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The Supplementary Material is organized in the following manner. In App. A, we describe how point-group
symmetries constrain a tight-binding Hamiltonian, and introduce the notion of little groups. In App. B, we formulate
the mirror Chern numbers in systems with Cnv symmetry. For electronic systems with negligible spin-orbit coupling,
or intrinsically spinless systems, we show that the mirror Chern numbers must vanish for C2v, C4v and C6v. In App. C,
we identify the two-dimensional irreducible representations (irreps) of the Cnv groups, then derive minimal-derivative,
effective Hamiltonians for these doublet irreps. In App. D, we formulate the halved mirror chirality (χ), and prove
that it is quantized to integers. Then we identify certain symmetries beyond the Cnv group which constrain χ to
vanish. In App. E, we formulate the bent Chern numbers, and show how they are related to the mirror Chern numbers
and the halved chiralities. In App. F, we describe models with nontrivial χ for the C(b)

3v , C4v and C6v groups. Finally,
in App. G (App. H), we explain the role of time-reversal symmetry (particle-hole redundancy) in constraining some
of these topological invariants. The last section is applicable to spinless superconductors with Cnv symmetry.

Appendix A: Point-group symmetry in tight-binding Hamiltonians

1. Review of the tight-binding Hamiltonian

In the tight-binding method, the Hilbert space is reduced to a finite number of Löwdin orbitals ϕR,α, for each unit
cell labelled by the Bravais lattice (BL) vector R.1–3 In Hamiltonians with discrete translational symmetry, our basis
vectors are

φk,α(r) = 1√
N

∑
R

eik·(R+rα)ϕR,α(r −R− rα), (A1)

which are periodic in lattice translations R. k is a crystal momentum, N is the number of unit cells, α labels the
Löwdin orbital, and rα denotes the position of the orbital α as measured from the origin in each unit cell. The
tight-binding Hamiltonian is defined as

H(k)αβ =

∫
ddr φk,α(r)∗ Ĥ φk,β(r), (A2)

where Ĥ = p2/2m+ V (r) is the single-particle Hamiltonian. The energy eigenstates are labelled by a band index n,
and defined as ψn,k(r) =

∑
α un,k(α)φk,α(r), where∑

β

H(k)αβ un,k(β) = εn,k un,k(α). (A3)

We employ the braket notation:

H(k)
∣∣un,k〉 = εn,k

∣∣un,k〉. (A4)

Due to the spatial embedding of the orbitals, the basis vectors φk,α are generally not periodic under k → k + G for
a reciprocal lattice (RL) vector G. This implies that the tight-binding Hamiltonian satisfies:

H(k + G) = V (G)-1H(k)V (G), (A5)

where V (G) is a unitary matrix with elements: [V (G)]αβ = δαβ e
iG·rα .

2. Symmetry constraints of the tight-binding Hamiltonian

We define the creation operator for a Löwdin function ϕR,α as c†α(R+ rα). From (A1), the creation operator for a
Bloch basis vector φk,α is

c†k,α = 1√
N

∑
R

eik·(R+rα) c†α(R + rα). (A6)

Let g be a point-group element that is represented by D(g) in Rd, and by U(g) in the basis of Löwdin orbitals:

ĝ c†α(R + rα) ĝ-1 = c†β
(
D(g)R + ∆βα + rβ

)
Uβα. (A7)
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D(g) is orthogonal: D(g)t = D(g)-1, and we have defined ∆βα = D(g)rα − rβ. A Bravais lattice (BL) that is
symmetric under g satisfies two conditions:
(i) for any BL vector R, D(g)R is also a BL vector:

∀R ∈ BL, D(g)R ∈ BL. (A8)

(ii) If g transforms an orbital of type α to another of type β, i.e., U(g)βα is nonzero, then D(g)(R+ rα) must be the
spatial coordinate of an orbital of type β. This implies

U(g)βα 6= 0 ⇒ ∆βα ∈ BL. (A9)

For example, consider a basis of (px, py) orbitals in a 2D monoatomic square lattice. We choose that the spatial
origin coincides with the position of one atom, thus the spatial embedding of the orbitals are rpx = rpy = 0. We
employ the shorthand that (x, y) represents a vector xx̂ + yŷ. A four-fold rotation (g = C4) transforms vectors as
(x, y) → (−y, x), thus it is represented in R2 by D(C4) = −iσ2, with σ2 a Pauli matrix. Since (px, py) orbitals also
transform in the vector representation, we find that C4 is represented in the orbital basis by U(C4) = −iσ2. A square
lattice is symmetric under C4, thus for any BL vector R, D(C4)R is also a BL vector. In a monatomic BL where the
spatial origin coincides with the atom, ∆αβ = 0 trivially.

Applying (A6), (A8), (A9) and the orthogonality of D(g), the Bloch basis vectors transform as

ĝ c†k,α ĝ
-1 = c†D(g)k,β U(g)βα. (A10)

If the Hamiltonian is symmetric under g, [H, ĝ] = 0 implies

U(g)H(k)U(g)-1 = H
(
D(g)k

)
. (A11)

3. Little group of the wavevector

Suppose special momenta (k̄) exist that satisfies

D(g)k̄ = k̄ + Gg(k̄) (A12)

for some reciprocal lattice (RL) vector G that depends on the momentum and the symmetry element in question. We
say that k̄ as invariant under g. We deduce from (A5) that

[H(k̄), V
(
Gg(k̄)

)
U(g) ] = 0. (A13)

Equivalently, the eigenstates of H(k̄) may be chosen to have quantum numbers under the unitary operation
V
(
Gg(k̄)

)
U(g). The collection of all symmetry elements {g1, g2, . . . , gl} which leave k̄ invariant forms the little

group of the wavevector; the little group is generically a subgroup of the group of the Hamiltonian.4 Henceforth, we
shall be discussing a single momentum k̄, and we suppress writing k̄ in the arguments of Gg. The set of operations
{V (Gg1)U(g1), . . . , V (Ggl)U(gl(k̄))} form a representation of the little group at k̄. The little group at k̄ = 0 is the

group of the Hamiltonian, for which {U(g1), . . . , U(gl(0))} form a representation; in this case V (Gg) = I trivially for
all g.

