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Abstract

Deep neural networks can empirically perform efficient hierarchical learning, in
which the layers learn useful representations of the data. However, how they make
use of the intermediate representations are not explained by recent theories that
relate them to “shallow learners” such as kernels. In this work, we demonstrate that
intermediate neural representations add more flexibility to neural networks and can
be advantageous over raw inputs. We consider a fixed, randomly initialized neural
network as a representation function fed into another trainable network. When
the trainable network is the quadratic Taylor model of a wide two-layer network,
we show that neural representation can achieve improved sample complexities
compared with the raw input: For learning a low-rank degree-p polynomial (p � 4)
in d dimension, neural representation requires only eO(ddp/2e) samples, while the
best-known sample complexity upper bound for the raw input is eO(dp�1). We
contrast our result with a lower bound showing that neural representations do
not improve over the raw input (in the infinite width limit), when the trainable
network is instead a neural tangent kernel. Our results characterize when neural
representations are beneficial, and may provide a new perspective on why depth is
important in deep learning.

1 Introduction

Deep neural networks have been empirically observed to be more powerful than their shallow
counterparts on a variety of machine learning tasks [38]. For example, on the ImageNet classification
task, a 152-layer residual network can achieve 8%-10% better top-1 accuracy than a shallower 18-
layer ResNet [30]. A widely held belief on why depth helps is that deep neural networks are able to
perform efficient hierarchical learning, in which the layers learn representations that are increasingly
useful for the present task. Such a hierarchical learning ability has been further leveraged in transfer
learning. For example, [28] and [19] show that by combining with additional task-specific layers, the
bottom layers of pre-trained neural networks for image classification and language modeling can be
naturally transferred to other related tasks and achieve significantly improved performance.

Despite significant empirical evidence, we are in the lack of practical theory for understanding the
hierarchical learning abilities of deep neural networks. Classical approximation theory has established
a line of “depth separation” results which show that deep networks are able to approximate certain
functions with much fewer parameters than shallow networks [18, 49, 24, 54, 12]. These work often
manipulates the network parameters in potentially pathological ways, and it is unclear whether the
resulting networks can be efficiently found through gradient-based optimization. A more recent line
of work shows that overparametrized deep networks can be provably optimized and generalize as
well as the so-called Neural Tangent Kernels (NTKs) [35, 21, 22, 3, 4, 7]. However, these results
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do not take the hierarchical structure of the neural networks into account, and cannot justify any
advantage of deep architectures. More recently, [33] show that some NTK models of deep networks
are actually degenerate, and their generalization performance are no better than those associated with
shallow networks.

In this paper, we provide a new persepctive for understanding hierarchical learning through studying
intermediate neural representations—that is, feeding fixed, randomly initialized neural networks as
a representation function (feature map) into another trainable model. The prototypical model we
consider is a wide two-layer neural network taking a representation function h as the input, that is,

fW(x) :=
1p
m

mX

r=1

ar�(w
>
r h(x)), (1)

where x 2 Rd is the feature, h : Rd ! RD is a data-independent representation function that is held
fixed during learning, and W = [w1, . . . ,wm]> 2 Rm⇥D is the weight matrix to be learned from
the data. For example, when h(x) = �(Vx+ b) is another one-hidden-layer network (i.e. neural
representations), the model f is a three-layer network in which we only learn the weight matrix W.
Studying this model will reveal how the lower-level representation affects learning in a three-layer
network, a previously missing yet important aspect of hierarchical learning.

To demonstrate the importance of the representation function h, we investigate the sample complexity
for learning certain target functions using model (1). This is a fine-grained measure of the power of
h compared with other notions such as approximation ability. Indeed, we expect fW to be able to
approximate any “regular” (e.g. Lipschitz) function of x, whenever we use a non-degenerate h and
a sufficiently large width m. However, different choices of h can result in different ways (for the
trainable two-layer network) to approximate the same target function, thereby leading to different
sample complexity guarantees. We will specifically focus on understanding when learning with the
neural representation h(x) = �(Vx+ b) is more sample efficient than learning with the raw input
h(x) = x, which is a sensible baseline for capturing the benefits of representations.

