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Summary
Although many studies have identified neural correlates of memory, relatively little is known
about the circuit properties connecting single-neuron physiology to behavior. Here we developed a
modeling framework to bridge this gap and identify circuit interactions capable of maintaining
short-term memory. Unlike typical studies that construct a phenomenological model and test
whether it reproduces select aspects of neuronal data, we directly fit the synaptic connectivity of
an oculomotor memory circuit to a broad range of anatomical, electrophysiological, and
behavioral data. Simultaneous fits to all data, combined with sensitivity analyses, revealed
complementary roles of synaptic and neuronal-recruitment thresholds in providing the nonlinear
interactions required to generate the observed circuit behavior. This work introduces a new
methodology for identifying the cellular and synaptic mechanisms underlying short-term memory,
and demonstrates how the anatomical structure of a circuit may belie its functional organization.

Introduction
Understanding the mechanisms underlying complex behaviors requires bridging the gap
between cellular properties and circuit-level interactions that drive system function. This
problem is particularly acute in short-term memory systems, where the identified kinetics of
synaptic and intrinsic cellular processes operate on a much shorter time scale (typically 1–
100’s of ms) than the observed behavior. A neural correlate of short-term memory over the
seconds to tens of seconds time scale has been identified in the persistent firing of neuronal
populations during memory periods following the offset of a stimulus. Such activity has
been recorded across a wide range of brain regions and tasks, and been shown to maintain
representations of both discrete and graded stimuli (for review, see Brody et al., 2003;
Durstewitz et al., 2000; Major and Tank, 2004; Wang, 2001).
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Many explanations have been proposed for how persistent neural activity is generated.
Various studies have hypothesized roles for intrinsic neuronal properties (Egorov et al.,
2002; Fall and Rinzel, 2006; Koulakov et al., 2002; Lisman et al., 1998); synaptic
mechanisms (Mongillo et al., 2008; Shen, 1989; Wang et al., 2006); or specialized
anatomical architectures (for review, see Brody et al., 2003; Goldman, 2009; Wang, 2001).
More likely, however, the generation of memory-storing neural activity reflects a
combination of cellular, synaptic, and network properties (Major and Tank, 2004). Thus,
fully understanding the mechanisms underlying memory-guided behaviors will require
methods that combine data from experiments probing neural circuits at each of these levels
in order to relate neuronal responses to behavior.

Computational modeling has been used to bridge the gap between cellular physiology,
circuit interactions and memory function. However, modeling the responses of neurons in
recurrent circuits is highly challenging because each neuron’s activity influences, and is
influenced by, potentially every other neuron in the circuit. Furthermore, due to features
such as activation thresholds and saturation, both the neuronal and synaptic (or dendritic)
responses may be highly nonlinear. Thus, for a circuit consisting of N neurons, there may be
of order N2 nonlinear synaptic interactions.

This modeling challenge has traditionally been tackled by two highly disparate approaches.
Conceptual models use strong simplifying assumptions on the forms of synaptic
connectivity and neuronal responses to provide tractability in modeling complex neural
circuits (Figure 1). While such studies provide qualitative insight, the chosen assumptions
limit the set of possible mechanisms explored and make close comparison to experiment
difficult. Alternatively, to make close contact with experiment, other studies have used
brute-force explorations of the large parameter space defined by multiple intrinsic and
synaptic variables (Goldman et al., 2001; Prinz, 2007; Prinz et al., 2004). These studies have
successfully demonstrated how circuit function can be highly sensitive to changes in certain
combinations of parameters, but insensitive to changes in others. However, the combinatoric
explosion of parameter combinations has limited such studies to exploration of only ~10
parameters or less at a time, a minute fraction of the total parameter space needed to fully
describe a circuit.

Here we describe a modeling framework in which a wide range of experimental data from
cellular, network, and behavioral investigations are directly incorporated into a single
coherent model, while predictions for difficult-to-measure quantities like synaptic
connection strengths and synaptic nonlinearities are generated by directly fitting the model
to these data. This approach is applied to data from a well-characterized circuit exhibiting
persistent neural activity, the oculomotor neural integrator of the eye movement system
(Robinson, 1989). This circuit receives transient inputs that encode the desired velocity of
the eyes, and stores the running total of these inputs – the desired eye position – as a pattern
of persistent neuronal firing across a population of cells. Such maintenance of a running
total represents the defining feature of temporal integrators or accumulators, which are
widely found in neural systems (Gold and Shadlen, 2007; Goldman et al., 2009; Major and
Tank, 2004). Previous studies of the goldfish oculomotor integrator have gathered data at
each of the levels of analysis typical of studies of memory systems: intrinsic cellular
properties (Aksay et al., 2001), anatomy (Aksay et al., 2000), behavior (Aksay et al., 2000),
and functional circuit interactions (Aksay et al., 2003; Aksay et al., 2007). Thus, this system
provides an ideal setting in which to illustrate how data at each of these levels can be
coherently combined to gain a fuller understanding of memory-guided behavior.