Let’s introduce the shorthand: Da = D(ga) and U(ga) = Ua. A useful identity is

Ua V (G)U -1
a = V (DaG) (A14)

for any reciprocal lattice vector G. Proof: applying (A8) and (A9), we deduce that

[Ua]αβ 6= 0 ⇒ D-1
a ∆αβ ∈ BL. (A15)

Applying this in conjunction with the orthogonality of Da, we find

[Ua V (G)]αβ = [Ua]αβ e
iG·rβ = ei(DaG)·rα [Ua]αβ e

iG·D-1
a ∆αβ = [V (DaG)Ua ]αβ . (A16)
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For a less trivial example of a litte group, we consider the C4-invariant point k̄ = (π, π, 0) for spinless C4v systems.
Each element ga in this group is represented by X(ga) = V (Gga)U(ga):

X(e) = I, X(C4) = V (−2πx̂)U(C4), X(C-1
4 ) = V (−2πŷ)U(C-1

4 ),

X(C2) = V
(
− 2π(x̂+ ŷ)

)
U(C2), X(Mx) = V (−2πx̂)U(Mx), X(My) = V (−2πŷ)U(My),

X(M1) = U(M1), X(M2) = V
(
− 2π(x̂+ ŷ)

)
U(M2), (A17)

where e is the identity element, Cn is an n-fold rotation, and Mi are reflections which transform real-space coordinates
as Mx : (x, y) → (−x, y), My : (x, y) → (x,−y), M1 : (x, y) → (y, x), M2 : (x, y) → (−y,−x). Applying (A14), one
derives that these matrices satisfy the requisite algebraic relations, e.g., X(C4)4 = X(e), X(Mi)

2 = X(e) and
X(Mi)X(C4)X(Mi)

-1 = X(C−1
4 ). The last relation is merely the matrix representation of a simple statement: the

handedness of a rotation inverts under a reflection, if the rotation axis is parallel to the reflection plane.

4. Generalized little groups

Let us consider lower-dimensional submanifolds which are embedded in the 3D BZ. The set of all elements which
leave this submanifold invariant is defined as the little group of the submanifold. The little group of the wavevector
corresponds to a 0D submanifold, but we will also be interested in 1D and 2D submanifolds. For example, let us define
a mirror plane (MP) as a plane in the 3D BZ which is mapped to itself under a certain reflection, up to a translation
by a RL vector. For example, the plane kx = π is mapped to itself under the reflection Mx : (x, y) → (−x, y), up to
a translation of G = 2πx̂. We define the group of the MP as the collection of all symmetry elements {g1, g2, . . . , gl}
which leave MP invariant; the group of the MP is generically a subgroup of the group of the Hamiltonian, which we
take to be C4v for illustration. In the spinless representation, the group of the MP kx = π consists of the elements
{e,Mx, C2,My}. We recall the definitions of U(g), D(g) and V (k) in App. A 2. Suppose k ∈MP , Gg(MP) is defined
as the RL vector that separates D(g)k from the MP:

∀ k,k′ ∈MP, D(g)k = k′ + Gg(MP). (A18)

Each element in the group of the MP is represented by X(g) = V (Gg(MP))U(g). For example, the group of the MP
kx = π is represented by

X(e) = I, X(C2) = V (−2πx̂)U(C2), X(Mx) = V (−2πx̂)U(Mx), X(My) = U(My). (A19)

One may verify through the identity (A14) that these matrices satisfy the requisite algebraic relations, e.g., X(C2)2 =
X(e), and X(Mx)X(C2)X(M -1

x ) = X(C-1
2 ) = X(C2).

Appendix B: Mirror Chern numbers in systems with Cnv symmetry

1. Definition of mirror Chern numbers, in systems with or without spin-orbit coupling

If an energy gap exists that distinguishes between occupied and unoccupied bands, we may define the Berry vector
potential as

A(k) = −i
∑
n∈occ.

〈
un,k

∣∣∇ ∣∣un,k〉, (B1)

and the Abelian Berry field as

F̃(k) = ∇×A(k). (B2)

In (B1), we sum over all occupied bands. In Cnv systems, there exist planes in the 3D BZ which are invariant under
a certain reflection, up to translations by a reciprocal lattice vector. In each mirror plane (MPi), there exists an
operator X(Mi) which represents the reflection Mi; X(Mi) represents an element in the group of the mirror plane, as
defined in App. A 4. In representations with spin, X(Mi)

2 = −I and the eigenvalues of reflection are ±i; we define
the mirror-even (-odd) bands as having mirror eigenvalues +i (−i). In representations without spin, X(Mi)

2 = +I
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and we define the mirror-even (-odd) bands as having mirror eigenvalues +1 (−1). Mirror-even bands are denoted by

the superscript (e), and we may define the mirror-even Berry field F̃(k)e as

F̃(k)e = −i
∑

n∈occ,even
∇×

〈
uen,k

∣∣∇ ∣∣uen,k〉, (B3)

where we only sum over occupied bands which transform in the even representation of reflection. We similarly define
the mirror-odd Berry field F̃(k)o. In each MPi we denote an infinitesimal, directed area element by dΩ. The even
and odd mirror Chern numbers are defined as

