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In many situations, the rate of adoption of new information depends on reinforcement from mul-
tiple sources in a way that cannot be described by simple contagion processes. In such cases,
contagion is said to be complex. This has been found in the diffusion of human behaviors, inno-
vations, and knowledge. Based on that evidence, we propose a new model considering multiple,
potentially asymmetric, and competing contagion processes and analyze its respective population-
wide complex contagion dynamics. We show that the model spans a dynamical space in which the
population exhibits patterns of polarization, consensus, and dominance, a richer dynamical environ-
ment that contrasts with single simple contagion processes. We find that these patterns are present
for different population structures. We show that structured interactions increase the range of the
dominance regime by reducing that of polarization. Finally, we show that external agents designing
seeding strategies, to optimize social influence, can dramatically change the coordination threshold
for opinion dominance, while being rather ineffective in the remaining dynamical regions.
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The study of how information – opinions, diseases, in-
novations, norms, attitudes, habits, or behaviors – spread
throughout social systems has occupied the physical and
social sciences for decades [1–7]. In that context, the
propagation of information has traditionally been as-
sumed to happen through simple-contagion – a contact
process in which information spreads through pairwise
interactions [8–18]. However, recent empirical evidence
suggests that different types of information spread differ-
ently [19–24]. In particular, the acquisition of informa-
tion that is either risky, controversial, or costly seems to
require reinforcement from multiple contact sources [6].
Contrary to simple-contagion, these processes result in
propagation impediments to, and through, isolated re-
gions of social networks [25] and were coined as complex
contagion. Although widely studied in the context of cas-
cading phenomena [26], complex contagion has received,
to the best of our knowledge, little attention in the lit-
erature of population dynamics [27], a scenario involving
the competition between opposing information elements.
Here, we provide a characterization of the spread of com-
peting information under complex contagion, exploring
the implications for the design of social interventions that
are aimed at, for instance, optimizing the spread of social
influence.

Let us start by considering a finite population of Z in-
dividuals who hold alternatively one of two opinions, say
A or B. Thus, at each moment, there are k individuals
with opinion A and Z − k with opinion B. The num-
ber of contacts an individual i has defines its degree, zi.
Individuals revise their opinion by taking into considera-
tion the opinion composition in their neighborhood. We
assume that such events are unilateral and that the like-
lihood of individuals successfully updating their opinion

is reinforced by multiple contact sources [6]. Hence, an
individual i with opinionX and nYi contacts with opinion
Y 6= X changes to opinion Y with probability

pX→Yi =

(
nYi
zi

)αXY

, (1)

where X and Y can take the values A or B. Equation 1
allows us to interpolate between scenarios where opinions
require few to many reinforcement sources to propagate
(notice that with αXY = 1 the probability of changing
strategy is that of a voter model). We say that αXY ac-
counts for the complexity of opinion Y when learned by
an individual that holds opinion X. Simpler opinions re-
quire less reinforcement from peers, while complex ones
require more reinforcement. When αXY 6= αY X , we say
the population evolves under asymmetric complexities.
It is noteworthy that our approach contrasts with the
fractional thresholds models, common in the literature
of complex contagion [28, 29]. A fractional threshold im-
plies that there is a well-defined threshold of neighbors
above which new information is adopted by an individual
and below which it is not. Dynamically, such a definition
results in a deterministic process that either percolates or
that becomes contained to a few elements of the system
[30–33].

Our model contains the key elements to study com-
plex contagion of competing non-overlapping processes,
though alternative forms could be used[27]. We provide
a more general approach in the Supplemental Material
[34]. A limiting case happens when we consider well-
mixed populations (zi = Z − 1), where all possible con-
figurations of the system can be defined by k, the num-
ber of individuals with opinion A, and the dynamics are
fully described by assessing the transition probabilities
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Figure 1. Opinion dynamics under complex contagion in well-mixed populations. a) the four different dynamical regions
mapping into the parameter space (αAB , αBA). b) the four possible dynamical patterns (i.e., shapes of g(x)) obtained, which
correspond to Dominance of B (i) or A (iii), Polarization (iv), and Consensus (ii). c) Location of the internal fixed point in
regions ii and iv. d) average fixation times to reach consensus, when starting from a configuration with equal prevalence of
both opinions. e) average fraction of As in the equilibrium. In d) and e) vertical dashed lines indicate αAB = αBA. Other
parameters: Z = 100.

between configurations. Assuming the probability that
two changes of opinions occur in a small time interval, τ ,
to be O(τβ), with β > 1, we can reduce the problem to a
one-step process [35] and simply compute the probabil-
ities of increasing or decreasing k by one (0 ≤ k ≤ Z),
respectively,

T+
k =

Z − k
Z

pB→A and T−k =
k

Z
pA→B . (2)