The results described below comprise the following principal findings. First, we construct a
spiking network model that reproduces the tuning curve response of every neuron in an
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experimentally recorded database, while simultaneously fitting the single-neuron intrinsic
response properties, circuit anatomy, and network response to inactivations. Second,
sensitivity analyses rigorously identify the features of synaptic connections most critical to
persistent neural firing. Third, the functional connectivities of the well-fit models are shown
to differ markedly from their anatomical connectivities. Fourth, concrete experimental
predictions are generated to differentiate between models based upon different forms of
threshold mechanisms predicted to be present in the oculomotor integrator circuit.

Results
In the following, we describe a framework for constructing models of memory-storing
circuits by simultaneously fitting experiments conducted in the oculomotor neural integrator
that probed intrinsic cellular response properties, interactions between integrator neurons,
and neuronal responses during behavior. Three features must be ascertained to fully describe
circuit function: the spike-generating process of the individual neurons, the connectivity
between the neurons, and the functional response properties of the synaptic connections and
dendrites onto which they project. Accordingly, our overarching strategy to determine these
features is to: first, construct a model of the spike-generating process of individual neurons
by fitting the responses of oculomotor integrator neurons to current injections that slowly
drive neuronal firing across the full range of observed firing rates; second, incorporate these
model neurons into an anatomically-constrained circuit model and fit the circuit connection
strengths and synapto-dendritic response properties to neuronal recordings obtained during
normal behavior and pharmacological inactivation; and third, perform sensitivity analyses to
reveal which features of the best-fit connectivity are essential to circuit function.

Data incorporated into the model
Below we summarize the key experiments used to fit the computational model. The goldfish
oculomotor neural integrator is a bilateral circuit located in the caudal hindbrain. As animals
make a sequence of fixations from left to right, neurons on the right side of the midline
become activated above their respective firing thresholds and maintain persistent firing rates
that linearly increase with the eyes’ position (Figure 2A). Conversely, neurons on the left
side exhibit a linear decrease in persistent firing with more rightward fixations. Neuronal
tuning curves are therefore well-characterized by two parameters (Aksay et al., 2000): the
threshold eye position at which they become active Eth, and the rate of increase of firing rate
with increasing eye position k. Equivalently, one of these parameters can be replaced by the
y-intercept r0, or “primary rate”, which gives the firing rate when the eyes are at the central
eye position E = 0 degrees. This push-pull arrangement, in which neurons on the left
increase in firing rate when those on the right decrease in firing rate (Figure 2A, bottom), is
thought to reflect an anatomical arrangement in which excitatory neurons on each side of the
midline project ipsilaterally, whereas inhibitory neurons project contralaterally (Figure 2B;
see Aksay et al., 2000; Aksay et al., 2003; Aksay et al., 2001). No apparent association has
been found between tuning curve shapes and whether a neuron is excitatory and inhibitory
(Aksay et al., 2003).

Further constraints on the properties of synaptic connections were obtained by
pharmacologically inactivating a portion of the integrator circuit while spared neurons were
recorded (Aksay et al., 2007). These experiments produced a distinct pattern of deficits in
persistent neuronal activity (Figure 2C). When the spared neuron was located contralateral
to the side of the inactivation (Figure 2C, blue trace), it exhibited upward firing rate drift
when its firing rate was close to or less than the primary rate r0. For higher rates, stable
persistent firing was maintained. A complementary pattern of firing rate drift was exhibited
for neurons located ipsilateral to the inactivation: downward firing rate drift when rates were
close to or higher than r0, and stable persistent firing at lower rates (red trace).

Fisher et al. Page 3

Neuron. Author manuscript; available in PMC 2014 September 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Finally, the spike-generating properties of model cells were based upon responses of
oculomotor integrator neurons to current injection in vivo during fixation. Somatic
injections of slowly ramping up and down currents lead to a nearly linear firing rate
response, with a narrow region of higher slope at the onset of firing (Figure 2D). Negligible
hysteresis was found between the responses to increasing versus decreasing currents.

