected utilities in a similar objective
manner. In a real-life application however, as observed by the
experimental studies in [11] and [12], the behavior of indi-
viduals can deviate considerably from the rational principles
of conventional game theory. In this regard, the framework
of prospect theory(PT) [11] can be used to model the non-
rational behavior of MGOs in the presence of uncertainty such
as renewable energy sources [13], and its impact on the ability
of MGs to meet the power grid’s critical load.

The main contribution of this paper is to propose a new
framework for analyzing the storage strategy of MGOs in
order to enhance smart grid resilience. In this regard, we
formulate a noncooperative Bayesian game between multiple
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MGOs to account for the incomplete information of each
MGO regarding the excess of energy of its opponents. In
this game, each MGO must choose a portion of its MG’s
energy excess to store so as to maximize a utility function
that captures the tradeoff between selling at the current market
price and potentially selling in the future at a significantly
higher emergency energy price. In contrast to conventional
game theory, we develop a prospect-theoretic framework that
models the behavior of MGOs when faced with the uncer-
tainty of their opponents’ stored energy, which stems from
the presence of intermittent renewable energy sources. In
particular, we account for each MGO’s valuation of its gains
and losses with respect to its own individual utility evaluation
perspective, as captured via the PT framing effect [11] by
a utility reference point. This reference point representsa
utility that an individual MGO anticipates and it originates
from previous experiences and future aspirations of profits,
which can differ in between MGOs [12].

For this proposed game, we derive the closed-form ex-
pression for the Bayesian Nash equilibrium (BNE) for the
classical game-theoretic scenario and interpret this equilibrium
under different conditions. For the PT case, we propose a
best response algorithm that allows the MGOs to reach a
BNE in a decentralized fashion. Simulation results highlight
the difference in MGO behavior between the fully rational
case of classical game theory (CGT) and the prospect-theoretic
scenario. Indeed, for certain reference points, MGOs choose
to store more energy under PT compared to CGT, while
the case is reversed for other reference points where MGOs
noticeably reduce their MGs’ stored energy. In addition, the
impact of the reference point is found to be more prominent
as the emergency price increases. The power company must
therefore quantify the subjective behavior of the MGOs before
choosing the optimal emergency energy price, in order to meet
the critical load at minimal cost.

The rest of this paper is organized as follows. Section II
presents the system model and provides the Bayesian game
formulation. In Section III, we present the game solution under
classical game theoretic analysis, while we present in Section
IV the game solution under prospect theoretic analysis. In
Section V, we present and interpret our simulation results,
and finally conclusions are drawn in Section VI.

II. SYSTEM MODEL AND BAYESIAN GAME FORMULATION

Consider a large-scale smart grid managed by a power
company that integrates a setN of N microgrids, each of
which is managed by an MG operator. Microgrids are small-
scale distribution grids which typically include renewable
generation units, storage devices, and energy consumers. Each
MG operator manages all energy trades conducted by its own
MG. Each MGn ∈ N , managed by its MGOn, includes
a storage unit with capacityQn,max which can be used to
store the excess of energy produced. Given the intermittent
nature of renewable energy sources, each MG’s energy surplus
Qn ∈ [0, Qn,max] is unknown beforehand and will vary over
time. A positiveQn indicates that an MG has extra energy
while Qn = 0 indicates that no surplus is available. Given an

amount of energy surplus,Qn, an MGOn has the option of
selling this stored energy to the grid at the corresponding retail
price, ρ, or saving it for later use in case of emergency, for
improved resilience. In this regard, each MGO will choose
a portion αn ∈ [0, 1] of its MG’s Qn to store and will
consequently sell the rest. In case of emergency or blackout,
the power company will purchase the stored energy to cover
a certain required critical loadLc, until normal power supply
is restored.

In order to increase the resilience of the power grid against
emergency events, the power company will encourage the
MGOs to store part of their MGs’ excess by offering a price
ρc per unit of stored energy purchased in case of emergency.
Typically, ρc must be significantly larger thanρ to incentivize
the MGOs to store the excess. If the total stored energy
exceeds the neededLc, the power company will no longer
purchase the entire energy stored by each MG.

Let α andQ be the vectors that represent, respectively, the
storage strategy and the available energy surpluses of all the
MGOs in the setN . In this respect, whenα⊺Q > Lc, the
power company will purchase, from each MGn, an amount
of energyDn given by:

Dn =

(

αnQn −
α⊺Q− Lc

N

)+

, (1)

where(q)+ = max(0, q). α⊺Q− Lc is the amount by which
the total stored energy exceeds the requiredLc. Let θ be the
expected probability of an emergency event occurring. Then,
each MGOn will choose its optimal storage strategyαn to
optimize the following utility function:

Un(α,Q) =

{

ρ (Qn − αnQn) + θρcαnQn, if α⊺Q ≤ Lc,

ρ (Qn − αnQn) + θρcDn, otherwise.