The rate of change in the average abundance of individ-
uals with opinion A is given by the so-called gradient of
selection g(x) [36, 37], where x ≡ k/Z. The gradient of
selection is equivalent to the drift term in the Fokker-
Planck equation describing stochastic processes [35] and
thus can be used to accurately characterize properties
of finite population distributions [38]. In the limit of
very large populations, Z →∞, the dynamics can be de-
scribed by a non-linear differential equation of the form

ẋ ≡ g(x) = x(1− x)(xαBA−1 − (1− x)αAB−1), (3)

which, for αXY 6= 1, has two trivial solutions – at x = 0
and x = 1 – and an additional internal fixed point that

can be inspected by solving the transcendental equation

1− x = xγ , (4)

where γ = (αBA−1)/(αAB−1). A detailed derivation of
Eq. 3 and Eq. 4 can be found in [34]. Equation 3 holds a
similar form to the Replicator Equation from Evolution-
ary Game Theory [39], where xαBA−1 and (1− x)αAB−1

play the roles of the fitness of individuals with opinion A
and B, respectively. Indeed, the dynamical patterns of
opinion Dominance, Polarization, and Consensus derived
from Eq. 3 are identical to the Prisoner’s Dilemma, Stag
Hunt, and Snowdrift Game [40, 41] so often studied in
that literature. This result provides another interpreta-
tion of competitive complex contagion processes: while
here individuals change opinions unilaterally, this process
is equivalent to a fitness-driven contact process.

Figure 1a shows how the different dynamical patterns
map into the αAB×αBA domain, while Fig. 1b illustrates
the different shapes of g(x) that characterize the dynam-
ics in each region. In region (ii), g(x) is characterized by
an unstable internal fixed point leading to a coordination-
like dynamics towards a consensus, which depends only
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on the initial abundance of opinions. In region (iv), g(x)
has an internal stable fixed point that results in polariza-
tion of opinions, which is characterized by the sustained
prevalence of both opinions. In both cases the specific lo-
cation of the internal fixed point depends only on the re-
lationship between the complexities of both opinions (see
Fig. 1c). In regions (i) and (iii), g(x) does not have any
internal fixed point and the population will invariably be
dominated by one of the two opinions. Two special points
are also represented, S and P . In S, αAB = αBA = 1,
every possible configuration of the system corresponds to
a fixed point, and finite populations evolve under neutral
drift. For P , αAB = αBA = 0, the dynamics on finite
populations reduces to an Ornstein-Uhlenbeck process,
with linear drift and constant diffusion.

A particularly interesting measure in finite populations
is the time (τk0) the population takes to reach a consen-
sus when starting from configuration k0. Although in
finite populations the system always reaches a consen-
sus, the time required to do so can be extremely large, in
particular for region (iii). Indeed, for that region, even
for small populations of 100 individuals, the time to con-
sensus is of the order of 1013 generations, making it more
likely to find the population in a polarized state, as we
would expect from the existence of a stable fixed point.
Figure 1d shows the time required for reaching consensus
starting from a perfect mix of opinions (50-50) for differ-
ent combinations of αAB and αBA. Figure 1e shows the
evolutionary outcome under the same conditions.

Next, we turn our attention to the case in which indi-
viduals are only able to interact with a small subset of
the population (zi << Z). We model this by means of
a complex network of social interactions, where nodes
correspond to individuals and links to social interac-
tions between pairs of individuals. We focus on three
classes of networks: Homogeneous Random (HRND)
[42]; Erdős–Rényi Random (ER) [43]; and Scale Free
Barabási-Albert (SF) [44]. A detailed description of how
these networks were generated is in [34].

Figure 2 compares the results of opinion dynamics un-
der complex contagion in different populations structures
along the four dynamical regions of interest: Consensus,
A Dominance, Polarization, and B Dominance. With
the exception of the Polarization region, the dynamical
patterns observed in structured populations follow what
was previously observed in well-mixed populations. How-
ever, population structure significantly shortens the do-
main where Polarization is observed (region iv). The
mismatch is highlighted in Fig 2b. In [34] we further
expand this analysis and show that, despite the differ-
ences in the Polarization, the dynamical outcomes are
identical to the ones obtained in well-mixed populations.
Moreover, we also point the larger time for fixation in
structured populations in the consensus regime relative
to well-mixed populations (see Fig 2a).

