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Abstract

We introduce a class of Liouville manifolds with boundary which we call Liouville
sectors. We define the wrapped Fukaya category, symplectic cohomology, and the open-
closed map for Liouville sectors, and we show that these invariants are covariantly
functorial with respect to inclusions of Liouville sectors. From this foundational setup,
a local-to-global principle for Abouzaid’s generation criterion follows.

1 Introduction

The goal of this paper is to introduce local methods in the study of Floer theory on Liouville
manifolds.

We introduce a class of Liouville manifolds with boundary which we call Liouville sectors
(Definition 1.1). We define the wrapped Fukaya category, symplectic cohomology, and the
open-closed map for Liouville sectors. Moreover, we show that these invariants are covari-
antly functorial with respect to (proper, cylindrical at infinity) inclusions of Liouville sectors.
From this foundational setup, a local-to-global principle for Abouzaid’s generation criterion
[1] follows more or less immediately (Theorem 1.2).

We now introduce the main results of the paper in more detail.

1.1 Liouville sectors

To do Floer theory on symplectic manifolds with boundary, one must establish sufficient
control on when holomorphic curves may touch the boundary. One particularly nice setting
in which this is possible is given by the following definition, studied in §2.
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Definition 1.1. A Liouville sector is a Liouville manifold-with-boundary X for which there
exists a function I : ∂X → R such that:

• I is linear at infinity, meaning ZI = I outside a compact set, where Z denotes the
Liouville vector field.

• dI|char.fol. > 0, where the characteristic foliation C of ∂X is oriented so that ω(N,C) > 0
for any inward pointing vector N .

On any Liouville sector, there is a canonical (up to contractible choice) symplectic fibration
π : X → CRe≥0 defined near ∂X. For almost complex structures on X making π holomorphic
(of which there is a plentiful supply), the projection π imposes strong control on holomorphic
curves near ∂X.

Example. For any compact manifold-with-boundary Q (for instance a ball), its cotangent
bundle T ∗Q is a Liouville sector.

Example. A punctured bordered Riemann surface S is a Liouville sector iff every component
of ∂S is homeomorphic to R (i.e. none is homeomorphic to S1).

Example. Given a Liouville domain X̄0 and a closed Legendrian Λ ⊆ ∂X̄0, one may de-
fine a Liouville sector X by taking the Liouville completion of X̄0 away from a standard
neighborhood of Λ.

Example. More generally, given a Liouville domain (X̄0, λ) and a hypersurface-with-boundary
F0 ⊆ ∂X̄0 such that (F0, λ) is again a Liouville domain, one may define a Liouville sector X
by completing X̄0 away from a standard neighborhood of F0. In fact, every Liouville sector
is of this form, uniquely so up to a contractible choice.

Example. To every Liouville Landau–Ginzburg model π : E → C, one can associate a
Liouville sector which, morally speaking, is defined by removing from E the inverse image
of a neighborhood of a ray (or half-plane) disjoint from the critical locus of π. There are
various ways of formalizing the notion of a Liouville Landau–Ginzburg model (see [39, §2]
for Lefschetz fibrations); for us E should be a Liouville manifold and π should induce an
embedding into ∂∞E of the contact mapping torus of the monodromy action on the fiber F
(i.e. (S1 × F, dt+ λF ) if the monodromy is trivial). This embedding furthermore extends to
an open book decomposition if π has compact critical locus. The associated Liouville sector
is defined by applying the previous example to E and a fiber {t} × F0 inside ∂∞E.

Remark. The notion of a Liouville sector is essentially equivalent to Sylvan’s notion of a stop
on a Liouville manifold [56] (for every Liouville manifold X̄ with stop σ, there is a Liouville
sector X = X̄ \σ, and every Liouville sector is of this form, uniquely in a homotopical sense).
The language of Liouville sectors has two advantages relevant for our work in this paper: (1)
inclusions of Liouville sectors X ↪→ X ′ (which play a central role in this paper) are easier
to talk about, and (2) being a Liouville sector is a property rather than extra data, which
makes geometric operations simpler and more clearly canonical.
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1.2 Wrapped Floer theory on Liouville sectors

We generalize many basic objects of wrapped Floer theory from Liouville manifolds to Li-
ouville sectors. Specifically, we define the wrapped Fukaya category, symplectic cohomology,
and the open-closed map for Liouville sectors. The “wrapping” in these definitions takes
place on the boundary at infinity ∂∞X and is “stopped” when it hits ∂X. An important
feature in this setting is that these invariants are all covariantly functorial for (proper, cylin-
drical at infinity) inclusions of Liouville sectors. The key ingredient underlying these Floer
theoretic constructions is the projection π : X → CRe≥0 defined near ∂X and the resulting
control on holomorphic curves near ∂X.

In §3, we define the wrapped Fukaya category W(X) of a Liouville sector X, and we
show that an inclusion of Liouville sectors X ↪→ X ′ induces a functor W(X) → W(X ′).
The wrapped Fukaya category of Liouville sectors generalizes the wrapped Fukaya category
of Liouville manifolds as introduced by Abouzaid–Seidel [9]. Note that our pushforward
maps W(X)→W(X ′) for inclusions of Liouville sectors X ↪→ X ′ are distinct from (though
related to) the Viterbo restriction functors W(X ′)→W(X) induced by inclusions of Liouville
manifolds X ↪→ X ′ defined by Abouzaid–Seidel [9].

To define W(X), we adopt the later techniques of Abouzaid–Seidel [8] in which W(X)
is defined as the localization of a corresponding directed category O(X) at a collection of
continuation morphisms. The key new ingredient needed to define W(X) for Liouville sectors
is the fact that holomorphic disks with boundary on Lagrangians inside X remain disjoint
from a neighborhood of ∂X. This can be seen from the holomorphic projection π.

Example. For the Liouville sector X associated to an exact symplectic Landau–Ginzburg
model π : E → C, the wrapped Fukaya category W(X) should be regarded as a definition
of the Fukaya–Seidel category of (E, π).

Example. The infinitesimally wrapped Fukaya category of Lagrangians in a Liouville man-
ifold X̄ asymptotic to a fixed Legendrian Λ ⊆ ∂∞X̄ is a full subcategory of the wrapped
Fukaya category W(X) of the Liouville sector X obtained from X̄ by removing a standard
neighborhood of Λ near infinity. Namely, Lagrangians in X̄ asymptotic to Λ can be per-
turbed by the negative Reeb flow to define objects of W(X). The positive Reeb flow from
such objects falls immediately into the deleted neighborhood of Λ, so wrapping inside ∂∞X
exactly realizes “infinitesimal wrapping”.

Example. The Legendrian contact homology algebra of Λ ⊆ ∂∞X̄ with respect to the filling
X̄ is also expected to admit a description in terms of W(X). Namely, near any point of Λ,
there is a small Legendrian sphere linking Λ which further bounds a small exact Lagrangian
disk, whose endomorphism algebra in W(X) should be (by the philosophy of Bourgeois–
Ekholm–Eliashberg [11]) the Legendrian contact homology of Λ with loop space coefficients
(see the argument sketched in Ekholm–Ng–Shende [17, §6] and in Ekholm–Lekili [16, §B]).

Remark. The wrapped Fukaya category W(X) of the Liouville sector X = X̄ \ σ associated
to a Liouville manifold X̄ with stop σ should coincide with the partially wrapped Fukaya
category Wσ(X̄) defined by Sylvan [56].

In §4, we define the symplectic cohomology of a Liouville sector as the direct limit

SH•(X, ∂X) := lim−→
H:X→R

H|Nbd ∂X=Reπ

HF •(X;H) (1.1)
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(generalizing symplectic cohomology SH•(X) of Liouville manifolds as introduced in Floer–
Hofer [21], Cieliebak–Floer–Hofer [12], and Viterbo [60]; additional references include Seidel
[49], Abouzaid [6], and Oancea [41]). We also define a map H•(X, ∂X) → SH•(X, ∂X)
and show that an inclusion of Liouville sectors X ↪→ X ′ induces a map SH•(X, ∂X) →
SH•(X ′, ∂X ′) (this map, which is compatible with the map H•(X, ∂X) → H•(X ′, ∂X ′),
is distinct from, though related to, the restriction map introduced by Viterbo [60]). The
condition that H|Nbd ∂X = Reπ prevents Floer trajectories for HF •(X;H) from passing
through a neighborhood of ∂X. More generally, for an inclusion X ↪→ X ′, if H|Nbd ∂X = Reπ
and H|Nbd ∂X′ = Reπ′, then Floer trajectories with positive end inside X must stay entirely
inside X (on the other hand, Floer trajectories with positive end inside X ′ \ X can pass
through X), and this is the key to defining the map SH•(X, ∂X)→ SH•(X ′, ∂X ′).

To make the definition (1.1) rigorous is delicate for two reasons. First, the function Reπ
is not linear at infinity, and so we must splice it together with a linear Hamiltonian in such
a way that there are no periodic orbits near infinity. Second, to bound Floer trajectories
away from infinity (to prove compactness), we adopt the techniques of Groman [31] based
on monotonicity and bounded geometry, and to apply these methods to Floer equations for
continuation maps, we must choose families of Hamiltonians which are dissipative in the
sense of Groman [31]. We do not know how to use the maximum principle (as usually used
to construct symplectic cohomology on Liouville manifolds) to prove the needed compactness
results. Finally, let us remark that there should be another version of symplectic cohomology
for Liouville sectors, say denoted SH•(X), where we instead require H|Nbd ∂X = −Re π
(though it would be nontrivial to extend our methods to make this definition precise).

Remark. Sylvan has defined the partially wrapped symplectic cohomology SH•σ(X̄) [56] of
a Liouville manifold X̄ equipped with a stop σ, and we expect that it is isomorphic to
SH•(X, ∂X) for the Liouville sector X = X̄ \ σ.

In §5, we define an open-closed map

OC : HH•(W(X))→ SH•+n(X, ∂X) (1.2)

for Liouville sectors, where n = 1
2

dimX (generalizing definitions given by Fukaya–Oh–Ohta–
Ono [24], Seidel [47], and Abouzaid [1]) and we show that OC is a natural transformation of
functors, meaning it commutes with the pushforward maps induced by inclusions of Liouville
sectors (we adopt the convention whereby the subscript on Hochschild homology HH• is a
cohomological grading).

To define the open-closed map, we adopt the methods of Abouzaid–Ganatra [7] in which
the domain of OC is taken to be HH•(O(X),B(X)), where O(X) is the directed category
whose localization is W(X), and B(X) is a certain geometrically defined O(X)-bimodule
quasi-isomorphic as O(X)-bimodules to W(X) (properties of localization give a canonical
isomorphism HH•(O(X),W(X)) = HH•(W(X)); see Lemma 5.3).

Functoriality of the open-closed map has an immediate application towards the verifi-
cation of Abouzaid’s generation criterion, which we turn to next. The idea of localizing
open-closed maps has appeared earlier in unpublished work of Abouzaid [2], and Abouzaid’s
proof [6] of Viterbo’s theorem also served as an inspiration for our work.

4



1.3 Local-to-global principle for Abouzaid’s criterion

Recall that a Liouville manifold X is called non-degenerate iff the unit 1 ∈ SH•(X) lies
in the image of OC. Recall also that a collection of objects F ⊆ W(X) is said to satisfy
Abouzaid’s criterion [1] iff the unit lies in the image of the restriction of OC to HH•(F)
(where F ⊆ W(X) denotes the full subcategory with objects F ). Abouzaid’s criterion and
non-degeneracy have many important consequences. The main result of [1] is that if F
satisfies Abouzaid’s criterion, then F split-generates W(X) (i.e. ΠTwF � ΠTwW(X) is
essentially surjective; see Seidel [50, (3j), (4c)]). Non-degeneracy of X implies that the open-
closed map and the closed-open map are both isomorphisms [25, Theorem 1.1] as conjectured
by Kontsevich [33] (and the same for their S1-equivariant versions [26]). Non-degeneracy
of X also implies that the category W(X) is homologically smooth [25, Theorem 1.2] and
Calabi–Yau [26].

To state our local-to-global argument for verifying Abouzaid’s criterion, we need the
following definition. Let X be a manifold. A family of codimension zero submanifolds-with-
boundary Xσ ⊆ X indexed by a poset Σ (so Xσ ⊆ Xσ′ for σ ≤ σ′) is called a homology
hypercover iff the map

hocolim
σ∈Σ

CBM
• (Xσ)→ CBM

• (X) (1.3)

hits the fundamental class [X] ∈ HBM
• (X). Here HBM

• (Borel–Moore homology, also written
H lf
• ) denotes the homology of locally finite singular chains. Concretely, the homotopy colimit

means
hocolim

σ∈Σ
CBM
• (Xσ) :=

⊕
p≥0

⊕
σ0≤···≤σp∈Σ

CBM
•−p(Xσ0) (1.4)

namely simplicial chains on the nerve of Σ with coefficients given by σ 7→ CBM
• (Xσ) (the

differential on the right is the internal differential plus the sum over all ways of forgetting
some σi). By Poincaré duality, it is equivalent to ask that the map

hocolim
σ∈Σ

C•(Xσ, ∂Xσ)→ C•(X) (1.5)

hit the unit 1 ∈ H•(X).

Example. For every finite cover of X by {Xi}i∈I , the family of all finite intersections Xi0 ∩
· · · ∩Xik indexed by Σ := 2I \ {∅} is a homology hypercover of X.

Remark. Instead of considering a family of submanifolds-with-boundary Xσ ⊆ X indexed by
a poset Σ, one could also consider a simplicial submanifold-with-boundary X• → X. The
latter perspective is somewhat more standard (and essentially equivalent), though we have
avoided it for reasons of exposition.

Theorem 1.2. Let X be a Liouville manifold with a homology hypercover by Liouville sectors
{Xσ}σ∈Σ. Let Fσ ⊆ W(Xσ) be collections of objects with Fσ ⊆ Fσ′ for σ ≤ σ′, and Fσ the
corresponding full subcategories. Assume

OCσ : HH•(Fσ)→ SH•+n(Xσ, ∂Xσ) (1.6)

is an isomorphism for all σ ∈ Σ. Then F :=
⋃
σ∈Σ Fσ ⊆W(X) satisfies Abouzaid’s criterion.
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Theorem 1.2 follows immediately from the functoriality of OC; to be precise, it follows
from the following commutative diagram:

hocolim
σ∈Σ

CC•−n(Fσ) hocolim
σ∈Σ

SC•(Xσ, ∂Xσ) hocolim
σ∈Σ

C•(Xσ, ∂Xσ)

CC•−n(F) SC•(X) C•(X).

(1.7)

Indeed, if each local open-closed map (1.6) is an isomorphism, then the top left hori-
zontal arrow in (1.7) is a quasi-isomorphism. This implies that the image of the map
HH•−n(F) → SH•(X) contains the image of the composition hocolimσ∈ΣC

•(Xσ, ∂Xσ) →
C•(X) → SC•(X), which in turn hits the unit since {Xσ}σ∈Σ is a homology hypercover of
X. Note that for this proof to make sense, we must provide a definitions of W, SC•, and
OC which are functorial on the chain level, up to coherent higher homotopy.

Note that to apply Theorem 1.2 (which is valid over any commutative coefficient ring),
we do not need to know anything about SH•(X) or the morphism spaces in W(X), both of
which can be difficult to compute for general X. In contrast, if ∂∞Xσ is the contactization
of a Liouville domain (which occurs often in practice for “small” sectors Xσ), then the map
H•(Xσ, ∂Xσ)→ SH•(Xσ, ∂Xσ) is an isomorphism (Lemma 2.36 and Proposition 4.42) and
it is often easy to compute the left hand side of (1.6) as well and see that this map is an
isomorphism. We now give some examples of interesting X covered by such Xσ (conjecturally
any Weinstein manifold X admits such a cover).

Example 1.3. Abouzaid [3] showed that the collection of cotangent fibers T ∗qQ ⊆ T ∗Q satisfies
Abouzaid’s criterion for any closed manifold Q. This result can be deduced from Theorem
1.2 as follows. Since T ∗Q admits a homology hypercover by copies of T ∗B (B is the ball), it
is enough to show that

OC : HH•(CW
•(T ∗0B))→ SH•+n(T ∗B, ∂T ∗B) (1.8)

is an isomorphism, where T ∗0B ⊆ T ∗B denotes the fiber. The maps

H•(T ∗0B)→ HW •(T ∗0B) (1.9)

H•(T ∗B, ∂T ∗B)→ SH•(T ∗B, ∂T ∗B) (1.10)

are both isomorphisms, since for certain nice choices of contact form, there are no Reeb
orbits/chords (for the second map, combine Example 2.37 and Proposition 4.42). We con-
clude that the open-closed map for T ∗B is an isomorphism, using the general property that
OC(1L) = i![L] (see Proposition 5.13).

Note that the above argument does not say anything about whether or not the fiber
(split-)generates W(T ∗B). Presumably split-generation could be shown by following through
on Remark 1.5, and generation could be shown by generalizing Abouzaid’s work [5].

Example 1.4. Let X be the Liouville sector associated to an exact symplectic (Liouville)
Lefschetz fibration π : E → C (morally speaking, defined by removing π−1(CRe<−N) from
E). The collection of Lefschetz thimbles L1, . . . , Lm ⊆ X (as illustrated in Figure 1) is an
exceptional collection inside W(X), meaning that

HF •(Li, Li) = Z (1.11)
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L1

L2

L3

L4

L5

Figure 1: A Lefschetz fibration.

HF •(Li, Lj) = 0 for i > j. (1.12)

Furthermore, ∂∞X has no Reeb orbits, so the map H•(X, ∂X)
∼−→ SH•(X, ∂X) is an iso-

morphism. Using the identity OC(1L) = i![L], we conclude that the open-closed map

HH•(F
→(π))→ SH•+n(X) (1.13)

is an isomorphism, where F→(π) ⊆ W(X) denotes the full subcategory spanned by the
Lefschetz thimbles L1, . . . , Lm (originally introduced by Seidel [50]). (Justification for these
assertions is provided in the body of the paper).

Remark 1.5. The diagram (1.7) remains valid when X is itself a Liouville sector. However, to
take advantage of it, one needs to first formulate the correct analogue of Abouzaid’s criterion
for Liouville sectors and their wrapped Fukaya categories.

The most naive generalization of Abouzaid’s criterion to Liouville sectors, using the
open-closed map (1.2), does not make sense since SH•(X, ∂X) usually does not have a unit.
Rather, we suspect that the correct generalization of Abouzaid’s criterion should involve the
map

OC :
[
CC•−n(W(X0))→ CC•−n(W(X))

]
→
[
SC•(X0, ∂X0)→ SC•(X, ∂X)

]
(1.14)

where the brackets indicate taking the cone of the map inside, and X0 ⊆ X denotes a small
closed regular neighborhood of ∂X (cylindrical at infinity). Note that C•(X) is naturally
quasi-isomorphic to [C•(X0, ∂X0) → C•(X, ∂X)], which naturally maps to the right side
above, so there is a unit to speak of hitting.

A version of Abouzaid’s criterion for the Fukaya–Seidel category [50] of a symplectic
Landau–Ginzburg model has been given earlier by Abouzaid–Ganatra [7]. Their criterion is
distinct from (though related to) the version proposed just above.

Remark 1.6. We expect that Theorem 1.2 can be used to show that for any Weinstein
manifold X2n admitting a singular Lagrangian spine Ln ⊆ X2n (see Remark 2.1) with
arboreal singularities in the sense of Nadler [40], the “fibers of the projection X → L”
satisfy Abouzaid’s criterion (generalizing Example 1.3). Such a Weinstein manifold should
admit a homology hypercover by “arboreal Liouville sectors” X2n

T associated to rooted trees
T (defined in terms of the corresponding arboreal singularities). We expect the arboreal
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sector XT to correspond to the Lefschetz fibration over C whose fiber is a plumbing of copies
of T ∗Sn−1 according to T and whose vanishing cycles are the zero sections, ordered according
to the rooting of T (this has now been proven by Shende [52]). Furthermore, the Lefschetz
thimbles should correspond to the “fibers of the projection X → L” (more precisely, they
should generate the same full subcategory). Example 1.4 would then imply that the open-
closed map for each XT is an isomorphism, so by Theorem 1.2 we would conclude that the
“fibers of the projection X → L” satisfy Abouzaid’s criterion.
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2 Liouville sectors

2.1 Notation

The notation NbdK shall mean “some neighborhood of K”. “A neighborhood of infinity”
means “the complement of a pre-compact set” (i.e. Nbd {∞} in the one-point compactifi-
cation). “At infinity” shall mean “over some neighborhood of infinity”. We write M◦ for
the interior of M . The notation s � 0 shall mean “s sufficiently large”, and s � 0 means
−s� 0.

We work in the smooth category unless otherwise stated. A function on a closed subset
of a smooth manifold is called smooth iff it can be extended to a smooth function defined in
a neighborhood (however such an extension is not specified).

2.2 Liouville manifolds

References for Liouville manifolds include [20, 18, 13, 49].
A Liouville vector field Z on a symplectic manifold (X,ω) is a vector field satisfying

LZω = ω, or, equivalently, ω = dλ for λ := ω(Z,−). Such λ is called a Liouville form
and determines both ω and Z. An exact symplectic manifold is a manifold equipped with
a Liouville form (equivalently, it is a symplectic manifold equipped with a Liouville vector
field).

To any co-oriented contact manifold (Y, ξ) one associates an exact symplectic manifold
(SY, λ) called the symplectization of Y , defined as the total space of the bundle of positive
contact forms, equipped with the restriction of the tautological Liouville 1-form λ on T ∗Y .
Equipping Y with a positive contact form α induces a trivialization (SY, λ) = (Rs × Y, esα)
in which Z = ∂

∂s
. Henceforth, we omit the adjectives “co-oriented” and “positive” for contact
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manifolds/forms, though they should be understood as always present. An exact symplectic
manifold X is the symplectization of a contact manifold iff there is a diffeomorphism X =
Rs × Y identifying Z with ∂

∂s
.

A Liouville domain is a compact exact symplectic manifold-with-boundary whose Liou-
ville vector field is outward pointing along the boundary; the restriction of λ to the boundary
of a Liouville domain is a contact form. A Liouville manifold is an exact symplectic mani-
fold which is “cylindrical and convex at infinity”, meaning that the following two equivalent
conditions are satisfied:

• There is a Liouville domain X0 ⊆ X such that the positive Liouville flow of ∂X0 is
defined for all time and the resulting map X0∪∂X0(R≥0×∂X0)→ X is a diffeomorphism
(equivalently, is surjective).

• There is a map from the “positive half” of a symplectization (Rs≥0× Y, esα)→ (X,λ)
respecting Liouville forms and which is a diffeomorphism onto its image, covering a
neighborhood of infinity.

The Liouville flow defines contactomorphisms between different choices of ∂X0 and/or Y ,
so there is a well-defined contact manifold (∂∞X, ξ) which we regard as the “boundary at
infinity of X” (not to be confused with the actual boundary ∂X, which is not present now but
will be later). There is a canonical embedding of the (full) symplectization of (∂∞X, ξ) into
X as an open subset, and there is a canonical bijection between Liouville domains X0 ⊆ X
whose completion is X and contact forms on ∂∞X.

An object living on a Liouville manifold is called cylindrical iff it is invariant under the
Liouville flow near infinity.

Remark 2.1. It is natural to view a Liouville domain/manifold X as a “thickening” of the
locus L ⊆ X of points which do not escape to infinity under the Liouville flow (e.g. regarding
a punctured Riemann surface as a thickening of a ribbon graph is a special case of this).
Under certain assumptions on the Liouville flow (e.g. if X is Weinstein), this L ⊆ X is a
singular isotropic spine for X (“spine” carries its usual meaning, e.g. as in Zeeman [62],
namely that X deforms down to a small regular neighborhood of L). It is also common to
call L the core or skeleton of X.

Example 2.2. The manifold X = R2n equipped with the standard symplectic form ω :=∑n
i=1 dxi ∧ dyi can be given the structure of a Liouville manifold by taking the vector field

Z to be the generator of radial expansion Z := 1
2

∑n
i=1(xi

∂
∂xi

+ yi
∂
∂yi

). In this case, X0 can
be chosen as the unit ball, and the core is the origin.

Example 2.3. The cotangent bundle of a compact manifold X = T ∗Q, equipped with the
tautological Liouville 1-form λ, is a Liouville manifold in which Z is the generator of fiberwise
radial dilation. We can choose X0 as the unit codisk bundle, and the core is the zero section.

If Q is non-compact, then T ∗Q is not a Liouville manifold when equipped with the tau-
tological Liouville form. However, if Q is the interior of a compact manifold with boundary
Q, then T ∗Q may be given the structure of a Liouville manifold by modifying the Liouville
form appropriately near ∂Q to make it convex.
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2.3 Hamiltonian flows

To a function H : X → R on a symplectic manifold X, one associates the Hamiltonian
vector field XH defined by

ω(XH , ·) = −dH. (2.1)

WhenX = SY is the symplectization of a contact manifold Y , we sayH is linear iff ZH = H,
in which case XH commutes with Z. The following spaces are in canonical bijection:

• The space of functions H on X satisfying ZH = H.

• The space of symplectic vector fields on X commuting with Z.

• The space of sections of TY/ξ.

• The space of contact vector fields on Y .

(More generally, this holds for X Liouville with Y = ∂∞X and H defined near infinity.) The
contact vector field associated to a section f of TY/ξ is denoted Vf . In the presence of a
contact form α, sections of TY/ξ are identified with real valued functions via pairing with
α, so we may write Vf for functions f . The Reeb vector field Rα := V1 is the contact vector
field associated to the constant function 1 (equivalently, Rα is defined by the properties
α(Rα) = 1 and dα(Rα, ·) = 0); more generally Vf = Rf−1α for f > 0.

2.4 Liouville sectors

A Liouville manifold-with-boundary X is defined analogously to a Liouville manifold: it is
an exact symplectic manifold-with-boundary for which a neighborhood of infinity is given
by the positive half of the symplectization of a contact manifold-with-boundary ∂∞X. The
Liouville vector field is allowed to be non-tangent to ∂X over a compact set (and so, in
particular, it is not required to be complete, except at infinity). Because of this, there may
be no embedding of the full symplectization of ∂∞X into X.

Floer theory on Liouville manifolds-with-boundary is not well-behaved in general, since
holomorphic curves can touch the boundary. This situation can be remedied by introducing
appropriate assumptions on the characteristic foliation of the boundary. This leads to the
notion of a Liouville sector, which we now introduce and proceed to study from a purely
symplectic geometric viewpoint.

In order to state the definition, let us recall that a hypersurface in a symplectic mani-
fold carries a canonical one-dimensional foliation, called the characteristic foliation, whose
tangent space is the kernel of the restriction of the symplectic form to the hypersurface (as
is standard, we shall abuse terminology and use the words “characteristic foliation” to refer
to this kernel as well). Recall also that a hypersurface in a contact manifold is said to be
convex iff there is a contact vector field defined in its neighborhood which is transverse to
it.

Definition 2.4. A Liouville sector is Liouville manifold-with-boundary satisfying the fol-
lowing equivalent conditions:
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• For some α > 0, there exists I : ∂X → R with ZI = αI near infinity and dI|char.fol. > 0.

• For every α > 0, there exists I : ∂X → R with ZI = αI near infinity and dI|char.fol. > 0.

• The boundary of ∂∞X is convex and there is a diffeomorphism ∂X = R × F sending
the characteristic foliation of ∂X to the foliation of R× F by leaves R× {p}.

In the first two conditions, the characteristic foliation C is oriented so that ω(N,C) > 0 for
any inwarding pointing vector N . Note that dI|char.fol. > 0 is equivalent to the Hamiltonian
vector field XI being outward pointing along ∂X. We call such I “α-defining functions” for
∂X (with the convention that α = 1 if omitted). Note that the space of α-defining functions
is convex, and thus either empty or contractible.

Observe that being a Liouville sector is an open condition, i.e. it is preserved under small
deformations within the class of Liouville manifolds-with-boundary.

An “inclusion of Liouville sectors” i : X ↪→ X ′ shall mean a proper map which is a
diffeomorphism onto its image, satisfying i∗λ′ = λ + df for compactly supported f . A
“trivial inclusion of Liouville sectors” is one for which i(X) may be deformed to X ′ through
Liouville sectors included into X ′.

Lemma 2.5. The conditions in Definition 2.4 are equivalent.

Proof. To prove the equivalence of the first two conditions, suppose we have an α-defining
function I : ∂X → R and let us produce an α′-defining function I ′ by smoothing I

|I| |I|
α′/α

as follows. Let Y be a contact type hypersurface in X, far out near infinity, projecting
diffeomorphically onto ∂∞X via the forward Liouville flow (Y meets ∂X transversely). Since
Z is tangent to {I = 0} near infinity, we conclude that Y ∩ ∂X and {I = 0} are transverse
submanifolds of ∂X. Now we also know that the characteristic foliation of ∂X is transverse
to {I = 0}, so combining these two facts we can modify Y locally near Y ∩ {I = 0} so that
Y ∩ ∂X is tangent to the characteristic foliation of ∂X in a neighborhood of Y ∩ {I = 0}.
Since the characteristic foliation of ∂X is now tangent to Y ∩ ∂X near Y ∩ {I = 0}, we

can smooth the restriction of I
|I| |I|

α′/α to Y ∩ ∂X near Y ∩ {I = 0} so as to make its
differential positive on the characteristic foliation, and then extend it to the positive half
of the symplectization R≥0 × Y ⊆ X by the scaling property ZI ′ = α′I ′ (this extension
remains positive on the characteristic foliation since Z preserves the characteristic foliation).

It is straightforward to extend this smoothing of I
|I| |I|

α′/α over R≥0 × Y to all of X since

the characteristic foliation (on which dI is positive) is transverse to the non-smooth locus
{I = 0}.

To see that the first two conditions imply the third, observe that for a defining function
I : ∂X → R (meaning α = 1), its Hamiltonian vector field XI gives a contact vector field
on ∂∞X, which is outward pointing since CI > 0. By assumption, dI is positive on the
characteristic foliation, thus I is in particular a submersion. Along with the control in I
near infinity, it follows that there is a diffeomorphism ∂X = R× I−1(0) as desired.

Finally, suppose that the third condition is satisfied, and let us construct a defining
function I. Since ∂∞X has convex boundary, there exists a function I : ∂X → R defined
near infinity satisfying ZI = I and CI > 0. Using the diffeomorphism ∂X = R × F ,
suppose I is defined over a neighborhood of the complement of (−N,N)× U for some pre-
compact open U ⊆ F . Now I can be (re)defined on (−N,N) × U so that that CI > 0 iff

11



I(N, p) > I(−N, p) for all p ∈ U , and this can be achieved by taking N < ∞ sufficiently
large.

Question 2.6. Suppose X is a Liouville manifold-with-boundary and there is a diffeomor-
phism ∂X = R×F sending the characteristic foliation to the foliation by leaves R×{p}. Is
X a Liouville sector?

Example 2.7. If Q is a compact manifold-with-boundary, then T ∗Q is a Liouville sector.
Indeed, any vector field on Q lifts to a Hamiltonian vector field on T ∗Q (with linear Hamil-
tonian), and the lift of a vector field transverse to ∂Q thus certifies that T ∗Q is a Liouville
sector. Furthermore, if Q0 ↪→ Q1 is a codimension zero embedding of a compact manifolds-
with-boundary, then T ∗Q0 ↪→ T ∗Q1 is an inclusion of Liouville sectors.

Remark 2.8 (Open Liouville sectors). An open Liouville sector (or perhaps an “ind-(Liouville
sector)”) is a pair (X, ∂∞X) where X is an exact symplectic manifold and ∂∞X is a contact
manifold (both without boundary), together with a germ near +∞ of a (codimension zero)
embedding of the symplectization S∂∞X into X (strictly respecting Liouville forms), such
that the pair (X, ∂∞X) is exhausted by Liouville sectors. Being exhausted by Liouville
sectors means that every subset of X which away from a compact subset of X equals the cone
over a compact subset of ∂∞X, is contained in a Liouville sector X0 ⊆ X with ∂∞X0 ⊆ ∂∞X.

For example, T ∗Rn is an open Liouville sector, as is more generally T ∗M for any (not
necessarily compact) manifold M ; an exhaustion is given by the family of Liouville subsectors
T ∗M0 for compact codimension zero submanifolds-with-boundary M0 ⊆M (which obviously
exhaust M). For any Liouville sector X, its interior X \ ∂X is an open Liouville sector.

A (codimension zero) inclusion of open Liouville sectors i : (X, ∂∞X) ↪→ (Y, ∂∞Y ) is
simply a map of pairs in the obvious sense (i.e. compatible with the embeddings S∂∞X ↪→ X
and S∂∞Y ↪→ Y defined near infinity) satisfying i∗λY = λX +df where the support of f does
not approach ∂∞X. For example, for any open inclusion of manifolds M ↪→ N , the inclusion
T ∗M ↪→ T ∗N is an inclusion of open Liouville sectors. For any inclusion of Liouville sectors
X ↪→ X ′, the associated inclusion of their interiors X \ ∂X ↪→ X ′ \ ∂X ′ is an inclusion of
open Liouville sectors.

Lemma 2.9. Let X be a Liouville sector, and let Yt be a 1-parameter family of contact
manifolds with convex boundary, where Y0 = ∂∞X. There exists a corresponding 1-parameter
family of Liouville sectors Xt and isomorphisms ∂∞Xt = Yt, specializing to X0 = X and
Y0 = ∂∞X.

Proof. By Gray’s theorem, Yt for t close to 0 may be viewed simply as a deformation of the
boundary of Y0 (i.e. the contact structure is fixed). Now consider an arbitrary deformation
of the boundary of the symplectization of Y0, which is fixed for s � 0 and which follows
∂Yt for s � 0. On this deformation, for t sufficiently small, we may splice together the
defining function I0 : ∂(SY0)→ R for s� 0 with the defining functions It : ∂(SYt)→ R for
s � 0. This proves the result for t sufficiently small. Now the general case follows from a
compactness argument.

Definition 2.10. Let X be a Liouville sector. The symplectic reduction F := (∂X)/C
(quotient by the characteristic foliation) is a smooth manifold, and there is a diffeomorphism
∂X = R × F in which the leaves of the characteristic foliation are R × {p} (see Definition
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2.4). By Cartan’s formula, the restriction of the symplectic form ω|T∂X is pulled back from
the projection ∂X → F ; moreover, the restriction of the Liouville form λ|T∂X is (locally)
pulled back from F near infinity (more precisely, over the locus where Z is tangent to ∂X).
Choosing a section of the projection ∂X → F thus defines a Liouville form on F which is
well-defined up to adding df for compactly supported f . Note that F is a Liouville manifold
when equipped with any/all of these λ; convexity at infinity may be seen by using the
embedding F = I−1(0) ⊆ ∂X for any α-defining function I.

In particular, there are two Liouville forms on F , denoted λ∞ and λ−∞, obtained by
embedding F = I−1(a) ⊆ ∂X for a→ ±∞ and any α-defining function I. We have

λ∞ − λ−∞ = d

∫
C

λ (2.2)

where
∫
C
λ denotes the compactly supported function F → R obtained by integrating λ over

the leaves of the characteristic foliation (i.e. the fibers of the projection ∂X → F ). We say
that ∂X is exact or X has exact boundary iff

∫
C
λ ≡ 0, which implies λ∞ = λ−∞ (and for

dimX ≥ 4, the converse implication holds as well). We will see in Proposition 2.28 that
every Liouville sector can be deformed so that its boundary becomes exact.

Lemma 2.11. Let X be a Liouville sector with exact boundary. There exists a compactly
supported function f such that Zλ+df (the Liouville vector field associated to the Liouville
form λ+ df) is everywhere tangent to ∂X.

Proof. We have Zλ+df = Zλ −Xf , which is tangent to ∂X if and only if

df |C = −λ|C (2.3)

where C denotes the characteristic foliation of ∂X. Note that λ|C has compact support since
Zλ is already tangent to ∂X near infinity.

Since X is a Liouville sector, there is a diffeomorphism ∂X = R × F sending the char-
acteristic foliation to the foliation by R × {p}. It follows from this normal form that there
is at most one function f : ∂X → R of compact support satisfying (2.3). The existence of
such an f is equivalent to the vanishing of the integral of λ over every leaf of C, which is
precisely the definition of ∂X being exact.

2.5 Constructions of Liouville sectors

We now develop tools for constructing Liouville sectors, and we use these tools to give more
examples of Liouville sectors.

Remark 2.12. Constructions of Liouville sectors sometimes involve “smoothing corners” to
convert a Liouville manifold-with-corners into a Liouville manifold-with-boundary. We there-
fore record here the convenient fact that, to show that the result is a Liouville sector, it is
enough to check the existence of a defining function I before smoothing the corners (in which
case the condition dI|char.fol. > 0 is imposed over every closed face). In fact, (any smooth
extension of) the same function I will do the job. To see this, simply note that (the positive
ray of) the characteristic foliation at a point of the smoothed boundary lies in the convex
hull of (the positive rays of) the characteristic foliations of the faces of the nearby cornered
boundary; hence positivity of dI|char.fol. is preserved by the smoothing process.
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Lemma 2.13. Let X̄0 be a Liouville domain, and let A ⊆ ∂X̄0 be a codimension zero
submanifold-with-boundary such that there exists a function I : A → R with RλI > 0 such
that the contact vector field VI is outward pointing along ∂A. Then

X := X̄ \ (R>0 × A◦) (2.4)

is a Liouville sector, where X̄ denotes the Liouville completion of X̄0.

Proof. The linear extension of −I is a defining function for X.

Definition 2.14. A sutured Liouville domain (X̄0, F0) is a Liouville domain X̄0 together
with a codimension one submanifold-with-boundary F0 ⊆ ∂X̄0 such that (F0, λ) is a Liouville
domain. Similarly, a sutured Liouville manifold is a Liouville manifold X̄ together with a
codimension one submanifold-with-boundary F0 ⊆ ∂∞X̄ and a contact form λ defined over
NbdF0 such that (F0, λ) is a Liouville domain. (Compare with the notion of a “Weinstein
pair” from [19].)

Given a sutured Liouville domain (X̄0, F0), the Reeb vector field of λ is transverse to F0

since dλ|F0 is symplectic, and thus determines a local coordinate chart F0 × R|t|≤ε ↪→ ∂X̄0

in which the contact form λ equals dt + λ|F0 . The contact vector field associated to the
function t is given by t ∂

∂t
+Zλ|F0 which is outward pointing along ∂(F0×R|t|≤ε). We conclude

that a sutured Liouville domain (X̄0, F0) in the present sense determines a codimension zero
submanifold A = F0×R|t|≤ε of ∂X̄0, which satisfies the hypotheses of Lemma 2.13 (witnessed
by the function I = t). In particular, (the conclusion of Lemma 2.13 implies) a sutured
Liouville domain (X̄0, F0) gives rise to a Liouville sector.

We will see in Lemma 2.32 that every Liouville sector arises from a unique (in the
homotopical sense) sutured Liouville domain.

Example 2.15. If Λ ⊆ ∂∞X̄ is a Legendrian, by the Weinstein neighborhood theorem, there
are (homotopically unique) coordinates near Λ given by Rt× T ∗Λ with contact form dt+ λ.
Choosing F0 = D∗Λ gives a sutured Liouville domain and thus a Liouville sector X, which
we think of informally as being obtained from X̄ by removing a small regular neighborhood
of Λ.

It would be of interest to generalize this construction to sufficiently nice (e.g. sub-analytic)
singular Legendrian Λ, however this requires constructing a convex neighborhood of such Λ.

Remark 2.16. The notion of the skeleton L ⊆ X of a Liouville domain/manifold (see Remark
2.1) admits a natural generalization to sutured Liouville domains/manifolds. Namely, given
a sutured Liouville domain (X̄0, F0), we consider the loci L0 ⊆ X̄0 and L ⊆ X̄ of points which
do not escape to the complement of the skeleton of F0 at infinity. Note that L is necessarily
non-compact unless F0 is empty. As before, under certain assumptions on the Liouville flow
on X̄ and F0 (e.g. if both are Weinstein), then L0 ⊆ X̄0 (and L ⊆ X̄) is a singular isotropic
spine. We will call L0 ⊆ X̄0 the skeleton of X̄0 relative to F0 or simply the relative skeleton
of the sutured Liouville domain (X̄0, F0); analogous terminology applies to L ⊆ X̄. It is
reasonable to regard such a skeleton as also being associated to the corresponding Liouville
sector.

Definition 2.17. An open book decomposition of a contact manifold Y consists of a binding
B ⊆ Y (a codimension two submanifold), a tubular neighborhood B×D2 ⊆ Y , a submersion
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π : Y \ B → S1 standard over B × D2, and a contact form α on Y such that the pages of
the open book (π−1(a), dα) are symplectic, and α = (1 + 1

2
r2)−1(α|B + λD2) over B × D2,

where λD2 := 1
2
(x dy − y dx) = 1

2
r2dθ. Experts will note that we could equivalently use any

smooth radial function with negative radial derivative (for r > 0) in place of (1 + 1
2
r2)−1.

The particular choice (1 + 1
2
r2)−1 has the nice property that the Reeb vector field of α is

given by Rα = Rα|B + ∂
∂θ

over B ×D2 (see (2.5)).

Lemma 2.18. Let Y be a contact manifold equipped with an open book decomposition
(B, π, α). Let Q ⊆ Y be a hypersurface which outside B ×D2 coincides with π−1({θ1 ∪ θ2})
and which inside B × D2 is given by B × γ where γ is a simple arc in D2 connecting
θ1, θ2 ∈ ∂D2. Then Q is convex (i.e. there is a contact vector field transverse to Q).