Ce =
1

2π

∫
MP

dΩ · F̃(k)e, Co =
1

2π

∫
MP

dΩ · F̃(k)o. (B4)

2. The mirror Chern numbers vanish for spinless systems, with either C2v, C4v or C6v symmetry

By spinless systems, we refer either to electronic systems with spin SU(2) symmetry, or to intrinically spinless
systems such as photonic crystals and certain cold atoms. For Cnv systems with n = 2, 4 or 6, there exists a two-fold
rotational symmetry about the ẑ axis. As shown in App. A 2, this symmetry manifests as

U(C2)H(k)U(C2)-1 = H
(
D(C2) · k

)
, (B5)

where U(C2) represents a two-fold rotation in the orbital basis, and

D(C2) =

−1 0 0
0 −1 0
0 0 +1

 (B6)

represents a two-fold rotation in R3. Since the rotation axis lies within the mirror plane MPi, the element C2 leaves
MPi invariant, thus C2 belongs to the little group of MPi. As shown in App. A 4, each element g in this subgroup is
represented by an operator X(g), which satisfy requisite algebraic relations that follows from the group structure, e.g.,
X(Mi)X(C2)X(M -1

i ) = X(C-1
2 ). Since these representations are assumed to be spinless, X(C2)2 = I, and X(C2)

commutes with X(Mi). This implies that a mirror-even state at k is mapped to a mirror-even state at D(C2)k, by
two-fold symmetry. It follows that the mirror Berry fields are related by

F̃(k)e = D(C2) · F̃
(
D(C2) · k

)
e
, and F̃(k)o = D(C2) · F̃

(
D(C2) · k

)
o
. (B7)

There exists Euclidean basis vectors (ê‖,1, ê‖,2, ê⊥) which transform under the reflection into (ê‖,1, ê‖,2,−ê⊥); the
subscript ‖ (⊥) denotes a vector that is parallel (perpendicular) to the mirror plane. Since the two-fold rotational
axis lies within MPi, D(C2) · ê⊥ = −ê⊥, and

F̃(k)e · ê⊥ = −F̃
(
D(C2) · k

)
e
· ê⊥. (B8)

Since the directed area element dΩ is parallel to ê⊥, the contributions to the integral (B4) at k and D(C2)k are equal
in magnitude but opposite in sign. This implies Ce = 0, and a similar argument can be made for Co = 0. It should be
noted that in spin-orbit-coupled systems, X(Mi) anticommutes with X(C2), thus Ce = −Co instead.

3. Mirror Chern numbers in spinless C3v systems

In C3v systems without spin-orbit coupling, two-fold rotational symmetry is absent, thus the mirror Chern numbers
need not vanish for the reason stated in Sec. B 2. These invariants might vanish for other reasons: if the C3v system
belongs to a larger symmetry group, for which C3v is a subgroup, then Ce = Co = 0 if there exists either of these
additional symmetries: (a) a reflection plane that is orthogonal to the principal C3 axis, or (b) a two-fold axis that
lies perpendicular to the C3 axis, and parallel to the mirror-plane. The proof is very similar to that in App. D 2 and
D 3.
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Appendix C: k · p analysis of surface bands in spinless Cnv systems

Consider a Cn-invariant point which is contained in a mirror line in the 001 surface BZ – the little group of
the wavevector is Cnv. We choose a coordinate system such that: (i) the origin lies at the Cn-invariant point,
(ii) ẑ lies along the principal Cn axis, and (ii) x̂ is parallel to the mirror line, i.e., the reflection My transforms
(x, y)→ (x,−y). We consider surface bands that transform in the doublet irrep of Cnv. Each doublet irrep comprises
two states with distinct, complex-conjugate eigenvalues under an n-fold rotation; these two states are degenerate
because My CnM

-1
y = C-1

n . It should be noted that there are no complex eigenvalues under a two-fold rotation, thus

our discussion applies to n > 2. Applying Cnn = e (the identity), we deduce these eigenvalues: (ei2π/3, e−i2π/3) for
C3v, and (i,−i) for C4v. For C6v there are two pairs: (ei2π/3, e−i2π/3) and (eiπ/3, e−iπ/3). In summary, there is one
doublet irrep in each of the groups C3v and C4v, and two doublet irreps in the group C6v.

1. Doublet irreducible representation of type 1

For the groups C3v, C4v and C6v, there exists a doublet irrep which transforms as vectors (x, y). We choose a
two-dimensional basis in which

∣∣1〉 transforms as x + iy and
∣∣2〉 as x − iy. In this basis, the representations of our

symmetry elements are

U(My) = σ1, and U(Cn) = ei2πσ3/n. (C1)

The effective two-band Hamiltonian may be expressed as

H(k) = d(k) I + f(k)σ+ + f(k)∗ σ− + g(k)σ3, (C2)

where d(k) and g(k) are real functions, f(k) is generally complex, and σ± = σ1 ± iσ2. This Hamiltonian satisfies the
symmetry relations

U(My)H(k+, k−)U(M -1
y ) = H

(
k−, k+

)
, (C3)

U(Cn)H(k+, k−)U(C-1
n ) = H

(
k+ ω, k− ω

∗), (C4)

where k± = kx ± iky and ω = exp[i2π/n]. We expand

d(k) =
∑

i≥0,j≥0

dij k
i
+ k

j
−; f(k) =

∑
i≥0,j≥0

fij k
i
+ k

j
−; g(k) =

∑
i≥0,j≥0

gij k
i
+ k

j
−. (C5)