An increasingly relevant application of opinion dynam-
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Figure 2. Opinion dynamic under complex contagion in struc-
tured populations. Panel a) shows the fixation times, mea-
sured in Monte Carlo steps, for different population struc-
tures. Panel b) shows the average final fraction of individu-
als with opinion A in the population for different population
structures. Shaded areas indicate the mismatch between well-
mixed and structured populations in the Polarization region
(iv). The complexity parameters have been reparameterized
as αBA = 1 + r cos(θ) and αAB = 1 + r sin(θ), with r = 1/2.
Notice that γ = tan(θ), which defines the position of the
internal fixed point in Eq.(4), is independent of r. Other pa-
rameters: Z = 103 and average degree of 4.

ics concerns the design of seeding strategies to maximize
the spread of social influence [45, 46]. However, past
works have ignored the possibility of competition among
multiple opinions with different complexities. In such
cases, the problem of interest is not understanding the
size of a cascade or the time to consensus, but how seed-
ing strategies impact the dynamical properties of opinion
diffusion. Here, we employ three simple seeding strate-
gies: placing individuals with opinion A along the nodes
of the network either 1) randomly, or preferentially in
2) higher degree nodes or 3) lower degree nodes. Since
these strategies do not apply to HRND networks, we
will limit our analysis to their impact on SF popula-
tions in the main text and on ER populations in [34].
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Figure 3. The impact of seeding strategies – Random (a, d, and e), High Degree (b, f, and g), and Low Degree (c, h, and i)
– in Scale Free Networks. Panels a–c show how the different seeding strategies impact the dominance of opinions for different
initial fractions of seeded As along the four dynamical regions. Arrows in panels b) and c) point to the deviations from the
random seeding strategy. Panels d, f, and h show the critical initial fraction of seeded As needed to obtain a dominance of As
in the consensus region in more than 50% of the simulations. Panels e, g, and i show the average time of convergence towards
the polarized state starting from a configuration with 20% As in the population in the polarization region. Averages taken over
2500 independent simulations and 2.4 million steps. Other parameters: Z = 103 and average degree of 4.

Figures 3a–c show how the different seeding strategies
impact the dominance of opinion A for different initial
fractions of seeded As along the four dynamical regions.
Interestingly, while seeding strategies have an impact in
the consensus region (i), they do not alter the dynam-
ical properties of the remaining regions. These results
suggest that seeding strategies operate by changing the
coordination threshold between opinions, being ineffec-
tive in regions where such coordination is absent.

Figures 3d,f,h show the critical initial fraction of seeded
As that are necessary, according to each strategy, to pro-
mote an A Dominance regime [47]. Note that, follow-
ing the findings on Fig. 3a–c, we limit our analysis to
the consensus region (ii). We find that seeding prefer-
entially towards higher degree nodes has a major effect
in increasing the effectiveness of seeding, in the sense
that it is possible to achieve the full dominance of As by
seeding a rather small number of individuals, widening
the range of scenarios where A is dominant to regions
where it is more complex than B. Conversely, seeding
low degree nodes is shown to be an ineffective strategy.
In Fig. 3e,g,i, we restrict our analysis to the polariza-
tion region (iv) and compare the first passage time in
the equilibrium for the different seeding strategies. Fi-
nally, seeding preferentially towards higher degree nodes
speeds up the convergence times towards equilibrium in
the polarization regime. Similar qualitative results are
obtained in ER networks [34].

In this letter we presented a new model of competi-
tive complex contagion dynamics that contains dynami-
cal patterns of Dominance, Polarization, and Consensus,

depending only on the relative complexity of the diffusing
information. These patterns are in many ways equivalent
to the ones obtained in other contexts, namely in Evo-
lutionary Game Theory, which deals with problems as
diverse as the spin-flips [48], selection of gut biome [49],
management of common and public goods [50, 51], and
socioecological resilience [52]. Our work raises important
questions in terms of feasibility of assessing empirically
which mechanisms are at play. Are empirical patterns
the result of game-theoretical reasoning of agents that
influence strategy adoption or the result of the spreading
of information with different levels of complexity? This
equivalence, however, occurs when considering the pro-
cesses are dependent on the fraction of the neighboring
types, as structured populations are otherwise known to
change the macroscopic nature of the evolutionary dy-
namics [53].

Social planners or other network intervenients who aim
at understanding the macroscopic behavior of the popula-
tion can derive important conclusions from our work. In
fact, we show that polarization results from low acquisi-
tion complexity and, in that case, targeting of individuals
might have a small impact on the final outcome. Con-
versely, interventions based in seeding strategies are only
effective in domains characterized by a coordination-like
dynamics (consensus), where both propagating processes
have rather high levels of complexity. Alternatively, plan-
ners can act in the system by modifying the complexity
of what is being spread to improve the chances of getting
a dominant behavior. This, however, can lead to an arms
race and drive the system to a polarization trap.
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Finally, open questions have been left for future re-
search as, for instance, expanding the model to scenarios
that involve more than two competing opinions and the
exploration of optimal seeding strategies in competitive
scenarios under complex contagion.
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