Fitting a single-cell model to intracellular current injection data
We first constructed a spiking single-neuron model that reproduced the spike-generating
properties illustrated in Figure 2D. The model included leak, Na+, delayed rectifier K+, and
transient K+ conductances. These conductances, which corresponded to a Hodgkin-Huxley
spiking mechanism plus a weak adaptation current mediated by the transient K+

conductance, comprised a minimal set for describing the observed single-neuron dynamics
in the sense that notably worse fits occurred if any individual conductance was removed.
Maximal conductance parameters, as well as the total membrane capacitance and time
constant of inactivation of the transient K+ conductance, were fit using a cost function that
minimized the difference between the current injection data of Figure 2D and the model
responses to the same pattern of current injection. The fit was performed by re-plotting the
spiking responses as a cumulative sum over time to produce a nearly smooth curve (Figure
3B, blue line) that enabled the model parameters to be fit using a standard nonlinear
optimization routine (Experimental Procedures). The resulting single-compartment model
matched the experimental response to the slowly varying current injection on a nearly
perfect spike-by-spike basis (Figure 3A) and also had a membrane time constant consistent
with integrator neuron recordings (Supplemental Methods).

Fitting a circuit model to anatomical, cellular-behavioral, and inactivation studies
We next sought to determine both the functional form of the synaptic interactions between
integrator neurons, and the patterns of connections throughout the integrator memory
network. The primary challenge in constructing recurrent network models of graded
persistent activity is to tune the synaptic inputs so that the circuit can maintain persistent
firing across a continuous range of firing rates. If the net synaptic current provided to a
neuron is too weak, neuronal firing during memory periods will drift downward due to the
intrinsic leakiness of the neuronal membrane. If the net input current is too strong, neuronal
firing will drift upwards. In the context of the oculomotor integrator, this tuning requirement
implies that, at each stably maintained eye position, there is a precise level of current
required to sustain each neuron’s firing rate at its experimentally observed value. We
therefore asked what possible sets of connection strengths and synaptic nonlinearities could
enable the circuit to simultaneously reproduce all of the experiments illustrated in Figure 2.

The details of the model-fitting procedure are given in the Experimental Procedures and
Supplemental Methods. In brief, the model contained a total of 100 neurons, the estimated
number in the goldfish integrator circuit, divided into excitatory and inhibitory populations
on each side of the midline as suggested by experiment (Figure 2A,B). Synaptic inputs were
modeled as a sum of recurrent excitatory, recurrent inhibitory, and tonic background
currents (Figure 3F). Each recurrent synaptic input was modeled as the product of a
“synaptic strength” parameter Wij representing the maximal possible somatic current
provided from neuron j to neuron i, and a “synaptic” (and/or dendritic) activation s(rj)
representing the fraction of this maximal current provided when presynaptic neuron j fires at
rate rj (Figure 3E,F).

The best-fit connection strengths onto any given neuron were found by minimizing a cost
function (Equation (4) of Experimental Procedures) whose individual terms enforced that
each neuron maintain persistent firing at its experimentally observed firing rate r (E) for
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every stable eye position (Figure 3D). This was done by penalizing, for each neuron, any
differences between the current required to generate the experimentally observed firing rate
at each eye position (Figures 3F, S1F, dashed black line, obtained from combining the
single-neuron response curve, Figure 3C, with the neuron’s tuning curve, Figure 3D) and the
summed excitatory (red), inhibitory (blue), and tonic background current (orange) for a
given set of synaptic weights Wij and synaptic nonlinearities s(rj). For control animals, the
circuit was required to maintain persistent activity at all eye positions (Figure 3F). For the
inactivation studies, we only enforced that persistent activity be maintained at those firing
rates experimentally observed to remain stable (Figure 2C). For example, we only enforced
that firing rates above a value close to r0 be stably maintained following the removal of
recurrent inhibition through total unilateral inactivation (Figure 3G, colored portions).
Finally, a regularization term (Hastie et al., 2009) was added to the cost function to penalize
exceptionally large connection strengths that lead to synaptic response magnitudes
inconsistent with intracellular measurements (Aksay et al., 2001).

This procedure succeeded in generating circuits that simultaneously reproduced all of the
experimental data of Figure 2 (Figures 4,5). The circuits temporally integrated arbitrary
patterns of saccadic inputs (Figure 4E,F, left, two example circuits) and precisely
reproduced the tuning curves of every experimentally recorded neuron in our database
(Figure 4E,F, right, four example neurons). Furthermore, inactivations of these well-fit
circuits reproduced the characteristic pattern of drifts following both contralateral and
ipsilateral inactivations (Figure 5). Thus, the model recapitulated both the gross and neuron-
specific properties of an entire vertebrate neuronal circuit.