As the optimization and generalization properties of a general two-layer network can be rather
elusive, we consider more optimization aware versions of the prototype (1)—we replace the trainable
two-layer network in fW by tractable alternatives such as its linearized model [21] (also known as
“lazy training” in [15]) or quadratic Taylor model [8]:

fL
W(x) =

1p
m

mX

r=1

ar�
0(w>

0,rh(x))(w
>
r h(x)),(NTK-h)

fQ
W(x) =

1

2
p
m

mX

r=1

ar�
00(w>

0,rh(x))(w
>
r h(x))

2.(Quad-h)

When h is the raw input (NTK-Raw, Quad-Raw), these are models with concrete convergence and
generalization guarantees, and can approximate the training of the full two-layer network in appro-
priate infinite-width limits (e.g. [21, 7, 4, 39, 8]). However, for learning with other representation
functions, these models are less understood. The goal of this paper is to provide a quantitative under-
standing of these models, in particular when h is a one-hidden-layer neural network (NTK-Neural,
Quad-Neural), in terms of their convergence, generalization, and sample complexities of learning.

The contributions of this paper are summarized as follows:

• We show that the Quad-h model has a benign optimization landscape, and prove generalization
error bounds with a precise dependence on the norm of the features and weight matrices, as well as
the conditioning of the empirical covariance matrix of the features (Section 3).
• We study sample complexities of learning when the representation is chosen as a one-hidden-layer
neural network (Quad-Neural model, Section 4). For achieving a small excess risk against a low-rank
degree-p polynomial, we show that the Quad-Neural model requires eO(ddp/2e) samples. When p is
large, this is significantly better than the best known eO(dp�1) upper bound for the Quad-Raw model,
demonstrating the benefits of neural representations.
• When the trainable network is instead a linearized model (or an NTK), we present a lower bound
showing that neural representations are provably not beneficial: in a certain infinite-width limit, the
NTK-Neural model requires at least ⌦(dp) samples for learning a degree-p polynomial (Section 5).
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Since O(dp) samples also suffice for learning with the NTK-Raw model, this shows that neural
representations are not beneficial when fed into a linearized neural network.

Additional paper organization We present the problem setup and algorithms in Section 2, review
related work in Section 6, and provide conclusions as well as a broader impact statement in Section 7.

Notations We use bold lower-case letters to denote vectors, e.g., x 2 Rd, and bold upper-case
letters to denote matrices, e.g., W 2 Rd1⇥d2 . Given a matrix W 2 Rd1⇥d2 , we let kWkop denote
its operator norm, and kWk2,4 denote its (2, 4)-norm defined as kWk42,4 =

Pd1

i=1 kWi,:k42, where
Wi,: 2 Rd1 is the i-th row of W. Given a function f(x) defined on domain X with a probability
measure D, the L2 norm is defined as kfk2L2

=
R
X f2(x)D(dx).

2 Preliminaries

Problem setup We consider the standard supervised learning task, in which we receive n i.i.d.
training samples Sn = {(xi, yi)}ni=1 from some data distribution D, where x 2 X is the input and
y 2 Y is the label. In this paper, we assume that X = Sd�1 ⇢ Rd (the unit sphere) so that inputs
have unit norm kxk2 = 1. Our goal is to find a predictor f : X 7! R such that the population risk

R(f) := E(x,y)⇠D[`(f(x), y)]

is low, where ` : R⇥Y ! R is a loss function. We assume that `(·, y) is convex, twice differentiable
with the first and second derivatives bounded by 1, and satisfies |`(0, y)|  1 for any y 2 Y . These
assumptions are standard and are satisfied by commonly used loss functions such as the logistic loss
and soft hinge loss.

Given dataset Sn, we define the empirical risk of a predictor f as

bR(f) :=
1

n

nX

i=1

`(f(x), y).

Model, regularization, and representation We consider the case where f is either the linearized
or the quadratic Taylor model of a wide two-layer network that takes a fixed representation function
as the input:

fL
W(x) =

1p
m

mX

r=1

ar�
0(w>

0,rh(x))(w
>
r h(x)),(NTK-h)

fQ
W(x) =

1

2
p
m

mX

r=1

ar�
00(w>

0,rh(x))(w
>
r h(x))

2,(Quad-h)

where h : Rd ! RD is a fixed representation function, w0,r
iid⇠ N(0, ID) and ar

iid⇠ Unif({±1})
are randomly initialized and held fixed during the training, W = [w1, . . . ,wm]> 2 Rm⇥D is the
trainable weight matrix1, and � : R ! R is a nonlinear activation. These models are taken as
proxies for a full two-layer network of the form 1p

m
a>�((W0 +W)h(x)), so as to enable better

understandings of their optimization.