Proof. With respect to the contact form λB + 1
2
r2dθ on B ×D2, the contact vector field for

a contact Hamiltonian f : D2 → R is given by

(f − ZD2f)RB +Xf (2.5)

where ZD2 = 1
2
r ∂
∂r

is the Liouville vector field of λD2 = 1
2
r2dθ and Xf denotes the Hamil-

tonian vector field of f with respect to the area form ωD2 = r dr dθ = dx dy. This contact
vector field is transverse to Q∩(B×D2) exactly when the restriction of f to γ has no critical
points. We can thus arrange that f = ±(1 + 1

2
r2)−1 near θ1 and θ2 respectively, and hence

it extends to the rest of Q as plus/minus the Reeb vector field of α, which is transverse to
Q as desired.

Example 2.19. Let X̄ be a Liouville manifold, and suppose ∂∞X̄ is equipped with an open
book decomposition (B, π, α). A choice of page F0 := π−1(t) \ (B × D2

δ) determines a
sutured Liouville domain and thus a Liouville sector X. Note that for any other page
F ′0 := π−1(t′) \ (B ×D2

δ), Lemma 2.18 implies that ∂∞X = ∂∞X̄ \NεF0 can be deformed to
NεF

′
0 through codimension zero submanifolds-with-boundary of ∂∞X̄ with convex boundary

(namely, one deforms the complement of a neighborhood of t ∈ S1 to a neighborhood of
t′ ∈ S1 and takes the inverse image under π, smoothing the boundary appropriately near
the binding B). Using Lemma 2.9, this deformation can be lifted to a deformation of X, so
∂∞X is, up to deformation, a regular neighborhood of a complementary page.

Example 2.20. Let E be a Liouville manifold equipped with a “superpotential” π : E → C
(the pair (E, π) is called an exact symplectic (Liouville) Landau–Ginzburg model). The
map π determines an embedding of (S1 × F0, dt+ λ) into ∂∞E, where (F0, λ) is a Liouville
domain whose completion is the generic fiber of π and the S1 factor corresponds to the
angular coordinate of C. Applying the construction of Example 2.15 to a fiber {t} × F0

gives rise to a Liouville sector X associated to π : E → C. One should think of X as being
obtained from E by removing the inverse image of a neighborhood of a ray at angle t in C.
When the critical locus of π is compact, the embedding S1 × F0 ⊆ ∂∞E extends to an open
book decomposition of ∂∞E, and hence the conclusion of Example 2.19 applies.

Lemma 2.21. Let X and Y be Liouville sectors whose Liouville vector fields are everywhere
tangent to the boundary. The product X × Y is also a Liouville sector.
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Recall that Lemma 2.11 provides Liouville vector fields which are everywhere tangent to
the boundary on any Liouville sector with exact boundary, and we will see later in Propo-
sition 2.28 that every Liouville sector can be canonically deformed to have exact boundary.
Because of this, we may abuse notation and write X × Y for the Liouville sector obtained
by performing such a deformation on X and Y and then taking their product.

Remark 2.22. The “stabilization operation” of passing from a Liouville sector X to X ×
T ∗[0, 1] is of particular interest, and should induce an equivalence on Floer theoretic invari-
ants (as a consequence of a Künneth formula). The stabilization operation for Landau–
Ginzburg models, namely passing from π : E → C to π + z2 : E × C → C, should be a
special case of this. More generally, the sum of Landau–Ginzburg models π+π′ : E×E ′ → C
should be a special case of the product of Liouville sectors.

Proof. The product X×Y is a Liouville manifold-with-corners. By Remark 2.12, it is enough
to verify the existence of a defining function on X × Y before smoothing the corners.

Fix defining functions IX : ∂X → R and IY , and extend them to all of X and Y main-
taining linearity at infinity (we could cut them off so they are supported in neighborhoods
of the respective boundaries, though this is irrelevant for the present argument).

We now consider the function IX + IY on X×Y . Its differential is clearly positive on the
characteristic foliation of ∂(X × Y ), since the characteristic foliation of ∂X × Y is simply
CX ⊕{0} ⊆ T∂X⊕TY = T (∂X×Y ), and similarly for X×∂Y . However, IX + IY may not
be linear at infinity for the Liouville vector field ZX×Y = ZX + ZY . There are two disjoint
“problem” regions, namely a compact locus in X times a neighborhood of infinity in Y , and
vice versa. We will deal with these separately, and by symmetry it suffices to deal with the
first one.

Fix a contact type hypersurface in Y close to infinity mapping diffeomorphically onto
∂∞Y (equivalently, fix a large contact form on ∂∞Y ). Consider the restriction of IX + IY
to X × ∂∞Y viewed as the corresponding contact type hypersurface in X × Y . Define a
new function IX×Y : X × Y → R by extending IX + IY to be linear outside this contact
type hypersurface (and smoothing the result). Note that IX×Y agrees with IX + IY except
over the bad locus where IX + IY is not linear at infinity. It is enough to show that the
Hamiltonian vector field of IX×Y is outward pointing along the boundary, and it is enough
to check this before doing the smoothing.

So, let us calculate the Hamiltonian vector field of IX×Y . Initially, we have coordinates
(X×R×∂∞Y, λX+esαY ) for (X×Y, λX+λY ); in these coordinates IX+IY equals IX+esAY
for a function AY : ∂∞Y → R. We change coordinates to (X ×R× ∂∞Y, es(λX +αY )); note
that these describe the same exact symplectic manifold in view of the common contact type
hypersurface {s = 0} in both manifolds and the completeness of their respective Liouville
vector fields (note that this argument uses crucially the fact that ZX and ZY are tangent
to ∂X and ∂Y , respectively). In the latter coordinates, the function IX×Y is given by
es(IX + AY ) (for s ≥ 0), assuming that {s = 0} is the contact type hypersurface chosen
to define IX×Y from IX + IY . Let the Hamiltonian vector field of IY = esAY on (R ×
∂∞Y, e

sαY ) ⊆ (Y, λY ) be given by VY +f ∂
∂s

for a contact vector field VY on Y and a function
f : Y → R. Now a calculation shows that the Hamiltonian vector field of es(IX + AY ) on
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(X × R× ∂∞Y, es(λX + αY )) is given by

XIX + VY + f
∂

∂s
− fZX + (IX − ZXIX)RαY (2.6)

where RαY denotes the Reeb vector field of the contact form αY on ∂∞Y . We know that XIX

is outward pointing along ∂X, and VIY is outward pointing along ∂(∂∞Y ) by assumption.
The next two terms are both tangent to the boundary. The third term converges to zero
as αY becomes large, and hence we conclude that, for sufficiently large αY , the vector field
(2.6) is outward pointing along the boundary, as desired (note that the other terms in (2.6)
are unchanged by scaling αY , and that we only need to check the property of being outward
pointing over the compact set {0} × ∂∞Y times a large compact subset of X outside which
ZXIX = IX).

Lemma 2.23. Every pair (X̄0, A) satisfying the hypotheses of Lemma 2.13 arises, up to
deformation, from a unique (in the homotopical sense) sutured Liouville domain.

Proof. Let A be an odd-dimensional manifold-with-corners equipped with a 1-form λ with
dλ maximally non-degenerate. We say that (A, λ) is matched iff the following are satisfied:

• ∂A is the union of two faces (∂A)± meeting transversely along the corner locus.

• The characteristic foliation of dλ is positively/negatively transverse to (∂A)±, respec-
tively.

• Following the characteristic foliation defines a diffeomorphism (∂A)+
∼−→ (∂A)−.

• ((∂A)±, λ|(∂A)±) are Liouville domains.

Being matched is clearly an open condition.
If (A, λ) is matched, then the image F0 ⊆ A of any section of A → A/C (quotient by

the characteristic foliation) is a Liouville domain (when equipped with the restriction of λ).
Conversely, to check that ((∂A)±, λ|(∂A)±) are Liouville domains, it is enough to check that
any such F0 is a Liouville domain. If λ is a contact form, then choosing an F0 provides a
unique embedding A ⊆ F0 × Rt in which λ = λ|F0 + dt and

A = {g− ≤ t ≤ g+} (2.7)

for g± : F0 → R where ±g± are positive on the interior and vanish transversely on the
boundary. Conversely, (2.7) is matched for any Liouville domain F0 and any such g±.

If (A, λ) is matched and λ is a contact form, then there exists a function I : A→ R with
RλI > 0 whose contact vector field VI is outward pointing along ∂A (as in the hypothesis
of Lemma 2.13). Indeed, let I = f(t) in contactization coordinates A ⊆ F0 × Rt. Since
Rλ = ∂

∂t
, we must have f ′(t) > 0. The contact vector field associated to I is given by

VI = f(t) ∂
∂t

+f ′(t)Zλ|F0 , which is outward pointing for, say, f(t) := tan−1(Nt) for sufficiently
large N < ∞ (more precisely, we just need f(0) = 0, f ′(t) > 0, and f ′(t)/f(t) decaying
sufficiently rapidly away from t = 0).

A sutured Liouville manifold is “the same” as a pair (X̄0, A) satisfying the hypothesis of
Lemma 2.13 for which, in addition, A is matched. Indeed, the above discussion shows that
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the space of allowable F0 inside a matched A is contractible, and so is the space of matched
A ⊆ ∂X̄0 containing a given fixed F0 ⊆ ∂X̄0. We conclude that it is enough to show that
every pair (X̄0, A) satisfying the hypothesis of Lemma 2.13 may be canonically deformed to
make A matched.

Let (X̄0, A) be given, and let us specify a canonical deformation which makes A matched.
Let X denote the Liouville sector (2.4) associated to (X̄0, A), and fix a defining function
I : ∂X → R which is the linear extension of a defining function I|A : A → R. There are
Liouville manifolds F± := I−1(s) for s → ±∞, which are identified via the characteristic
foliation of ∂X (with the caveat that, over a compact set, this identification depends on how
we smooth the corners of ∂X). We choose large Liouville domains (F0)± ⊆ F± (identified
under F+

∼−→ F−) and functions f± : (F0)± → R such that ±f± are positive on the interior
and vanish transversely on the boundary. Now the locus

A′ := {f− ≤ I ≤ f+} ⊆ ∂X (2.8)

is well-defined once (F0)± and ±f± are taken sufficiently large. It is clear from the structure
of the characteristic foliation of ∂X that A′ is matched. We claim that, for suitable f±, the
Liouville vector field is outward pointing along ∂A′. The Liouville vector field is given by
ZF±+I ∂

∂I
(outside a compact set), which is outward pointing along ∂A′ iff±(f±−ZF±f±) > 0,

which is easy to achieve. We conclude that the Liouville vector field demonstrates that the
region A′ \ A◦ is a cylinder, and in particular there is a deformation A ⊆ Ar ⊆ A′ from
A0 = A to A1 = A′ such that the Liouville vector field is outward pointing along ∂Ar
for all r ∈ [0, 1]. We would like to follow this deformation Ar of A with a corresponding
deformation of Liouville domains (X̄0)r ⊆ X̄ with Ar ⊆ ∂(X̄0)r. This is, of course, not
possible on the nose since the Liouville vector field is tangent to the finite cylindrical region
Ar \ A◦ rather than being outward pointing. This is easily remedied, however, simply by
perturbing the cylindrical region Ar\A◦ keeping its upper boundary ∂Ar fixed and pushing its
lower boundary ∂A inwards inside A. We have thus defined a deformation of (X̄0, A) which
makes A matched (let us also point out that X̄ and A ⊆ ∂∞X̄ remain fixed throughout the
deformation, i.e. we are deforming only the contact form).

Now it remains to show that if A is already matched, then the deformation described
above can be taken so that Ar is matched for all r ∈ [0, 1]. Suppose A is presented as in
(2.7), and fix I := est. We consider the deformation

Ar := A ∪∂A (∂A× R0≤s≤r) ⊆ ∂X (2.9)

for r ≥ 0. Using the fact that the characteristic foliation of (∂A)± is spanned by ∂
∂s
−

Zλ|(∂A)±
, we see that each Ar is matched. Now F± is the Liouville completion of (∂A)±,

and the deformation Ar is of the form specified earlier with f± : F± → R given by f±(x) =
erg±(Φ−rZF±

(x)). Note that we may assume without loss of generality that ±(g±−ZF±g±) > 0,

which implies the same for f±.

2.6 Product decomposition near the boundary

We now show that for every Liouville sector X, there is a canonical (up to contractible choice)
identification near the boundary between X and a product F ×CRe≥0. More precisely, every
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α-defining function, extended to a cylindrical (i.e. Z-invariant near infinity) neighborhood of
∂X, determines uniquely such coordinates. Of particular interest is the resulting projection
π : NbdZ ∂X → CRe≥0 for α = 1

2
. As we will see in §2.10.1, this function π gives strong

control on holomorphic curves near ∂X.
Equip C with its standard symplectic form ωC := dx dy for z = x+ iy and the family of

Liouville vector fields

Zα
C := (1− α) · x ∂

∂x
+ α · y ∂

∂y
(2.10)

with associated Liouville forms λαC, parameterized by α ∈ R. When α = 1
2
, we will simply

write ZC := 1
2
(x ∂

∂x
+ y ∂

∂y
) and λC for the standard radial Liouville structure on C. When

α = 1, we will write T ∗R (equipped with its standard Liouville structure λT ∗R = p dq with
q = x and p = −y) in place of C.

Remark 2.24. The significance of the particular value α = 1
2

in the definition of π is that
the complex structure JC is invariant under the radial Liouville vector field ZC on C (which
is (2.10) with α = 1

2
). This allows us to find an abundance of cylindrical almost complex

structures J on X for which π is (J, JC)-holomorphic. The usefulness of such almost complex
structures will be made clear in §2.10 (in a word, cylindricity prevents holomorphic curves
from escaping to infinity, and holomorphicity of π prevents holomorphic curves from escaping
to ∂X).

Though we will only need the cases α = 1 and α = 1
2

of the next result, we state it for
general α > 0.

Proposition 2.25. Let X be a Liouville sector. Every α-defining function I : NbdZ ∂X → R
extends to a unique identification (valid over a cylindrical neighborhood of the respective
boundaries):

(X,λX) = (F × CRe≥0, λF + λαC + df) (2.11)

in which I = y is the imaginary part of the CRe≥0-coordinate, (F, λF ) is a Liouville manifold,
and f : F × CRe≥0 → R satisfies the following properties:

• f is supported inside F0 × C for some Liouville domain F0 ⊆ F .

• f coincides with some f±∞ : F → R for |I| sufficiently large.

Proof. There is a unique function R : NbdZ ∂X → R satisfying R|∂X = 0, XIR ≡ −1, and
ZR = (1 − α)R. Indeed, the first two conditions define R uniquely over Nbd ∂X as the
function “time it takes to hit ∂X under the flow of XI”. Differentiating ω(XR, XI) = 1 with
respect to Z shows that this R satisfies ZR = (1− α)R outside a compact set (here we use
the fact that R = 0 over ∂X; the identity LZXH = XZH−H is also helpful). Extending R
to a cylindrical neighborhood of ∂X by maintaining the property ZR = (1− α)R preserves
the relation XIR ≡ −1.

Now
R + iI : NbdZ ∂X → CRe≥0 (2.12)

is a symplectic fibration since ω(XR, XI) is non-vanishing. Since ω(XR, XI) is in fact con-
stant, the induced symplectic connection is flat. The vector fields XI and XR on NbdZ ∂X
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are horizontal with respect to this connection. Let F := (I, R)−1(0, 0) as a symplectic
manifold (compare Definition 2.10), so the symplectic connection provides a germ of a sym-
plectomorphism X = F × CRe≥0 near the respective boundaries.

We now compare Liouville vector fields. Define λF as the restriction of λX to the fiber
(I, R)−1(0, 0) = F . We therefore have

λX = λF + λαC + df (2.13)

for some function f : Nbd ∂X → R (indeed, λX− (λF +λαC) is closed, and to check exactness
it is, for topological reasons, enough to check on the fiber over (0, 0) where it vanishes by
definition). Since (R+ iI)∗ZX = Zα

C outside a compact set (this is a restatement of ZI = αI
and ZR = (1−α)R near infinity), we conclude that Xf is purely vertical outside a compact
set, which is equivalent to saying that f is locally independent of the CRe≥0-coordinate
outside a compact set. We conclude that f satisfies the desired properties.

Finally, note that the identification thus constructed over a neighborhood of the boundary
automatically extends to a cylindrical neighborhood of the boundary by integrating the
Liouville flow.

Definition 2.26. The notation π : NbdZ ∂X → CRe≥0 shall refer to the special case α = 1
2

of the projection to CRe≥0 from Proposition 2.25.

Example 2.27. Consider the Liouville sector CRe≥0 equipped with its usual symplectic form
ωC = dx ∧ dy and radial Liouville vector field ZC = 1

2
(x ∂

∂x
+ y ∂

∂y
). We may take I = y and

R = x, so π := R + iI = x+ iy : CRe≥0 → C is simply the usual inclusion.

Proposition 2.28. Any Liouville sector X may be deformed to make ∂X exact. In fact,
this deformation is homotopically unique.

Note that the proof we give involves a nontrivial deformation at infinity. It seems likely
that it is not possible in general to achieve exactness through a compactly supported defor-
mation once dimX ≥ 4.

Proof. Let I : X → R be a defining function, and consider the resulting product neighbor-
hood decomposition from Proposition 2.25:

X = F × T ∗R≥0 (2.14)

so that λX = λF + λT ∗R≥0
+ df over a neighborhood of ∂X.

Now we let ϕ : R≥0 → [0, 1] be a cutoff function which is zero near t = 0 and which
equals one for t ≥ ε. We consider the deformation of Liouville forms

λF + λT ∗R≥0
+ a · d((1− ϕ(t))f) + d(ϕ(t)f) (2.15)

for a ∈ [0, 1]. For a = 1 this is our original Liouville form on X, and for a = 0 this
is a Liouville form on X making ∂X exact. It thus suffices to check that this gives a
deformation of Liouville manifolds-with-boundary. In other words, we just need to check
convexity at infinity. A calculation shows that for sufficiently large Liouville domains F0 ⊆
F and sufficiently large N < ∞, the Liouville vector field is outward pointing along the
boundary of F0 × {|I| ≤ N} for all a ∈ [0, 1], which is sufficient.
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2.7 Convex completion

For every Liouville sector X, we describe a Liouville manifold X̄, called the convex completion
of X, along with an inclusion of Liouville sectors X ↪→ X̄. We show that the convex
completion of the Liouville sector X associated to a sutured Liouville manifold (X̄, F0) is
exactly X̄ and that the inclusion X ↪→ X̄ is the obvious one.

To define X̄, begin with the identification X = F × CRe≥0 near the boundary from
Proposition 2.25 with α = 1

2
(i.e. using the radial Liouville vector field on C), and glue on

F × CRe≤0 in the obvious manner:

X̄ := X
⋃

Nbd ∂(F×CRe≥0)

Nbd(F × CRe≤0). (2.16)

This defines X̄ as a symplectic manifold. To fix a primitive

λX̄ = λF + λC + df, (2.17)

we just need to extend f : Nbd ∂(F × CRe≥0) → R to f : Nbd(F × CRe≤0) → R. Lemma
2.31 defines a contractible space of extensions f for which X̄ is a Liouville manifold, thus
completing the definition of X̄.

Remark 2.29. The convex completion is ‘complete’ in two unrelated senses: both the Liouville
vector field ZX̄ and the Hamiltonian vector field XI are complete in the positive direction.

Remark 2.30. One may also define the “α-completion” of a Liouville sector for any α > 0 by
considering instead the Liouville form λαC on C. For α ∈ (0, 1), the α-completion is convex
(and is, up to deformation, the convex completion), corresponding to the fact that Zα

C has an
index zero critical point at the origin. For α > 1, the Liouville vector field Zα

C has index one
at the origin, and hence the α-completion is not convex in any reasonable sense (if, however,
one has two Liouville sectors with the same F and desires to glue them together via charts
F × CRe≥0 and F × CRe≤0 from Proposition 2.25, it is natural to take α > 1 to define this
gluing). The borderline case α = 1 corresponds to attaching an end T ∗R≤0×F (for instance
the 1-completion of T ∗Bn is T ∗Rn). This α = 1 completion is an open Liouville sector in
the sense of Remark 2.8.

Lemma 2.31. The convex completion X̄ equipped with the Liouville form described above is
a Liouville manifold, provided the extension f : F ×CRe<ε → R is bounded uniformly in C∞

and satisfies the two bulleted properties from Proposition 2.25.

Proof. We study the restriction of the Liouville vector field ZX̄ = ZF + ZC − Xf to the
boundary of

X ∪
(
F0 × C−N≤Re≤0

|Im|≤M

)
, (2.18)

where F0 ⊆ F is a Liouville domain such that f is supported inside F0×CRe<ε, and M <∞
is such that f = f±∞ for |Im| ≥M .

Over the piece of the boundary lying over the imaginary axis, the Liouville vector field
equals ZF + ZC, which is tangent to the boundary. The remaining compact part of the
boundary is naturally divided into the following three pieces:

∂F0 × C−N≤Re≤0
|Im|≤M

, F0 × C−N≤Re≤0
|Im|=M

, F0 × CRe=−N
|Im|≤M

. (2.19)
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Over the first piece, the Liouville vector field also equals ZF +ZC, which is outward pointing.
Over the second piece, the Liouville vector field equals ZF +ZC−Xf±∞ , which is also outward
pointing (note that Xf±∞ is tangent to the F factor). Over the third and final piece of the
boundary, the Liouville vector field equals ZF + ZC − Xf which is outward pointing iff
−∂f
∂I

+N ≥ 0, which holds as long as N is sufficiently large by the assumed C∞-boundedness
of f .

It follows that for sufficiently large N < ∞, sufficiently large M < ∞, and sufficiently
large F0 ⊆ F , the Liouville vector field is outward pointing along the boundary of (2.18)
(other than that above the imaginary axis), and hence by removing from (2.18) an appropri-
ately chosen open positive half of the symplectization of ∂∞X, we obtain a Liouville domain.
This is enough to imply the desired result.

Lemma 2.32. Every Liouville sector arises, up to deformation, from a unique (in the homo-
topical sense) sutured Liouville manifold. Moreover, the convex completion of the Liouville
sector X associated to a sutured Liouville manifold (X̄, F0) coincides with X̄, and the inclu-
sion X ↪→ X̄ is the obvious one.

Proof. We instead prove the statement for pairs (X̄0, A) satisfying the hypotheses of Lemma
2.13. This is equivalent in view of Lemma 2.23.

Given a Liouville sector X, we consider (2.18). The vector field XI = − ∂
∂R

is not quite
outward pointing along the boundary of (2.18), since it is tangent to the part of the boundary
over the strip −N < Re < 0. However, this is easily fixed by shrinking M and F0 slightly as
the real part gets more negative. It follows that XI is outward pointing along the boundary of
this perturbed version of (2.18), and thus (2.18) is a Liouville sector deformation equivalent
to X. On the other hand, (2.18) arises from a pair (X̄0, A) in which X̄0 ⊆ X̄ is a Liouville
domain (whose completion is X̄) and A is the closure of (the small perturbation of) the
part of the boundary of (2.18) not lying on iR. We conclude that, up to deformation, every
Liouville sector arises from a pair (X̄0, A) satisfying the hypotheses of Lemma 2.13.

Now consider the construction above in the case that X is presented as the Liouville sector
(2.4) associated to a given pair (X̄0

0 , A
0) satisfying the hypotheses of Lemma 2.13. We may

take I on ∂X to satisfy ZI = 1
2
I everywhere, which implies ∂f

∂R
≡ 0 (this is a calculation),

and we choose the unique extension of f to F×CRe≤ε maintaining this property. In this case,
the deformation from X to (2.18) described above corresponds canonically to a deformation
of pairs (X̄ t

0, A
t), where X̄ t

0 ⊆ X̄ are Liouville domains (with completion X̄) and At are (the
images inside ∂X̄ t

0 of) ∂∞(F×CRe≤0, λF +λC+df) ⊆ ∂∞X̄. We conclude that every Liouville
sector arises from a homotopically unique pair (X̄0

0 , A
0) satisfying the hypotheses of Lemma

2.13.

2.8 Stops and Liouville sectors

The notion of a Liouville sector is essentially equivalent to Sylvan’s notion of a stop.

Definition 2.33 (Sylvan [56]). A stop on a Liouville manifold X is a map σ : F×CRe≤ε → X
which is a proper, codimension zero embedding, where F is a Liouville manifold, satisfying
σ∗λX = λF + λC + df for some compactly supported f . Here CRe≤ε has the standard
symplectic form dx dy and standard radial Liouville vector field 1

2
(x ∂

∂x
+ y ∂

∂y
).
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If (X, σ) is a Liouville manifold with a stop, then there is a Liouville sector X \ σ with
exact boundary obtained by removing σ(F ×CRe<0) from X (the “imaginary part” function
y from the C factor gives a 1

2
-defining function). Conversely, let X be a Liouville sector with

exact boundary (recall that every Liouville sector may be deformed so it becomes exact by
Proposition 2.28). Its convex completion X̄ comes with an embedding of F×CRe≤ε on which
the Liouville form is given by λF +λC + df , for f : F ×CRe≤ε → R as in §2.7. The difference
f∞ − f−∞ is given by

∫
C
λ as before (see (2.2)); in particular f∞ = f−∞ since ∂X is exact.

Thus if we replace λF with λF + df∞, we may take f to have compact support. This defines
a stop σ on X̄ such that X = X̄ \ σ.

2.9 Cutoff Reeb dynamics

To understand wrapping on Liouville sectors, we need to have precise control on the Reeb
vector field near the boundary. We now develop the necessary understanding, in the general
context of a contact manifold Y with convex boundary.

We are interested in what we shall call cutoff contact vector fields, namely those contact
vector fields on Y which vanish on ∂Y (this is, of course, the Lie algebra of the group of
contactomorphisms of Y fixing ∂Y pointwise). For any function f : Y → R≥0 vanishing
transversely precisely on ∂Y , the space of cutoff contact vector fields corresponds to the
space of contact Hamiltonians of the form H = f 2G for smooth sections G : Y → TY/ξ. A
cutoff Reeb vector field shall mean a cutoff contact vector field whose contact Hamiltonian
H = f 2G satisfies G > 0 over all of Y (including ∂Y ).

Lemma 2.34. For every cutoff Reeb vector field R on a contact manifold Y , there exists a
compact subset of the interior of Y which intersects all periodic orbits of R.

Proof. Work on the symplectization X = SY , in which convexity of ∂Y means there is a
linear function I with XI outward pointing. Let H be the linear Hamiltonian generating the
cutoff Reeb vector field R, meaning that XH is the tautological lift of R from Y to X = SY .
Since H vanishes to order two along ∂X with positive second derivative, we conclude that
XIH vanishes to first order along ∂X and is negative just inside. Since XIH is linear, we
conclude that XIH < 0 over (NbdZ ∂X) \ ∂X; equivalently,

XHI > 0 over (NbdZ ∂X) \ ∂X. (2.20)

In particular, there can be no periodic orbits of XH entirely contained in (NbdZ ∂X) \ ∂X,
which implies the desired result.

For certain purposes, we will need cutoff Reeb vector fields R whose dynamics near the
boundary satisfy even stronger requirements (for example, we will want there to exist a
compact subset of the interior of Y which contains all periodic orbits of R). We are not
able to show that an arbitrary cutoff Reeb vector field conforms to such strong requirements;
instead, we will simply write down a sufficient supply of such R.

We proceed to write down a canonical (up to contractible choice) family of cutoff Reeb
vector fields near ∂Y with excellent dynamics. Let us first choose a contact vector field V
outward pointing along ∂Y (this is a convex, and hence contractible, choice). This determines
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unique coordinates ∂Y × Rt≥0 → Y under which V = − ∂
∂t

, defined near ∂Y . The choice of
V also divides ∂Y into two pieces (∂Y )± namely where V is positively/negatively transverse
to ξ. They meet along the locus

Γ∂Y := {V ∈ ξ} (2.21)

(called the ‘dividing set’) which is a transversely cut out submanifold of ∂Y for any choice
of V (this is a standard easy fact in the study of convex hypersurfaces, see e.g. [30, I.3.B(1)]
for a proof in general and [29] for the three-dimensional case).

In a neighborhood of (any compact subset of) (∂Y )−, there is a unique contact form α
with α(V ) = 1, namely

α = λ+ dt (2.22)

where λ is a Liouville form on (∂Y )−. Now the contact vector field associated to the contact
Hamiltonian M(t) (that is, the Reeb vector field of M(t)−1α) is given by

VM = M ′(t)Zλ +M(t)
∂

∂t
. (2.23)

We now observe that as long as M(t) > 0 and M ′(t) > 0, this vector field has excellent
dynamics. Namely: the function t is monotonically increasing along trajectories, and all
backwards trajectories converge to the locus {λ = 0} = {ξ ⊆ T∂Y }, which is a compact
subset of (∂Y )−. A similar story applies over (∂Y )+, except that the vector field is attracting
instead of repelling.

The locus Γ∂Y = {V ∈ ξ} ⊆ ∂Y is more interesting; our first task is to write down an
explicit contact form in a neighborhood of Γ∂Y . Recall that the characteristic foliation of the
hypersurface ∂Y inside the contact manifold Y is by definition the kernel of the restriction
of dα to ξ∩T∂Y for any contact form α on Y . There is a canonical projection π : ∂Y → Γ∂Y
defined in a neighborhood of Γ∂Y by following the characteristic foliation, which is transverse
to Γ∂Y . Furthermore, we have ξ ∩ T∂Y = (dπ)−1(ξ ∩ TΓ∂Y ) (to see this, consider the Lie
derivative with respect to any vector field tangent to the characteristic foliation of ∂Y of
the restriction to ∂Y of any contact form on Y ). Thus ξ is determined by the projection
π, the contact structure ξ ∩ TΓ∂Y on Γ∂Y , and the section [−V ] = [ ∂

∂t
] ∈ TY |∂Y /ξ =

T∂Y/(ξ ∩ T∂Y ) = π∗(TΓ∂Y /(ξ ∩ TΓ∂Y )) over ∂Y . More explicitly, choose a contact form
µ for the contact structure ξ ∩ TΓ∂Y on Γ∂Y (a contractible choice). With respect to this

choice, the section [ ∂
∂t

] of TY |∂Y /ξ = π∗(TΓ∂Y /(ξ ∩ TΓ∂Y ))
µ−→ R is just a function on ∂Y

vanishing transversely on Γ∂Y . Denoting this function by u, we have local coordinates on Y
near Γ∂Y given by

Γ∂Y × R|u|≤ε × Rt≥0 (2.24)

such that the contact vector field V = − ∂
∂t

and the contact form is given by

µ+ u dt. (2.25)

We wish to consider instead the scaled contact form

α := ψ(u)−1[µ+ u dt] (2.26)

for a function ψ : R→ R>0 satisfying

ψ(u) = |u| for |u| ≥ ε

2
(2.27)
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uψ′(u) > 0 for u 6= 0 (2.28)

(the choice of ψ is convex and hence contractible). Note that for u ≥ ε
2

(resp. u ≤ − ε
2
), this

scaled contact form α satisfies α(V ) = 1 (resp. α(V ) = −1) and thus is of the form (2.22)
(resp. its negative). Now the contact vector field associated to a contact Hamiltonian M(t)
is given by

VM = ψ′(u)M(t)
∂

∂t
− ψ(u)M ′(t)

∂

∂u
+ [ψ(u)− uψ′(u)]M(t)Rµ. (2.29)

As before, given M(t) > 0 and M ′(t) > 0, this vector field has excellent dynamics. Specifi-
cally, u is monotonically decreasing along trajectories; furthermore, t is increasing for u > 0
and decreasing for u < 0. The resulting dynamics are illustrated in Figure 2. Note that
these dynamics prohibit any periodic orbit of the Reeb vector field from intersecting this
neighborhood of ∂Y .

{V ∈ ξ}(∂Y )− (∂Y )+

u

tY

{ξ ⊆ T∂Y }− {ξ ⊆ T∂Y }+

Figure 2: Dynamics of the cutoff Reeb vector field near ∂Y .

We summarize the main properties of the above construction as follows. Let us call a
function M : R≥0 → R≥0 admissible if M(0) = 0, M ′(0) = 0, M ′′(0) > 0, and M ′(t) > 0 for
t > 0. (Usually, M will only be defined on a connected interval inside R≥0 containing zero).

Proposition 2.35. Let Y be a contact manifold with convex boundary. There exists a
canonically defined contractible family of pairs consisting of a choice of coordinates ∂Y ×
Rt≥0 → Y near ∂Y and a ∂

∂t
-invariant contact form α, such that for any admissible function

M : R≥0 → R≥0, the dynamics of the associated cutoff Reeb vector field defined over Nbd ∂Y
satisfy the following property. For any trajectory γ : R→ ∂Y × Rt≥0, we have:

• If dt(γ′(τ0)) ≥ 0, then dt(γ′(τ)) > 0 for all τ < τ0.

• If dt(γ′(τ0)) ≤ 0, then dt(γ′(τ)) < 0 for all τ > τ0.

In particular, for all sufficiently small δ > 0, no trajectory enters the region ∂Y × R0≤t≤δ
and then exits.

We now consider the cutoff Reeb dynamics on a very special class of contact manifolds
with convex boundary, namely contactizations of Liouville domains. Recall that for a Li-
ouville domain (F0, λ), its contactization is the contact manifold-with-boundary given by
(smoothing the corners of) ([−1, 1] × F0, dt + λ). The contactization has convex boundary,
as demonstrated by the contact vector field t ∂

∂t
+ Zλ.
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Lemma 2.36. Every contactization can be deformed through contact manifolds with convex
boundary so as to admit a cutoff Reeb vector field with no periodic orbits.

Recall from Lemma 2.9 that for any Liouville sector X, deformations of ∂∞X always lift
to deformations of X.

Proof #1. We consider a cutoff Reeb vector field Vϕ induced by a Hamiltonian ϕ defined
on (a smoothing of) [−1, 1] × F0. A calculation shows that dt(Vϕ) = ϕ − Zλϕ. Hence to
ensure that Vϕ has no periodic orbits, it is enough to choose ϕ such that ϕ−Zλϕ > 0 on the
interior of our contact manifold. Since ϕ > 0 on this region, this inequality may equivalently
be written as Zλ logϕ < 1. It is straightforward to define such a positive cutoff Hamiltonian
function ϕ on (a smoothing of) [−1, 1]× F0 (in fact, we can even achieve the much stronger
property Zλϕ < 0).

Proof #2. The Liouville sector CRe≥0×F has a linear Hamiltonian (Re)2, whose Hamiltonian
vector field x ∂

∂y
clearly has no closed orbits. It is thus enough to show that ∂∞(CRe≥0×F ) is

deformation equivalent to [0, 1]×F0 through contact manifolds with convex boundary. This
follows from Lemma 2.18.

Example 2.37. The boundary at infinity of T ∗Bn is contactomorphic (up to deformation) to
the contactization [0, 1]×D∗Sn−1.

Corollary 2.38. If (X̄, F0) is a sutured Liouville manifold, then any exact deformation of
the Liouville form λ|F0 can be realized by a deformation of (F0, λ) supported in an arbitrarily
small neighborhood of F0.

Proof. Let F0 ⊆ F+
0 ⊆ X̄ be a slightly larger Liouville domain, and consider the embedding

F+
0 × R|t|≤ε ⊆ X̄ in which λ = dt + λ|F+

0
. The first proof of Lemma 2.36 provides a cutoff

contact Hamiltonian ϕ defined on a smoothing of F+
0 × R|t|≤ε inside X̄ such that the Reeb

vector field of ϕ−1λ pairs positively with dt. Note that we may further require that ϕ ≡ 1
over a neighborhood of F0. The Reeb vector field of ϕ−1λ thus provides an embedding of
F0 × Rτ into X̄ under which the pullback of ϕ−1λ is given by λ|F0 + dτ . Now deforming F0

to the graph of a function τ : F0 → R gives the desired result.

Conjecture 2.39. If ∂∞X and ∂∞X
′ both admit cutoff Reeb vector fields with no periodic

orbits, then so does ∂∞(X ×X ′).

This conjecture is rather strong. It may be more reasonable to expect that taking product
preserves the existence of a sequence of cutoff contact Hamiltonians ϕ1, ϕ2, . . . (with f−2ϕi >
0 bounded uniformly away from zero) and real numbers a1, a2, . . . → ∞ such that Vϕi has
no periodic orbit of action ≤ ai.

Conjecture 2.40. If a contact manifold with convex boundary Y admits a cutoff Reeb vector
field with no periodic orbits, then Y is deformation equivalent to a contactization.

Note that this conjecture (which is the converse of Lemma 2.36) is even stronger than
the Weinstein conjecture that every Reeb vector field on a closed contact manifold has a
periodic orbit [61]. The Weinstein conjecture was proven by Taubes in dimension three [57],
and Conjecture 2.40 has also been proven in dimension three by Colin–Honda [14, Corollary
4.7].
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2.10 Holomorphic curves in Liouville sectors

When proving compactness results for holomorphic curves in Liouville sectors, there are two
main concerns to address, namely curves crossing ∂X and curves escaping to infinity. We
now discuss these in turn, with the goal of giving a general preview of the relevant techniques
before they are applied in specific settings in §§3,4,5. We will usually omit the adjectives
“ω-compatible” and “cylindrical near infinity”, though they should always be understood
even when unwritten.

2.10.1 Preventing crossing ∂X

The key to preventing holomorphic curves from crossing ∂X is the function π : NbdZ ∂X →
CRe≥0 from Definition 2.26. Given such a π, there is an abundance of cylindrical almost
complex structures J for which π is J-holomorphic, and the space of such J is contractible
(indeed, J makes π holomorphic iff it preserves the decomposition TX = (ker dπ)⊕(ker dπ)⊥ω

agreeing with JC on the latter (ker dπ)⊥ω = π∗TC, and these conditions are preserved under
the Liouville flow near infinity, compare Lemma 2.25). For the corresponding J-holomorphic
curves, it is well understood that π−1(C|Re|<ε) acts as a “barrier”, a fact we recall here:

Lemma 2.41. Suppose π : NbdZ ∂X → CRe≥0 is J-holomorphic, and let u : Σ → X be
a J-holomorphic map. Suppose that u−1(π−1(C|Re|≤ε)) is compact and disjoint from ∂Σ.
Then u−1(π−1(C|Re|≤ε)) is empty, except possibly for closed components of Σ over which u is
constant.

In the situations of interest for us, Σ never has any closed components, so we simply
conclude that u(Σ) is disjoint from π−1(C|Re|<ε).

Proof. We consider the holomorphic map π ◦ u : u−1(π−1(C|Re|<ε))→ C|Re|<ε. By compact-
ness, its image im := (π ◦ u)(u−1(π−1(C|Re|<ε))) is a closed and bounded subset of C|Re|<ε.
Now the open mapping theorem from classical single-variable complex analysis implies that
im is open (which implies the desired result im = ∅, as the only closed, open, bounded
subset of C|Re|<ε is the empty set), except for possibly when π ◦ u is locally constant. By
analytic continuation, if π ◦ u is locally constant at some point of Σ, it is constant on the
entire connected component of Σ containing that point. In particular, this component of Σ
is mapped entirely into C|Re|<ε, so the hypotheses imply this is a closed component of Σ.
Now u is constant on this component since X is exact.

An alternative (though in some sense related) proof of Lemma 2.41 proceeds by integrat-
ing π∗(ϕ(Re z) · ωC) for some ϕ : R → [0, 1] supported inside [−ε, ε] over the holomorphic
map in question and using the fact that H2

dR(C|Re|≤ε, ∂C|Re|≤ε) = 0. This latter argument
is important since it generalizes to Floer trajectories with respect to Hamiltonians H whose
restriction to π−1(C|Re|≤ε) coincides with Reπ. Namely, one can show that such Floer tra-
jectories can only pass through ∂X “in the correct direction”; see Lemma 4.21 for a precise
statement. It could be an important technical advance to enlarge the class of Hamiltonians
defined near ∂X for which similar confinement results for holomorphic curves can be proven.
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2.10.2 Preventing escape to infinity using monotonicity

The key to preventing holomorphic curves from escaping to infinity is monotonicity inequal-
ities, which, given a holomorphic curve u : Σ → X passing through a point p, provide a
lower bound ∫

u−1(Bε(p))

u∗ω ≥ const · ε2 (2.30)

(assuming u(∂Σ) lies outside the ball Bε(p)), for all sufficiently small ε > 0 and some positive
constant, both depending on the local geometry of X (as an almost Kähler manifold) near
p. For precise statements of the monotonicity inequalities which we will use, we refer the
reader to Sikorav [54, Propositions 4.3.1 and 4.7.2].

To use monotonicity inequalities to effectively control holomorphic curves, we need to en-
sure that the target almost Kähler manifold has (globally) bounded geometry in the following
sense:

Definition 2.42. An almost Kähler manifold (X,ω, J) is said to have bounded geometry iff
there exist ε > 0, M0,M1, . . . < ∞, and a collection of coordinate charts ϕα : B(1) → X
such that X =

⋃
α ϕα(B(1

2
)) and

‖ϕ∗αω‖Cr ≤Mr, (2.31)

‖ϕ∗αJ‖Cr ≤Mr, (2.32)

(ϕ∗αω)(v, (ϕ∗αJ)v) ≥ ε · gstd(v, v). (2.33)

Note that these conditions imply, in particular, that X is complete when equipped with the
metric ω(·, J ·).1

To apply monotonicity arguments to holomorphic curves with Lagrangian boundary con-
ditions, one further needs to know that the Lagrangians in question also have bounded
(extrinsic) geometry; precisely, this means there exist charts as in Definition 2.42 such that
each ϕ−1

α (L) is either empty or the intersection of B(1) with a linear subspace.
As we now observe in Lemmas 2.43 and 2.44 below, for Liouville sectors, almost complex

structures of bounded geometry are easy to come by: any cylindrical J has this property,
and such J will suffice for all of our arguments. Moreoever, cylindrical Lagrangians have
bounded geometry with respect to such J , which is the only case we will need.