Sensitivity of circuit fits to synaptic activation parameters
Given that the complete circuit connectivity is defined by 5100 synaptic weight parameters,
as well as the unknown form of the synaptic activations s(r), we expected that many
different parameter value combinations could provide optimal or near-optimal fits to the
available experimental data. To explore this large parameter space, we implemented a
formal two-stage sensitivity analysis, first characterizing the dependence of the model fits on
the form of synaptic activations, and then, for a given form of synaptic activations, the
dependence on the pattern of connection strengths.

The sensitivity of the model fits to the form of excitatory and inhibitory synaptic activation
was explored by systematically varying the two parameters describing the activation
function: θ, which controlled the width, and Rf, which controlled the point of inflection
(Figure 4A). This allowed us to consider models in which the transformation at synapses
was linear, saturating (e.g. due to synaptic depression or saturation of driving forces), or
sigmoidal (e.g. due to synaptic facilitation or voltage-activated dendritic currents).
Excitatory and inhibitory recurrent synapses were allowed to have different forms of
nonlinearity.

This analysis showed that the integrator network can utilize only a restricted set of synaptic
activation functions to generate persistent firing. Figure 4B shows the space of synaptic
activations permitted (blue) and prohibited (red) by the experimental constraints when
inhibitory and excitatory synapses have identical (left) or different (middle, right) forms.
Circuits using predominantly saturating activations (Figure 4A, lower left corner) failed to
meet the conditions imposed by the experimental constraints. The poor performance of
circuits with saturating synapses was true for strongly saturating excitation or inhibition
(Figure 4B, middle, L-shaped poorly fitting region), and even for mildly saturating
excitation alone (right panel, bottom region). The mechanistic reason for this poor
performance is that neurons with saturating synapses transmit a large fraction of their
maximal currents when they fire at low rates, so that silencing such neurons greatly disrupts
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the balance of currents required to maintain stable persistent activity even when these
neurons fire at low rates. This violates the constraint imposed by the inactivation
experiments, which found that stable persistent firing was maintained at times when the
inactivated population would have been firing at low rates (Figure 2C).

In contrast, we found that circuits utilizing sigmoidal (Figure 4B, point 1; Figure 4C) or
more linear (Figure 4B, point 2; Figure 4D) synaptic activations were able to match all
experimental constraints. Neurons in well-fit models received little or no current from cells
firing at rates much lower than their primary firing rates r0 (Figure S1), thus satisfying the
constraints imposed by the inactivation experiments. In models with strongly sigmoidal
activation functions, characterized by a large inflection point Rf and narrow width θ so that
the synaptic response was strongly superlinear at low presynaptic firing rates (Figure 4A, 4C
left, large Rf and low θ values), low firing rates drove little synaptic current into the
postsynaptic cell due to the (soft) threshold occurring at the synapse. We refer to this as a
synaptic threshold mechanism (Figures 4C,E, S5A). Models with more linear synaptic
activations instead depended critically on input from high eye-position threshold neurons
(Figures 4D,F, S5B). In these circuits, the constraint imposed by the inactivation
experiments is met because the high eye-position threshold neurons transmit a large portion
of the total current received by each neuron; thus, there is very little current transmitted over
the portion of the oculomotor range (negative eye positions in Figures 2A and S1F)
observed to be minimally affected by unilateral inactivations. While for excitation some
input from low recruitment-threshold neurons was tolerated, for inhibition connection
weights from such neurons had to be nearly zero (Figure 4D, right; Figure S2). We refer to
this as a neuronal recruitment threshold mechanism.

More generally, we found that well-fit models could utilize combinations of the above two
mechanisms. As seen in Figure 4B, the well-fit (blue) models occupied a connected region
of parameter space within which the circuits illustrated in Figures 4C and 4D represented
relatively pure examples of each mechanism. Traversing the region between these examples
by progressively decreasing the synaptic threshold, we found a compensatory increase in the
reliance on higher recruitment threshold neurons and decrease in reliance upon lower
recruitment threshold neurons, especially for inhibition (Figure 4G; Figure S5). This path
through parameter space represents an insensitive direction of movement along the model
cost-function surface, with a tradeoff between the use of synaptic and recruitment
thresholds.