(2)
Note that, whenθρc < ρ, the MGOs will have no incentive

to store their MGs’ excess and, hence, they will sell all the
available surplus at the current market price. Thus, hereinafter,
we restrict our analysis to the caseθρc > ρ. As seen from (2),
the driving factor in determining an MGO’s optimal strategyis
the total energy stored by its opponents. In fact, asα⊺Q−Lc

increases, so will the amount of stored energy which will not
be bought in case of emergency. Indeed, the MGO could have
instead sold that energy at the current market price and made
a profit. Given this trade-off between selling at the current
market price and storing the excess for a potentially higher
profit in case of emergency, each MGO aims at maximizing
its utility function by choosing the optimal storage strategyαn,
while also accounting for the actions of its opposing MGs.

Each MGO is typically fully aware of the presence of all
N MGs in the power grid and knows the size of their storage
devices. In addition, each MGO knows the exact amount of
energy excess available to its own MG. However, an MGO
cannot determine the energy excess of other MGs. In fact,
obtaining such information is not possible especially given
the intermittent renewable energy sources and the time-varying
nature of energy consumption. Each MGO thus assumes the
excess of energyQm of other MGs to be a random variable
that follows a certain probability distribution functionfn(Qm)



over [0, Qm,max] wherem ∈ N \ {n}. We refer toQn as
the type of MGO n and, tofn(Qm), as MGOn’s belief of
another MGOm’s type. In fact, when MGOn chooses a
certain storage strategyαn, it is uncertain of the profit it will
gain. This uncertainty stems from its incomplete information
regarding the type of its opponents, originating from the
intermittent renewable energy and the time-varying nature
of energy consumption, as well as from randomness of an
emergency event.

Given the competition over the financial incentives offered
by the power company for emergency energy, the MGOs’
actions and utility are highly interdependent thus motivating
a game-theoretic approach [10]. In addition, given the in-
complete information of the opponents’ excess of energy that
directly affects the MGOs’ utility, each MGO will maximize
its expected utility given its own beliefsfn(Qm). MGO n’s
expected utility,En(α, Qn), will therefore be given by

En(α, Qn) = EQ
−n

[Un(α,Q)] , (3)

whereQ−n is the vector that represents the energy excess
of all MGs in the setN \ {n}. The strategic interactions
between the various MGOs under incomplete information can
be modeled using Bayesian game models [10].

A. Bayesian game formulation

We formulate a static noncooperative Bayesian game [10]
between the different MGOs in the setN . In this game,
each MGO seeks to maximize its expected utility given its
beliefs of its opponents’ energy excess by choosing its optimal
storage strategy. Since the decisions on the portion of energy
to store are coupled, as captured by (2), we adopt a game-
theoretic approach. Formally, we define a strategic game
Ξ = {N , {An}n∈N , {Tn}n∈N , {Fn}n∈N , {Un}n∈N} where
N is the set of all MGOs,An is the action space which
represents the possible storage strategies of each playern, Tn
is the set of types of MGOs that represent the possible energy
surplus for each their MGs,Fn is the set of beliefs of player
n represented by the probability distributions of each of its
opponents’ types, andUn is the utility function of playern
defined in (2). In order to find the solution of the proposed
game, we first define the two key concepts ofbest response
strategyandBayesian Nash equilibrium.

Definition 1. The set ofbest response strategiesof an MGO
n ∈ N to the strategy profileα−n, r(α−n), is defined as

rn(α−n)={α∗

n ∈ An|EQ
−n

[Un(α
∗

n,α−n,Q)] ≥

EQ
−n

[Un(αn,α−n,Q)] , ∀αn ∈ An}, (4)

whereα−n is the vector that represents the storage strategy
of all MGOs in the setN \ {n}.

In other words, when the strategies of the opponents are
fixed to α−n, any best response strategy would maximize
playern’s expected utility, given its beliefsFn of its oppo-
nents’ types. In our analysis, we assume that an MGO’s belief
fn(Qm) over its opponent’s energy surplus follows a uniform
distribution over the domain[0, Qm,max]. We next define the
concept of a pure strategy Bayesian Nash equilibrium.

Definition 2. A strategy profileα∗ is said to be apure strategy
Bayesian Nash equilibriumif every MGO’s strategy is a best
response to the other MGOs’ strategies, i.e.

α∗
n ∈ rn(α

∗
−n)∀n ∈ N . (5)

In the proposed game, at the BNE, no MGOn, can increase
its expected utility by unilaterally deviating from its storage
strategyα∗

n.
In what follows, we will derive closed-form expressions of

the BNEs for the case in which two MGs are located in the
proximity of the critical load. In fact, power supply to the
critical load from distant MGs might not be feasible due to
transmission barriers and significant power losses. As such,
given these limitations and the scale of a given microgrid, the
analysis for two MGs will be quite representative.