Lemma 2.43. Let X be a Liouville sector, and let J be cylindrical. Then (X,ω, J) has
bounded geometry. If L is cylindrical at infinity, then the same is true for (X,ω, J ;L).

Proof. Obviously (X,ω, J) has bounded geometry over any compact subset of X. By scaling
via the Liouville flow, we observe that the geometry of (X,ω, J) near a point p close to infinity
is the same as the geometry of (X,λω, J) near a point q contained in a compact subset of X,
for some real number λ ≥ 1. Now as λ→∞, the structure (X,λω, J) near q just converges to

1A common equivalent formulation of the notion of bounded geometry is to ask that the curvature and
all its derivatives be bounded, the metric be complete, and the injectivity radius be bounded from below.
Bounded geometry in the sense of Definition 2.42 clearly implies bounded geometry in this sense, but the
converse is, while standard and well known, not completely trivial; for this reason, it is logically simpler to
employ Definition 2.42 as we have formulated it here.
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the tangent space of X at q equipped with its linear almost Kähler structure. In particular,
the family of all scalings by λ ≥ 1 has uniformly bounded geometry, which thus implies the
desired result. The same reasoning applies to cylindrical Lagrangian submanifolds.

The “family version” of Lemma 2.43 relevant for studying with holomorphic curves with
respect to a domain dependent almost complex structure is the following.

Lemma 2.44. Let X be a Liouville sector, and let J : D2 → J(X) be a family of cylindrical
almost complex structures (meaning cylindrical outside a uniformly chosen compact subset
of X). Then (D2 ×X,ωD2 + ωX , jD2 ⊕ J) has bounded geometry. If L ⊆ X is a cylindrical
Lagrangian, then ∂D2 × L has bounded geometry inside D2 ×X.

Note that we make no claims about geometric boundedness of “moving Lagrangian
boundary conditions” (outside of the case that they are fixed at infinity).

Proof. We follow the proof of Lemma 2.43. Geometric boundedness holds trivially over any
compact subset, and to show geometric boundedness everywhere, we just need to understand
(D2×X,ωD2 +λωX , jD2⊕J) over a compact subset of D2×X but for arbitrarily large λ ≥ 1.
Again, the limit as λ→∞ is nice, so we are done.

To derive a priori bounds on holomorphic curves using monotonicity arguments, one
needs certain additional conditions near the punctures/ends. For example, at boundary
punctures, one needs the Lagrangian boundary conditions on either side to be uniformly
separated at infinity, see Proposition 3.19. For Floer cylinders R × S1 with an R-invariant
Floer equation with Hamiltonian term Ht, it is enough to know that the integrated flow
Φ : X → X of XHt over S1 enjoys a lower bound d(x,Φ(x)) ≥ ε > 0 near infinity, see
Proposition 4.23 (this is, of course, related to the Lagrangian boundary conditions setting
since Floer cylinders for Ht in X are in bijection with holomorphic strips in X−×X between
∆X and ΓΦ with respect to a suitable almost complex structure).

Monotonicity inequalities can also be used to derive a priori bounds on Floer continuation
maps (i.e. with varying Hamiltonian term), however this is considerably more subtle and is
due to recent work of Groman [31], requiring careful choice of “dissipative” Floer data near
infinity. We will recall the arguments relevant for our work in Proposition 4.23.

2.10.3 Preventing escape to infinity using pseudo-convexity

The maximum principle for holomorphic curves with respect to almost complex structures
of contact type plays an important role in Floer theory on Liouville manifolds (see e.g.
[49, 9, 44]). We will make use of similar arguments in the setting of Liouville sectors, so we
recall below the basic definitions and result.

Definition 2.45. An ω-compatible almost complex structure J is said to be of contact type
with respect to a positive linear Hamiltonian r : X → R>0 iff dr = λ ◦ J . This condition
is equivalent to requiring that J(Zλ) = Xr and that J stabilizes the contact distribution
ξ = kerλ of the level sets of r.

29



There is an abundance of almost complex structures of contact type for any given r (and
moreover they form a contractible space). Note, however, that we do not claim that on
a Liouville sector X we can find almost complex structures of contact type which make π
holomorphic as in §2.10.1. This makes arguments using the maximum principle on Liouville
sectors somewhat subtle, since the best we can do is choose almost complex structures which
are of contact type over a large compact subset of the interior of ∂∞X. It could be an
important technical advance to identify a reasonable class of almost complex structures on
Liouville sectors which make π holomorphic and with respect to which one can prove a
maximum principle.

Lemma 2.46 (Folklore). Let u : Σ → X be J-holomorphic and satisfy u∗λ|∂Σ ≤ 0 over
u−1({r > a}), where J is of contact type with respect to r over {r > a}. Then u is locally
constant over u−1({r > a}).

Note that u∗λ|∂Σ = 0 whenever u(∂Σ) ⊆ L for Lagrangian L ⊆ X which is cylindrical
over {r > a}. More generally, the hypothesis u∗λ|∂Σ ≤ 0 is satisfied whenever u satisfies
“non-negatively moving cylindrical Lagrangian boundary conditions” over {r > a} (moving
cylindrical Lagrangian boundary conditions {Lt}t∈∂Σ are said to be moving non-negatively
when λ(∂tLt) ≤ 0; the sign is due to the fact that ∂Σ is oriented counterclockwise while
we judge positivity/negativity of moving Lagrangian boundary conditions in the clockwise
direction).

Proof. This proof is due to Abouzaid–Seidel [9, Lemma 7.2]. Let κ : R→ R≥0 be any smooth
function satisfying κ′(r) ≥ 0 and vanishing for r ≤ a. Stokes’ theorem gives

0 ≤
∫

Σ

κ(r(u)) · u∗ω =

∫
∂Σ

κ(r(u)) · u∗λ−
∫

Σ

κ′(r(u)) · u∗(dr ∧ λ) ≤ 0, (2.34)

where the second inequality holds because dr ∧ λ is ≥ 0 on complex lines (since J is of
contact type) and u∗λ|∂Σ ≤ 0 (by hypothesis). The result follows immediately.

3 Wrapped Fukaya category of Liouville sectors

For any Liouville sector X, we define an A∞-category W(X) called its wrapped Fukaya
category. For an inclusion of Liouville sectors X ↪→ X ′, we define an A∞-functor W(X) →
W(X ′); more generally, for a diagram of Liouville sectors {Xσ}σ∈Σ indexed by a finite poset
Σ, we define a diagram of A∞-categories {W(Xσ)}σ∈Σ. In fact, we also define a model of
W(X) which is a strict functor from all Liouville sectors to A∞-categories.

In all these definitions, it is also possible to consider only the full subcategories spanned
by chosen collections of Lagrangians (provided that, in the latter cases, the Lagrangians
chosen for a given X are also chosen for any X ′ into which X is included). Since these A∞-
categories and A∞-functors are chain level objects, they depend on a number of choices (al-
most complex structures, etc.), though they are well-defined up to quasi-equivalence. In par-
ticular, the wrapped Floer cohomology groups HW •(L0, L1), their product HW •(L0, L1)⊗
HW •(L1, L2)→ HW •(L0, L2), and their pushforward HW •(L0, L1)X → HW •(L0, L1)X′ are
all well-defined.
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Officially, we work with Z coefficients and Z/2-grading. On the other hand, issues of
coefficients/gradings are mostly orthogonal to the main point of our discussion, and a much
more general setup is certainly possible in this regard.

To define W, we adopt the method due to Abouzaid–Seidel [8] whereby one first defines
a directed A∞-category O together with a collection C of “continuation morphisms” in O,
and then defines W := O[C−1] as the localization of O at C. An advantage of this definition
is that it is very efficient in terms of the complexity of the Floer theoretic input (e.g. it
does not require the construction of coherent systems of higher homotopies between chain
level compositions of continuation maps/elements). The key result in making this approach
work is Lemma 3.37 (due to Abouzaid–Seidel) which asserts that the morphism spaces in the
category W defined by localization are indeed isomorphic to the wrapped Floer cohomology
groups defined by wrapping Lagrangians geometrically.

When doing Floer theory on Liouville sectors, the following convention is convenient,
and will be in effect for the remainder of this section. It is harmless because we will show
that trivial inclusions of Liouville sectors induce quasi-isomorphisms/equivalences on all the
invariants we define.

Convention 3.1. By “Liouville sector” we will mean “Liouville sector equipped with a choice
of π : NbdZ ∂X → C as in Definition 2.26”. Inclusions of Liouville sectors i : X ↪→ X ′ are
required to satisfy either i(X) ∩ ∂X ′ = ∅ or i(X) = X ′, and in the latter case we require
π = π′ ◦ i.

3.1 A∞-categories

We work throughout with cohomologically unital Z/2-graded A∞-categories over Z, with cofi-
brant morphism complexes. The same assumptions (cohomological unitality, Z/2-grading,
Z coefficients, and cofibrancy) apply to all A∞-modules and A∞-bimodules as well. Mor-
phisms of the above (A∞-functors and morphisms of A∞-modules and bimodules) must also
be cohomologically unital and must respect gradings and coefficients. Gradings will be co-
homological, and all A∞-categories in this paper are small (i.e. they have a set of objects).
In fact, all the A∞-categories, functors, modules, bimodules, and morphisms thereof which
we consider will be strictly unital, however in reasoning about them it is only cohomological
unitality which is ever relevant.

For the basic defintions of A∞-categories, A∞-modules, and A∞-bimodules (about which
we assume some basic familiarity), we refer the reader to [50, 48, 58, 25, 53]. Although these
and most other references work over a field, the notions which we will use make perfect
sense over any commutative ring. Cofibrancy (which is automatic over a field) is defined in
Definition 3.2. Cofibrancy is significant for many reasons in the theory of A∞-categories,
however its sole significance for us (other than in Lemma 3.6) is that tensor products of
cofibrant complexes are well-behaved (since a cofibrant complex is, in particular, K-flat).

For an A∞-category C and a pair of objects X, Y ∈ C, we write C(X, Y ) for the associated
morphism space in C. We adopt the “forward composition” convention, meaning we write
composition as

µk : C(X0, X1)⊗ C(X1, X2)⊗ · · · ⊗ C(Xk−1, Xk)→ C(X0, Xk)[2− k]. (3.1)

For details on the associated sign conventions for the A∞ relations, see [58, 48, 53].
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3.1.1 Cofibrant complexes

Definition 3.2. We fix any class C of isomorphism classes of Z/2-graded complexes over Z,
which we call cofibrant complexes, satisfying the following properties:

(i) A free module concentrated in degree zero is cofibrant.

(ii) A shift of a cofibrant complex is cofibrant.

(iii) If {Ci}i∈I is a directed system where I is well-ordered and 0 → lim−→i′<i
Ci′ → Ci →

Ki → 0 is degreewise split with Ki cofibrant for all i ∈ I, then lim−→i
Ci is cofibrant.

(iv) A tensor product of cofibrant complexes is cofibrant.

(v) If C is cofibrant then −⊗ C preserves acyclicity (“C is K-flat”).

(vi) If C is cofibrant then Hom(C,−) preserves acyclicity (“C is K-projective”).

The existence of such a class of complexes C is essentially due to Spaltenstein [55]. We recall
the argument in Lemma 3.4 below.

Lemma 3.3 (Spaltenstein [55, 0.11 Lemma]). Let {Ai}i∈I be an inverse system of complexes
of abelian groups, indexed by a well-ordered set I. Suppose further that for all i ∈ I, the
following sequence is exact with Ki acyclic:

0→ Ki → Ai → lim←−
i′<i

Ai′ → 0. (3.2)

Then lim←−iAi is acyclic.

Lemma 3.4. The class C of K-projective complexes satisfies the conditions in Definition
3.2.

Proof. By definition, C ∈ C if and only if (vi) Hom(C,−) preserves acyclicity. Clearly (i)
free modules in degree zero are in C, and clearly (ii) C is closed under shift. The adjunction
Hom(C ⊗ C ′,−) = Hom(C,Hom(C ′,−)) shows that (iv) C is closed under tensor products.
This adjunction together with the fact that a complex K is acyclic if and only if Hom(K, I)
is acyclic for every injective Z-module I (which holds since the category of Z-modules has
enough injectives) implies that (v) − ⊗ C preserves acyclicity if Hom(C,−) does. Finally,
property (iii) follows from Lemma 3.3.

Remark 3.5. The Floer complexes appearing in this paper are all equipped with an action
filtration, which implies they are cofibrant by properties (i)–(iii).

Lemma 3.6. Let f : A→ B be a quasi-isomorphism.

(i) If B is cofibrant, then there exists g : B → A such that fg : B → B is chain homotopic
to the identity.

(ii) If A is also cofibrant, then gf : A→ A is also chain homotopic to the identity.

Proof. If B is cofibrant, then Hom(B,A)→ Hom(B,B) is a quasi-isomorphism, so we may
lift the identity element of Hom(B,B) to a cycle homologous to it. In other words, we get a
chain map g : B → A such that fg is chain homotopic to the identity. If A is also cofibrant,
then applying the first part to g, we get h with gh homotopic to the identity. Now gf is
homotopic to gfgh, which is homotopic to gh, which is homotopic to the identity.
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3.1.2 A∞-modules and bimodules

It will be helpful to recall some terminology and foundational results about A∞-bimodules
over a pair of A∞-categories, as well left and right modules over a single A∞-category (which
arise as the special case of bimodules where one of the categories is Z).

We recall that for A∞-categories C and D, there is a dg-category, denoted [C,D], of
(C,D)-bimodules [58, 48, 25], whose objects are cohomologically unital A∞-bilinear functors
B : Cop ×D→ Ch (in the sense of [36]; see also [53]). Concretely, a bimodule B consists of
a cochain complex B(X, Y ) for every pair of objects X ∈ C, Y ∈ D, equipped with higher
multiplication maps

µ
k|1|`
B : C(Xk, Xk−1)⊗ · · · ⊗ C(X1, X0)⊗B(X0, Y0)⊗D(Y0, Y1)⊗ · · · ⊗D(Y`−1, Y`)

→ B(Xk, Y`)[1− k − `] (3.3)

satisfying the natural A∞ relations. As mentioned earlier, we require that each cochain
complex B(X, Y ) be cofibrant.

The space of morphisms in [C,D] of degree s from a bimodule P to a bimodule Q is, as
a Z-module, the direct product over all pairs of tuples (X0, . . . , Xk) and (Y0, . . . , Y`) of all
maps

F k|1|` : C(Xk, Xk−1)⊗ · · · ⊗ C(X1, X0)⊗ P(X0, Y0)⊗D(Y0, Y1)⊗ · · · ⊗D(Y`−1, Y`)

→ Q(Xk, Y`)[s− k − `]. (3.4)

These are called the degree s bimodule ‘pre-homomorphisms’ in the language of [48, Section
2]. There is a natural differential on the morphism space measuring the failure of a collection
{F k|1|l} to satisfy the “A∞-bimodule morphism relations”; see [48, eq. (2.8)]. A bimodule
homomorphism P→ Q is a closed degree zero pre-homomorphism. Recall that the condition
of being a bimodule homomorphism implies that F 0|1|0 : P(X, Y ) → Q(X, Y ) is a cochain
map for all X, Y . A bimodule homomorphism is called a quasi-isomorphism iff F 0|1|0 is a
quasi-isomorphism of co-chain complexes for each X, Y .

A (C,C)-bimodule will often simply be called a C-bimodule. There is a canonical C-
bimodule, the diagonal bimodule C∆(X, Y ) := C(X, Y ), with bimodule multiplication maps
induced by A∞-multiplication (up to a sign twist, rather; see [48, eq. (2.20)]). By abuse of
notation, we will simply denote this bimodule by C.

A left C-module (resp. right D-module) is simply a (C,D)-bimodule in which D = Z
(resp. C = Z) is the A∞-category with a single object ∗ with endomorphism algebra Z, and
we shall write

M(X) := M(X, ∗), (3.5)

N(Y ) := N(∗, Y ). (3.6)

Put another way, although left (resp. right) A∞-modules are typically defined as functors
from Cop (resp. D) to Ch, there is no difference in thinking of them as bilinear functors
Cop × Z (resp. Z × D) to Ch (compare [48, p. 11]). In particular, the present discussion
of A∞-bimodules specializes immediately to a discussion of left/right A∞-modules. As a
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particularly degenerate special case, we note that by the same convention (Z,Z)-bimodules
are simply cochain complexes.

Let C0, C, and C1 be A∞-categories. Suppose P is a (C0,C)-bimodule and Q is a (C,C1)-
bimodule. We denote (the bar model of) the derived tensor product of P and Q over C

by
P⊗C Q, (3.7)

which concretely is the (C0,C1)-bimodule which associates to a pair of objects (X,Z) the
chain complex

(P⊗C Q)(X,Z) :=
⊕
k≥0

Y0,...,Yk∈C

P(X, Y0)⊗ C(Y0, Y1)[1]⊗ · · · ⊗ C(Yk−1, Yk)[1]⊗ Q(Yk, Z) (3.8)

with differential and bimodule maps given by summing over ways to contract tensor chains
by the A∞ and bimodule structure maps, see [48, 25] for more details. Note that this
construction preserves cofibrancy (i.e. if the morphism spaces in C and the chain complexes
associated to P and Q are all cofibrant, then the above chain complexes are too). As noted
above, this construction (and the results that follow) carries over to modules as well, so in
particular, the tensor product of a right C-module (i.e. a (Z,C)-bimodule) with a (C,D)-
bimodule is a right D-module, etc.

For any (C0,C)-bimodule P or any (C,C0)-bimodule Q, there are canonical bimodule
homomorphisms

P⊗C C→ P, (3.9)

C⊗C Q→ Q. (3.10)

For instance, on the level of chain complexes, for any pair of objects (X,Z), the map (3.9)
from

(P⊗C C)(X,Z) :=
⊕
k≥0

Y0,...,Yk∈C

P(X, Y0)⊗ C(Y0, Y1)[1]⊗ · · · ⊗ C(Yk−1, Yk)[1]⊗ C(Yk, Z) (3.11)

to P(X,Z) is given by contracting using the bimodule structure map of P (up to an overall
sign correction, compare [48, eq. (2.21)–(2.24)]). The following lemma is standard, see [48, 25]
for more details.

Lemma 3.7. The canonical maps (3.9) and (3.10) are quasi-isomorphisms.

Proof. Without loss of generality, we discuss (3.9) only (the case of (3.10) is identical, and,
in fact, follows from the case of (3.9) by passing to the “opposite bimodule”).

The cone of (3.9) evaluated at (X,Z) is given by⊕
k≥0

Y1,...,Yk∈C

P(X, Y1)⊗ C(Y1, Y2)[1]⊗ · · · ⊗ C(Yk−1, Yk)[1]⊗ C(Yk, Z)[1] (3.12)

where the k = 0 term is by definition P(X,Z). If C and P are strictly unital, then −⊗ 1Z is
a contracting homotopy of this complex, where 1Z ∈ C(Z,Z) denotes the strict unit. In the
general cohomologically unital case, argue as follows.
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For any cycle c =
∑

k≥0 ck in (3.12), let kmax(c) denote the maximum k for which ck is
nonzero. To show that (3.12) is acyclic, it suffices to show that for every cycle c, there exists
another cycle c′ cohomologous to c with kmax(c′) < kmax(c). If

[ckmax(c)] ∈ H•
( ⊕
Y1,...,Ykmax(c)∈C

P(X, Y1)⊗ C(Y1, Y2)⊗ · · · ⊗ C(Ykmax(c), Z)

)
(3.13)

vanishes, then the existence of a suitable c′ is clear. Thus it is enough to show that every
cycle c is cohomologous to a cycle c′ with kmax(c′) = kmax(c) and [c′kmax(c′)] = 0.

For any given cycle c, consider c′ := c− d(c⊗ 1Z) where 1Z ∈ C(Z,Z) denotes any cycle
whose class in cohomology is the cohomological unit (clearly c and c′ are cohomologous).
Note that since both c and 1Z are cycles, the chain d(c⊗ 1Z) may be obtained from c⊗ 1Z
by contracting just those strings of consecutive tensor factors which intersect both c and 1Z
nontrivially. In particular, we conclude that the length kmax(c) + 1 term of c′ vanishes, and
the length kmax(c) term of c′ is given by ck− (id⊗k⊗µ2)(ck⊗1Z). Hence it is enough to show
that the map

P(X, Y1)⊗ C(Y1, Y2)⊗ · · · ⊗ C(Ykmax(c), Z)

id⊗k ⊗µ2(−,1Z)−−−−−−−−−→ P(X, Y1)⊗ C(Y1, Y2)⊗ · · · ⊗ C(Ykmax(c), Z) (3.14)

acts as the identity on cohomology for all Y1, . . . , Ykmax(c) ∈ C. This follows from the fact
that both maps

µ2(−,1Z) : C(Ykmax(c), Z)→ C(Ykmax(c), Z) (3.15)

µ2(−,1Z) : P(X,Z)→ P(X,Z) (3.16)

are homotopic to the identity by Lemma 3.8 below.

Lemma 3.8. Let M be a C-module and let 1X ∈ C(X,X) be any cycle representing the
cohomology unit. The map µ2(−,1X) : M(X) → M(X) is chain homotopic to the identity
map.

Proof. First note that the chain homotopy class of the map µ2(−,1X) is independent of
the choice of cycle 1X representing the cohomology unit. Next, note that since µ2(1X ,1X)
is cohomologous to 1X , the µ3 operation provides a chain homotopy between µ2(−,1X) ◦
µ2(−,1X) and µ2(−,1X) (in other words, µ2(−,1X) is idempotent up to chain homotopy).
Finally, recall that since µ2(−,1X) is a quasi-isomorphism (by cohomological unitality),
cofibrancy of M(X) implies by Lemma 3.6 that µ2(−,1X) is invertible up to homotopy.
This completes the proof since idempotent and invertible implies identity.

For a (C,D)-bimodule B and a pair of functors g : C′ → C and h : D′ → D, we denote
by (g, h)∗B the two-sided pull-back (see e.g. [25]) of B along g and h. On the level of chain
complexes, (g, h)∗B(X, Y ) := B(gX, hY ). Thinking of the bimodule B as a bilinear functor
Cop ×D→ Ch, the two sided pull-back is simply the composition B ◦ (gop, h).

For P a (C0,C)-bimodule, Q a (C,C1)-bimodule, and f : A→ C an A∞-functor, we denote
by

P⊗A Q (3.17)
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the tensor product (idC0 , f)∗P ⊗A (f, idC1)
∗Q. In the cases we study below, f will be an

inclusion on the level of morphism complexes with no higher order functor operations (which
we call a naive inclusion) justifying our omission of f from the notation. We note that f
always induces a canonical bimodule homomorphism

P⊗A Q→ P⊗C Q. (3.18)

If f is a naive inclusion, this map is just for each pair of objects (X, Y ), the levelwise
inclusion of the complexes (3.8). Finally, let us discuss a circumstance under which this map
is a quasi-isomorphism.

Lemma 3.9. Let f : A → C be cohomologically fully faithful and split-generating (e.g. it
could be a quasi-equivalence, or it could be the inclusion of a full subcategory spanned by
split-generators). Then the map

P⊗A Q→ P⊗C Q (3.19)

is a quasi-isomorphism for all (C0,C)-bimodules P and (C,C1)-bimodules Q.

Proof. The result in the case A→ C is bijective on objects is clear.
The result in the case A→ C is the inclusion of a full subcategory may be seen as follows.

Note that, by virtue of the quasi-isomorphism P ⊗C C ⊗A C ⊗C Q → P ⊗A Q (and the same
with C in place of A) from Lemma 3.7, it is enough to show that C ⊗A C → C ⊗C C is a
quasi-isomorphism. Further composing with the quasi-isomorphism C⊗C C→ C, we see that
it is enough to show that C ⊗A C → C is a quasi-isomorphism. When restricted to inputs
(X, Y ) with Y ∈ A, this map is simply C⊗AA→ C, which is a quasi-isomorphism by Lemma
3.7. This implies the same for any Y split-generated by A, namely all Y ∈ C.

These two special cases suffice to treat the general case, as we now argue. We may factor
A → C as A → im(A) → C. Since im(A) → C is the inclusion of a full subcategory, it is
enough to treat the case of A→ im(A), i.e. we may assume A→ C is surjective on objects.
Now, choose a full subcategory C̃ ⊆ A mapping bijectively to C, so there is a factorization
C̃ → A → C. Now the result for A → C follows from the result for C̃ → C (bijective on
objects) and C̃ → A (full subcategory; note C̃ → A is essentially surjective since A → C is
cohomologically fully faithful).

3.1.3 Quotients and localization

We review some basic elements of the theory of quotients and localizations of A∞-categories
due to Lyubashenko–Ovsienko [38], Lyubashenko–Manzyuk [37], and Drinfeld [15], generaliz-
ing much earlier work of Verdier [59] on quotients and localizations of triangulated categories.
Our aim is both to make this article self-contained and to verify that the (rather elementary)
results we need remain valid for A∞-categories over a general commutative ring (which, as
stated above, carry the requirement that all morphism, module, bimodule complexes are
cofibrant).

Definition 3.10. Let C be an A∞-category, and let A be a set of objects of C (meaning, A is
a set, and for each element of A there is specified an object of C). The quotient A∞-category
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C/A is defined to have the same objects as C and morphism spaces

(C/A)(X, Y ) :=
⊕
p≥0

A1,...,Ap∈A

C(X,A1)⊗ C(A1, A2)[1]⊗ · · · ⊗ C(Ap, Y )[1] (3.20)

= [(C⊗A C)[1]→ C](X, Y )

with the usual bar differential (note that the p = 0 term is, by convention, C(X, Y )). It
is important that A be a set so that the direct sum (3.20) makes sense. Note that this
construction preserves strict unitality and cofibrancy. More generally, we may quotient C by
any set A of objects of TwC (note that, although A must be a set, there is no need to fix
a specific small model for TwC; also note that when C is strictly unital or cohomologically
unital, so is TwC).

Let M be a right C-module. There is a C/A-module M/A defined as

(M/A)(Y ) :=
⊕
p≥0

A1,...,Ap∈A

M(A1)⊗ C(A1, A2)[1]⊗ · · · ⊗ C(Ap, Y )[1] (3.21)

= [M⊗A C[1]→M](Y ).

with the usual bar differential (note again that the p = 0 term in the sum is M(Y )). If M is
a left C-module, then the analogously defined C/A-module is denoted A\M. Bimodules can
be quotiented on both sides: if B is a (C,C′)-bimodule, then we can form the (C/A,C′/A′)-
bimodule A\B/A′.

Lemma 3.11. The quotient construction in Definition 3.10 preserves cohomological unital-
ity, and quotient functors are cohomologically unital.

Proof. It is enough to show that if 1X ∈ C(X,X) is a cycle representing the cohomological
unit, then µ2(−,1X) : (M/A)(X) → (M/A)(X) acts as the identity on cohomology. Since
µ2(−,1X) ◦ µ2(−,1X) is chain homotopic to µ2(−,1X) (since 1X is a cohomological unit in
C), it is enough to show that µ2(−,1X) is a quasi-isomorphism. This then follows from a
filtration argument.

Lemma 3.12. If Y is split-generated by A, then (M/A)(Y ) is acyclic. In particular, if X
or Y is split-generated by A, then (C/A)(X, Y ) is acyclic.

Proof. We may as well assume that C contains no objects other than A and Y . Now M⊗AC→
M⊗C C is a quasi-isomorphism by Lemma 3.9, and M⊗C C→M is a quasi-isomorphism by
Lemma 3.7. Thus M⊗A C→M is a quasi-isomorphism, and hence M/A is acyclic.

Lemma 3.13. If M(A) is acyclic for all A ∈ A, then the natural map M(Y )→ (M/A)(Y )
is a quasi-isomorphism for all Y ∈ C.

In particular, if C(X,A) is acyclic for all A ∈ A (“X is left-orthogonal to A”), then the
natural map C(X, Y )→ (C/A)(X, Y ) is a quasi-isomorphism for all Y ∈ C.

Proof. By considering the length filtration (i.e. the filtration by p) on the quotient of (3.21)
by the inclusion of M(Y ), it is enough to show that for p ≥ 1 and A1, . . . , Ap ∈ A, the
complex

M(A1)⊗ C(A1, A2)⊗ · · · ⊗ C(Ap, Y ) (3.22)
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is acyclic. Now note that the first term is acyclic and each remaining tensor factor is
cofibrant.

Corollary 3.14. If A split-generates B, then M/A → M/B is a quasi-isomorphism (in
particular, C/A→ C/B is a quasi-isomorphism).

Proof. The map in question is itself a quotient M/A→ (M/A)/B′ = M/B where B′ denotes
(the image in C/A of) the objects of B which are not in A (note that this latter quotient is
the quotient of a C/A-module). Thus by Lemma 3.13, it is enough to show that B′ are zero
objects in C/A, which in turn follows from Lemma 3.12 since A split-generates B.

Lemma 3.15. For any (C/A)-modules M and N, the natural map M⊗C N→M⊗C/A N is
a quasi-isomorphism.

Proof. By Lemma 3.7, we can replace M with M⊗C/AC/A and N with C/A⊗C/AN. Hence it
is enough to show that C/A⊗CC/A→ C/A⊗C/AC/A is a quasi-isomorphism. Using Lemma
3.7 again, it is thus enough to show that C/A⊗C C/A→ C/A is a quasi-isomorphism.

Explicitly, the bimodule C/A⊗C C/A is given by⊕
p,q,r≥0

A1,...,Ap∈A
Z0,...,Zq∈C
A′1,...,A

′
r∈A

C(−, A1)⊗· · ·⊗C(Ap, Z0)⊗C(Z0, Z1) · · ·⊗C(Zq−1, Zq)⊗C(Zq, A
′
1)⊗· · ·⊗C(A′r,−),

(3.23)
the bimodule C/A is given by ⊕

s≥0
A1,...,As∈A

C(−, A1)⊗ · · · ⊗ C(As,−), (3.24)

and the map C/A ⊗C C/A → C/A is given by summing up (with appropriate signs) all
ways of applying µk’s to subsequences containing all the Zi’s in (3.23) and then viewing the
surviving Ai’s and A′i’s as a single sequence A1, . . . , As as in (3.24). Said a bit differently,
but equivalently, the map C/A⊗C C/A→ C/A is the composition

C/A⊗C C/A = A\C⊗C C/A
α−→ A\C/A β−→ C/A, (3.25)

where α is simply induced by the obvious map C ⊗C C → C, and β is a non-obvious map
given by concatenating the two adjacent sequences of elements of A. The map α is a quasi-
isomorphism by Lemma 3.7. The map β has a section C/A→ A\C/A, namely the obvious
inclusion M → A\M for M = C/A. This section is a quasi-isomorphism by Lemmas 3.12
and 3.13, and hence β is also a quasi-isomorphism.

Lemma 3.16. If lim−→i
H•Mi(A) = 0 for all A ∈ A for a sequence M1

f1−→ M2
f2−→ · · · of

C-modules, then the natural map lim−→i
H•Mi(Y )→ lim−→i

H•(Mi/A)(Y ) is an isomorphism for
all Y ∈ C.
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In particular, if lim−→i
H•C(Xi, A) = 0 for all A ∈ A for X1, X2, . . . ∈ C and cycles

ci ∈ C(Xi+1, Xi) (“lim←−iXi ∈ ProC is left-orthogonal to A”), then the natural map

lim−→
i

H•C(Xi, Y )→ lim−→
i

H•(C/A)(Xi, Y ) (3.26)

is an isomorphism for all Y ∈ C.

Proof. Apply Lemma 3.13 to the mapping cone

lim−→
i

Mi :=

[ ∞⊕
i=1

Mi[1]
⊕

1i−fi−−−−−→
∞⊕
i=1

Mi

]
(3.27)

which is naturally a C-module.

Definition 3.17. Let C be an A∞-category, and let W be a collection of morphisms in H0C.
The localized A∞-category C[W−1] is defined as the quotient

C[W−1] := C/cones(W ) (3.28)

where cones(W ) denotes the set of all cones [X
a−→ Y ] where a ∈ C(X, Y ) is a cycle repre-

senting an element of W .
For a right C-module M, we define MW−1 := M/cones(W ) which is a right C[W−1]-

module. Similarly define W−1M for M a left C-module, and define W−1MW ′−1 for M a
(C,C′)-bimodule.

3.2 Holomorphic curves and A∞ operations

We begin with a general discussion of holomorphic curves in Liouville sectors, as well as the
corresponding A∞ operations, for sequences of mutually transverse Lagrangians.

Let X be a Liouville sector and let L1, L2 ⊆ X be a pair of transverse cylindrical exact
Lagrangians (we tacitly assume all Lagrangians to be disjoint from ∂X). For the purpose
of defining gradings/orientations, suppose further that these Lagrangians are equipped with
Spin structures, namely equipped with lifts

B Spin

L BO K(Z/2, 1)×K(Z/2, 2)TL (w1,w2)

(3.29)

where we remark that B Spin → BO is the K(Z/2, 0) × K(Z/2, 1) bundle trivializing
(w1, w2) : BO → K(Z/2, 1) ×K(Z/2, 2) (if we were content working without gradings and
over characteristic 2, such data could be omitted). Associated to any such pair L1, L2 ⊆ X
is a Lagrangian Floer complex

CF •(L1, L2) :=
⊕

p∈L1∩L2

oL1,L2,p (3.30)

39



which is, as a Z-module, isomorphic to the free abelian group generated by the finite set
L1∩L2. More intrinsically, (3.30) is the direct sum of the orientation lines oL1,L2,p associated
to each intersection point p ∈ L1 ∩ L2 (an orientation line is a Z/2-graded free Z-module
of rank one; the Z/2-grading is relevant for the Koszul rule of signs and, equivalently, for
the super tensor product). The orientation line oL1,L2,p is extracted from index theory in the
usual way, which we summarize as follows. Consider the linearized ∂̄-operator at the constant
map u : (−∞, 0]× [0, 1]→ X sending everything to p and subject to Lagrangian boundary
conditions u(t, 0) ∈ L1 and u(t, 1) ∈ L2. We extend this Cauchy–Riemann operator with
totally real boundary conditions to such an operator on the unit disk with a single negative
boundary puncture (see Figure 3). The boundary conditions are extended by choosing a path
in the Lagrangian Grassmannian of TpX from TL1 to TL2 compatible with the given lifts
(3.29) (note that there are multiple such paths differing by an even multiple of the Maslov
class, however the resulting orientation lines are canonically isomorphic, so we systematically
elide this point). Then oL1,L2,x := o∨D is defined as the dual of the Fredholm orientation line
oD := okerD ⊗ o∨cokerD of this Cauchy–Riemann operator D (the orientation line oV of a
finite-dimensional vector space V is the Z-module generated by the two orientations on
V modulo the relation that their sum vanishes, placed in cohomological degree − dimV ;
more succinctly, we could equivalently define oV := H•(V, V \ 0)). The grading of oL1,L2,x

is determined by the usual Maslov index considerations (see [50]). For further background
on the theory of gradings and orientations in Floer theory, we refer the reader to Seidel
[50, §11] [46] and Abouzaid [6, §1.4] (let us also point out that we could just as well use
Z/2N -gradings in our setup).

L1L2

Figure 3: The orientation line oL1,L2,p is defined as the dual of the Fredholm orientation
line of Cauchy–Riemann operator on the punctured disk, illustrated here, extending the
linearized ∂̄-operator at the constant map u : (−∞, 0]× [0, 1]→ X sending everything to p.

We now discuss the construction of the A∞ operations µk on the Lagrangian Floer com-
plexes (3.30), of which the differential is the special case k = 1.

For k ≥ 2, let Rk,1 denote the Deligne–Mumford moduli space of stable disks with
k+ 1 marked points on the boundary labelled x1, . . . , xk, y in counterclockwise order, which
inherits the structure of a smooth manifold with corners from its embedding into M0,k+1.
For k = 1, define Rk,1 as the stack pt/R. For k ≥ 1, denote by Sk,1 → Rk,1 the universal
curve (note that S1,1 = [0, 1]).

The thin parts of the fibers of Sk,1 → Rk,1 refers to a neighborhood (inside the total
space Sk,1) of the boundary marked points x1, . . . , xk, y and the nodes of the fibers. The
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complement of the thin parts is called the thick parts.
Denote by J(X) the space of ω-compatible cylindrical almost complex structures on

X. Families of almost complex structures U → J(X) are always implicitly required to be
uniformly cylindrical, in the sense that there exists a subset of U ×X which is proper over
U outside which the family is Z-invariant.

Let L1, . . . , LN ⊆ X be a finite collection of mutually transverse cylindrical exact La-
grangians equipped with Spin structures. For every sequence 1 ≤ i0 < · · · < ik ≤ N (k ≥ 1),
fix families of “universal strip-like coordinates” (following [9, §2b])

ξ+
i0,...,ik;j : [0,∞)× [0, 1]× Rk,1 → Sk,1 j = 1, . . . , k (3.31)

ξ−i0,...,ik : (−∞, 0]× [0, 1]× Rk,1 → Sk,1 (3.32)

and a family of almost complex structures

Ji0,...,ik : Sk,1 → J(X) (3.33)

satisfying the following properties:

• The strip-like coordinates ξ must be compatible with gluing in the following sense. For
each j = 1, . . . , `, there is a boundary collar

Rk,1 × R`,1 × (0,∞]→ Rk+`−1,1 (3.34)

defined, for sufficiently large S ∈ (0,∞], by gluing together the ends at xj in the disk
with `+1 punctures and y in the disk with k+1 punctures according to the parameter S
via the coordinates (3.31)–(3.32). Over the image of this boundary collar, the strip-like
coordinates on Rk,1 and R`,1 determine “glued” strip-like coordinates on Rk+`−1,1, and
we require that these glued coordinates agree with the strip-like coordinates specified
on Rk+`−1,1. Note that this gluing procedure also gives rise to strip-like coordinates in
all thin parts of fibers.

(Though we will always write choices of coordinates in the form (3.31)–(3.32), it is
somewhat better to view these coordinates as only being well-defined up to translating
in the s-coordinate, i.e. what is well-defined is the coordinate t and the 1-form ds in a
neighborhood of each puncture, and more generally over the thin parts.)

• The almost complex structures J must be compatible with gluing via ξ in the following
sense: (1) Ji0,...,ik must be s-invariant in the thin parts with respect to the strip-like
coordinates ξ, (2) Ji0,...,ik+`−1

must, over (the inverse image in Sk+`−1,1 of) the image of

(3.34), be given by the obvious gluing under ξ of its restriction to Rk,1 × R`,1, and (3)
Ji0,...,ik+`−1

must, over (the inverse image in Sk+`−1,1 of) the image of Rk,1 ×R`,1 under
(3.34) coincide with the product of Jij−1,...,ik+j−1

and Ji0,...,ij−1,ik+j−1,...,ik+`−1
.

• The almost complex structures J must be adapted to ∂X, meaning that π : NbdZ ∂X →
C is Ji0,...,ik-holomorphic over π−1(C|Re|≤ε) for some ε > 0.

Lemma 3.18. Strip-like coordinates (3.31)–(3.32) and almost complex structures (3.33) as
above may be constructed by induction on the subset {i0, . . . , ik}.
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Proof. The only thing to check is that the various compatibility conditions agree on their
overlap, and this follows from the compatibility conditions at earlier steps in the induction.
For more details, see Seidel [50, II (9g,9i)].

L0L3

L1L2 L0L3

L0

L1

L2

L3

y

x1

x2
x3

x4

x5

Figure 4: Holomorphic curves comprising the moduli spaces Rk,1(y;x1, . . . , xk).

Fixing a choice of strip-like coordinates and almost complex structures as above, we can
now consider the compactified moduli spaces

Rk,1(y;x1, . . . , xk) (3.35)

of stable Ji0,...,ik-holomorphic maps u : Σ → X with Lagrangian boundary conditions as
in Figure 4, mapping the marked points to the chosen intersections y ∈ Li0 ∩ Lik and
xs ∈ Lis−1 ∩ Lis . Note that it is the map which must be stable, not the domain (the

domain merely has a unique stabilization map to a fiber of Sk,1 → Rk,1). Note that Ji0,...,ik-
holormophicity of π as above implies that any such holomorphic disk must be disjoint from
π−1(C0≤Re≤ε) since its boundary is disjoint from this region by Lemma 2.41 of §2.10.1.

To show that the moduli spaces (3.35) are indeed compact (as their name would suggest),
we need to recall the definition of the action functional for exact Lagrangians L0, L1 ⊆ X:

a : L0 ∩ L1 → R (3.36)

x 7→ f0(x)− f1(x) (3.37)

where λi|Li = dfi (the ambiguity in choosing fi will not concern us; note that we do not
require fi to have compact support). The energy of a strip u : R× [0, 1]→ X with u(s, 0) ∈
L0, u(s, 1) ∈ L1, and u(±∞, t) = x± is defined as

E(u) :=

∫
R×[0,1]

u∗dλ = a(x+)− a(x−). (3.38)

For pseudo-holomorphic u, the integrand is ≥ 0, and E(u) = 0 implies u is constant. Similar
considerations apply to all disks as in Figure 4.

Proposition 3.19. The moduli spaces Rk,1(y;x1, . . . , xk) are compact.
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Proof. It is enough to show that all stable disks u : Σ → X are contained a priori in-
side a fixed compact subset of X depending only on y, x1, . . . , xk (then the usual Gromov
compactness arguments apply).