Sensitivity of circuit fits to synaptic weight parameters
We next asked which features of the circuit connectivity were necessary and which could be
changed with minimal degradation of model performance. To address this question, we
performed a sensitivity analysis on the connections weights for circuits based on both the
synaptic threshold and neuronal recruitment-threshold mechanisms.

For a given form of the synaptic activation function, we first determined the best-fit
connectivity pattern from the minimum of our fit cost function. We then asked how the cost
function changed when individual synaptic connections were altered from their best-fit
values, and which concerted patterns of synaptic connection changes caused the greatest
changes in the fit performance. These quantities were found by calculating, for each neuron,
how rapidly the cost function curved away from its minimum value when the presynaptic
weights onto the neuron were varied around their best-fit values. Mathematically, this

curvature is defined by the sensitivity (or Hessian) matrix  whose (i, j)th element
contains the second derivative of the cost function with respect to changes in the weights of
the ith and jth presynaptic inputs onto neuron k (Figure 6A). Sensitivity to changes in a
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single presynaptic input weight are given by the diagonal elements of the matrix. Sensitivity
to concerted patterns of weight changes are found from the eigenvector decomposition of the
matrix. Eigenvectors corresponding to the largest eigenvalues give the patterns of weight
changes along which the cost function curves most sharply, and hence identify the most
sensitive directions of the circuit to perturbations. Eigenvectors corresponding to small
eigenvalues define patterns of weight changes to which the cost function is insensitive.

Figure 6A shows the sensitivity matrix for a neuron from the synaptic threshold model of
Figure 4C. The sensitivity matrix separates into diagonal blocks, indicating that changes in
the cost function due to perturbations in excitatory (inputs 1–25) and inhibitory (26–50)
weights were nearly independent of one another. Within these blocks, the precise grid-like
pattern of sensitivities was dependent upon the exact choice of tuning curves used in any
given simulation and was removed by averaging the sensitivity matrices of 100 circuit
simulations with different random draws of tuning curves (Figure 6B).

From the diagonal elements of these mean sensitivity matrices, we computed the tolerance
(Figure 6D, red bars) of each model to changes in any individual synaptic weight away from
its best-fit value (green). This type of analysis corresponds to a traditional “vary one
parameter at a time” sensitivity analysis, and is useful in predicting the effect of perturbing a
single or small set of connection weights. For the synaptic-threshold mechanism circuits
(Figure 6D, left), only the connections from the low-threshold inhibitory neurons were
sensitively different from zero. By contrast, for the neuronal recruitment-threshold
mechanism circuits (Figure 6D, right), only connections from high-threshold inhibitory
neurons were sensitively different from zero. These results suggest that experimental
manipulations that remove individual high- or low-threshold inhibitory neurons will have
opposite effects in circuits based upon the different threshold mechanisms (see Model
predictions).

The above analysis describes the effect of varying single weights onto a neuron. However, it
does not address the question of whether a particular weight onto a neuron must be held
close to its best-fit value. This is because studying the effects of changing one weight at a
time does not consider whether such changes could be offset by compensatory changes in
weights arriving from other, correlated inputs.

To address this latter question, we calculated the eigenvectors of the sensitivity matrix to
determine which concerted patterns of connection weights most sensitively affect the tuning
of the circuit. Figure 6E–G shows the leading eigenvectors for a neuron from the synaptic
threshold mechanism circuit of Figure 4C. The most sensitive perturbation corresponds to
making all weights more excitatory (Figure 6E, eigenvector 1) or, equivalently, making all
weights more inhibitory since eigenvectors are only defined up to a sign change. Changes
along this direction lead to a unidirectional “bias” in the inputs to this neuron that also was
observed in the first eigenvectors of the other neurons in this circuit (Figure 6F, Figure S6F).
As a result, perturbing the first eigenvectors of all neurons lead to dramatic unidirectional
drift in neuronal firing (Figure 6G).

The second through fourth columns of Figure 6 show the next most sensitive patterns of
connection weights for this circuit. The second eigenvector defined a “leak-instability axis”
defined by increasing or decreasing the magnitude of all excitatory or inhibitory inputs.
Perturbing this pattern of weights changed the amplitude of both the excitatory and
disinhibitory feedback loops in the network, leading to strong exponential decay (leak) or
instability of firing rates around a single fixed value (Figure 6G, 2nd column). The third and
fourth eigenvectors corresponded to making inputs from low-threshold neurons more
excitatory or less inhibitory while making those from high-threshold neurons more
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inhibitory or less excitatory and therefore defined “high- vs. low-threshold neuron” axes.
Changes along eigenvectors 3 and 4 lead to drift towards or away from two or three fixed
points, respectively (Figure 6G, 3rd and 4th columns).