Cn symmetry imposes

dij = 0 if
i− j
n

/∈ Z; fij = 0 if
i− j − 2

n
/∈ Z; gij = 0 if

i− j
n

/∈ Z. (C6)

My symmetry imposes

dij = dji; fij ∈ R; gij = −gji. (C7)

If the group of the wavevector is C3v, an expansion of the effective Hamiltonian to second order in k gives

d(k) = m+ d k+ k−; f(k) = a k− + b k2
+; g(k) = 0. (C8)

For C4v,

d(k) = m+ d k+ k−; f(k) = a k2
− + b k2

+; g(k) = 0. (C9)

For C6v,

d(k) = m+ d k+ k−; f(k) = b k2
+; g(k) = 0. (C10)

All coefficients {m, d, a, b} are real.
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2. Doublet irreducible representation of type 2

For the group C6v, there exists a second doublet irrep which transforms as (x2 − y2, 2xy). We choose the same
coordinates as in Sec. C 1, and a two-dimensional basis in which

∣∣1〉 transforms as (x2 − y2) + i2xy and
∣∣2〉 as

(x2 − y2)− i2xy. In this basis, the representations of our symmetry elements are

U(My) = σ1, and U(C6) = ei2πσ3/3. (C11)

The two-band effective Hamiltonian satisfies the symmetry relations

U(My)H(k+, k−)U(M -1
y ) = H

(
k−, k+

)
, (C12)

U(C6)H(k+, k−)U(C-1
6 ) = H

(
k+ ω, k− ω

∗), (C13)

where k± = kx ± iky and ω = exp[i2π/6]. C6 symmetry imposes

dij = 0 if
i− j

6
/∈ Z; fij = 0 if

i− j − 4

6
/∈ Z; gij = 0 if

i− j
6

/∈ Z. (C14)

My symmetry imposes the same constraints as in (C7). An expansion of the effective Hamiltonian to second order in
k gives

d(k) = m+ d k+ k−; f(k) = a k2
−; g(k) = 0. (C15)

All coefficients {m, d, a} are real.

Appendix D: The halved mirror chirality

1. Integer quantization of the halved mirror chirality

Let us prove that χ ∈ Z, for systems with or without spin-orbit coupling. From the definition (1), we separate χ
into two parts: 2π χ = Be −Bo, where

Bη =

∫
HMP

dt dkz Fη(t, kz), (D1)

and η ∈ {e, o} distinguishes the mirror-even and mirror-odd subspaces, as defined in App. B. The Berry curvature in
a mirror subspace is defined by

Fη(t, kz) = ∂tAηz(t, kz)− ∂z Aηt (t, kz) (D2)

where ∂t = ∂/∂t, ∂z = ∂/∂kz, and

Aηµ(t, kz) = −i
∑

n∈occ,η

〈
uηn,(t,kz)

∣∣ ∂µ ∣∣uηn,(t,kz)

〉
. (D3)

Here we only sum over occupied bands in the representation of reflection denoted by η. If ê⊥ is the unit vector
orthogonal to HMP, then Fη = F̃η · ê⊥ is a scalar, in comparison with the vector F̃η which is defined in App. B. In
terms of A,

Bη =

∫ 1

0

dt ∂t

∫ π

−π
dkz Aηz −

∫ π

−π
dkz∂z

∫ 1

0

dtAηt . (D4)

Since Bη is expressed in terms of Berry curvature, it is manifestly gauge-invariant. Given that
∣∣un,(t,kz)

〉
is an

eigenstate of H(t, kz) in the HMP, it follows from (A5) that V (2πẑ)-1
∣∣un,(t,kz)

〉
is an eigenstate of H(t, kz + 2π), up

to a U(1) phase ambiguity. It is convenient to choose this arbitrary phase to vanish as∣∣un,(t,kz+2π)

〉
= V (2πẑ)-1

∣∣un,(t,kz)

〉
, (D5)

or equivalently ψn,(t,kz)(r) = ψn,(t,kz+2π)(r). In this periodic gauge, the second term of (D4) vanishes.5 The remaining
expression may be expressed in terms of the Wilson loop, which is a matrix representation of holonomy. Let us consider
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the parallel transport of a mirror-eigenstate, around a non-contractible loop in the HMP – at constant t but varying
kz. In the orbital basis, such transport is represented by the operator

Ŵη(t) = V (2πẑ)

π←−π∏
kz

Pη(t, kz), (D6)

where Pη(t, kz) projects into the occupied subspace in the η-representation of reflection:

Pη(t, kz) =
∑
n∈occ

∣∣uηn,(t,kz)

〉〈
uηn,(t,kz)

∣∣, (D7)

and (π ← −π) indicates that the product of projections is path-ordered. In the basis of nocc,η occupied bands in the
η-representation, this same parallel transport is represented by an nocc,η × nocc,η matrix:

[Wη(t)]ij =
〈
uηi,(t,−π)

∣∣ Ŵη(t)
∣∣uηj,(t,−π)

〉
, (D8)

where the total eigenspectrum of (D8) comprise the unimodular eigenvalues of (D6). It is shown in Ref. 6 that (D4)
may be expressed as

Bη =

∫ 1

0

dt ∂t

∫ π

−π
dkz Aηz = −i

∫ 1

0

dt ∂t ln detWη(t)

= − i ln detWη(t = 1) + i ln detWη(t = 0) + 2πNη; Nη ∈ Z. (D9)

Here we have chosen the principal branches of the logarithm at endpoints t = 0 and t = 1, and Nη is the number of
windings in the interval t ∈ (0, 1), relative to these principal values. We claim that the eigenspectrum of Wη(t = 0)
is degenerate with the eigenspectrum of W−η(t = 0), and a similar degeneracy occurs at the other endpoint t = 1.