We first claim that, given any compact subset B ⊆ Σ (a fiber of Sk,1 → Rk,1) disjoint
from the boundary marked points and nodes of Σ (i.e. B is contained in the thick parts of
Σ) and a point p ∈ B, the image u(B) is bounded a priori away from infinity in terms of
u(p), the energy E, and the geometry of J restricted to B. Indeed, this follows by applying
monotonicity inequalities to the graph of u inside Σ×X (see §2.10.2) and using the geometric
boundedness from Lemma 2.44.

Let us now discuss the situation over the thin parts of Σ. We work in the chosen strip-
like coordinates [0,∞) × [0, 1] → Σ (or (−∞, 0] × [0, 1] → Σ or I × [0, 1] → Σ). Outside a
sufficiently large compact subset K of X, all Lagrangians in question are uniformly separated.
Therefore, if [a, b] is an interval such that u([a, b] × [0, 1]) lies entirely outside K, then we
have

E ≥
∫

[a,b]

∫
[0,1]

|∂tu|2 ≥
∫

[a,b]

(∫
[0,1]

|∂tu|
)2

≥ const · (b− a). (3.39)

It follows that there exists L < ∞ such that for every interval [a, b] of length ≥ L, there is
some point in [a, b]× [0, 1] ⊆ [0,∞)× [0, 1] ⊆ Σ which gets mapped inside K by u. Now we
apply the monotonicity argument in the previous paragraph to conclude.

Choosing Ji0,...,ik generically (meaning “belonging to an unspecified comeagre set”) guar-
antees all moduli spaces Rk,1(y;x1, . . . , xk) are all cut out transversely.2 We merely sketch
the argument as it is standard: perturb by induction on k; the induction hypothesis and
gluing guarantee transversality over Nbd ∂Rk,1, and then we just perturb over the rest (for
more details, see Seidel [50, II (9k)]).

Counting holomorphic disks in the dimension zero part of Rk,1(y;x1, . . . , xk) defines op-
erations

CF •(Li0 , Li1)⊗ · · · ⊗ CF •(Lik−1
, Lik)⊗ oRk,1 → CF •(Li0 , Lik) (3.40)

which (with suitable signs as in [50, (12.24)]) can be interpreted as maps

µk : CF •(Li0 , Li1)⊗ · · · ⊗ CF •(Lik−1
, Lik)→ CF •(Li0 , Lik)[2− k] (3.41)

satisfying the A∞ relations, by the usual arguments considering the boundary of the moduli
spaces of dimension one (see [50, (12d,12g)], in particular Proposition 12.3 therein, for a
discussion of signs).

For future reference, we record here the definition of the action functional for holomorphic
maps u : Σ → X with “moving Lagrangian boundary conditions”, meaning that u(s) ∈ Ls
for a family of cylindrical exact Lagrangians Ls ⊆ X for s ∈ ∂Σ. Specifically, the following
expression for the geometric energy of such a map will be crucial:

Egeo(u) :=

∫
Σ

u∗dλ =
∑
i

a(x+
i )−

∑
i

a(x−i ) +

∫
∂Σ

Hs(u) (3.42)

2Warning: some papers use the word “generic” to mean “achieves transversality”. This language in-
evitably causes confusion when trying to express the key (nontrivial!) fact that, in favorable cases, “a generic
choice of almost complex structure achieves transversality”.
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where the Hamiltonians Hs : Ls → T ∗s ∂Σ for s ∈ ∂Σ are defined by the property that,
choosing fs : Ls → R satisfying dfs = λ|Ls with respect to which we define the action a, we
have H = λ|L− df as 1-forms on L :=

⋃
s∈∂Σ Ls (of course, this means the total space of the

abstract family mapping to X, not a union of subsets of X). This Hs is also the Hamiltonian
function generating the isotopy, meaning that XHs(

∂
∂s

) = ∂Ls
∂s
∈ TX/TLs.

3.3 Floer cohomology and continuation elements

Let X be a Liouville sector. As a consequence of the discussion in §3.2, we have Floer co-
homology groups HF •(L1, L2) for any transverse exact Lagrangians L1, L2 ⊆ X (cylindrical
at infinity). We also have composition maps HF •(L1, L2) ⊗ HF •(L2, L3) → HF •(L1, L3)
when L1, L2, L3 are mutually transverse. Let us first observe that HF • satisfies a locality
property with respect to inclusions of Liouville sectors:

Lemma 3.20. If X ↪→ X ′ is an inclusion of Liouville sectors, then the Floer cohomology
of a pair of Lagrangians inside X is canonically isomorphic to their Floer cohomology taken
inside X ′.

Proof. Choose a J on X as in §3.2, and extend it to X ′. Now Lemma 2.41 implies that
the relevant holomorphic disks (in X ′) with boundary on the Lagrangians (in X) must lie
entirely inside X, since J was chosen to make π : NbdZ ∂X → C holomorphic.

Let us also observe that HF •(L,K) satisfies a sort of deformation invariance property
with respect to some (non-compactly supported) deformations.

Lemma 3.21. For any simultaneous deformation of cylindrical exact Lagrangians (Lt, Kt)
with L0 t K0 and L1 t K1 such that Lt and Kt are disjoint at infinity for all t ∈ [0, 1], there
is an induced isomorphism HF •(L0, K0) = HF •(L1, K1).

Proof. Any such deformation may be factored as a composition of a global Hamiltonian
isotopy of X (fixed near ∂X, cylindrical at infinity) followed by a compactly supported
deformation of each of the Lagrangians. The invariance of HF • with respect to either of these
types of deformations is standard. More precisely, both types of deformations induce Floer
theoretically defined continuation maps between Floer cohomology groups, whose actions on
cohomology are canonical and intertwine composition of isomorphisms with concatenation
of isotopies.

To understand the relationship between HF •(L0, K0) and HF •(L1, K1) when Lt and Kt

intersect near∞ for some t, we need the notion of a positive isotopy Lt (and, correspondingly,
a negative isotopy Kt).

Definition 3.22. An isotopy of Lagrangians Lt is called positive (resp. non-negative, nega-
tive, non-positive) near infinity iff for some (equivalently, any) contact form α on ∂∞X, we
have α(∂t∂∞Lt) > 0 (resp. ≥ 0, < 0, ≤ 0) for all t.

Let us write HF •(L,L) to mean HF •(L+, L) where L+ denotes an unspecified sufficiently
small transverse pushoff of L, which is positive near infinity. Lemma 3.21 implies that
HF •(L,L) is independent of the choice of L+ up to canonical isomorphism (so the notation
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HF •(L,L) is justified). We also have that HF •(L,L) is an associative algebra, and that
HF •(L,K) and HF •(K,L) are left- and right-modules over HF •(L,L), respectively. In fact,
as we now show, HF •(L,L) is unital and HF •(L,K) and HF •(K,L) are unital modules
over it.

Proposition 3.23. The associative algebra HF •(L,L) has a unit, and the modules HF •(L,K)
and HF •(K,L) over it are unital.

Proof. This is well-known for Liouville manifolds, and we may deduce the result for Liouville
sectors from the case of Liouville manifolds as follows. Namely, if X ↪→ X ′ is an inclusion of
Liouville sectors, then the result for X ′ implies the result for X, and every Liouville sector
X embeds into its convex completion X̄ (see §2.7) which is a Liouville manifold.

Alternatively, the proof for Liouville manifolds can be implemented directly in the Liou-
ville sector setting. The only subtle point in this adaptation is to show compactness, namely
to show that the relevant disks are bounded a priori away from infinity. Recall that one con-
siders holomorphic disks with non-negatively (in the clockwise direction) moving Lagrangian
boundary conditions (and note that Proposition 3.19 concerns only fixed Lagrangian bound-
ary conditions). We consider almost complex structures which are of contact type near
infinity over a sufficiently large compact subset V of the interior of ∂∞X (compare §2.10.3)
containing the moving Lagrangian boundary conditions. Now the geometric energy of such
disks is bounded by their topological energy since the Lagrangians move non-negatively at
infinity (see (3.42)). The arguments from Proposition 3.19 based on monotonicity thus im-
ply that such disks are bounded away from infinity, except possibly near the region swept
out by the moving Lagrangian boundary conditions (which we do not claim have bounded
geometry, compare Lemma 2.44). This locus is contained in V , and hence the maximum
principle applies to deal with it as well.

Yet a third possible argument would be to adapt the methods of Groman [31] based solely
on monotonicity, as we will do in §4 to define symplectic cohomology of Liouville sectors and
in §5 to define the open-closed map.

Remark 3.24. The proof(s) of Proposition 3.23 generalize directly to define a map H•(L)→
HF •(L,L) sending the unit [L] ∈ H•(L) to the unit 1L ∈ HF •(L,L) (e.g. by counting
holomorphic disks with moving Lagrangian boundary conditions and one point constraint
on L). This map is well-known to be an isomorphism (it should moreover be an algebra
map, though this is technically more difficult to show; see Fukaya–Oh [23] and Abouzaid [4]
for proofs in closely related settings).

The existence of a unit inside HF •(L,L) allows us to define continuation elements.

Definition 3.25. For any positive isotopy Lt, we associate a continuation element

c(Lt) ∈ HF •(L1, L0) (3.43)

defined as follows. For sufficiently small isotopies, c(Lt) is simply the the image of the unit
under the deformation isomorphism HF •(L0, L0) := HF •(L+

0 , L0) = HF •(L1, L0). For an
arbitrary isotopy, break it up into smaller isotopies, and define c(Lt) as the composition of
the continuation elements for each of these smaller isotopies.
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Lemma 3.26. The continuation elements satisfy the following properties:

• (Well-definedness) c(Lt) is independent of how the given isotopy is divided into small
isotopies.

• (Deformation invariance) c(Lt) is invariant under deformation of the isotopy Lt fixed
at endpoints.

• (Composition) A composition of continuation elements coincides with the continuation
element of the concatenation of isotopies.

• (Naturality) Continuation elements are preserved by inclusions of Liouville sectors.
Namely, if Lt is a positive isotopy contained in X ⊆ X ′, then c(Lt) does not depend
on whether it is computed in X or X ′ (with respect to the corresponding invariance of
HF •(L1, L0) from Lemma 3.20).

• For any positive isotopy Lt and negative isotopy Kt such that Lt and Kt disjoint at
infinity for all t ∈ [0, 1], the map HF •(L0, K0) → HF •(L1, K1) given by composing
with continuation elements on either side coincides with the deformation isomorphism
described in Lemma 3.21.

Proof. Given a positive isotopy Lt for t ∈ [0, 1], denote by cs,t ∈ HF •(Lt, Ls) the units from
Proposition 3.23 for 0 ≤ s < t ≤ 1 and |s− t| sufficiently small. The fact that the cs,t
represent the units means that cx,y · cy,z = cx,z for 0 ≤ x < y < z ≤ 1 and |x− z| sufficiently
small. It follows that the continuation element c(Lt) := ct0,t1 · · · ctN−1,tN is independent of the
choice of sufficiently fine partition 0 = t0 < · · · < tN = 1. This proves well-definedness. The
proofs of deformation invariance and composition are similar. Naturality is immediate from
the fact that HF • and its product are preserved under inclusions of Liouville sectors (and
hence the units are also preserved). The proof of the final assertion is similar to the proofs
of well-definedness, deformation invariance, and composition, using in addition the unitality
of the modules HF •(L,K) and HF •(L,K) over HF •(L,L) from Proposition 3.23.

For any positive isotopy Lt and K transverse to L0 and L1, there is an associated con-
tinuation map, namely composition with c(Lt):

HF •(L0, K)
c(Lt)·−−−→ HF •(L1, K). (3.44)

In fact, such a continuation map is defined for any non-negative isotopy Lt, using the prop-
erties from Lemma 3.26 and the fact that a non-negative isotopy L0  L1 can be perturbed
to a positive isotopy L0  L+

1 . These continuation maps (3.44) compose with each other as
expected under concatenation of isotopies.

3.4 Wrapped Floer cohomology

Intuitively, the wrapped Floer cohomologyHW •(L,K) is the usual Floer cohomologyHF •(Lw, K)
where Lw is the image of L under a large positive Hamiltonian flow. To avoid choosing a
particular such Hamiltonian, the actual definition involves a direct limit.
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To this end, for a Lagrangian L (equipped with a Spin structure), we define the positive
wrapping category (L  −)+ as follows. The objects of (L  −)+ are isotopies of exact
Lagrangians φ : L Lw (equipped with Spin structures). The morphisms (φ : L Lw)→
(φ′ : L Lw

′
) are homotopy classes of positive isotopies of exact Lagrangians ψ : Lw  Lw

′

(equipped with Spin structures) such that φ#ψ = φ′. We also define the negative wrapping
category (L  −)− in the same manner, save that the morphisms are homotopy classes of
negative isotopies. It is the opposite category of the positive wrapping category.

As we will be taking direct limits over wrapping categories, it is crucial to point out that
they are filtered (this is a standard elementary fact for which we know no reference). Recall
that a category C is called filtered iff

(i) it is non-empty,

(ii) for every x, y ∈ C, there exists z ∈ C and morphisms x→ z and y → z, and

(iii) for every pair of morphisms f, g : x→ y in C, there exists a morphism h : y → z such
that h ◦ f = h ◦ g.

Direct limits over filtered categories are exact. Also recall that a functor F : C→ D between
filtered categories is called cofinal iff

(i) for every d ∈ D there exists c ∈ C and a morphism d→ F (c), and

(ii) for every pair of morphisms f, g : d → F (c), there exists a morphism h : c → c′ such
that F (h) ◦ f = F (h) ◦ g.

Pulling back a directed system under a cofinal functor preserves the direct limit. A filtered
category C is said to have countable cofinality iff there exists a cofinal functor Z≥0 → C.

Lemma 3.27. The wrapping category (L −)+ is filtered.

Proof. (i) The wrapping category is non-empty since we may take Lw = L.
(ii) Suppose Lw and Lw

′
are objects of (L −)+, meaning Lw is equipped with an isotopy

to L, and the same for Lw
′
. Choose isotopies Lwt and Lw

′
t (parameterized by t ∈ [0, 1]) starting

at Lw0 = Lw and Lw
′

0 = Lw
′

ending at the same Lagrangian Lw1 = Lw
′

1 , such that the resulting
isotopies from L to Lw1 = Lw

′
1 are homotopic rel endpoints. It suffices to show that these

isotopies Lwt and Lw
′

t can be modified to be positive. To do this, simply consider ΦtL
w
t and

ΦtL
w′
t for Φ : [0, 1]→ Ham(X) starting at Φ0 = id (for the present purpose, the Lie algebra

of Ham(X) consists of those Hamiltonians which are linear at infinity and vanish along
with their first derivatives over ∂X). As long as Φ−1

t
∂Φt
∂t

is sufficiently large (as a section of

T∂∞X/ξ) over Lwt and Lw
′

t , these modified paths are positive. Fix a one-parameter subgroup
Φ◦ : R≥0 → Ham(X) which wraps positively over the subset of ∂∞X swept out by Lwt and
Lw
′

t for t ∈ [0, 1]. It suffices now to take Φt = Φ◦Nt for sufficiently large N < ∞, since then

Φ−1
t

∂Φt
∂t

= N
∂Φ◦t
∂t
|t=0.

(iii) Suppose we are given two positive isotopies from an object Lw to another Lw
′

which
are homotopic as (not necessarily positive) isotopies. Denote this situation by Ls,t where
Ls,0 = Lw, Ls,1 = Lw

′
, and L0,t and L1,t are the given positive isotopies. As above, for

sufficiently positive Φ : [0, 1]→ Ham(X) starting at Φ0 = id, the isotopies {ΦtLs,t}t∈[0,1] are
positive for all s ∈ [0, 1]. Now note that ΦtL0,t and ΦtL0,t are homotopic to the compositions
of the given positive isotopies L0,t and L1,t with the positive isotopy ΦtL

w′ .
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Remark 3.28. Note that the collection of Lagrangians satisfying any given countable collec-
tion of transversality conditions is cofinal in the wrapping category (L  −)+ by general
position arguments. In particular, the full subcategory consisting of such Lagrangians is also
filtered.

A positive isotopy {Lt}t≥0 starting at L = L0 gives rise to a functor R≥0 → (L  −)+

given by s 7→ (L  Ls) (the isotopy {Lt}0≤t≤s). We now give a criterion under which (the
functor associated to) such an isotopy is cofinal:

Lemma 3.29. Let {Lt}t≥0 be a positive Lagrangian isotopy of L = L0. If there exists a
contact form α on the interior of ∂∞X such that∫ ∞

0

min
∂∞Lt

α(∂t∂∞Lt) dt =∞, (3.45)

then {Lt}t≥0 is cofinal in wrapping category (L −)+.

Proof. We begin by arguing that for any contact form α, there exists a function f : (∂∞X)◦ →
R≥1 such that the Reeb flow of fα is complete (note that since f ≥ 1, replacing α with fα
preserves divergence of the integral (3.45)). To ensure that the Reeb flow of fα is complete,
it suffices to fix an infinite sequence of disjoint shells S1, S2, . . . ⊆ (∂∞X)◦ separating larger
and larger compact subsets of (∂∞X)◦ from infinity, and choose f |Si so that it takes at least
unit time under the Reeb flow of fα to travel between the inner and outer boundaries of Si
(this minimum time is scaled by r > 0 if we scale f |Si by r > 0). To produce for any given L
a positive isotopy and a contact form satisfying (3.45), simply choose a contact form α with
complete Reeb flow, and define Lt by flowing at infinity by the Reeb flow of α.

Now suppose {Lt}t≥0 satisfies (3.45), and let us show that it is cofinal. By the paragraph
above, we may assume without loss of generality that the Reeb flow of α is complete. Let
Φ : R≥0 → Ham(X) be a one-parameter subgroup which at infinity corresponds to the Reeb
flow of α. By reparameterizing Lt, we may assume that α(∂t∂∞Lt) ≥ 2 pointwise on ∂∞Lt for
all t ≥ 0. It follows that t 7→ Φ−1

t Lt is a positive path of Lagrangians. Using this property,
we may verify properties (i) and (ii) of cofinality as follows.

To verify (i), we need to produce a morphism in (L  −)+ from an arbitrary L  Lw

to some L  Lt. The reversed isotopy Lw  L gives a positive isotopy Lw  ΦtL for
sufficiently large t, and now there is a positive isotopy ΦtL Lt (by positivity of t 7→ Φ−1

t Lt).
To verify (ii), we need to show that any two given morphisms (L  Lw) → (L  Lt)

coincide after composing with Lt  Ls for some s ≥ t. The argument for (iii) from Lemma
3.27 shows that two such morphisms coincide after composing with Lt  ΦNLt for sufficiently
large N . Now simply further compose with the positive isotopy ΦNLt  Lt+N .

The proof of Lemma 3.29 produced a contact form α with complete Reeb flow; hence for
every L, the positive isotopy {Lt}t≥0 defined by flowing under this Reeb vector field satisfies
(3.45) and hence is cofinal. Since Z≥0 → R≥0 is cofinal, we conclude:

Corollary 3.30. The wrapping category (L −)+ has countable cofinality.

Remark 3.31. Note that the hypothesis of Lemma 3.29 is satisfied for trivial reasons if Lt
approaches ∂(∂∞X) as t→∞ (in the sense that for every compact subset K of the interior
of ∂∞X, there exists T <∞ such that Lt ∩K = ∅ for all t ≥ T ), since we are free to make
α grow as fast as we like near ∂(∂∞X).
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To define wrapped Floer cohomology, we consider the following covariant functor defined
on the positive wrapping category of L:

(φ : L Lw) 7→ HF •(Lw, K) (3.46)

in which to a given positive isotopy ψ : Lw  Lw
′
, we associate the map HF •(Lw, K) →

HF •(Lw
′
, K) given by multiplication by the continuation element c(ψ) ∈ HF •(Lw′ , Lw). The

composition property for continuation elements from Lemma 3.26 implies that this defines
a functor. Strictly speaking, this functor (3.46) is defined only on the full subcategory
spanned by those Lw which are transverse to K, however we will elide this point in the
present discussion (recall Remark 3.28).

Wrapped Floer cohomology is defined as the direct limit

HW •(L,K) := lim−→
(L Lw)+

HF •(Lw, K). (3.47)

Wrapping the first factor forwards yields the same cohomology groups as wrapping the second
factor backwards, or as doing both. That is, the following maps are both isomorphisms:

lim−→
(L Lw)+

HF •(Lw, K)
∼−→ lim−→

(L Lw)+

(K Kw)−

HF •(Lw, Kw)
∼←− lim−→

(K Kw)−

HF •(L,Kw). (3.48)

From the middle direct limit, it is apparent that isotopies Lt and Kt induce isomorphisms
HW •(L0, K0) = HW •(L1, K1). We may define an associative product on HW • via

lim−→
(L1 Lw1 )+

HF •(Lw1 , L2)⊗ lim−→
(L3 Lw3 )−

HF •(L2, L
w
3 )→ lim−→

(L1 Lw1 )+

(L3 Lw3 )−

HF •(Lw1 , L
w
3 ). (3.49)

Wrapped Floer cohomology is covariantly functorial under inclusions of Liouville sectors.
That is, an inclusion of Liouville sectors X ↪→ X ′ induces a map

HW •(L,K)X → HW •(L,K)X′ (3.50)

defined as follows. First, there is an obvious functor (L  −)+
X → (L  −)+

X′ . Ap-
plying HF •(−, K), note that for any Lw ⊂ X, there are isomorphisms HF •(Lw, K)X =
HF •(Lw, K)X′ by Lemma 3.20. Moreoever, for any positive isotopy ψ : Lw  Lw

′
in

X, the isomorphisms are compatible with multiplication by the induced continuation maps
(in X versus in X ′) by naturality (Lemma 3.26). This defines the map HW •(L,K)X →
HW •(L,K)X′ .

Similar disc confining arguments establish that the maps HW •(L,K)X → HW •(L,K)X′
are compatible with composition and identity morphisms, and so induce a functor between
cohomological wrapped Fukaya categories (or “wrapped Donaldson–Fukaya categories”). We
will describe a chain level implementation of this functor in the next section.

Remark 3.32. The most direct (though not necessarily the easiest) way to upgrade the
above discussion to the chain level is as follows. One defines the “wrapping ∞-category of
L” by removing the words “homotopy class of” from the definition of the wrapping category
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of L (this defines a topological category, though technically speaking it is probably more
convenient to define it as a quasi-category and work with that instead). The argument
of Lemma 3.27 shows that the wrapping ∞-category of L is filtered in the ∞-categorical
sense (see §4.4). One can then define wrapped Floer cochains CW •(L,K) as the homotopy
direct limit of CF •(Lw, K) over the wrapping ∞-category of L, provided one upgrades the
construction of continuation elements to a construction of coherent continuation cycles (or
defines the continuation maps in a different way, e.g. by non-negatively moving Lagrangian
boundary conditions).

Lemma 3.33. A trivial inclusion of Liouville sectors induces an isomorphism on HW •.

Proof. Fix L,K ⊆ X, let X ↪→ X ′ be a trivial inclusion of Liouville sectors, and let us show
that HW •(L,K)X → HW •(L,K)X′ is an isomorphism.

Fix collar coordinates ∂X ′ × Rt≥0 near ∂X ′ in X ′ using the flow of the Hamiltonian
vector field of a defining function for X ′, so that in coordinates this Hamiltonian vector
field is − ∂

∂t
. We can reduce to the case X = {t ≥ a} as follows. For any sufficiently small

inward shrinking X ⊆ X ′, we have {t ≥ a} ⊆ X ⊆ X ′ for some small a > 0, and hence
the result for {t ≥ a} ↪→ X ′ implies surjectivity of the corresponding map for X ↪→ X ′.
Similarly, there is a chain of inclusions from X into X ′ into the image of X under the flow
of − ∂

∂t
(which is also the Hamiltonian vector field of a defining function for X) for some

small time a > 0, which gives injectivity. This derives the desired result for sufficiently small
inward shrinkings X ⊆ X ′ from the case of inclusions {t ≥ a} ⊆ X ′; moreover, the smallness
required is uniform over any compact family of sectors X ′, from which we may deduce the
general case. It is thus enough to prove the desired result in the special case X = {t ≥ a}
for some (say small) a > 0.

Fix coordinates on ∂∞X
′ near ∂(∂∞X

′) as in §2.9, so ∂∞X = {t ≥ a} and ∂∞X
′ = {t ≥

0}. Let M : R≥0 → R≥0 be admissible as in §2.9, and let N : R≥a → R≥0 be such that
N(t + a) is admissible and N ≤ M , with equality for t large. Extend M and N to all of
X ′ so that they coincide except in these collar coordinates. Now L ΦT

ML is cofinal in the
wrapping category of L inside X ′ as T → ∞, and the same for L  ΦT

NL inside X. We
claim that the non-negative isotopy of Lagrangians ΦT

tM+(1−t)NL parameterized by t ∈ [0, 1]

stays disjoint from K near infinity (this being assumed to hold for t = 0). In other words, we
claim that there are no time T Reeb chords of the flow of tM +(1− t)N from L to K for any
t ∈ [0, 1], where this is assumed to hold for t = 0. This claim follows from the discussion of
the dynamics in §2.9, specifically Proposition 2.35. Indeed, the vector field is only changing
in a collar neighborhood of the boundary, and chords entering this neighborhood cannot
subsequently escape into the rest of X ′.

To conclude the proof, it suffices to argue that the map HW •(L,K)X → HW •(L,K)X′
is the direct limit of the continuation maps HF •(ΦT

NL,K) → HF •(ΦT
ML,K) as T → ∞

and appeal to the last part of Lemma 3.26 to see that each of these continuation maps is
an isomorphism (specifically, the one from Lemma 3.21). Note that since ΦT

tM+(1−t)NL is a

non-negative (as opposed to a positive) isotopy, the relevant continuation map is as defined
below (3.44) (rather than being literally multiplication by a continuation element), however
the last part of Lemma 3.26 remains applicable (by perturbing the non-negative isotopy
ΦT
tM+(1−t)NL to a positive isotopy from ΦT

NL to a small positive pushoff of ΦT
ML).
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3.5 Wrapped Fukaya category

The wrapped Fukaya category is an A∞-category whose objects are Lagrangians (equipped
with Spin structures) and the cohomology of whose morphisms spaces is wrapped Floer
cohomology. One way to define such a category would be to lift the constructions from the
previous subsections to the chain level as sketched in Remark 3.32. We follow instead an
approach of Abouzaid–Seidel [8] which avoids this by a clever use of the theory of localization
of A∞-categories recalled in §3.1.3.

Let X be a Liouville sector. Fix a collection of (not necessarily mutually transverse)
cylindrical exact Lagrangians in X (with Spin structures), indexed by a countable (possibly
finite) set I. We suppose also that I contains at least one representative in every isotopy
class of exact Lagrangian equipped with a Spin structure (without this assumption, the only
difference is that the category we get will depend, of course, on which isotopy classes are
present).

Definition 3.34 (Poset O). For each Lagrangian L ∈ I, choose a cofinal sequence

L = L(0)  L(1)  L(2)  · · · (3.51)

of morphisms in the wrapping category (L −)+. Let O := Z≥0 × I be the set of all such
L(i), and equip O with the partial order inherited from the order on Z≥0, namely L(i) < K(i′)

iff i < i′. By choosing the L(i) generically, we ensure that any finite totally ordered collection
of Lagrangians in O are mutually transverse.

Definition 3.35 (A∞-category O). We turn O into a strictly unital A∞-category with the
following morphism spaces:

O(L0, L1) :=


CF •(L0, L1) L0 > L1

Z L0 = L1

0 otherwise.

(3.52)

To define the operations

µk : O(L0, L1)⊗ · · · ⊗ O(Lk−1, Lk)→ O(L0, Lk)[2− k] (3.53)

for L0 > · · · > Lk ∈ O, we count holomorphic disks using compatible choices of universal
strip-like coordinates and families of almost complex structures

ξ+
L0,...,Lk;j : [0,∞)× [0, 1]× Rk,1 → Sk,1 j = 1, . . . , k (3.54)

ξ−L0,...,Lk
: (−∞, 0]× [0, 1]× Rk,1 → Sk,1 (3.55)

JL0,...,Lk : Sk,1 → J(X) (3.56)

as in §3.2. Note that the only other possibly nontrivial operations µk, namely when some
Li = Li+1, are formally fixed by strict unitality.

Definition 3.36 (A∞-category W). Denote by C the set of all continuation elements c ∈
HF 0(L(i+1), L(i)) as defined in §3.3, for all L(i) ∈ O. Define the wrapped Fukaya category of
X to be the localized category W := O[C−1] (recall Definition 3.17).
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This category W depends on a number of choices as specified above (the collection of
Lagrangians I, the poset O, the almost complex structures, etc.). We will see in Proposition
3.39 that W is well-defined up to quasi-equivalence.

Lemma 3.37 (Abouzaid–Seidel [8]). The natural maps

HW •(L,K) = lim−→
i

H•O(L(i), K)
∼−→ lim−→

i

H•W(L(i), K)
∼←− H•W(L,K) (3.57)

are both isomorphisms.

Proof. Since the continuation map L(i+1) → L(i) is in C, each map W(L(i), K)→W(L(i+1), K)
is a quasi-isomorphism (by Lemma 3.12), and hence the rightmost arrow is an isomorphism.

To show that the middle arrow is an isomorphism, it is enough (by Lemma 3.16) to show
that “lim←−i L

(i) is left C-local”, meaning that every continuation map M (j+1) →M (j) induces
an isomorphism

lim−→
i

HF •(L(i),M (j+1))→ lim−→
i

HF •(L(i),M (j)). (3.58)

This map is simply HW •(L,M (j+1)) → HW •(L,M (j)), which we know is an isomorphism.

Corollary 3.38. For any left O-module M, the natural maps

lim−→
i

H•M(L(i))
∼−→ lim−→

i

H•C−1M(L(i))
∼←− H•C−1M(L(0)) (3.59)

are both isomorphisms.

Proof. We may replace M with O⊗O M (Lemma 3.7). The maps in question then become

lim−→
i

H•(O(L(i),−)⊗O M)→ lim−→
i

H•(W(L(i),−)⊗O M)← H•(W(L(0),−)⊗O M) (3.60)

which are isomorphisms by Lemma 3.37.

The construction of W given above can be made a bit more flexible, as we now de-
scribe. We will take advantage of this flexibility both to show that W is well-defined up to
quasi-equivalence and to define pushforward functors on the wrapped Fukaya category for
inclusions of Liouville sectors.

Let O be any countable poset of Lagrangians (equipped with Spin structures) in X
containing every isotopy class and with the property that every totally ordered collection of
Lagrangians in O is mutually transverse. Let C be any collection of elements of HF •(L,K)
for L > K ∈ O consisting only of continuation elements for various positive isotopies from
K to L. Now assume that the pair (O, C) satisfies the following property:

• For every L ∈ O, there is a cofinal sequence L = L(0) < L(1) < · · · in O together
with positive isotopies L(i)  L(i+1) such that L = L(0)  L(1)  · · · is cofinal in the
Lagrangian wrapping category of L and each of the resulting continuation elements in
HF •(L(i+1), L(i)) is in C.
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We may construct strip-like coordinates ξ and almost complex structures J as in (3.54)–
(3.56) achieving transversality by induction on the collection of finite totally ordered subsets
of O, thus turning O into a directed A∞-category. We can now define the wrapped Fukaya
category of X as the localization W := O[C−1] as before. Note that the proof of Lemma
3.37 applies to this category W, so it has the correct cohomology category.

Proposition 3.39. The category W, as defined just above in terms of choices of (O, C, ξ, J),
is well-defined up to quasi-equivalence.

By “are quasi-equivalent”, we mean “are connected by a zig-zag of quasi-equivalences”
(we do not wish to discuss the question of whether quasi-equivalences of A∞-categories over
Z are invertible under our cofibrancy assumptions).

Proof. If O ⊆ O′ and C ⊆ C ′ such that ξ′|O = ξ and J ′|O = J , then there is a natural functor
W→W′. By Lemma 3.37, this functor is a quasi-equivalence.

It thus suffices to show thay any two quadruples (O, C, ξ, J) and (O′, C ′, ξ′, J ′) can be
included into a third. Consider the disjoint union O t O′ with no order relations between
O and O′. Now let O′′ := Z≥0 × (O t O′) with its lexicographical partial order, choosing
for every Lagrangian in O t O′ a cofinal sequence in its Lagrangian wrapping category. Let
C ′′ denote the union of the resulting continuation elements together with C and C ′. The
given strip-like coordinates and almost complex structures for O and O′ can be extended
to the same for O′′ by induction. We thus obtain quasi-equivalences W

∼−→ W′′
∼←− W′ as

desired.

It is natural to expect that W(X) satisfies a Künneth formula as we formulate below.
A careful proof of this is, however, beyond the scope of this paper (for Liouville manifolds,
results in this direction have been proven by Gao [27, 28]).

Conjecture 3.40. There is a natural (cohomologically) fully faithful bilinear A∞-functor
W(X)×W(X ′) ↪→W(X ×X ′).

3.6 Inclusion functors and deformation invariance

Let X ↪→ X ′ be an inclusion of Liouville sectors. Fix collections of Lagrangians I and I ′

inside X and X ′, respectively (not necessarily mutually transverse), containing all isotopy
classes. Using the flexibility granted by Proposition 3.39, we can pick a “nice” (adapted
to X ⊆ X ′) chain model of W(X ′) in order to realize (in a particularly simple way) the
inclusion functor W(X)→W(X ′), as we now describe.

Define the poset of Lagrangians O := Z≥0 × I following Definition 3.34 as before. Define
O′ := Z≥0 × [I ′ t O], meaning that for each Lagrangian L ∈ (I ′ t O), we choose a cofinal
sequence of morphisms in its wrapping category inside X ′. We equip O′ with the partial
order defined lexicographically, where the second factor I ′ t O has only the order relations
coming from O. By choosing the cofinal sequences generically, we can ensure that any finite
totally ordered subset of O′ consists of mutually transverse Lagrangians. There is a natural
inclusion O ↪→ O′.

We turn O and O′ into A∞-categories following Definition 3.35 as before. More precisely,
we first choose almost complex structures (3.56) for O. We then choose strip-like coordinates
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and almost complex structures for O′ whose restriction to O and X are those for O; the
inductive construction of these follows §3.2. Since π forces holomorphic disks for O to stay
within X, the inclusion O ↪→ O′ is the inclusion of a full subcategory.

Let C◦ denote the continuation morphisms for O, and let C ′◦ denote the continuation
morphisms for O′, following Definition 3.36. Now let C := C◦ and C ′ := C ′◦ ∪ C◦. We set
W(X) := W := O[C−1] and W(X ′) := W′ := O′[C ′−1]. Note that the proof of Lemma 3.37
applies just as well to C ′ as it does to C ′◦. Since C ⊆ C ′, there is a functor

W(X)→W(X ′). (3.61)

We remark that this functor F = {F k}k≥1 is somewhat special: the map on objects is
injective, the map F 1 on morphism complexes is injective, and the maps F k vanish for
k ≥ 2.

Lemma 3.41. Let X ↪→ X ′ be a trivial inclusion. Then the functor W(X) → W(X ′) is a
quasi-equivalence.

Proof. It follows from Lemmas 3.37 and 3.33 that this functor is a quasi-equivalence onto
its image.

To show essential surjectivity, note first that every exact Lagrangian isotopy Lt induces
an identification between the Lagrangian wrapping categories of L0 and L1, and thus an iso-
morphism between L0 and L1 in W. Hence it is enough to show that every exact Lagrangian
in X ′ is isotopic to an exact Lagrangian inside X. It is enough to show this for sufficiently
small trivial inclusions, where it follows by flowing under −XI where I : NbdZ ∂X ′ → R is
a defining function.

3.7 Diagram of wrapped Fukaya categories

Now suppose we have a diagram of Liouville sectors {Xσ}σ∈Σ indexed by a finite poset Σ.
Fix collections of Lagrangians Iσ inside Xσ (not necessarily mutually transverse) containing
all isotopy classes. As in the previous section, we will make convenient adapted choices of
chain models of the categories W(Xσ) in order to obtain an associated (strict) diagram of
A∞-categories.

We inductively define posets of Lagrangians

Oσ := Z≥0 ×
[
Iσ t colim

σ′<σ
Oσ′

]
. (3.62)

In other words, the set of Lagrangians Oσ is defined by (1) starting with all Lagrangians
comprised in Oσ′ for σ′ < σ, (2) adding the chosen Lagrangians Iσ inside Xσ, and then (3)
choosing cofinal sequences in the wrapping categories of each of these Lagrangians so that
every totally ordered collection of Lagrangians in Oσ are mutually transverse. To define the
partial order on Oσ, equip Iσ with the trivial partial order, equip the colim with the colimit
partial order, equip the t with the coproduct partial order (no additional order relations),
and equip the × with the lexicographical partial order.

To define the A∞ operations on Oσ, we must specify the compatiblity relations we impose
on the choices of almost complex structures. First, note that there is a weakly order pre-
serving map Oσ → Σ≤σ which associates to an element L ∈ Oσ the unique minimal σ′ ≤ σ
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for which L ∈ im(Oσ′ → Oσ). Thus for any chain L0 > . . . > Lk ∈ Oσ, there is an asso-
ciated chain σL0 ≥ · · · ≥ σLk ∈ Σ≤σ. We choose strip-like coordinates and almost complex
structures

ξ+
L0,...,Lk;j : [0,∞)× [0, 1]× Rk,1 → Sk,1 j = 1, . . . , k (3.63)

ξ−L0,...,Lk
: (−∞, 0]× [0, 1]× Rk,1 → Sk,1 (3.64)

JL0,...,Lk : Sk,1 → J(XσL0
) (3.65)

for L0 > · · · > Lk ∈ Oσ which are compatible in the natural way and which make πσL0

holomorphic (as usual πσ : NbdZ ∂Xσ → CRe≥0 denotes the projection associated to the
Liouville sector Xσ, recalling Convention 3.1). They may be constructed by induction on σ
as usual (though note that for the inductive step to work, it is crucial that we have taken
the target of JL0,...,Lk to be J(XσL0

) rather than J(Xσ)).
Now we have a diagram

Σ→ A∞-cat (3.66)

σ 7→ Oσ (3.67)

meaning that for every σ ∈ Σ, we have an A∞-category Oσ, for every pair σ ≤ σ′ ∈ Σ,
we have an A∞-functor Fσ′σ : Oσ → Oσ′ , and for every triple σ ≤ σ′ ≤ σ′′ ∈ Σ, we have
Fσ′′σ = Fσ′′σ′ ◦ Fσ′σ.3 Furthermore, each map Oσ → Oσ′ is simply the inclusion of a full
subcategory.

Let C◦σ denote the class of continuation morphisms in H0Oσ following Definition 3.36
(i.e. maps (i + 1, x) → (i, x) in terms of the product decomposition (3.62)), and let Cσ :=⋃
σ′≤σ C

◦
σ′ , so Cσ ⊆ Cσ′ for σ ≤ σ′. Let Wσ := W(Xσ) := Oσ[C−1

σ ]. There is thus a diagram

Σ→ A∞-cat (3.68)

σ 7→Wσ (3.69)

as desired. Each inclusion functor Wσ → Wσ′ is a naive inclusion, namely an inclusion on
the level of morphism complexes with no higher order functor operations.

Note that these categories Wσ fall under the scope of Proposition 3.39. An argument
similar to the proof of Proposition 3.39 shows moreover that the entire diagram {Wσ}σ∈Σ is
well-defined up to quasi-equivalence.

3.8 Functorial wrapped Fukaya categories

We now give a strictly functorial definition of the wrapped Fukaya category of a Liouville
sector. In fact, this definition also applies to define strictly functorial wrapped Fukaya cate-
gories of open Liouville sectors in the sense of Remark 2.8. There is a trade off between this
construction and that from §3.7: in exchange for strict functoriality over all Liouville sectors
at once, we are forced to work with very large (i.e. uncountable) collections of Lagrangians

3It would be somewhat better to call this a “strict diagram” to contrast it with the notion of a “homotopy
diagram” in which the functors only compose up to coherent homotopy. Fortunately, this latter notion of a
“homotopy diagram of A∞-categories” is not needed for this paper.
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(though on the other hand, we no longer need to appeal to the fact that there are only
countably many isotopy classes of exact cylindrical Lagrangians).

Given a Liouville sector (or an open Liouville sector) X, we consider decorated posets
over X, namely tuples

~P = (P, {Xp}p∈P , {Lp}p∈P , ξ, J) (3.70)

where P is a poset and the remaining data is as follows:

• Each Xp ⊆ X is a Liouville subsector, such that Xp ⊆ Xp′ for p ≤ p′. There is no need
to record the data of a Liouville form on Xp possibly differing on a compact set from
the restriction of the Liouville form on X, however in accordance with Convention 3.1
we do record a choice of πp : Nbd ∂Xp → CRe≥0 such that the inclusions Xp ⊆ Xp′ and
Xp ⊆ X conform to Convention 3.1. In the case that X is an open Liouville sector,
the Xp remain ordinary Liouville sectors.

• Each Lp ⊆ Xp is a Lagrangian, such that every chain Lp0 , . . . , Lpk for p0 > · · · > pk ∈ P
is mutually transverse.

• The ξ are choices of universal strip-like coordinates for each chain p0 > · · · > pk ∈ P ,
which are compatible with gluing in the sense of §3.2.

• The J are a choice of, for each chain p0 > · · · > pk ∈ P , families of almost com-
plex structures on Xp0 making πp0 holomorphic, compatible with gluing via ξ in the
sense of §3.2, such that the associated moduli spaces of Fukaya A∞ disks are cut out
transversely.