For circuits based on neuronal recruitment-thresholds, the eigenvector analysis revealed a
similar pattern of most sensitive directions (Figure S6B,C). Thus, even though circuits based
on the different threshold mechanisms had very different best-fit connectivities, the patterns
of perturbations to which they were most sensitive was highly similar. This reflected that, in
all circuits, the prime determinant of circuit architecture was providing the appropriate
balance of currents to maintain persistence across the entire firing rate range, and this
balance was determined by three dominant factors: first, providing the correct average level
of input to each neuron; second, providing the correct balance of inhibition and excitation;
and third, providing an appropriate balance of input from high-and low-threshold neurons.

For all circuits, the least sensitive directions corresponded to oppositely directed changes in
just a few inputs (Figure 6E, eigenvector 50) or offsetting and often noisy-appearing
changes in larger groups of inputs (Figure 6E–G, eigenvectors 10 and 30). Changes along
these insensitive directions could yield other circuits that looked quite different in their
connectivity structure but had nearly identical model performance. For example, changing
the neuronal recruitment-threshold circuit of Figure 4D along an insensitive direction
showed that excitation for this set of synaptic activations could either use (Figure 4D) or not
use (Figure S7A,B) low-threshold excitatory neurons. This insensitive change would not be
identified by the traditional individual connection-weight analysis of Figure 6D (right),
which shows that the circuit performance is sensitive to changing individual low-threshold
excitatory weights. This might seem to contradict the observation that input from low-
threshold excitatory neurons is not required. However, the individual connection weight
analysis only identifies the effects of changing individual weights when no other
compensations are made in other weights. The eigenvector analysis resolves this seeming
discrepancy by showing that low-threshold excitatory connections are not necessary because
they can be compensated for by making offsetting changes in broader patterns of weights.

Model predictions differentiating synaptic and neuronal-recruitment threshold
mechanisms

Circuits based on the synaptic and neuronal-recruitment threshold mechanisms make
distinctly different predictions for targeted neuronal ablation experiments. As was seen in
the sensitivity analyses (Figure 6D), circuits based upon these mechanisms rely in opposite
manners upon high-versus low-threshold inhibitory neurons. Circuits using the synaptic
threshold mechanism are most sensitive to removal of low eye-position-threshold inhibitory
neurons (Figure 6D left). This predicts that ablating low-threshold inhibitory neurons in such
circuits would have a much larger effect on the drift patterns than ablating high-threshold
inhibitory neurons, and this was seen in our simulations (compare Figures 7A, middle and
bottom). By contrast, circuits based upon neuronal thresholds are insensitive to loss of inputs
from low-threshold inhibitory neurons but highly sensitive to loss of high-threshold
inhibitory neurons. Thus, ablating high-threshold inhibitory neurons in such circuits would
have a much larger effect on the drift patterns than ablating low-threshold inhibitory neurons
(Figure 7B). For detailed analysis of the specific patterns of drift seen in Figure 7, we refer
the reader to the simplified analytic model of the Supplemental Methods and Figure S2.

A second prediction arises from analyzing the time constants of drift following inactivation.
Both in the well and poorly fit models, the rate of drift following inactivation scaled
approximately linearly with the inverse of the recurrent excitatory synaptic time constant. To
reproduce quantitatively the drift rates observed experimentally following inactivation, a
recurrent excitatory synaptic time constant of approximately 1 second was required. This
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finding predicts a role for a slow cellular component of persistence at excitatory synapses or
dendrites (see Discussion).

Disparity between structural and functional connectivity
The results above show that there are multiple circuit structures, understandable by the
tradeoff between two thresholding mechanisms, that could reproduce the experimental data.
As shown next, however, these structural differences masked strong similarities in
functional connectivity that were revealed only when the combined effects of the structural
connectivity Wij, the synaptic nonlinearities s(rj), and the threshold nonlinearity of the
tuning curves were considered.

To generate the functional connectivity (also known as “effective connectivity”; Sporns et
al., 2004) between neurons at different eye positions, we calculated the amount of current
provided by any given neuron to its postsynaptic targets at different eye positions. These
currents then were normalized by the presynaptic firing rate to obtain a functional
connectivity measure, current per presynaptic spike, that did not simply reflect the strength
of presynaptic firing. Below-threshold neurons were assigned a functional connectivity
strength of zero.