For the Quad-h model, we add a regularizer to the risk so as to encourage W to have low norm. We
use the regularizer kWk42,4 =

Pm
r=1 kwrk42, and consider minimizing the regularized empirical risk

bR�(f
Q
W) := bR(fQ

W) + � kWk42,4 =
1

n

nX

i=1

`(fQ
W(xi), yi) + � kWk42,4 . (2)

In the majority of this paper, we will focus on the case where h(x) is a fixed, randomly initialized
neural network with one hidden layer of the form �(Vx+b), with certain pre-processing steps when
necessary. However, before we make the concrete choices, we think of h as a general function that
maps the raw input space Rd into a feature space RD without any additional assumptions.

1Our parameterization decouples the weight matrix in a standard two-layer network into two parts: the
initialization W0 2 Rm⇥D that is held fixed during training, and the “weight movement matrix” W 2 Rm⇥D

that can be thought of as initialized at 0.
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Connection to a three-layer model It is worth noticing that when h is indeed a neural network,
say h(x) = �(Vx) (omitting bias for simplicity), our NTK-h and Quad-h models are closely related
to the Taylor expansion of a three-layer network

efW,V(x) =
1p
m
a>�((W0 +W)�(Vx)).

Indeed, the {NTK-h, Quad-h} models correspond to the {linear, quadratic} Taylor expansion of the
above network over W, and is thus a part of the full Taylor expansion of the three-layer network. By
studying these Taylor models, we gain understandings about how deep networks use its intermediate
representation functions, which is lacking in existing work on Taylorized models.

3 Quadratic model with representations

We begin by studying the (non-convex) optimization landscape as well as the generalization properties
of the model (Quad-h), providing insights on what can be a good representation h for such a model.

Base case of h(x) = x: a brief review When h(x) = x is the raw input, model (Quad-h)
becomes

fQ
W(x) =

1

2
p
m

mX

r=1

ar�
00(w>

0,rx)(w
>
r x)

2,(Quad-Raw)

which is the quadratic Taylor model of a wide two-layer neural network. This model is analyzed
by Bai and Lee [8] who show that (1) the (regularized) risk bR�(fW) enjoys a nice optimization
landscape despite being non-convex, and (2) the generalization gap of the model fQ

W is controlled by
kWk2,4 as well as k 1

n

P
i2[n] xix>

i kop. Building on these results, [8] show that learning low-rank
polynomials with (Quad-Raw) achieves a better sample complexity than with the NTK. Besides the
theoretical investigation, [9] empirically show that (Quad-Raw) model also approximates the training
trajectories of standard neural networks better than the linearized model.

General case We analyze optimization landscape and establish generalization guarantees when h
is a general representation function, extending the results in [8]. We make the following assumption:

Assumption 1 (Bounded representation and activation). There exists a constant Bh such that
kh(x)k2  Bh almost surely for (x, y) ⇠ D. The activation �00 is uniformly bounded:
supt2R |�00(t)|  C for some absolute constant C.

Theorem 1 (Optimization landscape and generalization of Quad-h). Suppose Assumption 1 holds.

(1) (Optimization) Given any ✏ > 0, ⌧ = ⇥(1), and some radius Bw,? > 0, suppose the width
m � eO(B4

hB
4
w,?✏

�1) and we choose a proper regularization coefficient � > 0. Then any second-
order stationary point 2 (SOSP) cW of the regularized risk bR�(f

Q
W) satisfies kcWk2,4  O(Bw,?),

and achieves

bR�(f
Q
cW
)  (1 + ⌧) min

kWk2,4Bw,?

bR(fQ
W) + ✏.

(2) (Generalization) For any radius Bw > 0, we have with high probability (over (a,W0)) that

E(xi,yi)

"
sup

kWk2,4Bw

���R(fQ
W)� bR(fQ

W)
���

#
 eO

✓
B2

hB
2
wMh,opp
n

+
1p
n

◆
,

where M2
h,op = B�2

h Ex

h�� 1
n

Pn
i=1 h(xi)h(xi)>

��
op

i
.