Proof: let t̄ denote an endpoint t ∈ {0, 1}. The lines at constant t̄ are invariant under (i) a certain m-fold rotation
(m = 3 for C3v and C6v, m = 4 for C4v), and (ii) a reflection Mi. The set of elements which leave this line invariant
form the group of the line; they are represented by {X(Mi), X(Cm), X(C-1

m), . . .}, as discussed in App. A 4. The
relevant symmetry relations are

∀ kz, [X(Cm), H(t̄, kz) ] = [X(C-1
m), H(t̄, kz) ] = [X(Mi), H(t̄, kz) ] = 0. (D10)

Analogous to the construction of (D7) and (D8), we may define, for all nocc occupied bands, a nocc×nocc Wilson-loop
matrix:

[W(t̄)]ij =
〈
ui,(t̄,−π)

∣∣ V (2πẑ)

π←−π∏
kz

(
Pη(t̄, kz) + P−η(t̄, kz)

) ∣∣uj,(t̄,−π)

〉
=
〈
ui,(t̄,−π)

∣∣ Ŵ(t)
∣∣uj,(t̄,−π)

〉
. (D11)

We also define the complete projection into the occupied bands as P = Pη+P−η, which projects onto both mirror-odd
and -even bands. Since the bands transform in the doublet irreps, nocc,η+nocc,−η = nocc, as assumed in the main text.
Since the mirror subspaces are orthogonal, the eigenspectum of W(t̄) comprise the eigenvalues of Wη(t̄) and W−η(t̄).
Suppose

∣∣η〉 belongs to the occupied subspace at momentum (t̄, kz = −π), and the state satisfies two conditions:

(i) it is an eigenstate of W(t̄): Ŵ(t̄)
∣∣η〉 = eiϑ

∣∣η〉, and (ii) it is also an eigenstate of reflection: X(Mi)
∣∣η〉 = η

∣∣η〉.
It follows from (D10) that X(Cm)

∣∣η〉 and X(C-1
m)
∣∣η〉 belong in the occupied subspace at (t̄, kz = −π). Since

∣∣η〉
transforms in the doublet irrep, it is a linear combination of states {

∣∣λ〉, ∣∣λ∗〉} with complex eigenvalues under X(Cm)

(for m > 2). Note that if X(Cm)
∣∣λ〉 = λ

∣∣λ〉 for complex λ, then X(C-1
m)
∣∣λ〉 = λ∗

∣∣λ〉 6= X(Cm)
∣∣λ〉. Thus we deduce

that (X(Cm)−X(C-1
m) )

∣∣η〉 is not a null vector. Then

X(Mi)X(Cm)X(M -1
i ) = X(C-1

m) ⇒ X(Mi) (X(Cm)−X(C-1
m) )

∣∣η〉 = −η (X(Cm)−X(C-1
m) )

∣∣η〉, (D12)

i.e.,
∣∣η〉 and (X(Cm)−X(C-1

m) )
∣∣η〉 have opposite mirror eigenvalues. From (D10), we derive

∀ kz, X(Cm)P (t̄, kz)X(C-1
m) = P (t̄, kz). (D13)

Combining this relation with (A14) and (D11),

Ŵ(t̄) (X(Cm)−X(C-1
m) )

∣∣η〉 = eiϑ (X(Cm)−X(C-1
m) )

∣∣η〉. (D14)
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This proves the double-degeneracy in the Wilson-loop spectrum, or equivalently,

ln detWη(t̄) = ln detW−η(t̄). (D15)

Combining this with (D9) and (1), we find

χi =
Nη −N−η

2π
= Nη −N−η ∈ Z, (D16)

where η = 1 for spinless representations, and i for representations with spin.

2. χ = 0 with a reflection plane orthogonal to the principal Cn axis

All Bloch wavefunctions in HMPi may be diagonalized by a single operator, which represents the reflection Mi.
Suppose there exists another reflection symmetry Mz: z → −z, for ẑ along the principal Cn axis. Since Mi and
Mz are reflections in perpendicular planes, their operations commute. This implies that a mirror-even state at k is
mapped to a mirror-even state at D(Mz)k, hence the mirror Berry curvatures are related by Fe(t, kz) = −Fe(t,−kz).
Similarly, Fo(t, kz) = −Fo(t,−kz). In comparison with (B7), there is an extra minus sign because the Berry field F̃
is a pseudovector, and D(Mz) is an improper rotation. From (D1), it follows that Be = Bo = χ = 0.

3. χ = 0 with a two-fold axis that lies perpendicular to the principal Cn axis, and parallel to the
half-mirror-plane

Suppose there exists a two-fold rotational symmetry C2, with axis perpendicular to the principal Cn axis, and
parallel to HMPi. For spinless representations, MiC2M

-1
i = C-1

2 = C2, thus their operations commute. This implies
that a mirror-even state at momentum (t, kz) within HMPi is mapped to a mirror-even state at (t,−kz) by the
two-fold symmetry, hence the mirror Berry curvatures are related by Fe(t, kz) = −Fe(t,−kz). Similarly, Fo(t, kz) =
−Fo(t,−kz). From (D1), it follows that Be = Bo = χ = 0.