III. T WO-PLAYER GAME SOLUTION UNDER CLASSICAL

GAME THEORY ANALYSIS

For the case in which two MGs (N = 2) are capable of
supplying the critical load, the expected utility of MGO1
given its belief of MGO2’s type can be written as

E1(α, Q1) =

∫ Q2,max

0

U1(α,Q)f1(Q2)dQ2, (6)

whereα = [α1 α2] andQ = [Q1 Q2]. For the two-MG case,
we have

U1(α,Q) =

{

ρQ1 (1− α1) + θρcα1Q1 if α2 ≤ Lc−α1Q1

Q2
,

ρQ1 (1− α1) + θρcD1 otherwise.
(7)

Next, we assume that neither of the MGs owns a large enough
storage device to fully supply the critical load on its own.
Under this assumption,D1 will be given by

D1 = α1Q1 −
1

2
(α1Q1 + α2Q2 − Lc) . (8)

In order to find the solution of the proposed game, we first
derive the best response strategy of each player which we then
use to compute the different BNEs.
A. Derivation of the best response

The best response strategy of each MGO is characterized
next. In fact, we present the following propositions that
analyze MGO1’s best response for different values ofα2.

Proposition 1. The best response of MGO1, for α2 ∈
[

0, Lc−Q1

Q2,max

]

, is given byr1(α2) = 1. MGO 1 thus maximizes
its expected utility by storing its MG’s entire energy excess.

Proof: Forα2 ≤ Lc−Q1

Q2,max
, the total stored energy is below

the critical load for all types of MGO2 and all strategies
of MGO 1 since α2Q2,max + Q1 ≤ Lc. Thus, MGO 1’s
best response is to store its entire energy excess which is
fully sold in case of emergency. In fact, here,E1(α, Q1) =
U1(α,Q) = ρ (Q1 − α1Q1) + θρcα1Q1 sinceU1(α,Q) is
independent ofQ2 for this case, as seen in (7).E1(α, Q1) is
clearly an increasing function, given thatρcθ > ρ, which is
maximized at its upper boundary (α1 = 1). Thusr1(α2) = 1

for α2 ∈
[

0, Lc−Q1

Q2,max

]

.
Proposition 2. The best response of MGO1, for α2 ∈
[

Lc−Q1

Q2,max
, 1
]

, is given by



r1(α2) =

{

Lcρcθ+(ρcθ−2ρ)α2Q2,max
Q1ρcθ

, if
[

2ρ
ρcθ

− 1
]

α2 > Lc−Q1

Q2,max
,

1, if
[

2ρ
ρcθ

− 1
]

α2 ≤
Lc−Q1

Q2,max
.

(9)
Proof: The proof of this proposition is in Appendix A.

Given the previous propositions, an MGO’s best response
strategy is thus summarized in the following theorem.

Theorem 1. The best response strategy of MGO1, r1(α2), is
given by

r1(α2) =











1, if α2 ≤ Lc−Q1

Q2,max
,

α1,r , if α2 > Lc−Q1

Q2,max
and

[

2ρ
ρcθ

− 1
]

α2 > Lc−Q1

Q2,max
,

1, if α2 > Lc−Q1

Q2,max
and

[

2ρ
ρcθ

− 1
]

α2 ≤ Lc−Q1

Q2,max
.

(10)
MGO 2’s best response strategyr2(α1) is derived similarly
and is the same as (10) but with indices1 and2 interchanged.

Proof: The proof follows from Propositions 1 and 2.

B. Derivation and interpretation of the equilibria

Given the MGOs’ best response function in (10), we will
compute all possible BNEs for this game. We will then derive
and interpret the conditions needed for each BNE to exist.

Theorem 2. The proposed MGO game admits four possible
Bayesian Nash equilibria for different conditions that relate
the MG parameters,Qn and Qn,max, with power grid
parametersρ, ρc, θ, and Lc. The strategy profiles (α∗

1, α
∗
2),

that constitute the four BNEs, are the following:
1) First BNE: (1,1).

2) Second BNE:

(

1,
Lcρcθ + (ρcθ − 2p)Q1,max

Q2ρcθ

)

.

3) Third BNE:

(

Lcρcθ + (ρcθ − 2p)Q2,max

Q1pcθ
, 1

)

.

4) Fourth BNE:
(

α∗
1,4, α

∗
2,4

)

is the strategy profile that
constitute the fourth BNE, where

α∗
1,4 =

−Lρcθ(Q2ρcθ − 2Q2,maxρ+Q2,maxρcθ)

Q1,maxQ2,max(4ρ2 + ρ2cθ
2 − 4ρρcθ)−Q1Q2ρ2cθ

2
,

α∗
2,4 =

−Lρcθ(Q1ρcθ − 2Qmax,1ρ+Q1,maxρcθ)

Q1,maxQ2,max(4ρ2 + ρ2cθ
2 − 4ρρcθ)−Q1Q2ρ2cθ

2
.

Proof: The strategy profiles of the BNEs are derived by
solving the set of best-response equations,α∗

1 = r1(α
∗
2) and

α∗
2 = r2(α

∗
1), for the different possible combinations of the

best response strategies.
The conditions under which each BNE is defined are further
summarized and interpreted next.