2W is a second-order stationary point (SOSP) of a twice-differentiable loss L(W) if rL(W) = 0 and
r2L(W) ⌫ 0.
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Efficient optimization; role of feature isotropicity Theorem 1 has two main implications: (1)
With a sufficiently large width, any SOSP of the regularized risk bR(fQ

W) achieves risk close to the
optimum in a certain norm ball, and has controlled norm itself. Therefore, escaping-saddle type
algorithms such as noisy SGD [36, 40] that can efficiently find SOSPs can also efficiently find these
near global minima. (2) The generalization gap is controlled by Mh,op, which involves the operator
norm of 1

n

Pn
i=1 h(xi)h(xi)>. It is thus beneficial if our representation h(x) is (approximately)

isotropic, so that Mh,op ⇣ O(1/
p
D), which is much lower than its naive upper bound 1. This will

be a key insight for designing our neural representations in Section 4. The proof of Theorem 1 can be
found in Appendix A.

4 Learning with neural representations

We now develop theories for learning with neural representations, where we choose h to be a wide
one-hidden-layer neural network.

4.1 Neural representations

We consider a fixed, randomly initialized one-hidden-layer neural network:

g(x) = �(Vx+ b) =
⇥
�(v>

1 x+ b1), . . . ,�(v
>
Dx+ bD)

⇤> 2 RD, (3)

where vi
iid⇠ N(0, Id) and bi

iid⇠ N(0, 1) are the weights. Throughout this section we will use the
indicator activation �(t) = 1 {t � 0}. We will also choose �(t) = relu(t)2/2 so that �00(t) =
1 {t � 0} as well.3

We define the representation function h(x) as the whitened version of g(x):

h(x) = b⌃�1/2g(x), where b⌃ =
1

n0

n0X

i=1

g(exi)g(exi)
>. (4)

Above, b⌃ is an estimator of the population covariance matrix4 ⌃ = Ex[g(x)g(x)>] 2 RD⇥D, and
{exi}i2[n0]

=: eSn0 is an additional set of unlabeled training examples of size n0 (or a split from the
existing training data). Such a whitening step makes h(x) more isotropic than the original features
g(x), which according to Theorem 1 item (2) reduces the sample complexity for achieving low test
error. We will discuss this more in Section 4.2.

We summarize our overall learning algorithm (with the neural representation) in Algorithm 1.

Algorithm 1 Learning with Neural Representations (Quad-Neural method)

Input: Labeled data Sn, unlabeled data eSn0 , initializations V 2 RD⇥d, b 2 RD, W0 2 Rm⇥D,
parameters (�, ✏).
Step 1: Construct model fQ

W as

fQ
W(x) =

1

2
p
m

mX

r=1

ar�
00(w>

0,rh(x))(w
>
r h(x))

2,(Quad-Neural)

where h(x) = b⌃�1/2g(x) is the neural representation (4) (using eSn0 to estimate the covariance).
Step 2: Find a second-order stationary point cW of the regularized empirical risk (on the data Sn):

bR�(f
Q
W) =

1

n

nX

i=1

`(fQ
W(xi), yi) + � kWk42,4 .

3We can use a non-smooth � since (V,b) are not trained. Our results can be extended to the situation where
� or �00 is the relu activation as well.

4Strictly speaking, ⌃ is the second moment matrix of g(x).
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4.2 Learning low-rank polynomials with neural representations

We now study the sample complexity of Algorithm 1 to achieve low excess test risk compared with
the best low-rank degree-p polynomial, that is, sum of polynomials of the form (�>x)p. This setting
has been considered in a variety of prior work on learning polynomials [47, 13] as well as analyses of
wide neural networks [7, 8].

We need the following additional assumption on the random features.

Assumption 2 (Lower Bounded Covariance). For any k and D  O(dk), with high probability over
V,b (as d ! 1), we have the minimum eigenvalue �min(⌃) � �k for some constant �k > 0 that
only depends on k but not d, where ⌃ = Ex[� (Vx+ b)� (Vx+ b)>] .