Appendix E: Relations between the halved mirror chirality and the bent Chern numbers

(a) (b)

FIG. 1. Top-down view of 3D BZ’s with various symmetries; our line of sight is parallel to the rotational axis. Reflection-
invariant planes are indicated by solid lines. Each half-mirror-plane (HMPi) is illustrated by a solid line that connects two
distinct Cm-invariant lines for m > 2. HMPi is labelled by a number i over the solid line. Arrows that emanate from each HMP
indicate the convention in which Berry flux is calculated, i.e., they define in vs out. (a) Tetragonal BZ with C4v symmetry.
(b) Hexagonal BZ with C(b)

3v symmetry.

1. The halved mirror chirality and the bent Chern number in C4v systems

The halved chiralities and the bent Chern number are related by

parity[χ4 + χ5 ] = parity[ C45 ]. (E1)
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Proof: for i ∈ {4, 5}, define the mirror Berry flux through HMPi as

B(i)
η =

∫
HMPi

dti dkz Fη(ti, kz), (E2)

where η ∈ {e, o} distinguishes between mirror-even and mirror-odd subspaces; Fη is defined in (D2) and (D3). We
choose the convention that this flux emanates from the inside of the triangular pipe, as illustrated in Fig. 1(a). The

total Berry flux is defined B(i) = B
(i)
e +B

(i)
o , and the bent Chern number satisfies 2π C45 = B(4) +B(5). The halved

chiralities are defined by 2πχi = B
(i)
e −B(i)

o , thus

C45 = χ4 + χ5 +
2(B

(4)
o +B

(5)
o )

2π
. (E3)

(E1) follows from proving

B
(4)
o +B

(5)
o

2π
∈ Z, (E4)

which we now do. As in (D9), we express B in terms of the Wilson loop:

B(i)
o = − i ln detWMi=η(ti = 1) + i ln detWMi=η(ti = 0) + 2πN (i); N (i) ∈ Z. (E5)

The subscript Mi = η means that W represents the parallel transport of a state with eigenvalue η under X(Mi);
η = −1 (−i) for representations without (with) spin. With our chosen flux conventions, the lines labelled by t4 = 0
and t5 = 1 coincide, and they project to Γ̄ in the 001 surface BZ, as illustrated in Fig. 1; the lines t4 = 1 and t5 = 0
coincide, and they project to M̄ in the surface BZ. We rewrite (E5) as

B(4)
o = − i ln detWM4=η(M̄) + i ln detWM4=η(Γ̄) + 2πN (4); N (4) ∈ Z,

B
(5)
0 = − i ln detWM5=η(Γ̄) + i ln detWM5=η(M̄) + 2πN (5); N (5) ∈ Z. (E6)

Now we will prove that the eigenspectrum of WM4=η(k̄) is identical to that of WM5=η(k̄), for both k̄ = M̄ and Γ̄.
We recall that M4 reflects (x, y) → (y, x) and M5 reflects (x, y) → (x,−y), thus the product is a four-fold rotation:
C4 = M4M5, or equivalently their representations satisfy X(C4) = X(M4)X(M5). Suppose X(M5)

∣∣η5

〉
= η5

∣∣η5

〉
. For

spinless representations, it follows from X(M4)2 = X(M5)2 = I and X(C4) = X(M4)X(M5), that (I +X(C4))
∣∣η5

〉
is

an eigenstate of X(M4) with eigenvalue η5. Moreover, since
∣∣η5

〉
transforms in the doublet irrep, (I +X(C4))

∣∣η5

〉
is

not a null vector. Then we can show that

ln detWM4=η(k̄) = ln detWM5=η(k̄), (E7)

in similar fashion to the steps preceding (D15). For representations with spin, we consider instead (I −X(C4))
∣∣η5

〉
,

and arrive at the same conclusion. Finally, (E4) is proven through

B(4)
o = −i ln detWM5=η(M̄) + i ln detWM5=η(Γ̄) + 2πN (4) = −B(5)

o + 2πN (5) + 2πN (4). (E8)

2. The halved mirror chirality and the bent Chern number in C(b)

3v systems

In addition to HMP’s defined in the main text, it is convenient to define HMP6 and HMP7 as illustrated in Fig.
1(b). For i ∈ {1, 2, 3, 6, 7}, define the mirror Berry flux through HMPi as

B(i)
η =

∫
HMPi

dti dkz Fη(ti, kz), (E9)

where η ∈ {e, o} distinguishes between mirror-even and mirror-odd subspaces; Fη is defined in (D2) and (D3). Our
flux conventions are illustrated in the same figure. In HMPi, all states are diagonalized by the reflection Mi, and the
various reflection operators are related by a three-fold rotation in coordinates: M3 = C-1

3 M1C3, M2 = C-1
3 M3C3, etc.

The mirror Chern numbers are defined as

2π Cη = B(7)
η +B(1)

η +B(6)
η . (E10)
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The halved mirror chiralities are defined as

2π χi = B(i)
e −B

(i)
0 ; i ∈ {1, 2, 3}. (E11)

The bent Chern number is defined as

2π C123 =
∑

η∈{e,o}

(
B(1)
η +B(2)

η +B(3)
η

)
. (E12)

Due to the three-fold rotational symmetry,

B(6)
η = B(2)

η , and B(7)
η = B(3)

η . (E13)

Combining this with (E10) and (E12), we find

C123 = Ce + Co. (E14)

Combining (E13) with (E11) and (E12), we find

χ1 + χ2 + χ3 = Ce − Co. (E15)