The resulting functional connectivities for all circuits exhibited a striking pattern not evident
in the anatomical structure: when the eyes were directed leftward, the left-side inhibitory
neurons projected strong functional connections. However, the functional weights of
inhibitory right-side neurons were almost zero (Figure 8D–F). When the eyes were directed
rightward, the opposite pattern emerged, with the right side inhibitory neurons dominating
and those on the left side contributing little (Figure 8G–I). This result illustrates a paradox:
although inhibitory connections appear from the anatomy to create a disinhibitory feedback
loop between the two sides of the integrator, the functional connectivity demonstrates that
inhibition acts in a feedforward manner.

Discussion
Persistent neural activity has been identified in a wide range of memory circuits, but
previous models of such activity have been primarily conceptual in nature and not easy to
compare directly to experimental recordings of individual neurons. Here, we developed a
regression-based fitting routine that directly incorporates anatomical constraints on
connectivity, intracellular current injection recordings, neuronal tuning curves recorded
during behavior, and neuronal drift patterns following pharmacological inactivation. This
approach enables biophysically detailed predictions to be made regarding both the properties
of synaptic signal transformation and the patterns of connectivity between constitutive
neurons. Furthermore, sensitivity analyses enabled us to make strong statements about
which features of the model were, and were not, essential. Our analysis revealed two circuit
mechanisms, one based on synaptic thresholds and one on neuronal recruitment thresholds,
that were required of all well-fit networks. Despite very different anatomical connectivity,
the functional connectivity of circuits utilizing these two mechanisms was similar, revealing
a striking dichotomy that is likely to be present in many other circuits and discoverable
utilizing the modeling framework developed here.

Relationship of approach to previous models
The model presented here provides, to our knowledge, the first example of a memory
network in which such a wide range of experimental data are directly incorporated, while
difficult-to-measure quantities like network connection strengths and synaptic nonlinearities
are simultaneously fit to these data. We further have been able to identify sensitive and

Fisher et al. Page 9

Neuron. Author manuscript; available in PMC 2014 September 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



insensitive combinations of synaptic parameters that change or leave unaffected circuit
performance, respectively. Previous circuit studies utilizing a purely brute force approach
have also performed sensitivity analyses (Prinz, 2007), but have been limited to the study of
small networks and small numbers of parameters due to the explosion of possible parameter
combinations. We instead used a brute force approach to study sensitivity to the small
number of synaptic activation parameters, but implemented an eigenvector-based approach
for analyzing the large number of synaptic connections. This procedure revealed a relatively
small number of patterns of connection weights onto each neuron that must be sensitively
maintained to have good model performance.

More generally, our use of a cost function to enforce different biological constraints permits
the incorporation of results from additional experiments. For example, topographic
organization consistent with recent optical recordings in the larval zebrafish integrator (Miri
et al., 2011) could be incorporated by adding a term to the cost function that penalizes long-
distance connections. In Figures S7C and S7D we show that such topographic connectivity
is consistent with the experimental findings modeled here, and can be obtained through
insensitive changes from the best-fit circuits. Such a pathway through the parameter space of
network connectivity could be utilized during development, with the integrator network
beginning in a more topographically organized form and moving to a more distributed
connectivity pattern in the mature state, where the functional signatures of topography seem
to be weaker (as discussed in Miri et al., 2011).

In addition, our approach can be extended to allow greater heterogeneity in synaptic
parameters or to model circuits with non-monotonic tuning curves (D. Fisher, unpublished
observations). We have considered a single shape of synaptic activation function for all
excitatory neurons, and a separate single shape for all inhibitory neurons, regardless of
threshold. Relaxing this constraint might identify circuit architectures in which there are
gradients in synaptic activation parameters as a function of neuronal threshold.

Model predictions and implications for biophysical mechanisms of persistent activity
Our work makes several predictions about the mechanisms of integration in the oculomotor
integrator and possibly other short-term memory circuits. First, in contrast to the previous
spiking model of the oculomotor integrator based upon purely saturating synapses (Seung et
al., 2000, Figure S4D), which modeled a single unilateral population and was generated
before the inactivation experiments had been performed, our sensitivity analysis suggests
that both inhibition and excitation are likely to be mediated by approximately linear or
sigmoidal synaptic activation functions. Second, our quantitative fits to the drift rates
following inactivation suggest that the observed long integration time constants are not
solely due to network mechanisms, and instead suggest the presence of an intrinsic cellular
or synaptic process with a time constant of order 1 second. Third, we suggest that integration
depends critically upon the presence of a threshold mechanism. This could either take the
form of a synaptic (or dendritic) threshold, as suggested by Aksay et al. (2007), or result
from the circuit’s recurrent connectivity depending critically upon neurons with high eye-
position thresholds, particularly for inhibition.