Assumption 2 states the features
�
�(v>

i x+ bi)
 

to be not too correlated, which roughly requires
the distribution of x to span all directions in Rd. For example, when x ⇠ Unif(Sd�1) (and with our
choice of �(t) = 1 {t � 0}), we show that this assumption is satisfied with

�k = ⇥

✓
min

deg(q)k
Ez⇠N(0,1)[(�(z)� q(z))2]

◆
⇣ k�1/2,

where q(z) denotes a polynomial in z and its degree is denoted as deg(q). For general distributions
of x, we show Assumption 2 still holds under certain moment conditions on the distribution of x (see
the formal statement and proof of both results in Appendix B).

Sample complexity for learning polynomials We focus on low-rank polynomials of the form

f?(x) =
r?X

s=1

↵s(�
>
s x)

ps , where |↵s|  1,
��(�>

s x)
ps
��
L2

 1, ps  p for all s. (5)

We state our main result for the Quad-Neural model to achieve low excess risk over such functions.

Theorem 2 (Sample complexity of learning with Quad-Neural). Suppose Assumption 2 holds, and
there exists some f? of the form (5) that achieves low risk: R(f?)  OPT. Then for any ✏, � 2 (0, 1)
and ⌧ = ⇥(1), choosing

D = ⇥

 
poly(r?, p)

X

s

k�sk2dps/2e
2 ✏�2��1

!
, m � eO

�
poly(r?, D)✏�2��1

�
, (6)

n0 = eO(D��2), and a proper � > 0, Algorithm 1 achieves the following guarantee: with probability
at least 1� � over the randomness of data and initialization, any second-order stationary point cW of
bR�(f

Q
W) satisfies

R(fQ
cW
)  (1 + ⌧)OPT+ ✏|{z}

approx.,
requires large D

+ eO

0

B@

s
poly(r?, p, ��1)��1

dp/2e✏
�2
Pr?

s=1 k�sk2dps/2e
2

n

1

CA

| {z }
generalization, requires large n (given ✏)

.

In particular, for any ✏ > 0, we can achieve R(fQ
cW
)  (1 + ⌧)OPT+ 2✏ with sample complexity

n0 + n  eO
 
poly(r?, p,�

�1
dp/2e, ✏

�1, ��1)
r?X

s=1

k�sk2dps/2e
2

!
. (7)

According to Theorem 2, Quad-Neural can learn polynomials of any degree by doing the following:
(1) Choose a sufficiently large D, so that the neural representations are expressive enough; (2) Choose
a large width m in the quadratic model so as to enable a nice optimization landscape, where such m
only appears logarithmically in generalization error (Theorem 1).
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Improved dimension dependence over Quad-Raw and NTK-Raw We parse the sample complexity
bound in Theorem 2 in the following important case: x is relatively uniform (e.g. Unif(Sd�1)),
k�sk2 = O(

p
d), and the data is noiseless and realized by f? (so that OPT = 0). In this case

we have
��(�>

s x)
ps
��
L2

= O(1), and Assumption 2 holds with �dp/2e � p�O(1). Thus, when only
highlighting the d dependence5, the sample complexity required to achieve ✏ test risk with the
Quad-Neural is (reading from (18))

Nquad�neural = eO
⇣
ddp/2e

⌘
.

In comparison, the sample complexity for learning with the Quad-Raw (quadratic neural network
with the raw input) is

Nquad�raw = eO
�
dp�1

�

(see, e.g. [8, Thm 7]). Therefore, Theorem 2 shows that neural representations can significantly
improve the sample complexity over the raw input, when fed into a quadratic Taylor model.

Overview of techniques At a high level, the improved sample complexity achieved in Theorem 2
is due to the flexibility of the neural representation: the Quad-h model can express polynomials
hierarchically, using weight matrices with much smaller norms than that of a shallow learner such as
the Quad-Raw model. This lower norm in turn translates to a better generalization bound (according
to Theorem 1) and an improved sample complexity. We sketch the main arguments here, and leave
the complete proof to Appendix D.

(1) Expressing functions using hierarchical structure: We prove the existence of some W⇤ 2
Rm⇥D such that fQ

W⇤ ⇡ f? by showing the following: (1) As soon as D � eO(dk), h(x) can linearly
express certain degree-k polynomials as “bases”; (2) For large m, the top quadratic taylor model can
further express degree dps/ke polynomials of the bases, thereby expressing f?. This is an explicit
way of utilizing the hierarchical structure of the model. We note that our proof used k = dp/2e, but
the argument can be generalized to other k as well.