Once we specify (χ1, χ2, χ3, C123), the mirror Chern numbers are determined through the relations (E14) and (E15).
As a corollary,

parity[χ1 + χ2 + χ3 ] = parity[ C123 ]. (E16)

Appendix F: Models

1. Modelling a C4v system
En

er
gy

0

1

-1

0

1

-1
M XΓ

(a) (c)
E

C

(-1,-1)

(0,0)

(-1,0)(-1,1)

(0,-1)(0,1)

(1,0) (1,-1)(1,1)

En
er
gy

0

1.5

-1.5

0 kx0ky

(b)

FIG. 2. (a) Phase diagram of C4v model (F1); C and E are varied to induce phase transitions. Blue (uncolored) regions
correspond to gapped (gapless) phases. The halved chiralities in each phase are indicated by two integers: (χ4, χ5). The
blue square in the center is approximately bounded by |C| < 2 and |E| < 2. (b) Bulk dispersion of the semimetallic phase;
(χ4, χ5) = (0,−1). (c) Surface dispersions along M̄ − Γ̄− X̄. Top of (c): semimetal with (χ4, χ5) = (0,−1). Bottom: TI with
(χ4, χ5) = (−1,−1).

To exemplify our theory, we consider a C4v model on a tetragonal lattice, which comprises two interpenetrating
cubic sublattices. The Bloch Hamiltonian is

H(k) =
[
− 1 + 8 f1(k)

]
Γ03 + C f2(k) Γ01 + 2 f3(k) Γ11 + E f4(k) Γ32 + 2 f5(k) Γ12, (F1)

where f1 = 3− cos(kx)− cos(ky)− cos(kz), f2 = cos(ky)− cos(kx), f3 = 2− cos(kx)− cos(ky), f4 = sin(kx) sin(ky) and
f5 = sin(kz). We define Γab = σa⊗τb, where σi and τi are Pauli matrices for i ∈ {1, 2, 3}; σ0 and τ0 are identities in each
2D subspace.

∣∣σ3 = ±1, τ3 = +1
〉

label {px± ipy} orbitals on one sublattice, and
∣∣σ3 = ±1, τ3 = −1

〉
label {px∓ ipy}

orbitals on the other. This Hamiltonian has the four-fold symmetry: Γ33H(kx, ky, kz) Γ33 = H(−ky, kx, kz ), and the
reflection symmetry: Γ10H(kx, ky, kz) Γ10 = H(kx,−ky, kz). A phase diagram is plotted in Fig. 2(a) for different
parametrizations of (F1); the sweep of parameters indicated by the red line produces the Weyl trajectories of Fig.
4(e). In Fig. 2(b) and (c) we illustrate the energy dispersions at two points along this sweep.
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2. Modelling C(b)

3v and C6v systems

We model a C(b)

3v system on a hexagonal lattice composed of two interpenetrating triangular sublattices. Defining

k1 = k · a1 and k2 = k · a2, with a1 = (1, 0, 0) and a2 = (−1/2,
√

3/2, 0), the Hamiltonian is

H(k) =
[

5/2− cos (k1 + φ)− cos (k2 + φ)− cos (k1 + k2 − φ)− cos (kz)
]

Γ30 + Γ10

+

{
z
[
eiπ/3 cos k1 + e−iπ/3 cos k2 − cos (k1 + k2)

]
Γ1+ + h.c.

}
+ sin (kz) Γ20 (F2)

with φ = 2π/3. Γ1+ = σ1 ⊗ (τ1 + iτ2). σ3 = ±1 label the two sublattices, and τ3 = ±1 label the {px ± ipy} orbitals.
C3 symmetry manifests as

X(Cn)H(k)X(Cn)-1 = H(D(Cn)k ), (F3)

for n = 3; X(C3) = σ0 ⊗ exp( i 2π τ3/3 ), and D(Cn) represents an n-fold rotation in R3. The reflection symmetries
include Γ01H(k) Γ01 = H(R(M3)k ), where D(M3) represents a reflection across the mirror plane intersecting HMP3.

z = 0.25 describes a gapped phase with trivial {χi}. As we tune z from 0.25 to 0.3, a Berry dipole nucleates in HMP2,

then splits into two monopoles with opposite charge; this semimetallic phase is described by χ1 = 0, χ2 = 1, χ3 = 0
and C123 = 1; cf. (E16). As z is further increased to 0.5, pairs of monopoles converge on HMP1 and annihilate.

The resultant gapped phase satisfies χ1 = 1, χ2 = 1, χ3 = 0. This process is depicted in Fig. 4(f). In our final
example, we set φ = 0 in (F2) so that the Hamiltonian additionally satisfies the symmetry relation (F3) for n = 6
and U(C6) = σ0 ⊗ exp( i π τ3/3 ). z = 0.5 describes a trivial gapped C6v phase, and increasing z to 0.75 produces a

gapped phase with χ1 = −1; the intermediate Weyl trajectories are illustrated in Fig. 4(g).

Appendix G: Additional constraints on topological invariants due to time-reversal symmetry

In spinless systems, time-reversal symmetry (TRS) constrains Ce = Co = 0 in C(a)

3v systems, χ1 = −χ3 and

χ2 = Ce = Co = 0 in C(b)

3v systems; no analogous constraints exist for C4v or C6v.

1. Time-reversal symmetry in spinless C(a)

3v systems

Let T denote the spinless time-reversal operation, and M denote a reflection in the mirror plane (MP) colored red
in Fig. 2(a). Let k be a momentum within MP. Since [T,M ] = 0 and the reflection eigenvalues are real for spinless
representations, a state in the even representation at k is mapped by time-reversal to a state in the even representation
at −k, which also lies in MP. It follows that the mirror Berry curvatures are related by Fe(k) = −Fe(−k), and the
net contribution to the integral in (B4) is zero, thus Ce = 0. Similarly, Fo(k) = −Fo(−k) implies Co = 0.