1) First BNE: the strategy profile (1,1) constitutes a BNE
of the proposed game if any of the following four conditions
is satisfied:

a) Lc ≥ Q2,max+Q1 andLc ≥ Q1,max+Q2. Here, each
MGO is aware that the total stored energy is below the critical
load, regardless of the type and strategy of its opponent.

b) Lc ≥ Q2,max + Q1 and 2ρ
ρcθ

− 1 ≤ Lc−Q2

Q1,max
< 1. Here,

MGO 1 knows that the total stored energy is always below the
critical load regardless of the type and strategy of its opponent.
On the other hand, MGO2 is aware that part of its MG’s stored

energy might not be sold in case of emergency. However,ρc
is large enough compared toρ to satisfy the condition under
which MGO 2 stores its MG’s entire excess.

c) 2ρ
ρcθ

− 1 ≤ Lc−Q1

Q2,max
< 1 and Lc ≥ Q1,max + Q2. The

analysis of this condition is the same as condition b) with the
order of the players reversed.

d) 2ρ
ρcθ

−1 ≤ Lc−Q1

Q2,max
< 1 and 2ρ

ρcθ
−1 ≤ Lc−Q2

Q1,max
< 1. In this

case, both MGOs are aware that part of their stored energy
might not be sold. However,ρc is large enough compared to
ρ to satisfy the conditions for which both MGOs store their
MGs’ entire excess.

2) Second BNE: the strategy profile
(

1,
Lcρcθ+(ρcθ−2p)Q1,max

Q2ρcθ

)

constitutes a BNE of the proposed
game if any of the following two conditions are satisfied:

a) Lc ≥
Lcρcθ+(ρcθ−2p)Q1,max

Q2ρcθ
Q2,max+Q1 and

2ρ
ρcθ

−1 > Lc−Q2

Q1,max
. In this case, MGO1 knows that given MGO

2’s storage strategy, the total stored energy is always belowthe
critical load. Meanwhile, MGO2 is aware that, given MGO
1’s strategy, the total stored energy might exceed the critical
load and part of its stored energy might not be sold in case
of emergency. MGO2 will not store the entire excess given
that ρc is not large enough compared toρ.

b)
[

2ρ
ρcθ

− 1
]

Lcρcθ+(ρcθ−2ρ)Q1,max

Q2ρcθ
≤ Lc−Q1

Q2,max
,

Lc−Q1

Q2,max
<

Lcρcθ+(ρcθ−2ρ)Q1,max

Q2ρcθ
and 2ρ

ρcθ
− 1 > Lc−Q2

Q1,max
. Here,

both MGOs know that given their opponent’s strategy, part of
their MG’s stored energy might not be sold. The emergency
priceρc is large enough compared toρ to satisfy the condition
for which MGO 1 stores the entire excess, however, it is not
large enough for MG2 to fully store its MG’s entire excess.

3) Third BNE: The interpretation of the third BNE is
similar to that of the second but with index 1 swapped with 2.

4) Fourth BNE: The strategy profile
(

α∗
1,4, α

∗
2,4

)

, defined
in Theorem 2, constitutes a BNE which is obtained by
solving the set of equationsα∗

1 = α1,r andα∗
2 = α2,r, in the

case where the following condition is satisfied:

a) α∗
2,4

[

2ρ
ρcθ

− 1
]

> Lc−Q1

Q2,max
andα∗

1,4

[

2ρ
ρcθ

− 1
]

> Lc−Q2

Q1,max
.

Under this condition, both MGOs know that given their
opponent’s strategy, part of their MG’s stored energy might
not be sold. The emergency priceρc is not large enough
to satisfy the conditions under which either MGO stores the
entire excess.

Our previous analysis assumes that all MG operators are
fully rational and their behavior can thus be modeled using
classical game-theoretic analysis. However, this assumption
might not hold true in a real smart grid, given that the oper-
ators of the MGs might have different subjective valuations
of the payoffs gained from selling their energy surplus. Next,
we will use the framework of prospect theory [11] to model
the behavior of MGOs when faced with such uncertainty
and subjectivity of profits, stemming from the presence of
renewable energy and the uncertainty it imposes on the volume
of energy surplus that other MGOs generate.



IV. PROSPECT THEORETIC ANALYSIS

In a classical noncooperative game, a player evaluates an
objective expected utility. However, in practice, individuals
tend to subjectively perceive their utility when faced withun-
certainty [11]. In our model, an MGO’s uncertainty originates
from the presence of renewable energy and the uncertainty it
imposes on the volume of energy surplus that the opposing
MGOs generate. In fact, an MGO is uncertain of the portion of
its MG’s stored energy that will be sold in case of emergency,
which is directly related to the energy surplus available toits
opponents. Since MGOs are humans, they will perceive the
possible profits of energy trading, in terms of gains and losses.