Given any decorated poset ~P , we have a strictly unital directed A∞-category O~P as in Defi-
nition 3.35. Namely, its set of objects is P (though of as the Lagrangians Lp), its morphism
spaces are O~P (p, p) = Z and O~P (p, p′) = CF •(Lp, Lp′) for p > p′ (vanishing otherwise), and
the A∞ operations count holomorphic disks using the almost complex structures J . We also
have a category W~P := O~P [C−1

~P
], namely the localization of O~P at the set C~P of all morphisms

in HF 0(Lp′ , Lp) for p < p′ which are the continuation element associated to some positive
isotopy Lp  Lp′ inside Xp′ . We emphasize that W~P will not be quasi-equivalent to W(X)

except under additional assumptions on ~P (a sufficient condition is given in Proposition

3.39). Given an inclusion of decorated posets ~P ′ ↪→ ~P (meaning an inclusion of underlying
posets P ′ ↪→ P such that the decorations on P ′ are obtained by restricting those on P ),
there are induced functors O~P ′ → O~P and W~P ′ →W~P .

Now for any Liouville sector X, we would like to argue that there is a universal decorated
poset ~PX over X and that the associated category W~PX

is a model of W(X). To turn this into
a statement we can prove, we impose two additional conditions on the decorated posets we
consider: we require that P must be cofinite (meaning that for all p ∈ P , the subposet P≤p

is finite) and must have no duplicates, meaning that the decorated posets ~P≤p are pairwise
non-isomorphic as p ranges over all elements of P ; we also restrict attention to inclusions of
posets P ′ ↪→ P which are downward closed (meaning that if p ∈ P is in the image, then so

is P≤p). Let PosX denote the category whose objects are decorated posets ~P over X which
are cofinite and without duplicates and whose morphisms are downward closed inclusions
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(respecting decorations). The sense in which there is a (necessarily unique up to unique

isomorphism) universal decorated poset ~PX over X is that:

Lemma 3.42. The category PosX has a final object ~PX ∈ PosX .

Proof. The first observation is that for ~P , ~Q ∈ PosX , there is at most one morphism ~P → ~Q.
Indeed, note that if f : P ↪→ Q is a downward closed inclusion, then ~P≤p = ~Q≤f(p). Since ~Q
is without duplicates, there is at most one q ∈ Q satisfying ~P≤p ∼= ~Q≤q, and thus f is unique
if it exists.

This reasoning may be taken further to construct the terminal object ~PX ∈ PosX . Namely,
the underlying poset PX is defined to be the full subcategory of PosX spanned by the objects
~Q ∈ PosX which have a maximum q ∈ Q (meaning Q = Q≤q); we should note that these

objects form a set (e.g. in view of cofiniteness). For p ∈ PX , denote by ~Q(p) ∈ PosX the
corresponding object. Now for any p ∈ PX , it is easy to check that P≤pX = Q(p). We

define the decorations on ~PX by the requirement that ~P≤pX = ~Q(p) as decorated posets; it is
straightforward to check that this defines unique decorations on PX . The decorated poset
~PX is cofinite and without duplicates by definition, so ~PX ∈ PosX .

Now given any ~Q ∈ PosX , we would like to argue that there is a (necessarily unique)

map ~Q → ~PX . There is only one possible choice for this map, namely it must map q ∈ Q
to the element of PX corresponding to the decorated poset ~Q≤q, and it is straightforward to
check that this does indeed define a map ~Q→ ~PX respecting decorations. We conclude that
~PX ∈ PosX is a final object, as desired.

We now define W(X) := W~PX
. For any inclusion of Liouville sectors X ↪→ X ′ there

is a tautological functor PosX → PosX′ (by observing that any decorated poset over X

defines one over X ′), and hence an induced map between their final objects ~PX → ~PX′ , thus
inducing a canonical functor W(X)→W(X ′) (and these functors compose with each other
as expected). The situation is identical for open Liouville sectors X.

Proposition 3.43. The category W~PX
is quasi-equivalent to the wrapped Fukaya categories

defined in Proposition 3.39.

Proof. Note that Proposition 3.39 does not apply directly to the decorated poset ~PX , since
~PX does not have countable cofinality (the existence of cofinal wrapping sequences was used
in an essential way in the proof of Proposition 3.39). Instead, we will argue using a direct

limit over countable subposets of ~PX to which Proposition 3.39 does apply.
For any decorated poset ~P and any Lagrangians L,K ∈ ~P the map

lim−→
{L,K}⊆ ~Q⊆~P
Q countable

W ~Q(L,K)
∼−→W~P (L,K) (3.71)

is an isomorphism, where lim−→ is the direct limit of chain complexes (all maps in the directed
system are simply inclusions of subcomplexes, and they are strictly compatible with each
other). This is of course also true for the direct limit over finite ~Q, however it is the case of

countable ~Q that is relevant for our present purpose. If ~P is cofinite, then we may restrict
the direct limit (3.71) to those ~Q ⊆ ~P which are downward closed, as these are cofinal.
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Now Proposition 3.39 provides a sufficient condition on countable ~Q to imply that W ~Q

models the wrapped Fukaya category of X, namely it is sufficient that:

• For every q ∈ ~Q there exists a sequence q = q0 < q1 < · · · ∈ Q which is cofinal in Q and
positive isotopies Lq = Lq0  Lq1  · · · which are cofinal in the wrapping category of
Lq.

(The condition that ~Q should contain all isotopy classes of Lagrangians can be safely ig-
nored since we need only to check that the morphism space in W~PX

between a fixed pair

of Lagrangians is correct.) Hence it suffices to show that those ~Q satisfying this bulleted

condition are cofinal in the direct limit (3.71) for ~P = ~PX . Now downward closed ~Q ⊆ ~PX
are the same thing as objects ~Q ∈ PosX (i.e. cofinite decorated posets without duplicates). It

thus suffices to show that every countable ~Q ∈ PosX admits a morphism to (i.e. a downward

closed inclusion into) a countable ~Q′ ∈ PosX satisfying the bulleted condition above.
Fix an exhaustion of Q by downward closed finite subsets Z0 ⊆ Z1 ⊆ · · · . We define

Q′ := QtZ≥0, equipped with the order induced by the given order on Q, the usual order on
Z≥0, along with the declaration that i ∈ Z≥0 is greater than all elements of Zi ⊆ Q. Note
that Q′ is cofinite and that Q ↪→ Q′ is downward closed.

We define the Lagrangians Lq′ for q′ ∈ Q′ \ Q = Z≥0 as follows. For every q ∈ Q, we
choose an order preserving injection fq : Z≥1 ↪→ Q′ \ Q = Z≥0, such that the images of fq1
and fq2 are disjoint for q1 6= q2 and such that q ≤ fq(1) in Q′ (since Q is countable, such
a family of injections fq may be constructed by induction on any enumeration of Q). We
now revise our definition of Q′ to Q′ := Q t

⋃
q∈Q im fq ⊆ Q t Z≥0 (with the restriction

of the originally defined partial order). Now finally, we define the Lagrangians Lq′ for q′ ∈
Q′ by declaring that for q ∈ Q, there should be a cofinal sequence of positive wrappings
Lq  Lfq(1)  Lfq(2)  · · · . By choosing these wrappings generically, we may ensure that
all totally ordered subsets of Q′ are mutually transverse and that the Lagrangians in Q′ \Q
are distinct from each other and from the Lagrangians in Q (this ensures that ~Q′ has no
duplicates). By construction, Q′ satisfies the bulleted property above.

Finally, note that the Liouville sectors Xp for p ∈ Q′ \ Q may be constructed by induc-
tion (using crucially that Q′ is cofinite), and the strip-like coordinates and almost complex
structures may be constructed by induction as in Lemma 3.18.

3.9 Geometric criterion for properness

We observe here that if ∂∞X is deformation equivalent to a contactization, then W(X) is
proper (compare Lemma 2.36).

Recall that a Z-graded complex is called perfect iff it is quasi-isomorphic to a bounded
complex of finitely generated projective modules. In general, a complex is called perfect iff
it is (up to quasi-isomorphism) a direct summand of a finite iterated extension of finite free
modules (regarded as complexes concentrated in a single degree with trivial differential). An
A∞-category C is called proper iff C(X, Y ) is perfect for all X, Y ∈ C. (Note that §§3.3–3.4
not only define homology groups HF • and HW •, they in fact define quasi-isomorphism types
CF • and CW •.)
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Lemma 3.44. If ∂∞X is deformation equivalent to a contactization F0 × [0, 1], then W(X)
is proper (equivalently, CW •(L,K) is perfect for all L,K ⊆ X).

Proof. By Lemma 3.33, a deformation of Liouville domains induces a quasi-isomorphism on
CW •. By Lemma 2.9, deformations of ∂∞X lift to deformations of X. So, without loss of
generality, we may deform X so that at infinity it is of the form considered in either of the
proofs of Lemma 2.36. We consider now the associated cutoff Reeb vector fields on ∂∞X.
Under the flow of any such cutoff Reeb vector field, any compact subset of ∂∞X (in particular
∂∞L) converges to the boundary of ∂∞X. In particular, this gives a cofinal wrapping of L
(by Remark 3.31) which after finite time never again passes through ∂∞K at infinity, and
so we conclude by the last property from Lemma 3.26 and Lemma 3.21 that CW •(L,K)
is quasi-isomorphic to CF •(Lw, K) (which is a perfect complex, as it is action filtered and
generated by finitely many intersections points) for some finite wrapping L Lw.

4 Symplectic cohomology of Liouville sectors

For any Liouville sector X, we define a symplectic cohomology group SH•(X, ∂X), and we
show that SH•(X, ∂X) is covariantly functorial with respect to inclusions of Liouville sectors.
The key to the functoriality of SH• is Lemma 4.21, which shows that for an inclusion of
Liouville sectors X ↪→ X ′ and a Hamiltonian H : X ′ → R adapted to both X and X ′, a Floer
trajectory with input inside X must lie entirely inside X. In fact, we define a cochain complex
SC•(X, ∂X)π functorial in X and π : NbdZ ∂X → C as in Definition 2.26, which computes
the functor SH•(X, ∂X) (this chain level information is crucial for the proof of Theorem
1.2). The relevant higher homotopical data is defined directly in terms of holomorphic curve
counts (as opposed to the quotient category construction of the wrapped Fukaya category
given in §3).

The notion of a “homotopy coherent diagram” plays an important role in this section
(and the next) to keep track of chain level information. To formalize this notion, we use (in
a very elementary way) the language of quasi-categories (aka ∞-categories) introduced by
Joyal [32] and developed further by Lurie [34, 35].

Rather than choosing consistent Floer data for all Liouville sectors and all homotopies
at once, we prefer to simply take a (homotopy) colimit over the “space” of all allowable
Floer data. This allows for more flexibility in this and subsequent constructions, and it
is convenient in that “independence of choice” is built into the definition itself. In this
framework, it is of course crucial to show that this space of Floer data is contractible in the
relevant sense. In the present “wrapped” context, the relevant sense is that the simplicial
set of Floer data should be a filtered ∞-category.

Proving compactness for the moduli spaces of holomorphic curves we wish to consider
is nontrivial, and for this purpose we adapt Groman’s [31] notion of dissipative Floer data
(Definition 4.5) to our setting. We also adopt Groman’s construction of dissipative Floer data
(Proposition 4.9) and Groman’s proof of compactness for dissipative Floer data (Proposition
4.23).

Convention 3.1 will be in effect for the remainder of this section.
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4.1 Moduli spaces of domains

a1

a2
a3

Figure 5: Riemann surfaces used to define symplectic cohomology.

We consider the compactified moduli space of n-tuples of points a1 ≥ · · · ≥ an ∈ R up
to translation. It is helpful to view these points as lying on R× {0} ⊆ R× S1 as in Figure
5. The points are allowed to collide with each other (meaning ai = ai+1) and no “bubble”
is considered to have been formed (this makes a difference if at least three collide as in
ai = ai+1 = ai+2). On the other hand, if the consecutive spacing bi := ai − ai+1 approaches
infinity for some i, then we regard R × S1 as splitting into two copies of R × S1, the first
containing a1, . . . , ai and the second containing ai+1, . . . , an. The resulting moduli spaces
may be described topologically as

M
SC

n =

{
pt/R n = 0

[0,∞]n−1 n ≥ 1
(4.1)

using the coordinates b1, . . . , bn−1 ∈ [0,∞]. Denote by C
SC

n the universal curve over M
SC

n ,

so C
SC

0 = S1, C
SC

1 = R × S1, etc. The spaces M
SC

n (and correspondingly C
SC

n ) come with
natural inclusions of codimension one boundary strata

M
SC

k ×M
SC

n−k ↪→M
SC

n (4.2)

M
SC

n−1 ↪→M
SC

n (4.3)

for 0 < k < n, corresponding to setting bk =∞ and bk = 0, respectively.

There are tautological cylindrical coordinates on C
SC

n →M
SC

n , as R×S1 is itself a cylinder
(the translational ambiguity does not concern us, as we always view strip-like/cylindrical
coordinates as well-defined up to translation anyway); we point out the obvious fact that
these coordinates are compatible with each other in the sense of §3.2. Gluing via these
coordinates defines a collar

M
SC

k ×M
SC

n−k × (0,∞] ↪→M
SC

n (4.4)

covered by a map of universal curves. Moreover, these collars (4.4) are compatible with
each other in the sense that, for any boundary stratum (possibly of higher codimension) of

M
SC

n , every curve over a neighborhood of the stratum has a well-defined identification with
a well-defined curve in the stratum via the above gluing operation.
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∆0 ∆1 ∆2

0 1 20 0

1

Figure 6: The vector field Vn from Remark 4.1 for n = 0, 1, 2.

Remark 4.1. The spaces M
SC

n can also be described as spaces of Morse flow lines on ∆n for
a particular choice of Morse function. Namely, following [43, Definition 10.1.4 and §C.13.1]
we consider the gradient-like pair (illustrated in Figure 6)

(Fn, Vn) :=

(
−

n∑
i=1

cos(πxi),
n∑
i=1

sin(πxi)
∂

∂xi

)
(4.5)

on the n-simplex with coordinates

∆n = {x ∈ [0, 1]n : 0 ≤ x1 ≤ · · · ≤ xn ≤ 1}, (4.6)

where the ith vertex is given by xn−i = 0 and xn−i+1 = 1. The critical locus of Fn consists of
the vertices of ∆n, and the Morse index of vertex i equals i. The vector field Vn is compatible
with all simplicial maps ∆n → ∆m.

The space F(∆n) of broken flow lines of Vn from vertex 0 to vertex n is (a convenient
variation on) the “Adams family of paths” [10]. Namely, we consider maps ` : R → ∆n

satisfying `′(s) = −Vn(`(s)) with `(+∞) = 0 and `(−∞) = n. Every such flow line is of the
form `(t) = (f(an− t), . . . , f(a1− t)) for some a1 ≥ · · · ≥ an ∈ R (unique up to the addition
of an overall constant), where f : R→ [0, 1] denotes the unique solution to the initial value
problem f(0) = 1

2
and f ′(x) = sin(πf(x)). Thus the space of flow lines is parameterized

by (b1, . . . , bn−1) ∈ [0,∞)n−1, where bi = ai − ai+1; moreover, this parameterization extends
continuously to a homeomorphism

[0,∞]n−1 ∼−→ F(∆n). (4.7)

In these coordinates, bk = ∞ iff the flow line is broken at vertex k, and bk = 0 iff the flow
line factors through ∆[0...k̂...n] ⊆ ∆n. More generally, the natural inclusions

F(∆[0...k])× F(∆[k...n])→ F(∆n) (4.8)

F(∆[0...k̂...n])→ F(∆n) (4.9)

admit a simple description in terms of the b-coordinates. In fact, any simplicial map f :
∆n → ∆m with f(0) = 0 and f(n) = m induces a map f∗ : F(∆n)→ F(∆m).

Remark 4.1 gives an important conceptual understanding of the meaning of the moduli

spaces M
SC

n . A given moduli space M
SC

n should be regarded as associated to an n-simplex
∆n, the points ai should be regarded as associated to the edges (i − 1) → i of ∆n, and the
intervals (a1,∞), (a2, a1), . . . , (an, an−1), (−∞, an) should be regarded as associated to the
vertices 0, . . . , n of ∆n.
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4.2 Hamiltonians and almost complex structures

We now introduce the technical conditions we impose on Hamiltonians and almost complex
structures in order to define symplectic cohomology for Liouville sectors. We organize the
collection of all allowable Floer data into a simplicial set, in which a 0-simplex specifies Floer
data for the differential, a 1-simplex specifies Floer data for a continuation map, a 2-simplex
specifies Floer data for a homotopy between a continuation map and a composition of two
continuation maps, etc.

Let H(X) denote the space of Hamiltonians H : X → R, and recall that J(X) denotes
the space of ω-compatible cylindrical almost complex structures on X.

Definition 4.2. An n-simplex of Floer data (H, J) on X consists of a collection of maps

Hv0···vm : C
SC

m → H(X) (4.10)

Jv0···vm : C
SC

m → J(X) (4.11)

for all integers 0 ≤ v0 < · · · < vm ≤ n. These maps must be compatible with gluing and
forgetting vertices in the natural way with respect to the boundary collars (4.4) and the
inclusions of strata (4.3). Namely, Hv0···vm must agree with Hv0 for s� 0 and with Hvm for
s � 0, the restriction of Hv0···vm to the image of (4.4) must agree with the obvious splicing
of Hv0···vk and Hvk···vm (note that the former condition may be interpreted as the k = 0,m
cases of the latter), and the restriction of Hv0···vm to the image of (4.3) must coincide with
Hv0···v̂k···vm (the meaning of these conditions should be compared with Remark 4.1).

The same requirements are imposed on J as well. See [50, II (9i)] for similar conditions.

Note that, in the above definition, the maps H0···n and J0···n determine all the rest, so we
could have equivalently defined an n-simplex of Floer data as a pair of maps

H : C
SC

n → H(X) (4.12)

J : C
SC

n → J(X) (4.13)

satisfying certain analogous properties. Note also that a 0-simplex of Floer data is simply
a time-dependent Hamiltonian H : S1 → H(X) and a time-dependent family of almost
complex structures J : S1 → J(X).

An n-simplex of Floer data can be pulled back to an m-simplex of Floer data under any
simplicial map ∆m → ∆n. It follows that the collections of all n-simplices of Floer data, for
all n, form a simplicial set. Concretely, thinking of an n-simplex of Floer data as a pair of
maps (4.12)–(4.13), the face maps are

di(H, J) = (H, J)|
C
SC
n−1

(4.14)

where C
SC

n−1 ↪→ C
SC

n is the stratum where ai = ai+1 for 0 < i < n (for i = 0 and i = n, we

instead pull back under M
SC

1 ×M
SC

n−1 →M
SC

n and M
SC

n−1×M
SC

1 →M
SC

n , respectively). The
degeneracy maps for 0 ≤ i ≤ n are given by

si(H, J) = π∗i (H, J) (4.15)

where πi : C
SC

n+1 → C
SC

n denotes the map that forgets the marked point ai+1.
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Definition 4.3. An n-simplex of Floer data (H, J) is said to be adapted to ∂X when both
H = Reπ and π is J-holomorphic over π−1(C|Re|≤ε) for some ε > 0. (These conditions are
crucial for constraining holomorphic curves near ∂X and, in particular, for the functoriality
of SH•; specifically, they are used in Lemma 4.21.)

∂∞Xi

∂∞Xi−1

∂∞H

Xi

π−1i (C|Re|≤N )

Z

Figure 7: Behavior of admissible Hamiltonians near infinity (left), and the region
π−1(C|Re|≤N) (right).

Definition 4.4. A Hamiltonian H : S1 → H(Xr) is said to be admissible with respect to a
chain of Liouville sectors X0 ⊆ · · · ⊆ Xr iff H is linear at infinity, except for near ∂Xi where
it instead is subject to the following requirements:

• Outside π−1
i (C|Re|≤N) for some N < ∞, we must have H = Hi for some (necessarily

unique) linear Hi : NbdZ ∂Xi → R defined near infinity. Here Hi must be smooth on
the closure of each component of (NbdZ ∂Xi) \ ∂Xi. Over ∂Xi, we must have Hi = 0
and dHi = 0, and furthermore its second derivative over ∂Xi must be positive on the
“inside” Xi and negative on the “outside” Xr \Xi, as illustrated in Figure 7 left.

• Inside π−1
i (C|Re|≤N) for all N < ∞, we must have H bounded uniformly in C∞ (with

respect to some, equivalently any, Riemannian metric g satisfying LZg = g, e.g. one
induced by a cylindrical almost complex structure). Note that these strips π−1

i (C|Re|≤N)
around ∂Xi limit to ∂∂∞Xi at infinity, see Figure 7 right.

The definition of admissibility above is somewhat complicated, so let us explain the mo-
tivation behind it. To define the symplectic cohomology of Liouville manifolds, it is usually
convenient to use Hamiltonians which are linear at infinity. Unfortunately, linearity at infin-
ity is incompatible with the condition of being adapted (Definition 4.3) to the boundary of a
Liouville sector (recall that Z Re π = 1

2
Re π rather than Z Re π = Reπ). Being adapted is,

however, crucial for the necessary confinement results for holomorphic curves (specifically,
ensuring that holomorphic curves do not approach the boundary and, more generally, that
for a chain X0 ⊆ · · · ⊆ Xr, holomorphic curves with positive asymptotic in Xi do not pass
through ∂Xi; see Lemma 4.21, which is the key to establishing d2 = 0 and functoriality
under inclusions of Liouville sectors). The notion of an admissible Hamiltonian is a com-
promise: the linearity constraint is weakened to allow admissible Hamiltonians to also be
adapted, yet enough regularity is imposed to ensure that admissible Hamiltonians remain
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well behaved at infinity (for example, the flow of any admissible Hamiltonian adapted to
∂Xr is complete in both directions—this follows from the reasoning used in the proof of
Lemma 4.22). Later, we will construct a sufficient supply of simultaneously adapted and
admissible Hamiltonians by perturbing linear Hamiltonians which satisfy a certain condition
called being ‘pre-admissible’; see Definition 4.7 and the surrounding discussion. Note that
it is not clear a priori that there are any admissible Hamiltonians at all—the essential rea-
son they exist is that (a smoothing of) the function Reπ

|Reπ|(Reπ)2 satisfies both conditions of
admissibility.

Definition 4.5 (Adapted from Groman [31]). An n-simplex of Hamiltonians H on X will
be called dissipative iff the following conditions are satisfied (these conditions are relevant
for the proof of compactness in Proposition 4.23):

• (Non-degenerate fixed points) For every vertex v ∈ ∆n, the flow map ΦHv of Hv : S1 →
H(X) has non-degenerate fixed points.

• (No fixed points at infinity) For every vertex v ∈ ∆n, the flow map ΦHv satisfies
d(x,ΦHv(x)) > ε > 0 for some ε > 0 and all x outside a compact subset of X (distance
is measured with respect to some/any g satisfying LZg = g).

(This lower bound d(x,ΦHv(x)) > ε > 0 is used to prove a priori C0-estimates over the
thin parts of the domain, i.e. long cylinders I × S1 with constant Floer data (meaning
independent of s ∈ I).)

• (Boundedness below of wrapping) inf
C
SC
k ×X

(− ∂
∂s
Hv0···vk) > −∞.

(Boundedness below of wrapping ensures that the geometric energy of a Floer trajec-
tory is bounded above by its topological energy plus a constant, see (4.36).)

• (Dissipation data) We require dissipation data in the following sense to be specified.

Dissipation data for a family H : C
SC

n → H(X) (n ≥ 1) consists of an open set Av ⊆
C
SC

n for each vertex v ∈ ∆n and a finite collection of quadruples (vi, Bi, {Kij}j≥1, {Uij}j≥1)

where vi ∈ ∆n is a vertex, Bi ⊆ C
SC

n is open, Kij ⊆ X are compact, Uij ⊆ X are open,
and Ki1 ⊆ Ui1 ⊆ Ki2 ⊆ Ui2 ⊆ · · · is an exhaustion of X, such that

Av ⊆ C
SC

n contains the thin part associated to v, (4.16)

C
SC

n =
⋃
v

Av ∪
⋃
i

Bi, (4.17)

H = Hv over (NbdAv)×X, (4.18)

H = Hvi over (NbdBi)×
∞⋃
j=1

Nbd(Uij \Kij), (4.19)

∞∑
j=1

d(X \ U−ij , K+
ij )

2 =∞, (4.20)

where K+
ij denotes the locus of points p ∈ X such that the forwards/backwards Hamil-

tonian trajectory of Hvi for time ≤ 1
2

starting at (p, t) for some t ∈ S1 intersects Kij,
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and U−ij denotes the locus of points for which all such trajectories stay inside Uij. As
usual, distance is measured with some/any g satisfying LZg = g. We will often refer
to the regions U−ij \K+

ij and/or Uij \Kij as “shells”.

Dissipation data for an n-simplex of Hamiltonians {Hv0···vm}0≤v0<···<vm≤n consists of

dissipation data for each family Hv0···vm : C
SC

m → H(X) (m ≥ 1) which is compatible

in the following sense. For each open set A′v or B′i of C
SC

m−1 specified for Hv0···v̂a···vm
(0 < a < m), there must exist a corresponding open set Av (the same v and with
A′v ⊆ Av) or Bj (with v′i = vj, K

′
ik = Kjk, U

′
ik = Ujk, and B′i ⊆ Bj). The same

condition is imposed for every open set A′v or B′i of C
SC

a specified for Hv0···va or Hvm−a···vm

(0 < a < m), except we require A′v ×M
SC

m−a ⊆ Av or B′i ×M
SC

m−a ⊆ Bj.

(Dissipation data is used to prove a priori C0-estimates over the thick parts of the do-
main, i.e. cylinders I×S1 of bounded length with possibly varying Floer data (meaning
depending upon s ∈ I).)

Note that for n = 0, the latter two conditions are vaccuous, so a single Hamiltonian H : S1 →
H(X) is dissipative if and only if ΦH has non-degenerate fixed points and d(x,ΦH(x)) > ε > 0
near infinity. Also note that for n > 0, being dissipative is extra structure rather than simply
a property.

It causes no difference in our arguments to restrict consideration to S1-invariant dissipa-
tion data (meaning each open set Av and Bi is S1-invariant).

Definition 4.6. We define a simplicial set HJ•(X0, . . . , Xr) as follows for any chain of
Liouville sectors X0 ⊆ · · · ⊆ Xr. An n-simplex of HJ•(X0, . . . , Xr) consists of an n-simplex
of Floer data

H : C
SC

n → H(Xr) (4.21)

J : C
SC

n → J(Xr) (4.22)

satisfying the following properties:

• (H, J) is adapted to ∂Xi for 0 ≤ i ≤ r (Definition 4.3).

• Hv is admissible (Definition 4.4) for all v ∈ ∆n with respect to a specified chain of
Liouville sectors

∅ =: X−1 ⊆ Y
(0)

1 ⊆ · · · ⊆ Y (0)
a0
⊆ X0 ⊆ Y

(1)
1 ⊆ · · · ⊆ Y (1)

a1
⊆ X1 ⊆ · · · ⊆ Xr (4.23)

depending on v. We require that the chain (4.23) specified at vertex v+ 1 be obtained

from that specified at vertex v by removing some of the Y
(i)
b ’s.

(The purpose of allowing Hamiltonians which are admissible with respect to such a
chain (4.23) is so that we can define the forgetful maps (4.24). Note that a Hamiltonian
admissible for X0 ⊆ · · · ⊆ Xr will usually not be admissible for the chain with Xi

removed.)

• H is dissipative with specified dissipation data (Definition 4.5).
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The face and degeneracy maps on the simplicial set HJ•(X0, . . . , Xr) are given by the opera-
tions (4.14) and (4.15), which tautologically preserve the condition of being in HJ•(X0, . . . , Xr).

There are forgetful maps (of simplicial sets)

HJ•(X0, . . . , Xr)→ HJ•(X0, . . . , X̂i, . . . , Xr) (4.24)

for 0 ≤ i ≤ r; the only non-obvious part of their definition is that the chains (4.23) retain
the forgotten Xi if i < r (note that the case of i = r, in which one restricts (H, J) to Xr−1,
is somewhat special compared to the cases i < r, in which one considers the same (H, J) on
Xr).

4.3 Construction of Hamiltonians and almost complex structures

We now introduce constructions of Hamiltonians and almost complex structures suitable for
defining symplectic cohomology of Liouville sectors, i.e. constructions of simplices of HJ•.
Lemma 4.8 provides a ready supply of vertices of HJ• (i.e. Floer data suitable for defining a
Floer complex CF •(X;H) and its differential). Proposition 4.9 produces sufficiently many
higher simplices in HJ• (i.e. Floer data suitable for defining continuation maps, etc.).

Definition 4.7. A linear Hamiltonian H : S1 → H(Xr) defined near infinity is said to be
pre-admissible with respect to a chain of Liouville sectors X0 ⊆ · · · ⊆ Xr iff it satisfies the
following conditions.

• We require H to be smooth on the complement of
⋃
i ∂Xi.

• Near each ∂Xi, we require the restriction of H to the closure of each “side” of ∂Xi to
be smooth, meaning it admits a smooth extension to an open neighborhood (it thus
makes sense to evaluate the derivatives of H over ∂Xi, though we must specify whether
we compute them from the “inside” or the “outside”).

• Over ∂Xi, we require that H = 0 and dH = 0 (from both sides) and that the second
derivative of H be positive on the inside and negative on the outside.

Every admissible (in the sense of Definition 4.4) Hamiltonian H̃ : S1 → H(Xr) determines
a unique linear Hamiltonian H : S1 → H(Xr) defined near infinity, defined by the property
that H = H̃ outside

⋃
i π
−1
i (C|Re|≤N) for some N <∞. Clearly such H is pre-admissible.

Being linear at infinity, pre-admissible Hamiltonians are easy to construct. In contrast, an
adapted admissible Hamiltonian fails to be linear at infinity over the small strips π−1

i (C|Re|≤ε),
where it must coincide with Re πi. However, the next lemma shows we can modify most pre-
admissible Hamiltonians to make them adapted and admissible.

Lemma 4.8. Let H : S1 → H(Xr) be pre-admissible with respect to X0 ⊆ · · · ⊆ Xr.
Assume also that ΦH has no fixed points other than

⋃
i ∂Xi. There exists an admissible

H̃ : S1 → H(Xr) corresponding to H at infinity, which is dissipative and adapted to all ∂Xi.
If H is S1-independent, then we may take H̃ to be as well.

66



Proof. It is enough to modify H near each ∂Xi. It is furthermore enough to discuss this
modification on the “inner” side of Xi, as the situation on the “outer” side is the same upon
negation. Hence, we may forget about the chain of Liouville sectors altogether and simply
modify a given pre-admissible H : S1 → H(X) near ∂X to make it admissible, adapted to
X, and dissipative.

We define H̃ by smoothing max(H,R), where R := Reπ. We may write H = FR2 for
some Z-invariant function F : NbdZ ∂X → R>0 defined near infinity. In particular, we have

max(H,R) =

{
R R ≤ 1

N

H R ≥ N
(4.25)

for sufficiently large N < ∞. The smoothing will take place over the strip { 1
N
≤ R ≤ N}.

(Note that ZR = 1
2
R, so R covers the entirety of [0, N ] near infinity over any NbdZ ∂X.)

Since H is linear at infinity, ΦH is cylindrical at infinity, and hence satisfies d(x,ΦH(x)) ≥
ε > 0 near infinity, except possibly over NbdZ ∂X. We must smooth max(H,R) so it retains
this displacement property and is bounded in C∞. The key to doing this is to note that the
desired lower bound d(x,ΦH̃(x)) ≥ ε > 0 is implied by the stronger property XH̃I ≥ ε > 0
over NbdZ ∂X, where I = Im π. Indeed, |dI| is Z-invariant (and nonzero), and hence is of
constant order near infinity.

To produce H̃ satisfying XH̃I ≥ ε > 0 over NbdZ ∂X, argue as follows. We have that

XRI ≡ 1 (4.26)

by definition. We have that XHI vanishes to first order over ∂X with positive inward
derivative (see the proof of Lemma 2.34), so since Z(XHI) = 1

2
XHI and ZR = 1

2
R, we have

XHI ≥ c ·R (4.27)

over NbdZ ∂X for some c > 0. Now, simply observe that over the locus {0 ≤ R ≤ N},
the metric g has bounded geometry and the functions I, R, and H = FR2 are uniformly
bounded in C∞. It thus follows from (4.26)–(4.27) that we may smooth max(H,R) over the
strip { 1

N
≤ R ≤ N} to obtain H̃ (also uniformly bounded in C∞) such that XH̃I ≥ ε > 0.

Proposition 4.9. For n ≥ 2, every map ∂∆n → HJ•(X0, . . . , Xr) extends to ∆n. For n = 1,
a sufficient (and obviously necessary) condition for an extension to exist is that H0 ≤ H1 +C
for some C <∞ and that the chain (4.23) at 0 be a superset of that at 1.

Proof. The input data of a map ∂∆n → HJ•(X0, . . . , Xr) amounts to all of the data of an
n-simplex of Floer data (H, J) except for the “top-dimensional” maps H0···n and J0···n. Note

that H0···n and J0···n are determined uniquely over (the inverse image of) ∂M
SC

n , the images

of all collars (4.4), and the ends s� 0 and s� 0. Extension of J0···n to all of C
SC

n is trivial
by contractibility of J(X). Our main task is to show that H0···n extends so that dissipativity
is satisfied.

For this purpose of extending H0···n, we may as well forget about the meaning of C
SC

n and

remember only its topology. Namely, we replace the original extension problem on C
SC

n (rel
boundary) with an extension problem on Dn−1 × [0, 1] × S1 (rel boundary), where, for the
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purpose of making sense of boundedness below of wrapping, the role of the vector field −∂s
is played by differentiation in the [0, 1]-coordinate direction.

By assumption, the given H (defined near the boundary) satisfies boundedness below of
wrapping. Dissipation data can be defined covering Nbd ∂(Dn−1 × [0, 1]× S1) by extending
from the boundary (note that this uses crucially the compatibility properties of the dissipa-
tion data chosen for each facet of ∆n). To complete this to a cover of Dn−1 × [0, 1] × S1,
we add two more open sets Bi given by (Dn−1 \ Nbd ∂Dn−1) × [δ, 2

3
] × S1 (for vertex 0)

and (Dn−1 \ Nbd ∂Dn−1) × [1
3
, 1 − δ] × S1 (for vertex n), with any exhaustion satisfying

(4.20) (which exists since the flow of Hv is complete). For reasons which will become ap-
parent below, we actually duplicate the open sets Bi which arose from extending from the
boundary, where the first copy covers the boundary (but is disjoint from the two new added
Bi’s) and the second copy is disjoint from the boundary. We illustrate the resulting cover of
Dn−1 × [0, 1]× S1 in Figure 8 (the regions Dn−1 × [0, δ)× S1 and Dn−1 × (1− δ, 1]× S1 are
A0 and An, respectively).

Figure 8: Open cover of S1 ×Dn−1 × [0, 1] consisting of a small extension of the dissipation
data given on the boundary (solid) and two more open sets Bi (dashed/dotted).

Unfortunately, this dissipation data may be self-contradictory: the two new open sets Bi

may have associated shells which intersect those from the dissipation data extended from the
boundary, which is problematic in view of (4.19). The key observation (due to Groman [31],
following Cieliebak–Eliashberg [13]) is that we can remedy this defect by forgetting some of
the shells associated to the two new sets Bi and the second copies of the dissipation data
lifted from the boundary. To achieve this, we simply iterate over these Bi’s infinitely many
times, where at each iteration we choose a finite number of shells Uij\Kij to “keep” which are
disjoint from already chosen shells and for which the corresponding sum of d(X \ U−ij , K+

ij )
2

is at least 1.
Now that the dissipation data has been “thinned out” so as to be consistent, it is straight-

forward to extend H, consistently with this dissipation data, maintaining boundedness below
of wrapping.

Together, Lemma 4.8 and Proposition 4.9 imply the following result, which formalizes the
vague statements that the space of Floer data is contractible and that wrapping is filtered.
The notion of a filtered ∞-category is reviewed in §4.4 below.

Corollary 4.10. The simplicial set HJ•(X0, . . . , Xr) is a filtered ∞-category, and the for-
getful map HJ•(X0, . . . , Xr)→ HJ•(X0, . . . , Xr−1) is cofinal.
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Proof. Note that Proposition 4.9 implies that HJ• satisfies the hypotheses of Lemma 4.19;
in particular, the necessary and sufficient condition for a pair of vertices of Floer data H0

and H1 to extend to a 1-simplex from H0 to H1 is obviously transitive; denote this condition,
which gives a partial ordering on vertices, as H0EH1. Lemma 4.19 therefore implies that, to
show HJ• is filtered, it is sufficient to show that the poset induced by the relation E on the
vertices of HJ• is filtered (directed). Directedness of E follows from Lemma 4.8 since pre-
admissible Hamiltonians H are trivial to construct (note that the hypothesis of ΦH having
no fixed points other than

⋃
i ∂Xi holds generically in view of Lemma 2.34).

Cofinality of the forgetful map also follows immediately from Lemmas 4.19, 4.8, and
2.34.

4.4 Filtered ∞-categories

Definition 4.11 (Lurie [34, Definition 1.1.2.4]). A simplicial set C is called an ∞-category
iff it satisfies the extension property for all inclusions Λn

i ↪→ ∆n for 0 < i < n (recall that
Λn
i ⊆ ∆n denotes the union of all faces containing the vertex i). A functor between ∞-

categories is simply a map of simplicial sets. An ∞-category is called an ∞-groupoid iff it
satisfies the extension property for all inclusions Λn

i ↪→ ∆n for 0 ≤ i ≤ n.

Example 4.12. Every category C gives rise to a simplicial set NC, called its nerve, which is
an ∞-category. A functor C→ D is the same thing as a map of simplicial sets NC→ ND.
We will hence make no distinction between a category and its nerve.

Definition 4.13. For every ∞-category X•, there is an associated category hX• called its
homotopy category. The objects of hX• are the 0-simplices of X•, and the morphisms of hX•
are equivalence classes of 1-simplices in X•, where an equivalence between 1-simplices x→ y
is a map ∆1×∆1 → X• for which ∆1×{0} and ∆1×{1} are the degenerate 1-simplices over
x and y, respectively. There is a canonical map X• → hX•, which is initial in the category
of all maps from X• to (the nerve of) a category.

Definition 4.14. A diagram in an ∞-category C is a map of simplicial sets p : K → C; the
simplicial set K is called the indexing simplicial set (or indexing (∞-)category as the case
may be).

Definition 4.15 (Lurie [34, Notation 1.2.8.4]). Given any simplicial set K, denote by KC

the simplicial set obtained by adding an initial vertex ∗ to K. More formally,

Hom(∆p, KC) := Hom(∆p, K) ∪ Hom(∆p−1, K) ∪ · · · ∪ Hom(∆0, K) ∪ {∗} (4.28)

where a simplex ∆p → KC consists of the map sending the initial ∆[0...k] ⊆ ∆p to the initial
vertex ∗ and some map from the final ∆[k+1...p] to K, for −1 ≤ k ≤ p. Similarly, define KB

by adding a terminal vertex to K.

Definition 4.16 (Lurie [34, §1.2.9]). For an∞-category C and an object c ∈ C (i.e. a vertex
c ∈ C0 of the simplicial set C•), the under-category Cc/ is the ∞-category defined by the
universal property that Hom(K,Cc/) ⊆ Hom(KC,C) is the subset sending the initial vertex
∗ ∈ KC to c. The over-category C/c is defined similarly via Hom(K,C/c) ⊆ Hom(KB,C).
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There is a canonical map Cc/ → C (respectively C/c → C).

Definition 4.17 (Lurie [34, Definition 5.3.1.7]). An ∞-category C is called filtered iff it
satisfies the extension property for all inclusions K ↪→ KB for finite simplicial sets K.

An ordinary category is filtered (see §3.4) iff it (or rather its nerve) is filtered as an
∞-category. The homotopy category of a filtered ∞-category is filtered. An ∞-groupoid is
filtered iff it is contractible. (There is a notion of when an arbitrary simplicial set is filtered
[34, Remark 5.3.1.11], but it is not the naive generalization of the above.)

Definition 4.18. A functor F : C → D between filtered ∞-categories is said to be cofinal
iff for every vertex d ∈ D, the fiber product C×D Dd/ is a filtered ∞-category.

A functor between filtered categories is cofinal (see §3.4) iff it is cofinal as a functor
between filtered ∞-categories. A cofinal functor between filtered ∞-categories induces a
cofinal map between their homotopy categories. (Recalling that any filtered ∞-category
is weakly contractible [34, Lemma 5.3.1.18], the definition of cofinal functor given above
appears stronger than the definition given in [34, Theorem 4.1.3.1] for functors between
arbitrary ∞-categories; it is in fact equivalent, though we will not need to appeal to this
fact. There is a notion of when a map of arbitrary simplicial sets is cofinal due to Joyal [34,
Definition 4.1.1.1].)

We leave the following result as an exercise.

Lemma 4.19. Let X• be a simplicial set, and suppose that:

• X• satisfies the extension property for all inclusions ∂∆n ↪→ ∆n for n ≥ 2.

• The relation ≤ on X0 defined by p ≤ q iff there is a 1-simplex from p to q is transitive.

Then, X• is an ∞-category, its homotopy category hX• is a poset (i.e. for all x, y ∈ hX•
there is at most one morphism x→ y), and X• → hX• is a trivial Kan fibration.

In particular, if X• satisfies the hypotheses of Lemma 4.19, then X• is a filtered ∞-
category if and only if hX• is filtered (directed) as a poset. Specializing even further, such
X• is a contractible ∞-groupoid if and only if hX• = ∗ (equivalently, for every x, y ∈ hX•
there exists a morphism x → y). It also follows that if X• and Y• satisfy the hypotheses
of Lemma 4.19 and both hX• and hY• are filtered (so X• and Y• are filtered ∞-categories),
then X• → Y• is cofinal iff hX• → hY• is cofinal.