(2) Making representations isotropic: We used a whitened version of a one-hidden-layer network
as our representation function h (cf. (4)). The whitening operation does not affect the expressivity
argument in part (1) above, but helps improve the conditioning of the feature covariance matrix
(cf. the quantity Mh,op in Theorem 1). Applying whitening, we obtain nearly isotropic features:
Ex[h(x)h(x)>] ⇡ ID, which is key to the sample complexity gain over the Quad-Raw model as
discussed above. We note that well-trained deep networks with BatchNorm may have been implicitly
performing such whitening operations in practice [46]. We also remark that the whitening step
in Algorithm 1 may be replaced with using unwhitened representations with a data-dependent
regularizer, e.g.,

Pm
r=1 kb⌃1/2wrk42, which achieves similar sample complexity guarantees (see

Appendix D).

5 NTK with neural representations: a lower bound

In this section, we show that neural representations may not be beneficial over raw inputs when the
trainable network is a linearized neural network through presenting a sample complexity lower bound
for this method in the infinite width limit.

More concretely, we consider NTK-Neural, which learns a model fL
W of the form

fL
W(x) :=

1p
m

mX

r=1

ar�
0
⇣
w>

0,rg(x)/
p
D
⌘⇣

w>
r g(x)/

p
D
⌘
,(NTK-Neural)

where g(x) := [�(v>
1 x+ b1), . . . ,�(v>

Dx+ bD)]> 2 RD are the neural random features (same as
in (3)), and the 1/

p
D factor rescales g(x) to O(1) norm on average.

5For example, in the high-dimensional setting when ✏ = ⇥(1) and d is large [27].
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Infinite-width limit: a kernel predictor Model (NTK-Neural) is linear model with parameter W,
and can be viewed as a kernel predictor with a (finite-dimensional kernel) Hm,D : Sd�1⇥Sd�1 ! R.
In the infinite-width limit of D,m ! 1, we have Hm,D ! H1, where

H1(x,x0) := E(u,v)⇠N(0,⌃(x,x0))[�
0(u)�0(v)] · ⌃12(x,x

0), and

⌃(x,x0) =

✓
Ev,b[�(v>x+ b)2] Ev,b[�(v>x+ b)�(v>x0 + b)]

Ev,b[�(v>x+ b)�(v>x0 + b)] Ev,b[�(v>x0 + b)2]

◆
,

(see e.g. [35, 20] for the derivation). Motivated by this, we consider kernel predictors of the form

bf� = argmin
f

nX

i=1

`(f(xi), yi) + � kfk2H1
(8)

as a proxy for (NTK-Neural), where k·k2H1
denotes the RKHS (Reproducing Kernel Hilbert

Space) norm associated with kernel H1. This set of predictors is a reliable proxy for the
(NTK-Neural) method: for example, taking � ! 0+, it recovers the solution found by gradient
descent (with a small stepsize) on the top layer of a wide three-layer network [20].

We now present a lower bound for the predictor bf�, adapted from [27, Theorem 3].
Theorem 3 (Lower bound for NTK-Neural). Suppose the input distribution is x ⇠ Unif(Sd�1), and
y? = f?(x) where f? 2 L2(Unif(Sd�1)) consists of polynomials of degree at least p6. Assume the
sample size n  O(dp��) for some � > 0. Then for any fixed ✏ 2 (0, 1), as d ! 1, the predictor bf�
defined in (8) suffers from the following lower bound with high probability (over {(xi, yi)}):

Ex


inf
�>0

( bf�(x)� f?(x))
2

�
� (1� ✏)Ex[f?(x)]

2,

that is, any predictor of the form (8) will not perform much better than the trivial zero predictor.

No improvement over NTK-Raw; benefits of neural representations Theorem 3 shows that the
infinite width version (8) of the NTK-Neural method requires roughly at least ⌦(dp) samples in order
to learn any degree-p polynomial up to a non-trivial accuracy (in squared error). Crucially, this lower
bound implies that NTK-Neural does not improve over NTK-Raw (i.e. NTK with the raw input) in the
infinite width limit—the infinite width NTK-Raw already achieves sample complexity upper bound of
O(dp) for learning a degree-p polynomial y = f?(x) when x ⇠ Unif(Sd�1) [27]. This is in stark
contrast with our Theorem 2 which shows that Quad-Neural improves over Quad-Raw, suggesting
that neural representations are perhaps only beneficial when fed into a sufficiently complex model.