This motivates the application of PT to account for the
MGO’s subjectivity while choosing the optimal energy portion
to store. PT is a widely used tool for understanding human
behavior when faced with uncertainty of alternatives. In our
analysis, we will inspect the effect of the key notion of utility
framing from prospect theory. Utility framing states that a
utility is considered a gain if it is larger than the reference
point, while it is perceived as a loss if it is smaller than that
reference point. We defineRn as the reference point of a given
MGO n. The choice ofRn can be different between MGOs
as it reflects personal expectations of profit from selling the
energy surplus. In this regard, a certain profit,r, originating
from a particular energy trade, will be perceived differently
by an MGO used to reaping larger profits as opposed to an
MGO that usually generates lower profits. In fact, an MGO
n with historically high profits would have a high reference
point,Rn > r, and will hence considerr to be a loss, whereas,
an MGOm with relatively low historical profits would have a
lower reference point,Rm < r and would hence considerr to
be a gain. Consequently, to model this subjective perception
of losses and gains we need to redefine the utility function of
the MGOs using PT framing [12]:

V (Un (α,Q)) =

{

(Un(α,Q)− Rn)
β+

if Un(α,Q) > Rn,

−λn (Rn − Un(α,Q))β
−

if Un(α,Q) < Rn,
(11)

where0 < β− ≤ 1, 0 < β+ ≤ 1 andλ ≥ 1.
V (·) is the framing value function that is concave in gains

and convex in losses with a larger slope for losses than for
gains [12]. In fact, PT studies show that the aggravation that
an individual feels for losing a sum of money is greater than
the satisfaction associated with gaining the same amount [11],
which explains the introduction of the loss multiplierλn.
In addition, the framing principle states that an individual’s
sensitivity to marginal change in its utility diminishes aswe
move further away from the reference point, which explains
the introduction of the gain and loss exponentsβ+ andβ−.

It is important to note that, as an MGO chooses to store a
larger portionα of its MG’s energy, its potential payoffs will
now span a larger range of values. In other words, as an MGO
stores more energy, it will now have the possibility to make
higher expected profits by selling more in case of emergency.
On the other hand, by storing more energy, the MGO risks
making less profit whenever its opponent has also stored a
significant part of its own energy. These probable payoffs are

related to the type of the opponent. In fact, the MGO would get
a maximum profit for the case in which the opponent’s type
is small, i.e. the opponent did not have a significant energy
surplus. For the case in which the opponent’s type is large, a
significant part of an MG’s stored energy will not be sold in
case of emergency, resulting in lower possible payoffs for its
MGO, compared to smaller values ofα. This concept is key
in our PT analysis, given that payoffs are evaluated through
comparison to the reference point. Similarly to our analysis for
the CGT case, we will first derive the best response strategy
of the MGOs.

Proposition 3. The best response of MGO1 under PT, for
α2 ∈

[

0, Lc−Q1

Q2,max

]

, is to store its entire energy excess, similarly
to the classical game theory analysis.

Proof: As seen from Proposition 1, forα2 ∈
[

0, Lc−Q1

Q2,max

]

,

U1(α,Q) is an increasing function over its domain. Given that
the framing functionV (·) is an increasing function as well,
MGO 1’s expected utility,E1,PT(α, Q1) = V (U1 (α,Q)), is
thus maximized at its upper boundary ofα1 = 1.

We next derive the expected utility of MGO1 under PT
for α2 ∈

[

Lc−Q1

Q2,max
, 1
]

. MG 1’s expected utility forα2 ∈
[

Lc−Q1

Q2,max
, 1
]

takes different values forα1 ∈
[

0,
Lc−α2Q2,max

Q1

]

andα1 ∈
[

Lc−α2Q2,max

Q1
, 1
]

:

Proposition 4. For α1 ∈
[

0,
Lc−α2Q2,max

Q1

]

and α2 ∈
[

Lc−Q1

Q2,max
, 1
]

, MGO 1’s expected utility under PT,EPT,1,2a, is
given by

EPT,1,2a(α, Q1) =

{

−λ1 (R1 − U1,2a)
β
−

1 if α1 ≤ B,

(U1,2a −R1)
β
+
1 if α1 > B,

(12)

whereU1,2a = ρ (Q1 − α1Q1)− θρcα1Q1, andB = R1−ρQ1

Q1(ρcθ−ρ)
.

Proof: In Proposition 4, Equation (12) follows from the
fact that forα1 ≤ B, the original utility,U1,2a, is below the
reference pointR1 and is thus perceived as a loss. On the
other hand, it is considered as a gain forα1 > B.

Proposition 5. For α1 ∈
[

Lc−α2Q2,max

Q1
, 1
]

and α2 ∈
[

Lc−Q1

Q2,max
, 1
]

, player 1’s expected utility under PT is given by

EPT,1,2b(α, Q1) = I1 + I2, (13)

where

I1 =











−
λ1(Lc − α1Q1)

α2Qmax,2

[

R1 − UI,1

]β
−

1 if α1 ≤ B,

Lc − α1Q1

α2Qmax,2

[

UI,1 − R1

]β
+
1 if α1 > B,

(14)

UI,1 = ρ (Q1 − α1Q1) + θρcα1Q1, (15)

I2 =











































Ml

[

(R1 − Umax,2)
β
−

1
+1

−
(

R1 − UA,2

)β
−

1
+1

]

if C1,

Mg

[

(Ur,2 − R1)
β
+

1
+1

−
(

UA,2 −R1

)β
+
1
+1

]

+

Ml

[

(R1 − Umax,2)
β
−

1
+1

− (R1 − Ur,2)
β
−

1
+1

]

if C2,

Mg

[

(Umax,2 − R1)
β
+
1
+1

−
(

UA,2 −R1

)β
+
1
+1

]

if C3,

(16)