4.5 Holomorphic curves

Definition 4.20. For any (H, J) ∈ HJn(X) and periodic orbits γ+ : S1 → X of H0 and γ−

of Hn, we define
Mn(H, J, γ+, γ−) (4.29)

to be the moduli space of sequences a1 ≥ · · · ≥ an ∈ R and maps u : R × S1 → X with
asymptotics u(+∞, t) = γ+(t), u(−∞, t) = γ−(t), satisfying Floer’s equation with respect
to the given (H, J)

(du−XH ⊗ dt)0,1
J = 0 (4.30)
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modulo simultaneous R-translation of a1 ≥ · · · ≥ an and the domain of u (recall that (H, J)

are maps C
SC

n → H(X), which we pull back to R × S1 by identifying (R × S1, a1, . . . , an)

with a unique fiber of C
SC

n ). The associated “compactified” moduli space

Mn(H, J, γ+, γ−) (4.31)

includes all stable broken trajectories as well.

For future reference, we record here the two notions of energy for trajectories in Mn(H, J, γ+, γ−).
The topological energy is defined as

Etop(u) :=

∫
R×S1

u∗ω − dH ∧ dt− ∂sH ds ∧ dt (4.32)

=

∫
R×S1

d(u∗λ−H dt) (4.33)

= a(γ+)− a(γ−) (4.34)

where the action of γ is a(γ) :=
∫
S1 γ

∗λ−H(γ) dt. The geometric energy is

Egeo(u) :=

∫
R×S1

u∗ω − dH ∧ dt =

∫
R×S1

1

2
‖du−XH ⊗ dt‖2, (4.35)

where the norm ‖ · ‖ comes from ω(·, J ·) (the equality of the two expressions above holds
since du − XH ⊗ dt is complex linear). Note that the integrand of Egeo(u) is ≥ 0, and if
Egeo(u) = 0 then ∂su ≡ 0 (i.e. the solution u is a “trivial cylinder”). We have

Egeo(u) = Etop(u) +

∫
R×S1

∂sH ds ∧ dt. (4.36)

Boundedness below of wrapping inf(−∂sH) > −∞ provides an upper bound on the last
term (note that the projection to R of the support of ∂sH has a priori bounded length),
and hence Egeo(u) is bounded above by Etop(u) plus a constant. If in fact −∂sH ≥ 0, then
Egeo(u) ≤ Etop(u).

Lemma 4.21. For Floer data (H, J) ∈ HJ•(X0, . . . , Xr), any trajectory in Mn(H, J, γ+, γ−)
with positive end γ+ in Xi must lie entirely inside Xi.

Proof. Fix a bump function ϕ : R→ R≥0 supported in [− ε
2
, ε

2
] and define the ϕ(x)ωC-energy

Eϕ(x)ωC(u) :=

∫
R×S1

(du−XH ⊗ dt)∗π∗i (ϕ(x)ωC). (4.37)

Since πi is holomorphic over π−1
i (C|Re|≤ε), this energy is ≥ 0, and equality implies that the

trajectory is disjoint from the support of ϕ ◦ πi (which in particular contains ∂Xi).
Now the 2-form ϕ(x)ωC on C|Re|≤ε is exact relative to a neighborhood of the boundary,

namely ϕ(x)ωC = dκ for some 1-form κ on C supported inside C|Re|≤ε. Furthermore, the flow
of XRe on C preserves dκ = ϕ(x)ωC, so in view of Cartan’s formula, the 1-form β := dκ(XH , ·)
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is closed; the class [β] ∈ H1(C|Re|≤ε, ∂) is called the flux. We may thus express the ϕ(x)ωC-
energy as a “flux pairing”, namely

Eϕ(x)ωC(u) =

∫
R×S1

dκ
(
XH ,

∂u

∂s

)
ds dt = 〈[β], (π ◦ u)∗([R]× {0})〉 (4.38)

where the latter is the pairing between H1(C|Re|≤ε, ∂) and H1(C|Re|≤ε, ∂). Keeping careful
track of signs, we conclude that if γ− lies outside Xi, then Eϕ(x)ωC(u) < 0, a contradiction.
Thus γ− lies inside Xi, implying Eϕ(x)ωC(u) = 0, which means the trajectory must be disjoint
from ∂Xi and hence entirely inside Xi.

4.6 Compactness

The proof of compactness we give here is similar to Proposition 3.19, but now crucially in-
corporates arguments of Groman [31]. We need the following result about geometric bound-
edness (so that we can make use of the monotonicity inequalities recalled in §2.10.2).

Lemma 4.22. Let H : S1 → H(Xr) be admissible with respect to X0 ⊆ · · · ⊆ Xr in the sense
of Definition 4.4. Let D2 ⊆ R× S1 be a disk centered at p ∈ D2, and let J : D2 → J(X) be

cylindrical. Then (D2×X,ωD2 +ωX , jD2⊕ J̄) has bounded geometry, where J̄ := (Φ
t(p)→t
H )∗J .

Proof. In the case that H is linear at infinity (i.e. in the very special case ∂X0 = · · · =
∂Xr = ∅), the family of almost complex structures J̄ : D2 → J(X) is cylindrical at infinity,
and so we can simply appeal to Lemma 2.44.

To push this reasoning a bit further, let N < ∞ be such that H is linear at infinity
outside

⋃
i π
−1
i (C|Re|≤N). Now over the subset of X which never hits

⋃
i π
−1
i (C|Re|≤N) under

the flow of XH over any time interval [t(p), t(q)] for q ∈ D2, Lemma 2.44 applies to show
the desired geometric boundedness statement, since there the gauge transformed almost
complex structure J̄ is cylindrical. We claim that the “bad” subset of X which does hit⋃
i π
−1
i (C|Re|≤N) is contained within

⋃
i π
−1
i (C|Re|≤M) for some M < ∞. To show this, it is

enough to show that |XHR| ≤ c · |R| for R = Reπi and some c < ∞ (so R grows at most
exponentially under the flow of XH). This inequality holds since XHR = 0 over {R = 0}
(by admissibility of H) and both XHR and R have “square root growth at infinity”, i.e.
Z(XHR) = 1

2
XHR and ZR = 1

2
R.

It remains only to prove geometric boundedness over
⋃
i π
−1
i (C|Re|≤M) for M <∞. This

follows immediately using the fact that H is C∞-bounded over such regions and again the fact
that flowing under XH for finite time stays within yet a larger region

⋃
i π
−1
i (C|Re|≤M ′).

Proposition 4.23. The moduli spaces Mn(H, J, γ+, γ−) are compact.

Proof. In view of the inclusion HJ•(X0, . . . , Xr) ⊆ HJ•(Xr), it is enough to treat the case
r = 0, writing X0 = X.

It is enough to show that there is a compact subset of X\∂X containing the image of all
trajectories in Mn(H, J, γ+, γ−) (then the usual Gromov compactness arguments apply). By
Lemma 4.21, trajectories in X stay away from ∂X, so it suffices to construct such a compact
subset ofX. Note that Egeo is bounded above on Mn(H, J, γ+, γ−) since Etop = a(γ+)−a(γ−)
is fixed and wrapping is bounded below (see (4.36)). The compact set we produce will depend
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only on (H, J) and this upper bound on Egeo. Note that since Egeo ≥ 0 and is additive along
broken trajectories, we may assume that our trajectory is not broken (though this is only for
psychological comfort; the argument below applies verbatim to broken trajectories as well).

Let a trajectory u : R × S1 → X be given. We decompose R into ≤ 2n + 1 (possibly
infinite or half-infinite) overlapping intervals, each of one of the following two types:

• Intervals of a priori bounded length (the thick parts ; concretely, these can be taken
to be the union of the intervals of length N centered at each of the points ai ∈ R, for
some sufficiently large N <∞).

• Intervals over which H and J are independent of the s-coordinate (that is, the thin
parts, namely where the domain curve is close to breaking or where s is close to ±∞).

Let us first show that the image under u of any component of the thick part (i.e. any
interval of the first type above) is bounded a priori in terms of (H, J), Egeo, and u(p) for any
point p in the component. Let dissipation data {(Bi, vi, {Kij}j, {Uij}j)}i be given. Since we

are presently interested only in the particular domain R×S1 ⊆ C
SC

n , we will abuse notation
and denote by Bi what would more accurately be written Bi ∩ (R × S1). Since the length
of the interval is bounded, it suffices to show that for every small ball B2ε(p) ⊆ Bi (let us
assume 0 < ε < 1

8
), the image u(Bε(p)) ⊆ X is bounded in terms of u(p) (of course, we

should also prove the same statement for B2ε(p) ⊆ Av, however this case is strictly easier,
hence omitted). To prove this, we consider the map ū : B2ε(p)→ X defined by the relation

u = Φ
t(p)→t
H(s,·) ◦ ū (i.e. we do a change of coordinates on the target using the Hamiltonian flow

of H). For any j, we have

(dū)0,1

J̄
= 0 over ū−1(U−ij \K+

ij ) (4.39)

where J̄ = (Φ
t(p)→t
Hvi

)∗J (note that Φ
t(p)→t
H(s,·) = Φ

t(p)→t
Hvi

over U−ij \K+
ij ). Now the graph of ū over

B2ε(p)∩ ū−1(U−ij \K+
ij ) is a properly embedded holomorphic curve in B2ε(p)×(U−ij \K+

ij ) with
respect to jB2ε(p)⊕ J̄ . Using the fact that Hvi is admissible, one sees that this almost complex
structure has bounded geometry by Lemma 4.22. We claim that monotonicity (see §2.10.2)
applied to the graph of ū implies that if ū|Bε(p) crosses a “shell” U−ij \K+

ij , then the graph of
ū over B2ε(p)∩ ū−1(U−ij \K+

ij ) has geometric energy bounded below by a constant (depending
on ε > 0 and the geometry of (X,ω, J̄)) times min(d, d2) where d = d(X \U−ij , K+

ij ) (compare
Groman [31]). Indeed, suppose that ū|Bε(p) crosses a “shell” U−ij \K+

ij (meaning, precisely,
that ū(Bε(p)) intersects both K+

ij and X \ U−ij ). Then by connectedness of Bε(p), we may

find a set of max(1, bdc) points in Bε(p) such that the balls of radius min(1
2
, 1

2
d) around

their images in X under ū are disjoint and contained inside U−ij \K+
ij . Now we consider the

corresponding points on the graph of ū, and we observe that the balls of radius min(1
2
, 1

2
d, ε)

centered at these points are disjoint and contained inside B2ε(p)×(U−ij \K+
ij ), and moreoever

the boundary of the graph of ū over B2ε(p)× (U−ij \K+
ij ) lies outside these balls (recall that

their centers are contained in Bε(p) × (U−ij \ K+
ij )). We can therefore apply monotonicity

to these balls to produce the desired lower bound on the energy of the graph of ū over
B2ε(p) ∩ ū−1(U−ij \K+

ij ). Now, on the other hand, the sum of these geometric energies (over
all j) is bounded above by the geometric energy of the graph of ū over B2ε(p), which is
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bounded above by Egeo(u)+(2ε)2π. This shows that ū|Bε(p) can cross at most finitely many
shells by divergence of (4.20), and hence that u(Bε(p)) is bounded depending on u(p), as
desired. This proves the desired claim about intervals in the thick part of the domain.

Now let us examine the thin parts of the domain (i.e. intervals of the second type above).
Define ū by the relation u(s, t) = Φ0→t

H (ū(s, t)) for 0 ≤ t < 2π, so

∂tu−XH = (Φ0→t
H )∗∂tū. (4.40)

Fix a large compact set K ⊆ X outside which d(x,ΦH(x)) ≥ ε > 0; note that this implies
that if u(s, 0) /∈ K, then ∫ 2π

0

|∂tū| ≥ d(u(s, 0),ΦH(u(s, 0))) ≥ ε. (4.41)

Recall that we measure length |·| with respect to any Riemannian metric g satisfying LZg = g
near infinity (they are all uniformly commensurable), such as the metric induced by any
cylindrical J . Now for any interval [a, b] ⊆ R in the thin part such that u(s, 0) /∈ K for all
s ∈ [a, b], we have

Egeo ≥
∫

[a,b]

∫
S1

|∂tu−XH |2 &
∫

[a,b]

(∫
S1

|∂tu−XH |
)2

(4.42)

�
∫

[a,b]

(∫ 2π

0

|∂tū|
)2

≥ ε2(b− a).

The last inequality on the first line is Cauchy–Schwarz. To justify the next relation �
(meaning equality up to a positive constant bounded uniformly away from 0 and ∞), in
view of (4.40) we just need to argue that Φ0→t

H : X → X distorts lengths by at most a
constant uniform in t. Over the region where the flow of H never hits

⋃
i π
−1
i (C|Re|≤N), this

follows from linearity of H; the region where the flow does hit this region is contained in⋃
i π
−1
i (C|Re|≤M) for some M <∞ (see the proof of Lemma 4.22) and so the desired statement

follows from C∞-boundedness of H over this region. Having justified (4.42), it thus follows
that there exists L < ∞ such that in every interval [a, b] ⊆ R in the thin part of length
≥ L, there exists an s such that u(s, 0) ∈ K. Now we apply the monotonicity argument
(used above in the thick part) to conclude that u(s, 0) ∈ K implies an a priori bound on u
over [s− 10L, s+ 10L]× S1 as well. This shows that over the thin part of the domain, u is
bounded uniformly away from infinity. The same then follows for in the thick part as well
using the claim proved in the previous paragraph and the fact that every component of the
thick part is adjacent to the thin part.

4.7 Transversality

Let HJreg
• ⊆ HJ• denote the collection of data for which all moduli spaces Mn(H, J, γ+, γ−)

are cut out transversely, including those associated to (H, J)|∆k for facets ∆k ↪→ ∆n. Note
that HJreg

• ⊆ HJ• is indeed closed under degeneracy maps (note that this involves appealing
to the fact that trivial cylinders are cut out transversely).
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Standard Sard–Smale transversality arguments suffice to show that given any map (∆k, ∂∆k)→
(HJ•,HJreg

• ), the J component can be perturbed away from ∂∆k to obtain a map ∆k →
HJreg
• . It is enough to perturb away from ∂∆k because gluing for holomorphic curves shows

that transversality over ∂∆k implies transversality for Mk(H, J, γ
+, γ−) over Nbd ∂M

SC

k .
Now this “perturbed lifting property” for maps (∆k, ∂∆k) → (HJ•,HJreg

• ) implies (fol-
lowing Corollary 4.10) that each HJreg

• is a filtered ∞-category and that each inclusion
map HJreg

• ↪→ HJ• is cofinal; it follows that each forgetful map HJreg
• (X0, . . . , Xr) →

HJreg
• (X0, . . . , Xr−1) is cofinal.

4.8 Homotopy coherent diagrams

We now formalize the notion of a homotopy coherent diagram of chain complexes. Denote
by Ch = Ch

Z/2
Z the category of Z/2-graded cochain complexes of Z-modules. A (strict)

diagram of chain complexes is simply a map of simplicial sets K → Ch (recall that we
conflate any category with its nerve). A homotopy coherent diagram of chain complexes is
a map K → Ndg Ch, where Ndg Ch is the differential graded nerve of Ch, defined as follows
(compare Lurie [35, Construction 1.3.1.6]). Recall the cubes F(∆n) of broken Morse flow lines
from Remark 4.1, and denote by C•(F(∆n)) the cubical chain complex of F(∆n) = [0, 1]n−1

(namely free of rank 3n−1).

Definition 4.24. Denote by Ndg Ch the simplicial set whose p-simplices are (p + 1)-tuples
of objects A•0, . . . , A

•
p ∈ Ch along with (degree zero) chain maps

fσ : A•σ(0) ⊗ C−•(F(∆q))→ A•σ(q) (4.43)

for every map σ : ∆q → ∆p (q ≥ 1) such that

• For 0 < k < q, we have fσ|k···q ◦ fσ|0···k = fσ|C−•(F(∆k))⊗C−•(F(∆q−k)) with respect to the
natural map F(∆k)× F(∆q−k)→ F(∆q) from (4.8).

• For every τ : ∆r → ∆q with τ(0) = 0 and τ(r) = q, we have fσ◦τ = fσ ◦ τ∗, where
τ∗ : F(∆r)→ F(∆q) is induced from τ as in Remark 4.1. In the degenerate case q = 0
(so fσ is not defined), we interpret fσ as the identity map above.

More generally, for any simplicial set X•, a map X• → Ndg Ch consists of an object A•v ∈ Ch
for every vertex v ∈ X0 and maps fσ : A•σ(0) ⊗ C−•(F(∆p)) → A•σ(p) for every p-simplex
σ ∈ Xp with p ≥ 1 satisfying the two conditions above.

Note the tautological functor from the classical nerve to the dg-nerve Ch → Ndg Ch,
corresponding to taking fσ to factor through C•(F(∆q))→ C•(pt) = Z.

Remark 4.25. Definition 4.24 extends immediately to any dg-category C in place of Ch,
though we should remark that in this more general context, rather than saying fσ : A•σ(0) ⊗
C−•(F(∆q)) → A•σ(q) is a chain map, we should instead say fσ ∈ Hom•(Aσ(0), Aσ(q)) ⊗
C•(F(∆q)) is a cycle of degree zero.

Remark 4.26. The set of p-simplices of Ndg C can be equivalently described as the set of
strictly unital A∞-functors from the Ap+1-quiver 0 → · · · → p to C. In particular, the face
and degeneracy maps on a p-simplex Ndg C are simply induced by composition with the co-
face and co-degeneracy maps of the cosimplicial dg-category ∆• = {∆p = 0→ · · · → p}p≥0.
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Remark 4.27. It is not difficult to check that Ndg C is an ∞-category for any dg-category C

[35, Proposition 1.3.1.10], though this fact is not essential to our arguments.

4.9 Homotopy colimits

Let X• be a simplicial set, and let bX• denote the barycentric subdivision of X•, namely a
p-simplex of bX• is a chain ∆ap ↪→ · · · ↪→ ∆a0 → X• (note that this is the “opposite” of
what is usually called the barycentric subdivision).

For any diagram A : bX• → Ndg Ch, we denote by

C•(X•;A) :=
⊕

σ:∆n→X•

A(σ)[n] (4.44)

the complex of “simplicial chains on X• with coefficients in A”.

Remark 4.28. The span of all degenerate simplices is a subcomplex and it is moreover easily
seen to be acyclic (this is easy once it is observed that every degenerate simplex lies over
a unique non-degenerate simplex). It is thus equivalent to consider the quotient complex
of “normalized chains”. In everything which follows, we could just as easily work with the
normalized complex in place of the non-normalized version above.

For any diagram A : X• → Ndg Ch, we denote by

hocolim
X•

A := C•(X•;A ◦ r) (4.45)

the “homotopy colimit of A”, where r : bX• → X• is the canonical map sending a p-simplex
∆ap ↪→ · · · ↪→ ∆a0 σ−→ X• in bX• to the p-simplex σ(0 ∈ ∆a0 , . . . , 0 ∈ ∆ap) of X•.

Note that the diagramsA : bX• → Ndg Ch obtained by pre-composition with r : bX• → X•
satisfy the property that A(σ)

∼−→ A(σ|0 · · · k̂ · · ·n) is an isomorphism for any k > 0 and any
simplex σ : ∆n → X•. By abuse of notation, we also use

hocolim
X•

A (4.46)

to denote C•(X•;A) for any diagram A : bX• → Ndg Ch with the property that A(σ)
∼−→

A(σ|0 · · · k̂ · · ·n) is a quasi-isomorphism for any k > 0 (trivial but frequently used fact: it is
equivalent to require this map be a quasi-isomorphism just for k = n).

Remark 4.29. The discussion above generalizes immediately to any dg-category C in place
of Ch. Namely, for any diagram A : bX• → Ndg C we can form C•(X•;A) ∈ Tw⊕ C (the
category of infinite direct sum twisted complexes of C), we can form hocolimX• A ∈ Tw⊕ C
for any A : X• → Ndg C, etc.

Remark 4.30. The homotopy colimit as defined above satisfies a universal property in the
∞-category Ndg C, though this fact is not essential to our arguments.

The following result is standard.

Lemma 4.31. For any cofinal map f : X• → Y• between filtered ∞-categories and any
diagram A : Y• → C, the natural map

hocolim
X•

A ◦ f ∼−→ hocolim
Y•

A (4.47)

is a quasi-isomorphism.
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Lemma 4.32. Let K be a simplicial set, and let KB be as in Definition 4.15. The natural
inclusion

A(∗) ∼−→ hocolim
KB

A (4.48)

is a quasi-isomorphism (even for the homotopy colimit in the generalized sense of (4.46)).

Proof. Let A : b(KB)→ Ndg Ch be the diagram in question, and filter

hocolim
KB

A =
⊕

σ:∆n→KB

A(σ)[n] (4.49)

by subcomplexes (hocolimKB A)≤k spanned by those simplices σ : ∆n → KB for which
σ|k . . . n is the degenerate (n− k)-simplex over ∗.

The subcomplex (hocolimKB A)≤0 is given by A(∗) tensored with simplicial chains on
the point. Each subsequent associated graded piece (hocolimKB A)≤k/(hocolimKB A)≤k−1

with k ≥ 1 is the direct sum over all (k − 1)-simplices σ : ∆k−1 → K of (something quasi-
isomorphic to) A(σ(0)) tensored with reduced simplicial chains on the point.

4.10 Symplectic cochain diagrams

By counting holomorphic curves in the moduli spaces Mn(H, J, γ+, γ−), we produce a dia-
gram of symplectic cochain complexes over the simplicial set HJreg

• (X), namely a map

HJreg
• (X)→ Ndg Ch (4.50)

where Ndg Ch is as in §4.8.
To a vertex (H, J) ∈ HJ

reg
0 (X), we associate the Floer complex CF •(X;H) equipped with

the differential arising from counting the zero-dimensional moduli spaces M0(H, J, γ+, γ−).
The Floer complex CF •(X;H) is isomorphic as a Z-module to the free abelian group on the
fixed points of the flow map ΦH : X → X obtained from integrating XH around S1. More
canonically, it is defined as the direct sum of orientation lines

CF •(X;H) :=
⊕

ΦH(x)=x

oΦH ,x (4.51)

(compare the analogous discussion in §3.2). We recall briefly the definition of the orientation
line oΦ,x associated to a non-degenerate fixed point x of a symplectomorphism Φ : X → X.
Consider the linearized ∂̄-operator at the constant map u : (−∞, 0] × [0, 1] → X sending
everything to x and subject to u(s, 1) = Φ(u(s, 0)). We may view this operator as living
on (−∞, 0] × S1 by gluing (s, 1) ∼Φ (s, 0) (if Φ = ΦH , then this is equivalently described
as the linearized operator associated to the equation (du−XH ⊗ dt)0,1

J = 0 at the constant
solution u : (−∞, 0] × S1 → X at x). We may further glue on a disk to obtain a Cauchy–
Riemann operator D on the Riemann sphere with one negative puncture (see Figure 9), and
oΦ,x := o∨D is defined as the dual of the Fredholm orientation line of D. (The obstruction to
extending the Cauchy–Riemann operator to the glued on disk lies in π1(BU(n)) = 0; there
is an ambiguity of π2(BU(n)) = Z in choosing such an extension (the relative Chern class),
however the resulting orientation lines are all canonically isomorphic.)
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Φ

Figure 9: The orientation line oΦ,x is the dual of the Fredholm orientation line of the Cauchy–
Riemann operator the Riemann surface illustrated above, extending the linearized ∂̄-operator
at the constant map u : (−∞, 0] × [0, 1] → X subject to u(s, 1) = Φ(u(s, 0)) sending
everything to x.

A 1-simplex (H, J) ∈ HJ
reg
1 (X) defines a chain map

F(H,J) : CF •(X;H(0))→ CF •(X;H(1)) (4.52)

by counting the zero-dimensional moduli spaces M1(H, J, γ+, γ−). More generally, suppose

(H, J) ∈ HJreg
n (X) is an n-simplex with n ≥ 1. Now M

SC

n = F(∆n) is a cube, and we can
count (zero-dimensional components of) the inverse image in Mn(H, J, γ+, γ−) of any of the

3n−1 strata of M
SC

n . These counts define a chain map

F(H,J) : CF •(X;H(0))⊗ C−•(F(∆n))→ CF •(X;H(n)). (4.53)

Lemma 4.33. The collection of maps (4.53) defines a diagram HJreg
• (X) → Ndg Ch in the

sense of Definition 4.24.

Proof. The compatibility conditions are all tautological except for the assertion that for any
degenerate (n+ 1)-simplex (H ′, J ′), we have

F(H′,J ′)(−⊗ [F(∆n+1)]) =

{
0 n > 0

id n = 0
(4.54)

where [F(∆n+1)] denotes the top-dimensional generator of C−•(F(∆n+1)). To prove (4.54),
argue as follows.

Say (H ′, J ′) is obtained by pulling back an n-simplex (H, J) under a surjection κj :
∆n+1 → ∆n, say mapping vertices j + 1 and j of ∆n+1 to the same vertex j of ∆n (any 0 ≤
j ≤ n). Concretely, this means that our (n+ 1)-simplex (H ′, J ′) is given by π∗j (H, J), where

πj : C
SC

n+1 → C
SC

n is the map forgetting aj+1 (see (4.15)). Thus every solution (a1, . . . , an+1, u)
to (4.30) for (H ′, J ′) = π∗j (H, J) gives rise to a solution for (H, J) simply by forgetting aj+1.
This almost gives a map

Mn+1(π∗j (H, J), γ+, γ−)→Mn(H, J, γ+, γ−), (4.55)

except for the fact that forgetting aj+1 might make the trajectory unstable. Now we are
interested in the case dimMn+1(π∗j (H, J), γ+, γ−) = 0, which means dimMn(H, J, γ+, γ−) =
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−1 and thus Mn(H, J, γ+, γ−) = ∅. Thus to show (4.54), we just need to analyze when
forgetting aj+1 can make the trajectory unstable. Since Mn+1(π∗j (H, J), γ+, γ−) is cut out
transversely and of dimension zero, it contains no split trajectories. So, if there are any ai
other than aj+1, a given trajectory will remain stable upon forgetting aj+1. Thus the only
remaining case is when n = 0. Now an unstable trajectory is one with an R-symmetry, i.e.
a trivial cylinder, and these contribute exactly the identity map, as desired in (4.54).

Having completed the definition of the diagram of symplectic cochains (4.50) over HJreg
• (X),

we now define the symplectic cochain complex of a Liouville sector X as the homotopy colimit
(in the sense of (4.45) in §4.9) of this diagram over HJreg

• (X), namely

SC•(X, ∂X) := hocolim
HJ

reg
• (X)

CF •(X;−). (4.56)

Note that since HJreg
• is filtered, the homology SH•(X, ∂X) may be computed by taking the

direct limit of HF •(X;H) over any cofinal collection of (H, J).
To define pushforward maps on SH• for inclusions of Liouville sectors, observe that these

diagrams of symplectic cochain complexes over HJreg
• (X) generalize directly to HJreg

• (X0, . . . , Xr).
Namely, using the forgetful maps HJreg

• (X0, . . . , Xr) → HJreg
• (Xi), we obtain via pullback

diagrams CF •(Xi;−) over HJreg
• (X0, . . . , Xr) for each 0 ≤ i ≤ r. By Lemma 4.21, there are

inclusions of diagrams (over HJreg
• (X0, . . . , Xr))

CF •(X0;−) ⊆ · · · ⊆ CF •(Xr;−). (4.57)

Now the functoriality of SH• for inclusions of Liouville sectors may be defined by considering

hocolim
HJ

reg
• (X)

CF •(X;−)
∼←− hocolim

HJ
reg
• (X,X′)

CF •(X;−)→ hocolim
HJ

reg
• (X′)

CF •(X ′;−). (4.58)

The left arrow is a quasi-isomorphism by Lemma 4.31 since the forgetful map HJreg
• (X,X ′)→

HJreg
• (X) is cofinal by Corollary 4.10, and hence this defines a map SH•(X, ∂X)→ SH•(X ′, ∂X ′).
To define symplectic cochain complexes which are functorial under inclusions of Liouville

sectors, note that there are natural maps

hocolim
HJ

reg
• (X0,...,Xr)

CF •(X0;−)→ hocolim
HJ

reg
• (X0,...,X̂i,...,Xr)

CF •(X0;−) i > 0 (4.59)

hocolim
HJ

reg
• (X0,...,Xr)

CF •(X0;−)→ hocolim
HJ

reg
• (X1,...,Xr)

CF •(X1;−) (4.60)

induced by the forgetful maps HJreg
• (X0, . . . , Xr)→ HJreg

• (X0, . . . , X̂i, . . . , Xr) (for i > 0 this
map of indexing simplicial sets is covered by “the identity map” on diagrams, and for i = 0 it
is covered by the natural inclusion CF •(X0;−) ⊆ CF •(X1;−)). Since HJreg

• (X0, . . . , Xr)→
HJreg
• (X0, . . . , Xr−1) is cofinal, it follows that (4.59) is a quasi-isomorphism for i = r, which

in turn implies that (4.59) is a quasi-isomorphism for all i > 0.
We now consider the alternative definition

SC•(X, ∂X) := hocolim
X0⊆···⊆Xr⊆X

Xi Liouville sectors

hocolim
HJ

reg
• (X0,...,Xr)

CF •(X0;−), (4.61)

79



in which the outer hocolim (over the poset of Liouville subsectors of X) is taken in the sense
of (4.46), which applies in this case since (4.59) is a quasi-isomorphism for i > 0. Concretely,
(4.61) is the direct sum of hocolimHJ

reg
• (X0,...,Xr) CF

•(X0;−) over all chains X0 ⊆ · · · ⊆ Xr of
Liouville subsectors of X, equipped with the differential which is (the internal differential of
each direct summand, plus) maps (4.59)–(4.60) forgetting some Xi (with appropriate signs).
It follows from Lemma 4.32 that the inclusion of the former version (4.56) of SC• into the
latter version (4.61) as the subcomplex r = 0 and X0 = X is a quasi-isomorphism.

The latter version (4.61) of SC• is emminently functorial with respect to inclusions of
Liouville sectors, and the induced maps on cohomology coincide with those defined by (4.58).

4.11 Properties

Let X be a Liouville sector. Let V be a contact vector field on ∂∞X which near the boundary
is a cutoff Reeb vector field (see §2.9) and whose time 2π flow has no fixed points (on the
symplectization). There is an invariant

SH•(X, ∂X)<V (4.62)

namely the Hamiltonian Floer cohomology of some (any) Hamiltonian arising from applying
Lemma 4.8 to V (this is well-defined by our earlier arguments). There are continuation maps

SH•(X, ∂X)<V1 → SH•(X, ∂X)<V2 (4.63)

for V1 ≤ V2 (meaning α(V1) ≤ α(V2) for any/all contact forms α). This order on V is filtered
(obviously), and we have, by definition, that

SH•(X, ∂X) = lim−→
V

SH•(X, ∂X)<V . (4.64)

There are also pushforward maps

SH•(X, ∂X)<V → SH•(X ′, ∂X ′)<V
′

(4.65)

for X ↪→ X ′ and V ≤ V ′|X with strict inequality over ∂X (strict inequality over ∂X is
used to ensure that the admissible Hamiltonians associated to V ′ will be larger than the
admissible Hamiltonians associated to V plus a constant).

Lemma 4.34. Suppose V1 ≤ V2 and tV1 + (1 − t)V2 has no periodic orbits of period 2π
for any t ∈ [0, 1]. Then, the continuation map SH•(X, ∂X)<V1 → SH•(X, ∂X)<V2 is an
isomorphism.

Proof. Let H1 : X → R be linear at infinity corresponding to V1. We will construct a
Hamiltonian H2 : X → R corresponding to V2 at infinity along with smoothings H̃1, H̃2 as
in Lemma 4.8 satisfying the following properties:

• H̃1 ≤ H̃2.

• H̃1 = H̃2 over a neighborhood of their periodic orbits.
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Now the map SH•(X, ∂X)<V1 → SH•(X, ∂X)<V2 is realized by the continuation map
HF •(X; H̃1) → HF •(X; H̃2). We may choose Floer data for this continuation map (i.e.
a 1-simplex in HJreg

• ) for which −∂sH ≥ 0 (non-negative wrapping). Energy considerations
and (4.36) thus imply that this continuation map is the identity map plus a map which
strictly decreases action, and hence is an isomorphism. It is thus enough to construct H̃1

and H̃2 as above.
Fix a contact form α on Y = ∂∞X, thus fixing symplectization coordinates (R×Y, esα)→

(X,λ) near infinity. Let us denote the Hamiltonians for V1 and V2 by esA =: H1 and esB for
A,B : Y → R, which by assumption have no periodic orbits of period 2π. We now consider
the interpolation H2 := es((1− ϕ(s))A+ ϕ(s)B) for some ϕ : R→ [0, 1] such that ϕ(s) = 0
for s sufficiently negative and ϕ(s) = 1 for s sufficiently positive. We claim that for ϕ′(s)
sufficiently small, this interpolation also has no periodic orbits of period 2π. To see this, we
calculate

Xes((1−ϕ(s))A+ϕ(s)B) = (1− ϕ(s))XesA + ϕ(s)XesB + ϕ′(s)(B − A)Rα. (4.66)

Note that each of the terms XesA, XesB, and (B − A)Rα are Z-invariant vector fields. As
in the proof of Lemma 2.34, we fix a defining function I and consider its derivatives with
respect to each of these vector fields. Since XI is outward pointing, we conclude that XesAI
and XesBI vanish transversally on ∂X and are positive in the interior, and (B − A)RαI
vanishes to second order on ∂X. Since these functions are all linear at infinity, we conclude
that the derivative of I by (4.66) is positive over (NbdZ ∂X) \ ∂X, where the size of the
neighborhood depends only on an upper bound on ϕ′(s). In particular, there are no periodic
orbits contained entirely inside this neighborhood (NbdZ ∂X) \ ∂X. For ϕ′(s) sufficiently
small, this vector field (4.66) is also very close to ϕ(s)V1 + (1 − ϕ(s))V2 and hence has
no periodic orbits of period 2π which intersect an arbitrarily large compact subset of the
interior of ∂∞X. Thus we have shown that this interpolated Hamiltonian H2 coincides with
H1 = esA for s small, equals esB for s large, and has no periodic orbits of period 2π.

Finally, we need to apply Lemma 4.8 to produce admissible H̃1 ≤ H̃2 from our pre-
admissible H1 ≤ H2. To see that this creates no new orbits near the boundary, note that
the reasoning in Lemma 4.8 about XH̃I for 1

2
-defining functions I applies equally well to

(1-)defining functions I as considered above and shows that XH̃I ≥ c · max(1, R)e
1
2
s over

NbdZ ∂X for some c > 0. Finally, to ensure that the region where H̃1 < H̃2 is sufficiently
close to infinity and thus away from the periodic orbits, we should replace ϕ(s) with ϕ(s−s0)
for sufficiently large s0.

Corollary 4.35. Up to canonical isomorphism, SH•(X, ∂X)<V is invariant under defor-
mation of V through contact vector fields with no periodic orbits of period 2π on the sym-
plectization.

Proof. Note that the property of having no periodic orbits of period 2π is an open condition
among contact vector fields which are cutoff Reeb near the boundary by Lemma 2.34. Using
this, we can define the deformation isomorphism in terms of the pushforward maps (4.65)
and their inverses, using the fact that these are isomorphisms by Lemma 4.34.
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Lemma 4.36. Fix coordinates near ∂(∂∞X) as in §2.9 and fix M : R≥0 → R≥0 (defined in
a neighborhood of [0, t0]) which is admissible in the sense of §2.9. The natural map

lim−→
V

V |[0,t0+ε]=VM

SH•(X, ∂X)<V → SH•(X, ∂X) (4.67)

is an isomorphism, where the direct limit on the left is over those V which coincide with VM
(the cutoff Reeb vector field defined by M(t)) over ∂(∂∞X)× [0, t0 + ε] for some ε > 0.

Proof. Let N : R≥0 → R≥0 be admissible, and suppose N(t) ≥ M(t). Fix any V2 which is
given by the contact Hamiltonian N(t) over [0, t0 + ε] for some ε > 0. Now let ϕ : R→ [0, 1]
be a cutoff function with ϕ(x) = 0 for x ≤ t0 and ϕ(x) = 1 for x ≥ t0 + ε. We define
V1 to coincide with V2 away from [0, t0 + ε] and to be given by the contact Hamiltonian
M(t) + ϕ(t) · (N(t)−M(t)) over [0, t0 + ε].

With these choices of V1 and V2, the continuation map

SH•(X, ∂X)<V1 → SH•(X, ∂X)<V2 (4.68)

is an isomorphism by Lemma 4.34. Indeed, V1 = V2 except over a neighborhood of ∂(∂∞X),
and trajectories passing through this neighborhood cannot be closed by Proposition 2.35.
Taking the direct limit of (4.68) over N(t) and V2, we obtain (4.67) by cofinality.

Proposition 4.37. Let X ⊆ X ′ be a trivial inclusion of Liouville sectors. The induced map
SH•(X, ∂X)→ SH•(X ′, ∂X ′) is an isomorphism.

Proof. We claim that it is enough to produce, for every Liouville sector X, a (globally
defined) defining function I : X → R (linear at infinity) and a cofinal collection of admissible
Hamiltonians H̃ : S1 ×X → R, each satisfying

sup
S1×X

XIH̃ <∞. (4.69)

Indeed, suppose such an I and collection of H̃ are given. The Hamiltonian flow of I defines
a coordinate system ∂X ×Rt≥0 → X near ∂X and moreover defines Liouville sectors Xa :=
{t ≥ −a} by “flowing out of the boundary for time a”. A sandwiching argument as in the
proof of Lemma 3.33 shows that it is enough to show that the inclusions X ↪→ Xa induce
isomorphisms on SH•. Now consider one of the given Hamiltonians H̃ on X. Using the
Hamiltonian flow of I, we push H̃ forward to Xa, and denote the result by H̃a. By (4.69),
we have H̃a ≥ H̃ − C for some C <∞, and hence there is a well-defined continuation map

HF •(X; H̃)→ HF •(Xa; H̃a) (4.70)

for any a > 0. As H̃ varies over a cofinal collection of admissible Hamiltonians for X, so does
H̃a forXa. By a direct limit argument, it is thus enough to show that (4.70) is an isomorphism
for all a > 0. We can moreover assume that a > 0 is sufficiently small, since the maps (4.70)
compose as expected (note that for any b ≥ 0, the map HF •(Xb; H̃b) → HF •(Xb+a; H̃b+a)
is isomorphic to (4.70)).
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To show that (4.70) is an isomorphism for sufficiently small a > 0, argue as follows. First,
note that we may perturb H̃ so that no two of its (finitely many!) periodic orbits have the
same action. Now we cutoff I in a neighborhood of all periodic orbits of H̃ to obtain I ′, and
we use the Hamiltonian flow of I ′ to push H̃ forward to Xa, denoting the result by H̃ ′a. By
(4.69), for sufficiently small a > 0 we have H̃ ′a ≥ H̃ − ε, where ε > 0 is smaller than the
smallest action difference of any pair of periodic orbits of H̃. It follows that the continuation
map

CF •(X; H̃)→ CF •(Xa; H̃
′
a) (4.71)

is (for appropriate choice of extension of H̃ from X to Xa) the “identity” plus a map which
strictly decreases action, and hence is an isomorphism. Since H̃ ′a− H̃a has compact support,
this map coincides with (4.70), giving the desired result. We conclude that, as claimed, it
suffices to construct I and cofinal H̃ satisfying (4.69); in fact, our construction below ensures
that XIH̃ ≤ 0 near infinity.

To construct I and H̃, argue as follows. Fix a linear I0 : NbdZ ∂X → R defined near
infinity with XI0 outward pointing along ∂X, and fix coordinates ∂(∂∞X)×Rt≥0 → ∂∞X as
in §2.9 in which ∂

∂t
is the contact vector field induced by −XI0 . Define I := N ·I0, for a cutoff

function N(t) which is 1 in a neighborhood of zero and is 0 outside a small neighborhood of
zero, with N ′(t) ≤ 0. We now consider H : NbdZ ∂X → R given by an admissible contact
Hamiltonian M(t) as in §2.9, and we claim that XIH ≤ 0 near infinity. First, note that

XIH = NXI0H + I0XNH (4.72)

= NXI0H − I0XHN. (4.73)

We now calculate in coordinates Rs × (2.24) = Rs × Γ∂Y × R|u|≤ε × Rt≥0 with Liouville
form λ = es · (2.26) = es

ψ(u)
(µ + u dt) (which tell the whole story). We have H = esM(t)

(by definition) and XI0 = − ∂
∂t

(since this preserves the Liouville form and lifts − ∂
∂t

on the
contact boundary), so

NXI0H = −esN(t)M ′(t) ≤ 0. (4.74)

Now note that I0 = ZI0 = ω(Z,XI0) = λ(XI0) = −esu/ψ(u). Hence by (2.29), we have

− I0XHN = es
u

ψ(u)
ψ′(u)M(t)N ′(t) ≤ 0 (4.75)

since uψ′(u) ≥ 0. This shows XIH ≤ 0 near infinity as claimed.
Now we claim that XIH̃ ≤ 0 near infinity as well, where H̃ is obtained from H by the

procedure of Lemma 4.8 (clearly this is enough, since such H̃ are cofinal among admissible
Hamiltonians as M(t) varies). Since the locus where H̃ 6= H is disjoint from where we cut
off I0 to obtain I, it is equivalent to show that

XI0H̃ ≤ 0 (4.76)

over this locus.
Recall from the proof of Lemma 4.8 that H̃ is defined by smoothing max(R,H) over the

strip { 1
N
≤ R ≤ N}, over which both R and H are C∞ bounded (we should warn the reader

that here R = Re π, but I and I0 will continue to denote the functions defined above, not
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Imπ). It thus would be enough to show that −XI0H > ε > 0, −XI0R > ε > 0, and that XI0

is C∞ bounded over { 1
N
≤ R ≤ N}, for some ε > 0. The vector field XI0 is, however, not

even C0 bounded in the required sense, as LZXI0 = 0 and we are measuring with respect to
metrics g satisfying LZg = g. To fix this, however, it suffices to simply consider e−

1
2
sXI0 in

its place. The scaling behavior LZ(e−
1
2
sXI0) = −1

2
(e−

1
2
sXI0) together with LZg = g implies

easily that e−
1
2
sXI0 is C∞ bounded over the strip { 1

N
≤ R ≤ N}. It is thus enough to show

lower bounds{
−e− 1

2
sXI0H > ε > 0

−e− 1
2
sXI0R > ε > 0

over the strip { 1
N
≤ R ≤ N} near infinity. (4.77)

Since XI0 is outward pointing along ∂X, it follows that{
−XI0R > εe

1
2
s

−XI0H > εe
1
2
sR

over NbdZ ∂X. (4.78)

Indeed, since in each of these inequalities, both sides have the same scaling behavior under
Z, it is enough that ε > 0 exist over a neighborhood of any compact subset of ∂X, which
holds since XI0 is outward pointing (recall that H vanishes to order two along ∂X with
positive second derivative). Clearly (4.78) implies (4.77).