6 Related work

Approximation theory and depth separation. Extensive efforts have been made on the expressivity
of neural networks and the benefits of increased depth. Two separate focuses were pursued: 1)
Universal approximation theory for approximating dense function classes, e.g., Sobolev and squared
integrable functions [17, 31, 10, 34, 25, 16, 41, 44, 43]; 2) depth separation theory demonstrating
the benefits of increased depth on expressing certain structured functions, e.g., saw-tooth functions
[29, 18, 48, 49, 24]. More recently, the recent work [54] merged the two focuses by studying
unbounded-depth ReLU networks for approximating Sobolev functions. In all these work, the network
parameters are constructed in potentially weird ways, and it is unclear whether such networks can be
efficiently found using gradient-based optimization.

Neural tangent kernels and beyond A growing body of recent work show the connection between
gradient descent on the full network and the Neural Tangent Kernel (NTK) [35], from which one can
prove concrete results about neural network training [42, 21, 20, 3, 56] and generalization [7, 4, 11].
Despite such connections, these results only show that neural networks are as powerful as shallow
learners such as kernels. The gap between such shallow learners and the full neural network has been
established in theory by [52, 1, 55, 26, 53, 23] and observed in practice [6, 39, 14]. Higher-order
expansions of the {network, training dynamics} such as Taylorized Training [8, 9] and the Neural

6That is, kP<pf?kL2 = 0, where P<p denotes the L2 projection onto the space of degree < p polynomials.
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Tangent Hierarchy [32] have been recently proposed towards closing this gap. Finally, recent work
by Allen-Zhu and Li [2] shows that there exists a class of polynomials that can be efficiently learned
by a deep network but not any “non-hiearchical” learners such as kernel methods or neural tangent
kernels, thereby sheding light on how representations are learned hierarchically.

Learning low-rank polynomials in high dimension In [47] and [45], the authors propose a tensor
unfolding algorithm to estimate a rank k order p tensor with (d)p/2k samples. Under Gaussian input
data, [13] propose a Grassmanian manifold optimization algorithm with spectral initialization to
estimate a polynomial over k-dimensional subspace of variables of degree p with Ok,p(d log

d p)
samples, where Ok,p suppresses unknown (super)-exponential dependence on k and p. However,
these methods explicitly use knowledge about the data distribution. Neural networks can often learn
polynomials in distribution-free ways. [5, 7] show that wide two-layer networks that simulate an
NTK require eO(dp) samples to learn a degree-p polynomial. [27] show that ⌦(dp) samples is also
asymptotically necessary for any rotationally invariant kernel. [8] show that a randomized wide
two-layer network requires eO(dp�1) samples instead by coupling it with the quadratic Taylor model.
Our algorithm belongs to this class of distribution-free methods, but achieve an improved sample
complexity when the distribution satisfies a mild condition.

7 Conclusion

This paper provides theoretical results on the benefits of neural representations in deep learning.
We show that using a neural network as a representation function can achieve improved sample
complexity over the raw input in a neural quadratic model, and also show such a gain is not present if
the model is instead linearized. We believe these results provide new understandings to hiearchical
learning in deep neural networks. For future work, it would be of interest to study whether deeper
representation functions are even more beneficial than shallower ones, or what happens when the
representation is fine-tuned together with the trainable network.

Acknowledgment

We thank the anonymous reviewers for the suggestions. We thank Song Mei for the discussions about
the concentration of long-tailed covariance matrices. JDL acknowledges support of the ARO under
MURI Award W911NF-11-1-0303, the Sloan Research Fellowship, and NSF CCF 2002272.

Broader impact

This paper extensively contributes to the theoretical frontier of deep learning. We do not foresee
direct ethical or societal consequences. Instead, our theoretical finding reduces the gap between the
theory and practice, and is in sharp contrast to existing theories, which cannot show any advantage of
deep networks over the shallow ones. In viewing of a notably increasing trend towards establishing
a quantitative framework using deep neural networks in diverse areas, e.g., computational social
science, this paper will provide an important theoretical guideline for practitioners.
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