Mg =
−2

(

β+
1 + 1

)

ρcθα2

, Ml =
−2λ1

(

β−

1 + 1
)

ρcθα2

,

Umax,2 = ρ (Q1 − α1Q1) + 1
2
θρc (α1Q1 + Lc −Q2,max),

UA,2 = ρ (Q1 − α1Q1) +
1
2
θρc (α1Q1 + Lc − A), A = Lc−α1Q1

α2
,

and Ur,2 = ρ (Q1 − α1Q1) +
1
2
θρc (α1Q1 + Lc −Q2,r). Q2,r is

given in (26).
ConditionC1, C2, andC3 are given by

C1 : α1 ≤ B, (17)

C2 : α1 > B and

Q1 (θρc − 2ρ)α1 ≤ θρcα2Qmax,2 − Lcρcθ − 2ρQ1 + 2R1, (18)

C3 : α1 > B and

Q1 (θρc − 2ρ)α1 > θρcα2Qmax,2 − Lcρcθ − 2ρQ1 + 2R1. (19)

MGO 2’s expected utility function is derived in a similar
manner as MGO 1’s with indices 1 and 2 reversed.

Proof: The proof is given in Appendix C.
Given the complex structure of each MGO’s expected utility

function with framing, computing the closed-form expression
of the best response strategy is difficult for the PT case. In
particular, the analysis ofEPT,1,2b is quite challenging due
to the various forms that the function can take under different
conditions as seen in (14) and (16). Therefore, in order to find
the BNE under PT, a best response algorithm is proposed.

This iterative algorithm dictates that, in response to its
opponent’s current strategy, each MGO sequentially chooses
its optimal storage strategy by numerically characterizing,
from its action space, the action that maximizes its expected
utility. In fact, given the closed-form expressions provided
in Propositions 3, 4, and 5, an MGO can easily compute
its expected utility for each of its strategies. In this respect,
upon convergence, this algorithm is guaranteed to reach an
equilibrium [10]. In fact, at the point of convergence, each
MGO is playing the strategy that maximizes its expected
PT utility facing its opponent’s strategy. Hence, the MGOs
will reach a BNE from which none has any incentive to
deviate since such deviation would not improve their expected
payoff. Indeed, as observed in our simulations in Section V,
the algorithm always converged to an equilibrium.

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a smart grid withN = 2
MGs capable of supplying power to one of the power grid’s
critical loads which requires a total ofLc = 200 kWh to
remain operational until regular power supply is restored.We
also assume the regular price per unit of energy to beρ = $0.1
per kWh. In addition, we takeθ = 0.01, andρc = $11.6 per
kWh unless stated otherwise. The exponentsβ+ andβ− are
taken to be both equal to 0.88 and the loss multiplierλ = 2.25
unless stated otherwise [12]. We simulate the system for two
scenarios: CGT, and PT under utility framing.

Fig. 1 compares the effects of different MGO reference
points on the total energy stored for both CGT and PT anal-
ysis. In the classical game theory case(β+ = β− = λ = 1),
an MGO’s reference point is irrelevant given that losses and
gains are computed in an identical objective manner. For the
PT case, for a reference point below$8, the BNE action profile
is not significantly affected compared to the classical game
theory case, since most potential payoffs of the BNE actions
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Figure 1. Total stored energy under classical game theory and prospect
theory.
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Figure 2. Effect of emergency price on PT sensitivity to the reference point.

are still viewed as gains above the reference point. As the
reference point increases from$8 to $11.5, the total stored
energy will decrease from around200 to 184 kWh, since
some of the potential payoffs of the current BNE will start
to be perceived as losses, as they cross the reference point.
Given that losses have a larger weight under PT compared
to classical game theory, the expected utility of the current
strategy profile will significantly decrease, thus causing the
BNE to drift towards lower storage strategies. The MGOs will
exhibit risk averse behavior as they sell more of their energy at
the current risk-free retail market priceρ. In fact, as previously
mentioned, by decreasingα, the minimum potential payoffs
are larger, compared to the larger values ofα, and are still
above the reference point.

The described behavior is reversed in the[11.5, 13] range
where the MGOs start exhibiting more risk seeking behavior,
i.e., storing more energy, to reach a total stored energy of210
kWh. In fact, the low risk strategies’ potential payoffs arenow
fully perceived as losses causing a significant devaluationof
their expected utility values. The BNE will thus go towards
higher values ofα with larger maximum payoffs, compared
to lower values ofα, which are partially still considered
as gains. Finally, when the reference point is above$13.5,
most potential payoffs of most strategies are now perceived
as losses and the effect of PT will diminish gradually, and
the total energy stored will reach202 kWh, identically to
classical game theory. It is important to note that the critical
load energy requirements are 200 kWh, which is met with the
stored energy of the MGs under classical game theory but not
necessarily under PT analysis. This highlights the need foran
accurate behavioral analysis of the studied system.