Corollary 4.38. The invariant SH•(X, ∂X) is invariant under deformation of X up to
canonical isomorphism.

Proof. An arbitrary deformation may be factored as a composition of trivial inclusions and
their inverses, so the result follows from Proposition 4.37.

It is natural to expect that SH•(X, ∂X) satisfies a Künneth formula generalizing that
for symplectic cohomology of Liouville manifolds proved by Oancea [42] (see also Groman
[31]). A careful proof of this is, however, beyond the scope of this paper.

Conjecture 4.39. There is a natural quasi-isomorphism SC•(X, ∂X) ⊗ SC•(X ′, ∂X ′) =
SC•(X ×X ′, ∂(X ×X ′)).

4.12 From cohomology to symplectic cohomology

Recall that when H and J are both S1-invariant, Floer trajectories with ∂tu ≡ 0 are simply
Morse trajectories of H with respect to the metric induced by J . In particular, there is
a map from Morse trajectories to Floer trajectories. For sake of clarity in the following
discussion, we may indicate the choice of projection π : NbdZ ∂X → C (recall Convention
3.1) by adding a subscript, as in Xπ. Note that the rescalings a · π (a ∈ R>0) of any given
projection π are also valid projections.

Proposition 4.40. Let (H, J) ∈ HJn(Xπ) be S1-invariant, with H(i) Morse for vertices
i ∈ ∆n, and suppose that all Morse trajectories are cut out transversely. For sufficiently
small δ > 0, the map from Morse trajectories to Floer trajectories for (δ ·H, J) is bijective
and all Floer trajectories are regular (i.e. (δ ·H, J) ∈ HJreg

n (Xδπ)).
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Proof. For X closed, this is a fundamental result due to Floer [22, Theorem 2] (also presented
conceptually in Salamon–Zehnder [45, Theorem 7.3 0.1]). To extend this result to the present
setting, it is enough to show that in the limit δ → 0, all Floer trajectories are contained in
a fixed compact subset of X. In other words, we must show that the compact subset of X
produced by the proof of Proposition 4.23 (compactness) can be made uniform as δ → 0.

The only part of the proof of Proposition 4.23 which is potentially problematic as δ → 0
is the argument surrounding (4.42), specifically the upper bound L � Egeo/ε2 on the length
of an interval [a, b] with the property that u(s, 0) /∈ K for all s ∈ [a, b]. Both ε and Etop

clearly scale linearly with δ, and the same holds for Egeo by (4.36). The upper bound Egeo/ε2

is therefore unfortunately not uniform in δ. However, this upper bound does lead to∫
[a,b]×S1

|∂su| .
(

(b− a)

∫
[a,b]×S1

|∂su|2
)1/2

.

(
Egeo

ε2
Egeo

)1/2

=
Egeo

ε
(4.79)

for any interval [a, b] with the property that u(s, 0) /∈ K for all s ∈ [a, b]. Thus on any such
interval, there exists a t ∈ S1 such that∫

[a,b]×{t}
|∂su| ≤

Egeo

ε
, (4.80)

where the right hand side is now bounded uniformly as δ → 0. This upper bound (4.80)
gives the desired uniform bound on the image of u as δ → 0.

Alternatively, uniform compactness as δ → 0 follows from the following covering trick. A
trajectory for δ ·H pulls back under the N -fold covering S1 → S1 to a trajectory for Nδ ·H.
The proof of Proposition 4.23 is obviously uniform over a ·H for (say) a ∈ [1, 2], and for all
sufficiently small δ > 0 there exists a integer N such that Nδ ∈ [1, 2].

Proposition 4.41. Proposition 4.40 defines a canonical map H•(X, ∂X) → SH•(X, ∂X),
and this map is functorial with respect to inclusions of Liouville sectors.

Proof. For (H, J) ∈ HJ0(Xπ) which is S1-invariant and Morse with transversally cut out
Morse trajectories, Proposition 4.40 guarantees that for sufficiently small δ > 0, we have
(δH, J) ∈ HJ

reg
0 (Xδπ) and all Floer trajectories are Morse trajectories. Hence we obtain a

map H•(X, ∂X) = HF •(X; δH, J)→ SH•(X, ∂X) (note that there is no need for a subscript
indicating the choice of projection to CRe≥0 on the target SH• in view of Proposition 4.38).
This map H•(X, ∂X) → SH•(X, ∂X) depends a priori on the choice of (H, J) ∈ HJ0(Xπ)
and the choice of sufficiently small δ > 0.

Next, given an inclusion of Liouville sectors X ↪→ X ′, along with the data of a vertex
(H, J) ∈ HJ0(Xπ), a vertex (He, Je) ∈ HJ0(Xπ, X

′
π′) whose restriction to X is (H, J), a

vertex (H ′, J ′) ∈ HJ0(X ′π′), and a 1-simplex from (the image in HJ0(X ′π′) of) (He, Je) to
(H ′, J ′) (which are, as before, all S1-invariant and Morse with transversally cut out Morse
trajectories), Proposition 4.40 implies that for sufficiently small δ > 0, there is a commutative
diagram

HF •(X; δH, J) HF •(X ′; δHe, Je) HF •(X ′; δH ′, J ′)

H•(X, ∂X) H•(X ′, ∂X ′) H•(X ′, ∂X ′)

(4.81)
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where the left horizontal maps are induced by the subcomplex inclusions (4.57) and the
right horizontal maps are the Floer (respectively Morse) continuation maps induced by the
1-simplex with Hamiltonian term scaled by δ. This implies that for such sufficiently small
δ > 0, the maps H•(X, ∂X) → SH•(X, ∂X) and H•(X ′, ∂X ′) → SH•(X ′, ∂X ′) defined by
(H, J, δ) and (H ′, J ′, δ), respectively, are compatible with pushforward under X ↪→ X ′.

Now the key step is to consider a 1-parameter family of data as in the paragraph
above, where Xπ, (H, J), and X ′ are fixed, but π′ and (H ′, J ′) vary in the parameter
t ∈ (−ε, ε) as (1 + t)π′ and ((1 + t)H ′, J ′) ∈ HJ0(X ′(1+t)π′), and the remaining data of

(He, Je) ∈ HJ0(Xπ, X
′
(1+t)π′) and the 1-simplex are chosen arbitrarily. The estimate on δ > 0

in Proposition 4.41 is uniform over t in a sufficiently small neighborhood of zero, and hence
we conclude that the maps H•(X, ∂X) → SH•(X, ∂X) and H•(X ′, ∂X ′) → SH•(X ′, ∂X ′)
defined by (H, J, δ) and (H ′, J ′, (1 + t)δ), respectively, are compatible with pushforward
under X ↪→ X ′ for every |t| ≤ ε. Taking X ↪→ X ′ to be a trivial inclusion (or in
fact any map for which H•(X, ∂X) → H•(X ′, ∂X ′) is surjective), it follows that the map
H•(X ′, ∂X ′)→ SH•(X ′, ∂X ′) defined by (H ′, J ′, δ) is independent of δ for sufficiently small
δ > 0.

Knowing that the map H•(X, ∂X) → SH•(X, ∂X) for a given (H, J) is independent
of the choice of sufficiently small δ > 0, it is now straightforward to check independence of
(H, J) (use continuation maps between different (H, J)) and compatibility with pushforward
(use the reasoning surrounding (4.81)).

In fact the above argument shows that there is a canonical isomorphism H•(X, ∂X) =
SH•(X, ∂X)<V for sufficiently small cutoff Reeb vector fields V (note that Lemma 2.34
implies that every cutoff Reeb vector field has no small time periodic orbits).

Proposition 4.42. If ∂∞X admits (up to deformation) a cutoff Reeb vector field with no
periodic orbits (for example, this holds if ∂∞X is deformation equivalent to F × [0, 1] by
Lemma 2.36), then the natural map H•(X, ∂X)→ SH•(X, ∂X) is an isomorphism.

Proof. Let V be the given cutoff Reeb vector field on ∂∞X with no periodic orbits. As re-
marked above, the mapH•(X, ∂X)→ SH•(X, ∂X) arises from an isomorphismH•(X, ∂X) =
SH•(X, ∂X)<δ·V for δ > 0 sufficiently small. Now the continuation map SH•(X, ∂X)<δ·V →
SH•(X, ∂X)<N ·V is an isomorphism for all N < ∞ by Lemma 4.34 since V has no closed
orbits. The result now follows by taking the direct limit as N →∞.

Proposition 4.43. For any diagram of Liouville sectors {Xσ}σ∈Σ indexed by a finite poset
Σ, there is a corresponding map C•(Xσ, ∂Xσ)→ SC•(Xσ, ∂Xσ) of diagrams Σ→ Ndg Ch.

Proof. For every chain σ0 ≤ · · · ≤ σr ∈ Σ, we choose as follows a finite subcomplex

HJmorse
• (σ0, . . . , σr) ⊆ HJ•(Xσ0 , . . . , Xσr) (4.82)

consisting of simplices satisfying the hypotheses of Proposition 4.40. For chains with strict
inequalities σ0 < · · · < σr, we define HJmorse

• by downwards induction on r as

HJmorse
• (σ0, . . . , σr) :=

 colim
τ0<σ0<τ1<σ1<···<σr<τr+1

some τ i nonempty

HJmorse
• (τ 0, σ0, τ 1, σ1, . . . , σr, τ r+1)

B
(4.83)
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where each τ i is a chain inside Σ. Concretely, this means we consider the union of all possible
HJmorse
• (τ 0, σ0, τ 1, σ1, . . . , σr, τ r+1) and adjoin a final object in HJ•(σ0, . . . , σr), which exists

since HJ•(σ0, . . . , σr) is filtered. We choose this final vertex to restrict to a cutoff Reeb
vector field on ∂∞Xσ0 . For general chains σ0 ≤ · · · ≤ σr, simply forget the repetitions.

Since Σ is finite and each HJmorse
• (σ0, . . . , σr) is finite, sufficiently small δ > 0 satisfy the

conclusion of Proposition 4.40 for all simplices in all HJmorse
• at once. Since each HJmorse

•
has a final object, the complex

hocolim
δ·HJmorse

• (σ0,...,σr)
CF •(Xσ0 ;−) (4.84)

calculates C•(Xσ0 , ∂Xσ0) for sufficiently small δ > 0. Thus the obvious inclusion of

hocolim
σ0≤···≤σr≤σ

hocolim
δ·HJmorse

• (σ0,...,σr)
CF •(Xσ0 ;−) (4.85)

into (4.61) is the desired diagram.

Corollary 4.44. Let {Xσ}σ∈Σ be a collection of Liouville sectors indexed by a poset Σ which
form a homology hypercover of a Liouville manifold X. The induced map

hocolim
σ∈Σ

SC•(Xσ, ∂Xσ)→ SC•(X) (4.86)

hits the unit.

Proof. We consider the diagram of Liouville sectors over ΣB obtained from the given diagram
over Σ by adjoining X as a final object. We apply Proposition 4.43 to this diagram. Taking
homotopy colimits over Σ produces the right half of the diagram (1.7), which implies the
desired result (noting that H•(X)→ SH•(X) sends the unit to the unit).

5 Open-closed map for Liouville sectors

For any Liouville sectorX, we define an open-closed map OC : HH•(W(X))→ SH•+n(X, ∂X),
which respects the functoriality of both sides with respect to inclusions of Liouville sectors.
In fact, for any diagram of Liouville sectors {Xσ}σ∈Σ indexed by a finite poset Σ, we define
a corresponding diagram of maps {OC : CC•(W(Xσ))→ SC•+n(Xσ, ∂Xσ)}σ∈Σ.

To define the open-closed map, we use a method introduced by Abouzaid–Ganatra [7]
whereby we take the domain of OC to be CC•(O,B), where O is as in §3 and B is a geo-
metrically defined O-bimodule quasi-isomorphic as O-bimodules to W (a similar construc-
tion of A∞-bimodules appears in Seidel [51]). General properties of localization imply that
HH•(O,B) = HH•(O,W) = HH•(W) (due to Abouzaid–Ganatra).

5.1 Hochschild homology

We recall some standard results concerning the Hochschild homology of A∞-categories.
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Definition 5.1. For any C-bimodule M, its Hochschild homology HH•(C,M) is the homol-
ogy of the Hochschild complex

CC•(C,M) =
⊕
p≥0

X0,...,Xp∈C

M(Xp, X0)⊗C(X0, X1)[1]⊗· · ·⊗C(Xp−1, Xp)[1] = “ M⊗C ” (5.1)

with the usual Hochschild differential (see e.g. [48, 1, 25, 53], and note again that our
conventions are closest to [48]). We use the usual abbreviation HH•(C) := HH•(C,C). A
word on gradings: the grading appears in the subscript to indicate Hochschild homology,
however the grading is cohomological (i.e. the differential has degree one).

If f : D→ C is an A∞-functor and M is a C-bimodule, we will frequently use the abuse
of notation

HH•(D,M) := HH•(D, f
∗M) (5.2)

where f ∗M := (f, f)∗M is the two-sided pullback of M along f as in §3.1.2 (in all cases we
consider, f will be a naive inclusion functor, justifying this notation).

Lemma 5.2. Let j : C → D be cohomologically fully faithful and split-generating (e.g.
the map j could be a quasi-equivalence). For any D-bimodule B, the map HH•(C, j

∗B) →
HH•(D,B) is an isomorphism; in particular HH•(C)→ HH•(D) is an isomorphism.

Proof. This is almost the same statement as Lemma 3.9, and may be reduced to that result
as follows. Since the natural map D ⊗D B → B is a quasi-isomorphism, we may replace B

with D⊗D B. The map in question can then be written as

HH•(D,B⊗C D)→ HH•(D,B⊗D D). (5.3)

Now the result follows from Lemma 3.9 applied to the map B⊗C D→ B⊗D D.

Lemma 5.3 (Abouzaid–Ganatra [7]). For any (C/A)-bimodule M, the natural map HH•(C,M)→
HH•(C/A,M) is a quasi-isomorphism.

Proof. This follows from Lemma 3.15 by the same argument used to prove Lemma 5.2.

5.2 Preparatory remarks

The main construction of this section takes as input a diagram of Liouville sectors {Xσ}σ∈Σ

indexed by a finite poset Σ. A choice of such input diagram shall be regarded as fixed for
most of this section (up through §5.14, to be precise). In keeping with Convention 3.1, we
regard each Xσ as coming with a choice of πσ : NbdZ ∂Xσ → C such that for σ ≤ σ′, either
Xσ $ Xσ′ or Xσ = Xσ′ and πσ = πσ′ . The main constructions of §3 and §4 now give,
respectively, diagrams {Wσ}σ∈Σ and {SC•(Xσ, ∂Xσ)}σ∈Σ, and the goal of this section is to
define a map of diagrams {OCσ : CC•(Wσ) → SC•+n(Xσ, ∂Xσ)}σ∈Σ. Actually, we slightly
tweak the definitions from §3 and §4 as we now describe, in order to better accomodate the
construction of OC.

Regarding the construction of {Wσ}σ∈Σ in §3.7, we make the following modification.
We fix slight inward pushoffs X−−σ $ X−σ $ Xσ (trivial inclusions) together with π−σ and

88



π−−σ , such that for σ ≤ σ′ we have X−−σ ⊆ X−−σ′ and X−σ ⊆ X−σ′ (strict iff Xσ ⊆ Xσ′ is
strict). When defining Oσ, we use only Lagrangians inside X−−σ , we wrap them only inside
X−−σ (namely in Definition 3.34, we consider the wrapping category inside X−−σ instead of
inside Xσ), and we use almost complex structures defined over X−σ (and adapted to π−σ ).
This modification is completely harmless; it follows easily from the results of §3 that this
produces a quasi-equivalent diagram of A∞-categories. We henceforth fix such choices of
X−σ , X−−σ , Oσ, strip-like coordinates, and almost complex structures

ξ+
L0,...,Lk;j : [0,∞)× [0, 1]× Rk,1 → Sk,1 j = 1, . . . , k (5.4)

ξ−L0,...,Lk
: (−∞, 0]× [0, 1]× Rk,1 → Sk,1 (5.5)

JL0,...,Lk : Sk,1 → J(X−σL0
) (5.6)

used to define Wσ for the diagram {Xσ}σ∈Σ (recalling that σL denotes the unique minimal
element of Σ such that L ∈ OσL). For reasons of technical convenience, we will also assume
that the negative strip-like coordinates (5.5) extend to a biholomorphism

R× [0, 1]× Rk,1 → Sk,1. (5.7)

Such strip-like coordinates may be constructed by induction exactly as in §3.2.
Regarding {SC•(Xσ, ∂Xσ)}σ∈Σ as defined in (4.61) from §4.10, we make the following

modification. We let HJSC• (σ0, . . . , σr) for σ0 ≤ · · · ≤ σr ∈ Σ denote the following variant of
HJ•(Xσ0 , . . . , Xσr). To specify an n-simplex, we specify for every vertex v ∈ ∆n a chain

µ
(0)
1 ≤ · · · ≤ µ(0)

a0
≤ σ0 ≤ µ

(1)
1 ≤ · · · ≤ µ(1)

a1
≤ σ1 ≤ · · · ≤ σr (5.8)

in Σ (instead of a chain (4.23) in the category of Liouville sectors), and the rest of the
definition remains the same. In this section, we use the definition

SC•(Xσ, ∂Xσ) := hocolim
σ0≤···≤σr≤σ

hocolim
HJ

SC,reg
• (σ0,...,σr)

CF •(Xσ0 ;−), (5.9)

which maps quasi-isomorphically to (4.61) by virtue of the natural cofinal map HJSC• (σ0, . . . , σr)→
HJ•(Xσ0 , . . . , Xσr). We should admit that this replacement is for aesthetic, not mathemati-
cal (perhaps even just notational), reasons.

5.3 Moduli spaces of domains for B

We consider the compactified moduli space of strips R × [0, 1] with k boundary marked
points on R× {0} and ` boundary marked points on R× {1}, together with marked points
a1 ≥ · · · ≥ an ∈ R (allowed to collide with each other as in §4.1) up to simultaneous
translation (we view these points ai as lying on R × {1

2
} ⊆ R × [0, 1]). We denote this

moduli space and its universal family by C
B

k,`,n →M
B

k,`,n. Of course, for n = 0 this is simply

Sk+1+`,1 → Rk+1+`,1 from §3.2, and for k = ` = 0, we have M
B

0,0,n = M
SC

0,0,n (but of course the
universal curves are not the same).

To help orient the reader, we list the codimension one boundary strata of M
B

k,`,n. There

are boundary strata M
B

k,`,n−1 corresponding to when ai = ai+1, and there are boundary strata

89



K0

K1

L0

L1

L2

L3

a1

a2

a3

Figure 10: Such holomorphic maps define the diagram of bimodules B.

M
B

k′,`′,n′×M
B

k′′,`′′,n′′ for k = k′+k′′, ` = `′+`′′, n = n′+n′′ corresponding to when an′−an′+1 =

∞. There are also boundary strata M
B

k′,`,n×Rk′′,1 for k′′+ k′ = k+ 1 corresponding to when

some of the marked points on R× {0} collide, and similarly M
B

k,`′,n × R`′′,1.
The operation of forgetting the k+ ` boundary marked points and remembering only the

n marked points gives a map M
B

k,`,n → M
SC

n . This forgetful map can be covered by a map

of universal curves C
B

k,`,n → C
SC

n (up to handling unstable components correctly) defined by
(s, t) 7→ (s, ϕ(t)) for any fixed ϕ : [0, 1]→ S1. We fix once and for all such a map

ϕ : [0, 1]→ S1 (5.10)

with ϕ′(t) ≥ 0, ϕ(t) = 0 for t in a neighborhood of 0, 1 ∈ [0, 1], and ϕ of degree one. This
map will be used to define the Hamiltonian terms in the Floer equations we are about to

consider. That is, our Hamiltonians will be specified on C
SC

m and then pulled back under

this map to C
B

k,`,m. This may seem like a somewhat hacked approach, but it allows us to
reuse wholesale the definition and construction of dissipative Hamiltonians from §4 rather
than adapting these to the present setting (which would be time consuming, though likely
not difficult).

One warning about the moduli spaces M
B

k,`,n is in order. Given strip-like coordinates
at the various boundary marked points, the standard gluing operation does not in general

define a collar neighborhood of a given boundary stratum (such as M
B

k′,`′,n′ × M
B

k′′,`′′,n′′ ,

M
B

k′,`,n × Rk′′,1, or M
B

k,`′,n × R`′′,1 as described above) due to the simple fact that, on the
glued curve, the images of the marked points ai need not lie on the line R×{1

2
} ⊆ R× [0, 1].

This issue does not arise, however, as long as we use the tautological strip-like coordinates
near s = ±∞ and as long as we require the strip-like coordinates (5.5) to extend as in (5.7).

(The same warning applies to the moduli spaces M
SC

m from §4, though for them there is little
reason to discuss anything other than tautological cylindrical coordinates near s = ±∞.)
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5.4 Floer data for B

For every chain τ ≤ σ0 ≤ · · · ≤ σr ∈ Σ, we define a simplicial set HJB• (τ ;σ0, . . . , σr) of Floer
data. An n-simplex of HJB• (τ ;σ0, . . . , σr) consists of a specification of strip-like coordinates,
almost complex structures, and Hamiltonians

ξv0···vmKk,...,K0;L0,...,L`;0,j
: R≥0 × [0, 1]×M

B

k,`,m → C
B

k,`,m j = 1, . . . , k (5.11)

ξv0···vmKk,...,K0;L0,...,L`;1,j
: R≥0 × [0, 1]×M

B

k,`,m → C
B

k,`,m j = 1, . . . , ` (5.12)

Jv0···vmKk,...,K0;L0,...,L`
: C

B

k,`,m → J(X−σr) (5.13)

Hv0···vm : C
SC

m → H(X−σr) (5.14)

for Kk > · · · > K0 ∈ Oσr , L0 > · · · > L` ∈ Oσr , and 0 ≤ v0 < · · · < vm ≤ n, satisfying the
following properties:

• The strip-like coordinates ξ, the tautological strip-like coordinates at s = ±∞, and
the strip-like coordinates (5.4)–(5.5) fixed for Oσi must be compatible with gluing and
forgetting vertices in the sense of §3.2 and Definition 4.2. Namely, over a neighborhood

of each glued boundary stratum of M
B

k,`,m, the strip-like coordinates must coincide
with those defined by “gluing” via the strip-like coordinates given on each fiberwise
irreducible component (this makes sense in view of the extension (5.7)), and over each
forgotten vertex boundary stratum, they must coincide with those specified for the

relevant copy of M
B

k,`,m−1.

• The almost complex structures J must be compatible with gluing and forgetting vertices
in the sense of §3.2 and Definition 4.2. Namely, (1) they must be s-invariant in the
thin parts, (2) over a neighborhood of each glued boundary stratum, they must be
extended via the usual gluing construction, and (3) over each (glued or forgotten vertex)
boundary stratum, they must agree with the almost complex structures specified on
each fiberwise irreducible component.

• The almost complex structures J must be adapted to ∂X−i , meaning that π−σi must
be holomorphic with respect to (5.13) over (π−σi)

−1(C|Re|≤ε) for some ε > 0 whenever
Kk, L0 ∈ Oσi ⊆ Oσr (compare Definition 4.3).

• The Hamiltonians H must be compatible with gluing and forgetting vertices in the sense
of Definition 4.2.

• The HamiltoniansH must be adapted to ∂X−i , meaning thatH ≡ 0 over (π−σi)
−1(C|Re|≤ε)

for some ε > 0 and 0 ≤ i ≤ r (compare Definition 4.3).

• The Hamiltonians Hv must be linear at infinity (compare Definition 4.4).

• The Hamiltonians H must be dissipative with specified dissipation data in the sense of
Definition 4.5, except the “non-degenerate fixed points” and “no fixed points at infin-
ity” conditions (which in the present context are both irrelevant and never satisfied)
are replaced with the requirement that ΦHvK t L for all K,L ∈ Oτ (note that it is
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not reasonable to impose this condition for all K,L ∈ Oσj for any j > 0, since Hv

vanishes near ∂X−σi and thus cannot ensure that ΦHvL t L if L ∈ Oσj intersects ∂X−σi
nontrivially).

Note the forgetful maps

HJB• (τ ;σ0, . . . , σr)→ HJB• (τ ;σ0, . . . , σ̂i, . . . , σr) 0 ≤ i ≤ r, (5.15)

HJB• (τ ′;σ0, . . . , σr)→ HJB• (τ ;σ0, . . . , σr) τ ≤ τ ′. (5.16)

It is straightforward to construct vertices of HJB• (τ ;σ0, . . . , σr) (recall from §5.2 that the
Lagrangians in Oτ are contained in X−−τ ⊆ X−−σ0 $ X−σ0 , so the requirement that H vanish

over NbdZ ∂X−σ0 does not conflict with the need to perturb all Lagrangians in Oτ ). Moreover,
the proofs of Proposition 4.9 and Corollary 4.10 apply essentially verbatim to show that each
HJB• (τ ;σ0, . . . , σr) is a filtered ∞-category. The forgetful map (5.15) forgetting σi is easily
seen to be cofinal (even surjective on vertices) for i = r. The forgetful map (5.16) decreasing
τ is also easily seen to be cofinal.

5.5 Holomorphic curves for B

Given an n-simplex (H, J, ξ) of HJB• (τ ;σ0, . . . , σr), we consider the moduli space of maps
u : R × [0, 1] → Xσr and points a1 ≥ · · · ≥ an ∈ R (up to simultaneous translation) as in
Figure 10, with boundary conditions in Oτ , satisfying

(du−XH(s,ϕ(t)) ⊗ dϕ(t))0,1
J = 0 (5.17)

where ϕ is the universally fixed function (5.10). To interpret the Hamiltonian term in

(5.17), recall the map C
B

k,`,n → C
SC

n determined by ϕ as mentioned at the end of §5.3. Such
solutions u are contained in X−σ0 since H vanishes and π−σ0 is J-holomorphic over π−1

σ0
(C|Re|≤ε)

(see Lemma 2.41). Denote by

M
B

k,`,n(H, J, ξ; pk, . . . , p1, x
+, q1, . . . , q`, x

−) (5.18)

the associated compactified moduli spaces (i.e. including all stable broken trajectories as
well), where pi ∈ Ki ∩Ki−1, qi ∈ Li−1 ∩ Li, x+ ∈ ΦH(0)K0 ∩ L0, and x− ∈ ΦH(n)Kk ∩ L`.

Proposition 5.4. The moduli spaces (5.18) are compact.

Proof. As mentioned above, the projection map π−σ0 keeps trajectories away from ∂X−σ0 . To
prevent escape to infinity in X−σ0 , the proofs of Propositions 3.19 and 4.23 apply without
significant modification. Namely, in any end [0,∞) × [0, 1] (at either the top or bottom of
the strip or at one of the boundary punctures) or thin part, the reasoning surrounding (3.39)
and (4.42) shows that there exists a compact subset K ⊆ X−σ0 and a real number L < ∞
such that for every interval [a, b] of length ≥ L, there exists a point in [a, b]× [0, 1] which is
mapped into K by u. We can now apply monotonicity inequalities to the graph of u and use
dissipativity of H to conclude that the image of u is contained a priori in a compact subset
of X−σ0 depending only on the Floer data and the topological energy.
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Let HJB,reg
• (τ ;σ0, . . . , σr) ⊆ HJB• (τ ;σ0, . . . , σr) consist of those n-simplices for which

all moduli spaces (5.18) associated to facets of ∆n are cut out transversely. A standard
perturbation argument as in §4.7 shows that HJB,reg

• is also a filtered ∞-category and that
the inclusion HJB,reg

• ↪→ HJB• is cofinal.

5.6 Bimodules B

We now define a diagram of Oτ -bimodules over HJB,reg
• (τ ;σ0, . . . , σr) by counting the moduli

spaces (5.18). That is, we define a map of simplicial sets

HJB,reg
• (τ ;σ0, . . . , σr)→ Ndg [Oτ ,Oτ ], (5.19)

where [Oτ ,Oτ ] denotes the dg-category of Oτ -bimodules from §3.1.2 and Ndg denotes the
differential graded nerve from §4.8. This map (5.19) encodes the various operations

O(Kk, Kk−1)⊗ · · · ⊗ O(K1, K0)⊗ CF •(K0, L0;H(0))⊗ O(L0, L1)⊗ · · · ⊗ O(L`−1, L`)

→ CF •(Kk, L`;H(n))[1− `− k − n] (5.20)

defined by counting the moduli spaces (5.18) for any n-simplex (H, J, ξ) of HJB,reg
• and any

Kk > · · · > K0 ∈ Oτ and L0 > · · · > L` ∈ Oτ (and dictated by strict unitality when some
Ki+1 = Ki or Li = Li+1) and the relations they satisfy with (3.41). The construction of
(5.19) follows §4.10 very closely.

To a vertex (H, J, ξ) ∈ HJ
B,reg
0 (τ ;σ0, . . . , σr), we associate the Oτ -bimodule CF •(−,−;H),

equipped with the A∞-bimodule structure maps coming from the operations (5.20) (with
respect to suitable signs/orientations as in [51]); the A∞ relations follow from the usual
boundary analysis. A 1-simplex (H, J, ξ) ∈ HJ

B,reg
1 (τ ;σ0, . . . , σr) induces an A∞-bimodule

morphism
F(H,J,ξ) : CF •(−,−;H(0))→ CF •(−,−;H(1)) (5.21)

for the same reason; more generally, an n-simplex (H, J, ξ) ∈ HJ
B,reg
1 (τ ;σ0, . . . , σr) with

n ≥ 1 induces an A∞-bimodule morphism

F(H,J,ξ) : CF •(−,−;H(0))⊗ C−•(F(∆n))→ CF •(−,−;H(n)). (5.22)

Arguing as in the proof of Lemma 4.33, we conclude that these maps define a diagram (5.19)
as desired.

We define various Oτ -bimodules as the homotopy colimits of the various diagrams (5.19),
namely

Bτ ;σ0,...,σr(−,−) := hocolim
HJ

B,reg
• (τ ;σ0,...,σr)

CF •(−,−;−) ∈ Tw⊕ [Oτ ,Oτ ]. (5.23)

Note that since HJB,reg
• (τ ;σ0, . . . , σr) is a filtered ∞-category, the cohomology of Bτ ;σ0,...,σr

can be computed by taking an ordinary direct limit of HF •(−,−;H) over any cofinal collec-
tion of H. The homotopy colimit Bτ ;σ0,...,σr is an object of Tw⊕ [Oτ ,Oτ ] (infinite direct sum
twisted complexes), but it may also be regarded as an honest bimodule by composing with
the natural functor Tw⊕ [Oτ ,Oτ ] → [Oτ ,Oτ ]. It makes, however, essentially no difference
which of these perspectives we take.
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There are natural maps

Bτ ;σ0,...,σr → Bτ ;σ0,...,σ̂i,...,σr 0 ≤ i ≤ r, (5.24)

Bτ ′;σ0,...,σr |Oτ → Bτ ;σ0,...,σr τ ≤ τ ′. (5.25)

induced by the forgetful maps (5.15)–(5.16). The first of these is a quasi-isomorphism for
i > 0 since (5.15) is cofinal for i = r, and the second is (always) a quasi-isomorphism since
(5.16) is cofinal.

5.7 Cohomology of B

We now calculate the cohomology of the Oτ -bimodules Bτ ;σ0,...,σr . In view of when (5.24)–
(5.25) are quasi-isomorphisms, it is enough to fix σ and consider the case of Bσ;σ. We will
thus abbreviate X = Xσ, O = Oσ, HJB• = HJB• (σ;σ), B = Bσ;σ, etc.

Let us begin by observing that there are natural isomorphisms

HF •(L,K;H) = HF •(ΦHL,K), (5.26)

where the left side denotes cohomology of the O-bimodule CF •(−,−;H) and the right side
denotes Floer cohomology as defined in §§3.2–3.3. The notation on the left is justified
because HF •(L,K;H) is independent of the choice of Floer data, due to the fact that the
subcomplex of HJB,reg

• with fixed H is a contractible ∞-groupoid. To see the isomorphism
(5.26), simply change coordinates on [0, 1] × X using the flow of XH(ϕ(t))dϕ(t) (here it is
crucially important that XH(ϕ(t))dϕ(t) is a function of t ∈ [0, 1] only and that H is linear
at infinity, so this change of coordinates preserves cylindricity of J). This same argument
applies to show that the composition operations

HF •(L,K;H)⊗HF •(K,K ′)→ HF •(L,K ′;H) (5.27)

HF •(L′, L)⊗HF •(L,K;H)→ HF •(L′, K;H) (5.28)

from the bimodule diagram (5.19) coincide (under the isomorphism (5.26)) with the usual
compostion operations in Lagrangian Floer theory

HF •(ΦHL,K)⊗HF •(K,K ′)→ HF •(ΦHL,K
′) (5.29)

HF •(L′, L)⊗HF •(ΦHL,K)→ HF •(ΦHL
′, K) (5.30)

from §§3.2–3.3. We now address a less tautological comparison.

Lemma 5.5. For H,H ′ : S1 → H(X) linear at infinity, vanishing over NbdZ ∂X, and
satisfying H ≤ H ′ near infinity, the “continuation map defined via dissipative Hamiltonians”

HF •(L,K;H)→ HF •(L,K;H ′) (5.31)

from the bimodule diagram (5.19) coincides under (5.26) with the continuation map

HF •(ΦHL,K)→ HF •(ΦH′L,K) (5.32)

from (3.44) associated to the non-negative Lagrangian isotopy Φ(1−a)H+aH′L for a ∈ [0, 1].
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Proof. In the case H = H ′ at infinity, both maps (5.31) and (5.32) coincide with the con-
tinuation map isomorphism from Lemma 3.21, and thus agree. In addition, both classes of
continuation maps (5.31) and (5.32) compose as expected for triples H,H ′, H ′′. Hence to
check that (5.31) and (5.32) agree for all H and H ′, it will suffice to first prove it for some
particular “nice” pairs (H,H ′) (to be specified below) and then show that for an arbitrary
pair (H,H ′′), we can always find a “nice” (H,H ′) with H ′ = H ′′ at infinity.

The first “niceness” condition we impose on (H,H ′) is that H = H ′ over a sufficiently
large (in terms of H) compact subset of X (in particular, one outside of which H is already
linear), which implies that there is an inclusion ΦHL ∩K ⊆ ΦH′L ∩K, and hence a direct
sum decomposition of Z-modules

CF •(L,K;H ′) = CF •(L,K;H)⊕ (additional generators). (5.33)

Now the component of the differential on CF •(L,K;H ′) mapping CF •(L,K;H) to itself
coincides with the differential on CF •(L,K;H) (say we fix an almost complex structure
J : S1 → J(X) achieving transversality), since the proof of Proposition 3.19 provides that
holomorphic curves between intersection points ΦHL ∩K cannot escape an a priori deter-
mined compact subset of X, and we may require that ΦHL = ΦH′L over this subset. By
the same reasoning (and using the same almost complex structure, or rather the induced
R-invariant family R×S1 → J(X)), the component of both (chain level) continuation maps
(5.31) and (5.32) mapping into the first direct summand is the identity map (only constant
disks contribute).

Now we say a pair (H,H ′) is “nice” iff (in addition to the condition above) H ≤ H ′

everywhere and the additional generators in the decomposition (5.33) have action strictly
greater than the generators of CF •(L,K;H). Recall that the action functional on generators
of CF •(ΦHL,K) = CF •(L,K;H) is given by

a(x) = fΦHL(x)− fK(x) = fL(γ(0))− fK(γ(1)) +

∫ 1

0

γ∗λ−H(γ(t)) dt (5.34)

= fL(γ(0))− fK(γ(1)) +

∫ 1

0

(ZH −H)(γ(t)) dt (5.35)

where x ∈ ΦHL∩K corresponds to the Hamiltonian chord (of H) γ : [0, 1]→ X from L to K,
and the functions f are the chosen primitives for λ restricted to the Lagrangians. To make
sense of this equation, we should declare that as (L, fL) undergoes Hamiltonian isotopy, the
primitive changes according to the formula ∂fL

∂t
= ZH −H, so fΦHL is determined by fL.

It is straightforward to prove that (5.31) and (5.32) coincide when (H,H ′) is “nice”;
first, the fact that the additional generators have greater action and the fact that the dif-
ferential decreases action together imply that the direct sum decomposition (5.33) exhibits
CF •(L,K;H) as a subcomplex of CF •(L,K;H ′). The additional generators having strictly
greater action also implies that the continuation maps (5.31) and (5.32) are both simply
the tautological inclusion of this subcomplex, provided we show that these maps also both
weakly decrease action. For the continuation map (5.31), since H ≤ H ′ everywhere, we may
choose a dissipative family H̄ : R× S1 → H(X) from H to H ′ which satisfies ∂sH̄ ≤ 0, and
hence conclude that this continuation map weakly decreases action since the geometric and
topological energies are related as in (4.36), and Stokes’ theorem implies that the topological
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energy of a trajectory from x to y is the difference a(x) − a(y). For the continuation map
(5.32), first observe that it may be defined using the moving Lagrangian boundary conditions
given by the isotopy Φ(1−a)H+aH′L (compactness is justified as in the proof of Lemma 3.23,
which requires us to assume that our almost complex structure J is of contact type over the
locus swept out by the non-negatively moving Lagrangian boundary conditions). Now this
isotopy Φ(1−a)H+aH′L is given by a non-negative Hamiltonian since H ≤ H ′, and thus the
identity (3.42) implies in a similar fashion that this continuation map also weakly decreases
action. Hence, both maps (5.31) and (5.32) are given by the identity map onto the first
factor of the decomposition (5.33); in particular they coincide as desired for “nice” (H,H ′).

To finish the proof, it remains (as noted in the first paragraph) to argue that, for a general
pair (H,H ′′), we can always find a “nice” (H,H ′) with H ′ = H ′′ at infinity. We define H ′ as
H +ϕ(s− s0)(H ′′−H) for sufficiently large s0 <∞, where we have fixed a smooth function

ϕ(s) :=


0 s ≤ 0,

∈ (0, 1) 0 < s < N,

1 s ≥ N,

ϕ(s) ∈ (0, 1) =⇒ ϕ′(s) > 0, (5.36)

and we have fixed symplectization coordinates (Rs × ∂∞X, esα) on X near infinity. Clearly
H ≤ H ′ since the difference H ′′ −H is non-negative at infinity, and by taking s0 → ∞ we
have H = H ′ over arbitrarily large compact subsets of X. It thus remains to check that the
“additional generators” in the decomposition (5.33) have strictly greater action.

For each of these additional generators, the last term of (5.35) scales exponentially in s0

(since varying s0 simply translates any additional generators by the Liouville vector field);
hence it is enough to show that this integral∫ 1

0

ϕ′(s− s0)(H ′′ −H)(γ(t)) dt (5.37)

is positive for every additional generator γ (and then take s0 sufficiently large). The integrand
is ≥ 0, so we just need to exclude the possibility that an additional generator γ maps entirely
to the region where the integrand vanishes. Suppose for sake of contradiction that γ is such an
additional generator, i.e. γ maps to the region where either s ≤ 0, s ≥ N , or H = H ′′. Note
that at any point where H = H ′′, their Hamiltonian vector fields are also equal (because of
the inequality H ≤ H ′′); thus whenever γ lies in the region {s ∈ (0, N)}, it is a Hamiltonian
trajectory of both H and H ′′. Now by taking N sufficiently large, we may ensure that no
Hamiltonian trajectory of H or H ′′ of length ≤ 1 has s varying by more than N . It thus
follows that γ is contained in one of the regions {s ≤ N} or {s ≥ 0}, and hence that it is
a Hamiltonian chord of H or H ′′ (respectively) from ∂∞L to ∂∞K, which does not exist by
assumption on H and H ′′.

Equipped with the identificationHF •(L,K;H) = HF •(ΦHL,K) in (5.26) and the knowl-
edge that the continuation maps between these groups in (5.19) coincide with the usual
continuation maps from §3, we may now deduce the following results/properties about the
homotopy colimit B.
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Lemma 5.6. For L,K ∈ O, there is a natural isomorphism H•B(L,K) = HW •(L,K).
Moreover, these isomorphisms intertwine the H•O-bimodule structure with the product on
HW • under the natural maps H•O(L,K) = HF •(L,K) → HW •(L,K). In particular,
B is C-local on both sides, so the localization maps B → C−1B and B → BC−1 are both
quasi-isomorphisms.