2. Time-reversal symmetry in spinless C(b)

3v systems

The proof is similar to that in App. G 1. Time-reversal (T ) relates states within HMP2, and imposes B
(2)
e = B

(2)
o =

0, as defined in (E9). A product of time-reversal and a three-fold rotation relates states in HMP1 to states in HMP3,

thus B
(1)
e = −B(3)

e , and B
(1)
o = −B(3)

o . The conclusion is that χ1 = −χ3 and χ2 = Ce = Co = C123 = 0.

3. Time-reversal symmetry in spinless C4v and C6v systems

The following discussion applies to any HMPi in either C4v or C6v systems. A product of time-reversal and a two-fold
rotation relates states within the same HMPi as: Fη(ti, kz) = Fη(ti,−kz), for both mirror-even and -odd subspaces;
the parametrization (ti, kz) is defined in the main text. This relation does not constrain any of the above-mentioned
topological invariants.
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Appendix H: Generalization to spinless superconductors

The mirror Chern numbers, bent Chern numbers and halved mirror chirality are readily generalized to mean-field
Hamiltonians in the Bogoliubov-de Gennes (BdG) formalism. If Hermitian, the BdG Hamiltonian has a particle-hole
redundancy:

P H(k)P -1 = −H(−k) (H1)

for an antiunitary operator P . This relation imposes certain constraints on our topological invariants. If there exists
a two-fold rotational symmetry about the principal rotation axis of Cnv, then all the described invariants vanish. This
situation describes C4v and C6v, and is proven in App. H 1 below. In C3v systems, the only consequence of (H1) is

that χ1 = χ3 for C(b)

3v , as shown in App. H 2.

1. Vanishing invariants of C4v and C6v

If the BdG energy spectrum is gapped at momentum k, we may define the Berry vector potential as

A(k) = −i
∑
En<0

〈
un,k

∣∣∇ ∣∣un,k〉, (H2)

for
∣∣un,k〉 an eigenstate of the BdG Hamiltonian H(k). Here we sum over all bands with negative energies. The

negative-energy Berry field is defined as

F̃(k) = ∇×A(k). (H3)

Analogously, it is convenient to define a positive-energy Berry field:

G̃(k) = −i
∑
En>0

∇×
〈
un,k

∣∣∇ ∣∣un,k〉. (H4)

The particle-hole transformation of (H1) relates a positive-energy state at k to a negative-energy state at −k; the
negative-energy and positive-energy Berry fields are thus related by

F̃(k) = −G̃(−k). (H5)

A useful relation is that the Berry field of all bands is zero, i.e.,

F̃(k) + G̃(k) = 0, (H6)

if the superconductor is gapped at k. The proof consists of considering an infinitesimal Wilson loop W[l] around an

area element dΩ, centered at momentum k̃. From Stoke’s theorem,

exp
[
i( F̃(k̃) + G̃(k̃) ) · dΩ

]
= detW[l], (H7)

and the discretized Wilson loop has the form

W[l]ij =
〈
uk̃,i

∣∣ ∏
q∈l

Pall(q)
∣∣uk̃,j〉, (H8)

where the product of projections are path-ordered around the perimeter l of dΩ. Since Pall is the projection onto all
bands, by the completeness property it is just the identity. Thus,(

F̃(k̃) + G̃(k̃)
)
· dΩ = 2π u; u ∈ Z. (H9)

F̃ and G̃ are bounded if there is no singularity due to a band-touching at k̃. Since dΩ is infinitesimal, and
F̃ + G̃ bounded, u = 0. Since this proof works for any orientation of the area element, and for any k̃ where the
superconductor is gapped, we have proven (H6).
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Combining (H5) with (H6),

F̃(k) = F̃(−k). (H10)

Now consider a momentum k in a mirror plane (MP) of a C4v or C6v system. All Bloch wavefunctions in MP
may be diagonalized by a single operator, which represents the reflection Mi. Since the particle-hole transformation
commutes with Mi, (H10) implies Fe(k) = Fe(−k), where Fe is the component of F̃e perpendicular to MP. Suppose
there exists a two-fold rotational symmetry C2, with axis parallel to the principal Cn axis. For spinless representations,
MiC2M

-1
i = C-1

2 = C2, thus their operations commute. This implies that a mirror-even state at momentum k is related
by two-fold symmetry to a mirror-even state at D(C2)k, where D(C2) is the representation of the two-fold rotation
in R3. This implies Fe(k) = −Fe(−D(C2)k). By the same argument we deduce that Fe(ti, kz) = −Fe(ti,−kz), for a
momentum (ti, kz) in a half-mirror-plane (HMPi), and similarly Fo(ti, kz) = −Fo(ti,−kz) for the odd subspace. This

implies B
(i)
e = B

(i)
o = 0, as defined in (E9). Then the halved chirality is zero because 2πχi = B

(i)
e − B(i)

o = 0. By
similar arguments, we may derive that the mirror Chern numbers and the bent Chern numbers vanish.

2. χ1 = χ3 in spinless C(b)

3v superconductors

We refer to Fig. 1(b). A product of particle-hole transformation and a three-fold rotation relates states in HMP1

to states in HMP3, thus B
(1)
e = B

(3)
e , and B

(1)
o = B

(3)
o . This implies χ1 = χ3. There are no constraints on the other

invariants of C(b)

3v .
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