Fig. 2 shows the effect of changing the emergency priceρc
on the role of the reference point in an MGO’s decision, for
λ = 4. For a price ofρc = $10.2 per kWh, the total energy
stored does not vary with the reference point. In fact, the
expected future profits gained from storing energy are close
to the profits incurred by selling at the current market price.
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On the other hand, when the price is increased toρc = $11 per
kWh, the total stored energy will vary with the reference point
by up to10% from its original value. In fact, storing energy
will now yield significantly higher expected future profits,
compared to selling at the current market price. Thus, an
MGO’s risk-seeking or risk-averse behavior is justified given
the increasing uncertainty in profits. Similarly, whenρc = $12
per kWh, the total stored energy would vary further with the
changing reference point, by up to17% from its original value.

Fig. 3 shows the effect of the loss multiplierλ on the
emergency priceρc needed to cover the critical load for the
reference points of$11.5 and $12.5. The effect of framing
is more prominent as the loss multiplier increases. In fact,
the MGOs will exhibit more risk averse behavior for the
specified reference points asλ increases, thus prompting the
power company to increase the critical price in order to
cover the critical load. In fact, asλ increases, so will the
valuation of the MGOs’ losses. To avoid the large losses,
the MGOs will decrease the energy stored by their MGs
and will tend to sell more energy at the current risk free
market price. This highlights the importance of behavioral
analysis in choosing the proper pricing mechanism in smart
grid resilience planning.

Fig. 4 illustrates the storage strategies at equilibrium for the
case in which one of the MGOs is fully rational, while the
second is subjective. The rational MGO will naturally have no
reference point. Here, both MGs have the same size of storage
Qmax = 150 kWh and energy excess availableQ = 120 kWh.
As seen in Fig. 4, as the reference point of the subjective MGO
increases from$5 to $13, it will exhibit risk averse behavior
and decrease the portion of energy it stores, to reach a valueof
0.625. This is similar to the analysis of Fig. 1. To respond, the
rational MGO will hence increase the portion of energy stored
to reach its maximum of1, given the lower stored energy
of its opponent. As the reference point increases from$13
to $14.5, the subjective MGO will exhibit more risk seeking
behavior and increase the portion of energy stored to reach

its maximum of1. The rational MGO, will thus decrease its
MG’s stored energy, given the storage strategy of its opponent.
Finally, as the reference point increases from$14.5 to $25,
the effect of utility framing will gradually decrease, and the
storage strategy of both MGOs will reach a value of0.88.
Given the negligible effect of PT at the high reference point
of $25, both MGOs, rational and subjective, will have equal
strategies at equilibrium and thus similar behavioral patterns.

VI. CONCLUSION

In this paper, we have proposed a novel framework for
analyzing the storage strategy of micorgrid operators in an
attempt to enhance smart grid resilience. We have formulated
the problem as a Bayesian game between multiple MGOs,
who must choose the portion of their microgrids’ excess
to store, in order to maximize their expected profits. The
MGOs play a noncooperative game, which is shown to have
four Bayesian Nash equilibria for the two MG case, under
different conditions. Subsequently, we have used the novel
concept of utility framing from prospect theory to model the
behavior of MGOs when faced with the uncertainty of their
opponents’ energy surplus. Simulation results have highlighted
the impact of behavioral considerations on the overall process
of enhancing the resilience of a smart grid by exploiting
distributed, microgrid energy storage.
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APPENDIX A
PROOF OFPROPOSITION2

For the proof of Proposition2, first, we analyze the
expected utility of MGO1, for α1 ∈

[

0,
Lc−α2Q2,max

Q1

]

and



α1 ∈
[

Lc−α2Q2,max

Q1
, 1
]

, with α2 ∈
[

Lc−Q1

Q2,max
, 1
]

.

a) For α1 ∈
[

0,
Lc−α2Q2,max

Q1

]

, the total energy stored
is below the critical loadLc for all possible types of MGO
2. Here, MGO1’s expected utility is given by

E1,2a(α, Q1) = ρ (Q1 − α1Q1) + θρcα1Q1.

E1,2a is a strictly increasing function given thatθρc > ρ,
hence, it is maximized at its upper boundaryα∗

1,2a =
Lc−α2Q2,max

Q1
.

b) Forα1 ∈
[

Lc−α2Q2,max

Q1
, 1
]

, given MGO2’s strategy, the
total energy stored is above the critical load for certain types
of MGO 2. MGO 1’s expected utility is given by

E1,2b(α, Q1) =

∫ A

0
U1(α,Q)f(Q2)dQ2

+

∫ Q2,max

A

U1(α,Q)f(Q2)dQ2, (20)

with A = Lc−α1Q1

α2
which follows from (5). Under this

assumption,f1(Q2) = 1/Q2,max over its domain andE1,2b

is now given by

E1,2b(α, Q1) =
1

Q2,max

∫

A

0

[ρ (Q1 − α1Q1) + θρcα1Q1] dQ2+

1

Q2,max

∫

Q2,max

A

[

ρ (Q1 − α1Q1) +
1

2
θρc (α1Q1 − α2Q2 + Lc)

]

dQ2.