Proof. As H varies over vertices of HJB,reg
• , the wrapped Lagrangians ΦHL are cofinal in the

wrapping category of L inside X (or rather X− as fixed in §5.2, though this difference matters
little at this point). Moreover, the natural map HF •(ΦHL,K)→ HW •(L,K) is compatible
with multiplication by HF •(K,K ′) on the right and multiplication by HF •(L′, L) on the
left. It is therefore enough to use the fact (proved just above) that the continuation maps
(5.31) involved in defining B agree with the continuation maps involved in defining HW •

(namely multiplication by continuation elements).
To prove the last assertion, note that the property of being C-local can be checked at

the level of homology, and apply Lemma 3.13.

5.8 Quasi-isomorphism B = W

We now upgrade the isomorphism H•Bτ ;σ0,...,σr = H•Wσ0 of H•Oτ -bimodules from Lemma
5.6 to a quasi-isomorphism of Oτ -bimodules Bτ ;σ0,...,σr and Wσ0 (recall that the localization
functor Oσ0 → Wσ0 allows one to consider Wσ0(−,−) as an Oσ0-bimodule, which we may
further restrict to Oτ ⊆ Oσ0). The essential point is to define a (continuation) map of Oτ -
bimodules O−τ → Bτ ;σ0,...,σr inducing the usual map HF • → HW • on homology, where O−τ
denotes the Oτ -bimodule given by

O−τ (L,K) =

{
Oτ (L,K) L > K

0 else
(5.38)

i.e. O−τ (L,K) := Oτ (L,K) except for O−τ (L,L) := 0.
Floer data for the continuation map O−τ → Bτ ;σ0,...,σr is encoded in an enlarged simplicial

set HJOB• (τ ;σ0, . . . , σr) defined as follows. An n-simplex of HJOB• is defined identically to an
n-simplex of HJB• , except for the following modifications:

• An integer −1 ≤ e ≤ n is specified. Vertices 0, . . . , e of ∆n are called “O-vertices” and
vertices e + 1, . . . , n of ∆n are called “B-vertices” (so e = −1 means all vertices are
B-vertices, and in this case the simplex in question is simply a simplex of HJB• ).

• For tuples 0 ≤ v0 < · · · < vm ≤ n with v0 an O-vertex, in each of (5.11)–(5.14) we
replace m with m−f where vf ≤ e < vf+1. In other words, whereas before the marked
points ai for 1 ≤ i ≤ m corresponded to the edges vi−1 → vi, now we only use marked
points ai for the edges vi−1 → vi in which vi is a B-vertex.

• For tuples 0 ≤ v0 < · · · < vm ≤ n with v0 an O-vertex, we only consider chains
Kk > · · · > K0 ∈ Oσr and L0 > · · · > L` ∈ Oσr with K0 > L0.

• We additionally choose strip-like coordinates at s = +∞ when v0 is an O-vertex and
at s = −∞ when vm is an O-vertex.
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• For tuples 0 ≤ v0 < · · · < vm ≤ n with vm an O-vertex, the target of (5.13) is J(X−σKk
)

(recalling that σL denotes the unique minimal element of Σ such that L ∈ OσL).

• Over the maximal O-simplex ∆0···e ⊆ ∆n, we require that H ≡ 0 and that the strip-
like coordinates ξ and almost complex structures J coincide with those specified for

defining Oσr , namely (5.4)–(5.6), under the identifications C
B

k,`,0 = Sk+1+`,1 (observe
that ξ and J defined in this way are indeed compatible as required). Furthermore, we
require H to vanish for s ≤ ai whenever the corresponding edge vi−1 → vi has vi−1

an O-vertex, and dissipation data is chosen only over facets with at least one B-vertex

and only to cover the locus s ≤ ai in C
SC

m .

• The transversality condition ΦHvK t L for K,L ∈ Oτ (part of dissipativity of H)
is imposed only for B-vertices v (of course, for O-vertices v we have ΦHvK t L for
K > L ∈ Oτ by the definition of Oτ since Hv ≡ 0).

There is a tautological inclusion HJB• ⊆ HJOB• as the set of simplices all of whose vertices are
B-vertices (i.e. those for which e = −1). We denote by HJO• ⊆ HJOB• the set of simplices all
of whose vertices are O-vertices (it is a consequence of the definition that HJO• has a unique
n-simplex for every n ≥ 0, i.e. HJO• = ∆0).

For any n-simplex (H, J, ξ) of HJOB• , we consider the same moduli spaces (5.18), subject to
the requirement that if v = 0 is an O-vertex then K0 > L0 (the marked points a1, · · · , ae are
still present, they just play no role in determining ξ, J , H). We denote by HJOB,reg

• ⊆ HJOB•
the set of Floer data for which all such moduli spaces are transverse. As in §5.6, we obtain
a diagram

HJOB,reg
• (τ ;σ0, . . . , σr)→ Ndg [Oτ ,Oτ ] (5.39)

which to B-vertices associates CF •(L,K;H) and to the unique O-vertex associates CF •(L,K)
for L > K and zero for all other pairs. The inclusion HJB,reg

• ⊆ HJOB,reg
• is covered by a

tautological identification of diagrams. The O-vertex is regular and the Oτ -bimodule over it
is canonically identified with O−τ (simply because the moduli spaces under consideration are
exactly the same as those used to define the A∞ operations for Oτ ).

The usual reasoning shows that HJOB• is a filtered ∞-category, HJOB,reg
• is a filtered

∞-category, and the inclusions HJB,reg
• ⊆ HJOB,reg

• ⊆ HJOB• are cofinal.
We now consider the following diagram of Oτ -bimodules

hocolim
HJO• (τ ;σ0,...,σr)

CF •(−,−;−) hocolim
HJ

OB,reg
• (τ ;σ0,...,σr)

CF •(−,−;−)

Oτ O−τ hocolim
HJ

B,reg
• (τ ;σ0,...,σr)

CF •(−,−;−) Bτ ;σ0,...,σr

∼ ∼ (5.40)

where the leftmost vertical map is the quotient map collapsing the hocolim (noting that HJO•
is a single vertex). On the level of cohomology, the three rightmost bimodules are HW •

σ0

by Lemma 5.6, and we have by definition H•O−τ = HF • for L > K and zero otherwise
(similarly for H•Oτ ). We also see from Lemma 5.6 that the maps between these groups
and their bimodule structure are, on the cohomology level, the natural ones. Using this
knowledge, we may now prove the main result of this subsection.
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Lemma 5.7. For τ = σ0, the maps in (5.40) all become quasi-isomorphisms after localization
on the left at Cτ = Cσ0.

Proof. Applying E 7→ lim−→i
E(L(i), K) to (5.40) results (on cohomology) in all groups being

HW •
τ = HW •

σ0
and all maps being the identity map; in particular all the maps are quasi-

isomorphisms. The result now follows from Corollary 3.38 (which says that the direct limit
over L(i) calculates localization on the left at Cτ = Cσ0).

Lemma 5.7 shows that Wσ0 = C−1
σ0

(Oσ0) and C−1
σ0

(Bσ0;σ0,...,σr) are quasi-isomorphic. The

latter is quasi-isomorphic to Bσ0;σ0,...,σr by Lemma 5.6 and Lemma 3.13. Using the quasi-
isomorphism (5.25), we conclude that Bτ ;σ0,...,σr is quasi-isomorphic to Wσ0 as Oτ -bimodules.
(By “are quasi-isomorphic”, we mean “are connected by a zig-zag of quasi-isomorphisms”;
we do not wish to discuss the question of whether quasi-isomorphisms of A∞-bimodules over
Z are invertible under our cofibrancy assumptions.)

5.9 Hochschild homology of B

Following Abouzaid–Ganatra [7], we would like to take CC•(O,B) in place of CC•(W) as
the domain of the open-closed map. It follows immediately from Lemmas 5.7, 5.6, 5.3 above
that these two complexes are quasi-isomorphic.

Corollary 5.8 (Abouzaid–Ganatra [7]). There is a canonical zig-zag of quasi-isomorphisms
between CC•(Oσ0 ,Bσ0;σ0,...,σr) and CC•(Wσ0).

We should now specify a particular chain model for CC•(O,B) which is functorial in σ.
Unfortunately, CC•(Oσ,Bσ;σ) is not functorial in σ, rather for σ ≤ σ′ there are only maps

CC•(Oσ,Bσ;σ,σ′) CC•(Oσ,Bσ′;σ′|Oσ)

CC•(Oσ,Bσ;σ) CC•(Oσ,Bσ;σ′) CC•(Oσ′ ,Bσ′;σ′)

∼ ∼ (5.41)

which act as desired on homology. As in (4.58), there are two “problems” preventing
the existence of a naive pushforward map, namely we must consider the correspondence
HJB• (σ;σ)← HJB• (σ;σ, σ′)→ HJB• (σ;σ′)← HJB• (σ′;σ′) due to the “problem” of extending
Floer data from Xσ to Xσ′ and the “problem” of the restricting to Floer data making the
moduli spaces regular for the larger category Oσ′ . In contrast to the case of (4.58), these
problems cannot be dealt with simultaneously by defining “HJB• (σ′;σ, σ′)”: indeed, this sim-
plicial set is empty outside of trivial cases, since no Floer data for Xσ ⊆ Xσ′ can ensure
ΦHL t L for all L ∈ Oσ′ and simultaneously satisfy H ≡ 0 near ∂X−σ . Thus to solve these
two problems, we need two additional homotopy colimits (as opposed to a single additional
homotopy colimit as in (4.61)).

We are thus led to take as the domain of the open-closed map the complex

hocolim
σ0≤···≤σr≤σ

hocolim
τ0≤···≤τs≤σ0

CC•(Oτ0 ,Bτs,σ0,...,σr |Oτ0 ), (5.42)
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which is strictly functorial in σ ∈ Σ. The inner hocolim is taken over the subposet of Σ
consisting of elements ≤ σ0, using the structure maps

CC•(Oτ0 ,Bτs,σ0,...,σr |Oτ0 )→ CC•(Oτ ′0
,Bτ ′s,σ0,...,σr |Oτ ′0 ) (5.43)

for τ0 ≤ τ ′0 ≤ τ ′s ≤ τs (imagining (τ ′0, . . . , τ
′
s) is obtained from (τ0, . . . , τs) by forgetting some

τi); the notation hocolim is justified since (5.25) is a quasi-isomorphism. The outer hocolim
is over the subposet of Σ consisting of elements ≤ σ; the notation hocolim is justified since
(5.24) is a quasi-isomorphism for i > 0.

By construction, (5.42) is strictly functorial in σ ∈ Σ. The inclusion of the subcomplex
CC•(Oσ,Bσ;σ) (corresponding to r = s = 0 and τ0 = σ0 = σ) into (5.42) is a quasi-
isomorphism by two applications of Lemma 4.32.

We will use (5.42) as the domain of our open-closed map. The main result of this
subsection is:

Proposition 5.9. There is a canonical zig-zag of quasi-isomorphisms (of diagrams Σ→ Ch)
between CC•(Wσ) and (5.42).

Proof. We consider the following quasi-isomorphisms functorial in σ:

hocolim
σ0≤···≤σr≤σ

hocolim
τ0≤···≤τs≤σ0

CC•(Oτ0 ,Bτs;σ0,...,σr |Oτ0 ) (5.44)

=

hocolim
σ0≤···≤σr≤σ

hocolim
τ0≤···≤τs≤σ0

CC•(Oτ0 , hocolim
HJ

B,reg
• (τs;σ0,...,σr)

CF •(−,−;−)) (5.45)

↓∼

hocolim
σ0≤···≤σr≤σ

hocolim
τ0≤···≤τs≤σ0

CC•(Oτ0 ,
C−1
τ0

(
hocolim

HJ
B,reg
• (τs;σ0,...,σr)

CF •(−,−;−)
)

) (5.46)

↓∼

hocolim
σ0≤···≤σr≤σ

hocolim
τ0≤···≤τs≤σ0

CC•(Oτ0 ,
C−1
τ0

(
hocolim

HJ
OB,reg
• (τs;σ0,...,σr)

CF •(−,−;−)
)

) (5.47)

↑∼

hocolim
σ0≤···≤σr≤σ

hocolim
τ0≤···≤τs≤σ0

CC•(Oτ0 ,
C−1
τ0

(
hocolim

HJO• (τs;σ0,...,σr)
CF •(−,−;−)

)
) (5.48)

↓∼
hocolim
σ0≤···≤σr≤σ

hocolim
τ0≤···≤τs≤σ0

CC•(Oτ0 , C−1
τ0

(O−τ0)) (5.49)

↓∼
hocolim
σ0≤···≤σr≤σ

hocolim
τ0≤···≤τs≤σ0

CC•(Oτ0 ,Wτ0). (5.50)

The map (5.45) → (5.46) is a quasi-isomorphism by Lemma 5.6 and Lemma 3.13. The
map (5.46) → (5.47) is a quasi-isomorphism by cofinality. The map (5.48) → (5.47) is a
quasi-isomorphism by Lemma 4.32 and since

C−1
σ0

(
hocolim

HJO• (σ0;σ0,...,σr)
CF •(−,−;−)

)
→

C−1
σ0

(
hocolim

HJ
OB,reg
• (σ0;σ0,...,σr)

CF •(−,−;−)
)

(5.51)
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is a quasi-isomorphism by Lemma 5.7. The remaining quasi-isomorphisms are clear.
Finally, note that there are quasi-isomorphisms functorial in σ:

hocolim
σ0≤···≤σr≤σ

hocolim
τ0≤···≤τs≤σ0

CC•(Oτ0 ,Wτ0)
∼−→ hocolim

σ0≤···≤σr≤σ
CC•(Oσ0 ,Wσ0)

∼−→ CC•(Oσ,Wσ)

∼−→ CC•(Wσ,Wσ). (5.52)

Each of the first two maps is given by collapsing the relevant hocolim, i.e. they are given
by the obvious pushforward on the vertices of the indexing simplicial set and by zero on
all positive dimensional simplices (note that CC•(Oσ,Wσ) is strictly functorial in σ). These
are quasi-isomorphisms by Lemma 4.32. The last map is a quasi-isomorphism by Lemma
5.3. We have thus defined the desired quasi-isomorphism between (5.42) and CC•(Wσ) as
diagrams Σ→ Ch.

5.10 Moduli spaces of domains for OC

Figure 11: Embedding R× [0, 1]→ D2.

Let D2 ⊆ C denote the unit disk. We fix once and for all a map (illustrated in Figure
11)

R× [0, 1]→ D2 (5.53)

whose restriction to s� 0 gives positive strip-like coordinates at 1 ∈ D2, and whose restric-
tion to s� 0 gives negative cylindrical coordinates at 0 ∈ D2 (via the map [0, 1]→ S1 given
by t 7→ 2πt). Note that these coordinates give a way of gluing strips R× [0, 1] and cylinders
R× S1 at 1 ∈ D2 and 0 ∈ D2, respectively, and identifying the result back with D2, in such
a way which is the “identity map” on points of the original D2 away from 0 and 1.

We consider the compactified moduli space of decorations of D2 with p + 1 boundary
marked points including 1 ∈ ∂D2, an interior marked point 0 ∈ D2, and points a1 ≥ · · · ≥
an0 ≥ an0+1 = 0 ≥ an0+1+1 ≥ · · · ≥ an0+1+n1 ∈ R (regarded as the image of R × {1

2
}

under the map (5.53)). The marked points ai are allowed to collide with each other, though
bubbles are formed at 0, 1 ∈ D2 if they approach ±∞ (a bubble at 0 ∈ D2 is thus an object

parameterized by M
SC

, and a bubble at 1 ∈ D2 is an object parameterized by M
B

). We

denote this moduli space and its universal family by C
OC

p,n0,n1
→M

OC

p,n0,n1
. By the observation

at the end of the previous paragraph (and the extension property (5.7)), gluing at 0, 1 ∈ D2
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(which should be regarded as punctures) via the coordinates (5.53) and via any strip-like

coordinates at the remaining p boundary punctures gives boundary collars for M
OC

p,n0,n1
.

Also fix once and for all a family of maps

ϕs : S1 → S1 (5.54)

parameterized by s ∈ R, satisfying ϕ′s(t) ≥ 0, independent of s for |s| � 0, such that
ϕ∞(2πt) = ϕ(t) for the function ϕ fixed in (5.10), and such that ϕ−∞(t) = t. In fact, let
us assume that ϕs = ϕ∞ as long as s is above the region over which (5.53) descends to a

smooth embedding R × S1 → D2. The forgetful map M
OC

p,n0,n1
→ M

SC

n0+1+n1
(remembering

just the points ai) is covered by a map C
OC

p,n0,n1
→ C

SC

n0+1+n1
(defined over the image of (5.53))

given by (s, t) 7→ (s, ϕs(2πt)). This map will be used to define the Hamiltonian terms in the
Floer equations we are about to consider.

5.11 Floer data for OC

The Floer data for defining the open-closed map OC is organized into simplicial sets

HJOC• (τ ;σ0, . . . , σr;σ
′
0, . . . , σ

′
r′) (5.55)

for every chain τ ≤ σ0 ≤ · · · ≤ σr ≤ σ′0 ≤ · · · ≤ σ′r′ ∈ Σ, each fitting into a fiber diagram
(aka pullback square):

HJB• (τ ;σ0, . . . , σr;σ
′
0, . . . , σ

′
r′) tHJSC• (σ′0, . . . , σ

′
r′) HJOC• (τ ;σ0, . . . , σr;σ

′
0, . . . , σ

′
r′)

∆0 t∆0 ∆1

(5.56)

where HJB• maps to the initial vertex of ∆1 and HJSC• maps to the final vertex of ∆1. There
is a forgetful map

HJB• (τ ;σ0, . . . , σr;σ
′
0, . . . , σ

′
r′)→ HJB• (τ ;σ0, . . . , σr) (5.57)

which will also be explained below.
To motivate this setup, in particular as compared with the simpler cases of HJSC• and

HJB• , note that, whereas HJSC• and HJB• parameterize Floer data needed to define certain
Floer cohomology groups (together with higher coherences), the simplicial sets HJOC• are sup-
posed to parameterize Floer data to define a map between Floer cohomology groups (together
with higher coherences). In particular, this explains why HJOC• has no more vertices other
than those already in HJSC• tHJB• (this follows from the fiber diagram (5.56)), as there are
no new groups, just new maps. The smallest simplices in HJOC• which are not contained
in HJSC• t HJB• are 1-simplices mapping surjectively to ∆1. These encode Floer data for
defining a single open-closed map, and higher-dimensional simplices mapping surjectively to
∆1 encode Floer data for defining higher homotopies between open-closed maps and their
compositions with the various continuation maps for SC• and B. The final result will be a
diagram HJOC• → Ndg Ch, which over HJSC• ⊆ HJOC• coincides with the diagram of symplectic
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cochains constructed in §4.10 and which over HJB• ⊆ HJOC• is given by the Hochschild chains
of the diagram of bimodules (5.19) over HJB• . The most interesting part of this diagram is,
of course, the simplices of HJOC• which are not contained in either HJSC• or HJB• (i.e. those
which map surjectively to ∆1), which are the ones encoding the open-closed map. Given this
diagram over HJOC• , we will eventually take an appropriate “fiberwise homotopy colimit”
over ∆1 to obtain a single map (which is the open-closed map).

Remark 5.10. One might have expected that we would define HJOC• so that there is a diagram
HJOC• → Fun(∆1,Ndg Ch), which by definition is just a diagram HJOC• × ∆1 → Ndg Ch; we
see no problem with this approach, though we found the setup above to be much more
convenient.

Let us now define HJOC• (by the fiber diagram (5.56), this also defines the variant of
HJB• ). An n-simplex of HJOC• consists first of a map r : ∆n → ∆1, corresponding to the map
HJOC• → ∆1. The map r induces an isomorphism ∆n = ∆n0 ∗∆n1 (the simplicial join), where
∆ni = r−1({i}) (define ∆−1 := ∅) and n = n0 + 1 + n1. The remaining data specifying an
n-simplex of HJOC• (τ ;σ0, . . . , σr;σ

′
0, . . . , σ

′
r′) is the following:

• An n0-simplex of HJB• (τ ;σ0, . . . , σr), namely choices of (5.11)–(5.14), except that the
Hamiltonians H are now specified on Xσ′

r′
and (in addition to the requirements of

HJB• ) must be adapted to ∂Xσ′i
in the sense of Definition 4.3 and must be admissible

with respect to a specified chain (5.8) with µ
(0)
1 ≥ σr at each vertex in the sense of

Definition 4.4.

• An n1-simplex of HJSC• (σ′0, . . . , σ
′
r′), namely choices of (4.21)–(4.22) and chains (5.8)

(with the usual deletion relation between such chains for pairs of vertices 0 ≤ v <
v + 1 ≤ n).

• Choices of strip-like coordinates, almost complex structures, and Hamiltonians

ξ
v0···vm0 ,v

′
0···v′m1

L0,...,Lp;j : R≥0 × [0, 1]×M
OC

p,m0,m1
→ C

OC

p,m0,m1
j = 1, . . . , p (5.58)

J
v0···vm0 ,v

′
0···v′m1

L0,...,Lp
: C

OC

p,m0,m1
→ J(Xσ′

r′
) (5.59)

Hv0···vm0 ,v
′
0···v′m1 : C

SC

m0+1+m1
→ H(Xσ′

r′
) (5.60)

for L0 > · · · > Lp ∈ Oσr , and 0 ≤ v0 < · · · < vm0 ≤ n0 < n0 + 1 ≤ v′0 < · · · < v′m1
≤

n0 + 1 + n1.

satisfying the following properties:

• The strip-like coordinates ξ, almost complex structures J , and Hamiltonians H must
be compatible with gluing and forgetting vertices in the usual sense.

• The almost complex structures J and Hamiltonians H must be adapted to ∂Xσ′i
in the

sense of Definition 4.3.

• The Hamiltonians H must be dissipative with specified dissipation data in the sense
of Definition 4.5 (modified over ∆n0 as in HJB• ).
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This completes the definition of HJOC• (τ ;σ0, . . . , σr;σ
′
0, . . . , σ

′
r′).

Note the forgetful maps on HJOC• , namely decreasing τ and forgetting any σi or σ′i, as
well as the forgetful map (5.57).

The proof of Proposition 4.9 applies to HJOC• and HJB• (as defined above) to show that
they are filtered ∞-categories. It is easy to see that the forgetful map (5.57) is cofinal, and
it is obvious from the fiber diagram (5.56) that HJSC• → HJOC• is cofinal.

5.12 Holomorphic curves for OC

L5

L0

L1

L2 L3
L4

Figure 12: The Riemann surface for the open-closed map.

Given an n-simplex of HJOC• (τ ;σ0, . . . , σr;σ
′
0, . . . , σ

′
r′), we consider the moduli space of

maps u : D2 \ {0, 1} → Xσ′
r′

along with marked points ai as in §5.10, where u has boundary
conditions Li ∈ Oτ as in Figure 12 and satisfies

(du−XH(s,ϕs(2πt)) ⊗ d(ϕs(2πt)))
0,1
J = 0, (5.61)

where (s, ϕs(2πt)) denotes the partially defined map of universal curves C
OC

p,n0,n1
→ C

SC

n0+1+n1

from the end of §5.10 (the Hamiltonian term is declared to be zero outside the image of
(5.53)). The argument of Lemma 4.21 shows that all such trajectories u are contained in
Xσ′0

. We denote by

M
OC

p,n0,n1
(H, J, ξ;x, y1, . . . , yp) (5.62)

the associated compactified moduli space (i.e. including all stable broken trajectories), where
(H, J, ξ) stands for an n-simplex of HJOC• (τ ;σ0, . . . , σr;σ

′
0, . . . , σ

′
r′), and x ∈ ΦH(0)Lp ∩ L0,

yi ∈ Li−1 ∩ Li.

Proposition 5.11. The moduli spaces (5.62) are compact.

Proof. As in Proposition 5.4, the discussion above shows trajectories avoid ∂Xσ′0
; in the non-

compact directions the proofs of Propositions 3.19 and 4.23 adapt without any trouble.
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Let HJOC,reg
• ⊆ HJOC• denote the subset where all moduli spaces (5.62), (5.18), (4.31) are

cut out transversely. Note that there is again (by definition) a fiber diagram

HJB,reg
• (τ ;σ0, . . . , σr;σ

′
0, . . . , σ

′
r′) tHJSC,reg

• (σ′0, . . . , σ
′
r′) HJOC,reg

• (τ ;σ0, . . . , σr;σ
′
0, . . . , σ

′
r′)

∆0 t∆0 ∆1

(5.63)
and that the usual perturbation argument shows that HJOC,reg

• is also filtered ∞-category,
cofinal inside HJOC• (and the same for HJB,reg

• ⊆ HJB• ).

5.13 Diagram OC

We now argue that counting the moduli spaces (5.62) defines a diagram

HJOC,reg
• (τ ;σ0, . . . , σr;σ

′
0, . . . , σ

′
r′)→ Ndg Ch (5.64)

extending the diagrams CC•(Oτ , CF
•(−,−;−)) over HJB,reg

• (τ ;σ0, . . . , σr;σ
′
0, . . . , σ

′
r′) (pulled

back from HJB,reg
• (τ ;σ0, . . . , σr)) and CF •+n(Xσ′0

;−) over HJSC,reg
• (σ′0, . . . , σ

′
r′) defined ear-

lier (more precisely, the former diagram is obtained from the diagram of bimodules (5.19) by
composing with the dg-functor CC•(Oτ ,−) : [Oτ ,Oτ ] → Ch). This diagram (5.64) encodes
the various operations

CF •(Lp, L0;H(0))⊗O(L0, L1)⊗· · ·⊗O(Lp−1, Lp)→ CF •(Xσ′0
;H(n))[1

2
dimX−p−n0−n1]

(5.65)
defined by counting the moduli spaces (5.62) for L0 > · · · > Lp ∈ Oτ and an n-simplex
(H, J, ξ) of HJOC,reg

• with n0, n1 ≥ 0, i.e. which projects surjectively onto ∆1 (set to vanish for
Li = Li+1) and the identities they satisfy with (3.41), (4.53), (5.20). The map (5.65) involves
trivializing the Fredholm orientation line of the ∂̄-operator on D2 with Spin Lagrangian
boundary conditions.

To a 1-simplex of HJOC,reg
• mapping surjectively to ∆1 (namely with n0 = n1 = 0), the

operations (5.65) (with signs as in [1, eq (5.24)]) define a chain map

CC•(Oτ ;CF
•(−,−;H(0)))→ CF •+n(Xσ′0

;H(n)), (5.66)

and more generally the same argument associates to any n-simplex mapping surjectively to
∆1 a chain map

CC•(Oτ ;CF
•(−,−;H(0)))⊗ C−•(F(∆n))→ CF •+n(Xσ′0

;H(n)). (5.67)

These maps are compatible in the natural way under face and degeneracy maps and thus
define the desired diagram.

5.14 Map OC

The diagram (5.64) allows us to define the open-closed map (5.42) → (5.9) as follows.
Namely, we consider the following maps:

(5.42) = hocolim
σ0≤···≤σr≤σ

hocolim
τ0≤···≤τs≤σ0

CC•(Oτ0 ,Bτs;σ0,...,σr) (5.68)
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↑∼
hocolim

σ′0≤···≤σ′r′≤σ
hocolim

σ0≤···≤σr≤σ′0
hocolim

τ0≤···≤τs≤σ0
CC•(Oτ0 ,Bτs;σ0,...,σr) (5.69)

=

hocolim
σ′0≤···≤σ′r′≤σ

hocolim
σ0≤···≤σr≤σ′0

hocolim
τ0≤···≤τs≤σ0

hocolim
HJ

B,reg
• (τs;σ0,...,σr)

CC•(Oτ0 , CF
•(−,−;−)) (5.70)

↑∼
hocolim

σ′0≤···≤σ′r′≤σ
hocolim

σ0≤···≤σr≤σ′0
hocolim

τ0≤···≤τs≤σ0
hocolim

HJ
B,reg
• (τs;σ0,...,σr;σ′0,...,σ

′
r′ )
CC•(Oτ0 , CF

•(−,−;−)) (5.71)

↓

hocolim
σ′0≤···≤σ′r′≤σ

hocolim
σ0≤···≤σr≤σ′0

hocolim
τ0≤···≤τs≤σ0

hocolim
HJ

OC,reg
• (τs;σ0,...,σr;σ′0,...,σ

′
r′ )

{
CC•(Oτ0 , CF

•(−,−;−))

CF •+n(Xσ′0
;−)

(5.72)

↑∼
hocolim

σ′0≤···≤σ′r′≤σ
hocolim

σ0≤···≤σr≤σ′0
hocolim

τ0≤···≤τs≤σ0
hocolim

HJ
SC,reg
• (σ′0,...,σ

′
r′ )
CF •+n(Xσ′0

;−) (5.73)

↓∼
hocolim

σ′0≤···≤σ′r′≤σ
hocolim

HJ
SC,reg
• (σ′0,...,σ

′
r′ )
CF •+n(Xσ′0

;−) = (5.9) (5.74)

This is the desired open-closed map (to explain the funny notation in (5.72), recall that
vertices of HJOC• are just vertices of HJSC• or HJB• ). Note that the second arrow from the
bottom is a quasi-isomorphism since the inclusion of HJSC,reg

• into HJOC,reg
• is cofinal.

Note that HH•(W(X)) as well as HH•(F) for any collection F of isotopy classes of
Lagrangians are both well-defined (i.e. independent of the choices made in their construction),
as is the open-closed map on homology HH•(W(X)) → SH•(X, ∂X). This follows from
Lemma 5.2, the inductive nature of the choices involved in the construction of W and OC,
and the compatibility with pushforward under inclusions.

Remark 5.12. Most of the algebraic complication of the above definition is due to the fact
that we insist on constructing chain level diagrams, which require many “higher coherences”
to define completely. On the other hand, the result of applying the open-closed map as
defined above to any particular Hochschild cycle may be calculated as usual by considering
only the (small number of) relevant moduli spaces.

5.15 Proof of Theorem 1.2

Proof of Theorem 1.2. Since every homology hypercover has a finite homology subhyper-
cover, we may assume that Σ is finite. We consider the diagram of Liouville sectors over
ΣB obtained from the given diagram over Σ by adjoining X as a final object. We apply
the construction of §3 to this diagram of Liouville sectors and the given collections of La-
grangians to obtain categories Oσ and Fσ := Oσ[C−1

σ ]. We apply the construction of this
section to obtain a diagram of open-closed maps over ΣB. Taking homotopy colimits over
Σ, we obtain the left half of the key diagram (1.7). Since the local open-closed maps are
isomorphisms by hypothesis, the top left horizontal arrow in (1.7) is a quasi-isomorphism.
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Hence, we conclude that the image of the map HH•−n(
⋃
σ∈Σ Fσ) → SH•(X) contains the

image of the map hocolimσ∈Σ SC
•(Xσ, ∂Xσ) → SC•(X). This map in turn hits the unit in

SH•(X) by Corollary 4.44 since {Xσ}σ∈Σ is a homology hypercover of X.

5.16 Compatibility with Morse theory

The following compatibility result is well-known for Liouville manifolds.

Proposition 5.13. For any Liouville sector X and Lagrangian i : L → X, the following
diagram commutes:

H•(L) HW •(L,L)

H•+n(X, ∂X) SH•+n(X, ∂X).

Rmk 3.24

i! OC

Prop 4.41

(5.75)

Proof. The two compositions in (5.75) are defined by counting holomorphic maps as illus-
trated in Figure 13. This illustration makes apparent the obvious neck stretching / gluing
argument which should show that (5.75) commutes. To turn this into a proof, we just need
specify the relevant Hamiltonian terms and show that compactness is maintained throughout
the deformation.

L

L

Figure 13: The two compositions in (5.75), namely H•(L)→ HW •(L,L)→ SH•+n(X, ∂X)
(left) and H•(L)→ H•+n(X, ∂X)→ SH•+n(X, ∂X) (right).

We start by describing the moduli spaces defining the compositionH•(L)→ HW •(L,L)→
SH•+n(X, ∂X) (Figure 13 left), which we then slowly transform into moduli spaces which
define the composition H•(L)→ H•+n(X, ∂X)→ SH•+n(X, ∂X) (Figure 13 right).

To begin with, let us recall the definition of the map H•(L)→ HF •(L,L) from Remark
3.24. We choose an almost complex structure which is of contact type near infinity over

107



NbdZ L. We then count holomorphic disks with one negative end (i.e. output) and moving
Lagrangian boundary conditions following a sufficiently small positive at infinity Lagrangian
isotopy L L+ (in the clockwise direction). Energy/action considerations along with mono-
tonicity imply that such holomorphic disks stay within the small cylindrical neighborhood
of L over which the almost complex structure is of contact type at infinity, and hence by
the maximum principle Lemma 2.46 such disks are bounded a priori away from infinity.
The count of such disks defines the unit 1L ∈ HF •(L,L), and adding a point constraint
on L defines the map H•(L) → HF •(L,L) (namely, this construction defines a map from
an appropriate model of “locally finite chains on L”, which calculates H•(L) by Poincaré
duality).

For the present purpose, we will need another description of the map H•(L)→ HF •(L,L)
using dissipative families of Hamiltonians, as we now describe. Fix a linear Hamiltonian
H1 ∈ H(X) vanishing near ∂X, positive over L near infinity, such that the projection of
XH1 to TX/TL over L is transverse to zero (equivalently, the restriction of H1 to L is
Morse). Now using the procedure of Proposition 4.9, let H : R≤0 → H(X) be a dissipative
family interpolating between H(s) = 0 near s = 0 and H(s) = H1 for s � 0, such that
inf −∂sH > −∞ (wrapping bounded below). Denoting by ΦH(s) the integral of XH(s) over
S1, the isotopy of Lagrangians ΦH(s)L for s ∈ R≤0 (from L to ΦH1L) is generated by a
family of Hamiltonians which are bounded below. Now for any a ∈ [0, 1], any sufficiently
small δ > 0, and any choice of negative strip-like coordinates R≤0 × [0, 1]→ D2 \ {1} at the
puncture, consider the moduli space of maps u : D2 \ {1} → X satisfying

(du−X(1−a)δH(s) ⊗ dϕ(t))0,1
Ja

= 0 (5.76)

u(s, 1) ∈ L (5.77)

u(s, 0) ∈ ΦaδH(s)L (5.78)

(away from the strip-like coordinates, there is no Hamiltonian term and the boundary con-

dition is L), where Ja : D2 \ {1} → J(X) for a ∈ [0, 1] satisfies Ja(s, t) = (Φ
1−ϕ(t)
(1−a)δH1

)∗J(t)

for s � 0, and ϕ : [0, 1] → S1 is as fixed in (5.10). For a = 0, the boundary conditions
are constant and the Hamiltonian term is supported away from the boundary, so the argu-
ments from Propositions 3.19 and 4.23 apply to show these moduli spaces are compact. In
fact, this compactness argument applies for general a ∈ [0, 1]; to see this, we just need to
observe that dissipativity of H means that the monotonicity part of the argument applies
near the moving Lagrangian boundary condition (geometric energy is bounded by (3.42) and
(4.36) since inf −∂sH > −∞). Indeed, dissipativity of H implies that, in a neighborhood of
each point on the boundary of the domain curve, there is a sequence of shells whose widths
diverge as in (4.20) and inside which the Lagrangian boundary conditions are cylindrical
and stationary, and hence the monotonicity arguments from Propositions 3.19 and 4.23 go
through. We thus obtain a map

H•(L)→ HF •(ΦδH1L,L) = HF •(L,L; δH1) (5.79)

for every a ∈ [0, 1]. Notice that for s� 0, the a-dependence is just a change of gauge, so the
moduli spaces are well-behaved as a family over a ∈ [0, 1]. It follows that this map (5.79) is
independent of a ∈ [0, 1].
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We now show that the two maps H•(L) → HF •(L,L) defined in the two paragraphs
directly above coincide. Consider the second construction at a = 1, namely the holomorphic
curve equation (du)0,1

J = 0 with moving Lagrangian boundary conditions ΦδH(s)L. Now

consider replacing H with an alternative interpolation H̃ : R≤0 → H(X) between H̃(s) = 0
near s = 0 and H̃(s) = H1 for s� 0 with wrapping bounded below inf −∂sH̃ > −∞ (in fact,
with the same lower bound as before) which coincides with H over a large compact set and
which near infinity equals ψ(s)H1 for some cutoff function ψ : R≤0 → [0, 1] with ψ′(s) ≤ 0. If
we take H̃ = H over a sufficiently large compact set, then the proof of compactness applies
equally well to H̃ as it did to H, and shows that solutions u are confined to a compact
set over which H = H̃ (both H and H̃ enjoy the same upper bound on geometric energy
coming from boundedness below of wrapping in view of (3.42)). Hence, when we replace H
with H̃, the moduli spaces of solutions remain the same, and hence define the same map
H•(L) → HF •(L,L). On the other hand, ΦδH̃(s)L is a cylindrical isotopy, non-negative at
infinity, and thus defines the map from the first construction. We conclude that the two
maps H•(L)→ HF •(L,L) defined above are in fact the same.

In view of the above discussion, we may regard the map H•(L)→ HF •(L,L) as counting
maps u : D2 \ {1} → X with boundary on L (and a boundary point constraint) satisfying

(du−XδH(s) ⊗ dϕ(t))0,1
J = 0 (5.80)

with respect to strip-like coordinates R≤0× [0, 1]→ D2 \ {1} and a dissipative family H(s) :
R≤0 → H(X) from H(0) = 0 to H(−∞) = H1 (linear and non-negative at infinity, vanishing
near ∂X, and whose restriction to L is positive at infinity and Morse) and any family
J : D2 \ {1} → J(X) which is s-invariant for s� 0 and achieves transversality.

L

Figure 14: Map R≤0 × [0, 1]→ D2 \ {1}.

To facilitate the interaction of the moduli spaces of solutions to (5.80) with the open-
closed map and symplectic cohomology, we modify H over a small neighborhood of ∂X so
that it equals Reπ (independent of s) over π−1(C|Re|≤ε). Note that for the equation (5.80)
to be well-behaved after this modification, we should, before modifying H, homotope the
strip-like coordinates so that {0}× [0, 1] ⊆ ∂D2 as in Figure 14. For such choice of strip-like
coordinates, the spaces of solutions of (5.80) with respect to the original and modified H are
the same, since the projection π− blocks disks from reaching the region where H is modified
(assume H vanishes near ∂X− and J makes π− holomorphic).
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L

Figure 15: Riemann surface defining composition H•(L)→ HW •(L,L)→ SH•+n(X, ∂X).

Finally, let us compose the map H•(L)→ HF •(L,L) with the open-closed map. In other
words, we count pairs consisting of a solution to (5.80) (with domain illustrated in Figure 14)
and a solution to (5.61) (with domain illustrated in Figures 11 and 12) asymptotic (at the
negative/positive ends, respectively) to the same element of ΦδH1L ∩ L. The resulting map
H•(L) → SH•(X, ∂X) is unaffected by gluing together the positive/negative ends of these
domains to form a finite length strip. The result is that we count maps u : D2 \ {0} → X
with boundary on L satisfying

(du−XδH(s) ⊗ d(ϕs+s0(2πt)))
0,1
J = 0. (5.81)

Here we use coordinates R≤0 × [0, 1] → D2 \ {0} which for s � 0 is strip-like coordinates
at 0 ∈ D2 (via the map [0, 1] → S1 given by t 7→ 2πt) and with {0} × [0, 1] ⊆ ∂D2 (see
Figure 15), the map ϕs : S1 → S1 is from (5.54), s0 ∈ R is a large positive number,
J : D2 \ {0} → J(X) is s-invariant for s � 0, and H : R≤0 → H(X) (different from the
H used earlier) is dissipative and satisfies H = Re π over π−1(C|Re|≤ε), with H = 0 near
s = 0 (except near ∂X) and H(−∞) admissible in the sense of Definition 4.4. Compactness
follows, using crucially the fact that H(0) vanishes in a neighborhood of L.

We further deform the equation (5.81) as follows. We first deform the coordinates R≤0×
[0, 1] → D2 \ {0} into the standard biholomorphism R≤0 × [0, 1]/(s, 0) ∼ (s, 1) → D2 \ {0}
given by es+2πit. Next, we send s0 to −∞ so that ϕs+s0 simply becomes the identity map. We
thus conclude that the map H•(L)→ SH•(X, ∂X) is given by counting maps u : D2\{0} →
X with boundary on L satisfying

(du−XδH(s) ⊗ dt)0,1
J = 0 (5.82)

with respect to the standard coordinates z = es+it ∈ D2, where H : R≤0 → H(X) is
dissipative, interpolating from H(0) = 0 (modified near ∂X to equal Reπ over π−1(C|Re|≤ε))
to H(−∞) which is admissible in the sense of Definition 4.4.

We may choose H(−∞) to be Morse, and by Proposition 4.40, for δ > 0 sufficiently
small, we may take J to be t-invariant for s � 0. In fact, the argument of Proposition
4.40 shows that for δ > 0 sufficiently small, we may take J to be t-invariant on all of
D2\{0} and all solutions u are t-invariant. We conclude that the map H•(L)→ SH•(X, ∂X)
factors as H•(L)→ H•+n(X, ∂X)→ SH•+n(X, ∂X), where the first map counts Morse half-
trajectories ` : R≤0 → X with `(0) ∈ L constrained to lie on a given locally finite chain on
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L. This is the standard Morse model for the pushforward i! : H•(L) → H•+n(X, ∂X), thus
concluding the proof.
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