(21)
By taking the second derivative of (21) with respect to the

decision variableα1, we get

∂E1,2b

∂2α1
= −

Q2
1ρcθ

2α2Qmax,2
.

The function is strictly concave given that its second derivative
is strictly negative. The optimal solution is, hence, obtained
by the necessary and sufficient optimality condition given by

∂E1,2b

∂α1
= 0. (22)

(22) has a unique solution which is given by

α1,r =
Lcρcθ + (ρcθ − 2ρ)α2Q2,max

Q1ρcθ
.

Given thatE1,2b is a strictly concave function and thatα1

is restricted to
[

Lc−α2Q2,max

Q1
, 1
]

, α∗
1,2b will be

α∗
1,2b =







Lc−α2Q2,max
Q1

, if α1,r <
Lc−α2Q2,max

Q1
,

α1,r , if α1,r ∈

[

Lc−α2Q2,max
Q1

1
]

,

1, if α1,r > 1.

(23)

In fact, α1,r is the optimal solution forE1,2b if it belongs
to the feasible region ofE1,2b. On the other hand, ifα1,r is
larger than the upper bound, thenE1,2b is a strictly increasing
function over the feasibility set and is maximized at its upper
boundα∗

1,2b = 1. Finally, if α1,r is smaller than the domain’s

lower boundLc−α2Q2,max

Q1
, thenE1,2b is a strictly decreasing

function over the feasibility set and is maximized at its lower
bound. However, the conditionα1,r <

Lc−α2Q2,max

Q1
cannot be

satisfied forρcθ > ρ, and thusLc−α2Q2,max

Q1
cannot be the

maximizer ofE1,2b. We can thus rewrite (23) as

α∗
1,2b =







α1,r, if
[

2ρ
ρcθ

− 1
]

α2 > Lc−Q1

Q2,max
,

1, if
[

2ρ
ρcθ

− 1
]

α2 ≤ Lc−Q1

Q2,max
.

(24)

We first note thatE1,2a = E1,2b for α1 =
Lc−α2Q2,max

Q1

which is the maximizer ofE1,2a. However, as previously dis-
cussed,E1,2b cannot be maximized atLc−α2Q2,max

Q1
. Thus, the

maximizer of MGO1’s expected utility, forα2 ∈
[

Lc−Q1

Q2,max
, 1
]

,

belongs to the domain
[

Lc−α2Q2,max

Q1
, 1
]

. In other words,

r1(α2) = α∗
1,2b for α2 ∈

[

Lc−Q1

Q2,max
, 1
]

.

APPENDIX B
PROOF OFPROPOSITION5

Player 1’s expected utility under PT, forα2 ∈
[

Lc−Q1

Q2,max
, 1
]

,

andα1 ∈
[

Lc−α2Q2,max

Q1
, 1
]

, is given by

EPT,1,2b(α, Q1) =

∫

A

0

1

Q2,max
V (ρ (Q1 − α1Q1) + θρcα1Q1) dQ2+

∫

Q2,max

A

1

Q2,max
V

(

ρQ1 (1 − α1) +
1

2
θρc (α1Q1 − α2Q2 + Lc)

)

dQ2.

(25)

We denote byI1 the first integral in (25), and byI2 the
second. As previously mentioned, PT states that a utility
is perceived in terms of gains and losses with respect to
the reference point. Next, we analyze the possible values
of both integralsI1 (first integral) andI2 (second integral)
in (25) from that perspective. The original utility inI1,
UI,1 = ρ (Q1 − α1Q1) + θρcα1Q1, is only a function ofα1

and is independent ofQ2. Equation (14) follows from the fact
that forα1 ≤ B, UI,1 is below the reference pointR1 and is
thus perceived as a loss. On the other hand, it is considered
as a gain forα1 > B.

We then assess the possible values ofI2. The orig-
inal utility function in I2, UI,2 = ρ (Q1 − α1Q1) +
1
2θρc (α1Q1 − α2Q2 + Lc) is considered a loss given that

ρ (Q1 − α1Q1) +
1

2
θρc (α1Q1 − α2Q2 + Lc) < R1,

which can be rewritten asQ2,r < Q2 with Q2,r given by

Q2,r =
2

ρcθα2

[

ρ (Q1 − α1Q1) +
1

2
θρc (α1Q1 + Lc)−R1

]

.

(26)
Given that MGO1’s expected utility is taken over MGO2’s

type (Q2), we next analyzeI2 for different values ofQ2. (16)
follows from the fact thatI2 is a loss integral forQ2,r < A.
Given that the lower bound ofI2 is larger thanA, then the
entire range ofQ2 values is as well. The conditionQ2,r < A
can be rewritten asC1. On the other hand,I2 is a gain integral
for Q2,r > Q2,max which can be rewritten asC2. Finally, for
A < Qr,2 < Q2,max, I2 is split into two parts: a gain integral
on [A,Q2,r] and a loss integral on[Qref2, Q2,max]. A < Q2,r <
Q2,max can be rewritten asC3. (14) and (16) are obtained by
evaluating the integralsI1 andI2 for the described cases.
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