Potential “synaptic” mechanisms consistent with a sigmoidal dependence upon presynaptic
firing rate and an approximately 1 second time constant are presynaptic facilitation (Wang et
al., 2006) or, postsynaptically, localized dendritic plateau potentials (Major et al., 2008; Wei
et al., 2001). The long time constants associated with these mechanisms could provide
robustness against disruptions of circuit connectivity (Camperi and Wang, 1998; Goldman et
al., 2003; Koulakov et al., 2002; Mongillo et al., 2008). The high thresholds could be useful
in filtering out low firing rates (Chichilnisky and Rieke, 2005), which are noisier in the
oculomotor integrator than higher firing rates (Aksay et al., 2003).
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Having recurrent inputs dominated by high eye-position-threshold neurons would suggest a
functional difference between low- and high-threshold neurons. High-threshold neurons
would be used for maintenance of persistent firing rates within the integrator, whereas low-
threshold neurons might be used as readout neurons. Experimental tests of this threshold
organization should be possible through targeted silencing of specific subsets of neurons, for
example using halorhodopsin in the optically transparent larval zebrafish preparation
(Schoonheim et al., 2010).

Functional versus structural connectivity, and relation to connectomics
One of the most striking features of these models is the difference between the functional
and structural connectivities (Figure 8). As shown in Figure 2, the two sides of the circuit
are connected by mutual inhibition, anatomically suggesting the presence of a “double
negative” (disinhibitory) positive feedback loop. In most models with inhibition between
two populations, such positive feedback loops generate persistent activity (Cannon et al.,
1983; Machens et al., 2005; Sklavos and Moschovakis, 2002; Song and Wang, 2005). By
contrast, our results suggest that the anatomical mutual inhibitory loop is functionally
broken so that there is no disinhibitory feedback loop to sustain persistent activity. Rather,
as suggested previously (Aksay et al., 2007; Debowy and Baker, 2011), recurrent excitation
generates persistent activity at high firing rates, and low firing rates are held stable primarily
by feedforward inhibition that is driven by the stable high rates of the opposing side.

The dichotomy between functional and anatomical connectivity demonstrated here suggests
how a deeper understanding of the link between cellular properties and behavior can be
facilitated by combining modeling work with large-scale anatomical studies. Serial-section
electron microscopy (Briggman and Denk, 2006; Micheva and Smith, 2007) and automated
image processing (Chklovskii et al., 2010; Jain et al., 2010) promise unprecedented
opportunities for defining the anatomical connectivity of a circuit. However, much in the
way the human genome project was successful in identifying genes but not directly
informative of their functional roles, connectomics will provide only an identification of
anatomical connections. An understanding of the functional connectome therefore will rely
on a hybrid approach where data on neuronal responses is combined with high-resolution
structural information. Importantly, we note that not all structural information is equally
informative, as we showed that integrator function was highly dependent on the proper
balance of interactions between high and low-threshold neurons, but insensitive to random
changes in the connections between cells with similar thresholds. Thus, biophysically
realistic circuit models can help guide anatomists in determining which aspects of the
connectivity are most important to measure. In turn, the relevant structural data will be
invaluable to refining model predictions, providing additional fitting constraints that help to
further limit the space of possible functional connections.

Experimental Procedures
Data Analysis

Experimental data were previously obtained in the horizontal velocity-to-position neural
integrator of the awake, behaving adult goldfish (Aksay et al., 2000; Aksay et al., 2003;
Aksay et al., 2001; Aksay et al., 2007). Briefly, neuronal tuning curves were determined
from extracellular recordings of integrator neuron activity. They were well-approximated by
a threshold-linear relationship between firing rate ri and eye position E during stable
fixations,

(1)
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described for a given cell i by a sensitivity ki and either eye-position threshold Eth,i or
intercept r0,i (Figure 2A). Neuronal excitability was determined from intracellular recordings
of the response to current injection (Figure 2D). Circuit interactions were assessed by
extracellular recording of single-unit activity immediately following localized
pharmacological silencing of neighboring cells using lidocaine or muscimol.

Neuronal drift patterns characterizing the effects of pharmacological inactivation were
obtained by comparing firing rate drifts before and after inactivation (Supplemental
Methods). Drift was plotted as a function of firing rate rather than eye position in order to
eliminate potential confounds that could occur if the inactivations affected the eye position
readout from the circuit by altering the relationship between firing rates and eye position. To
pool across cells recorded in different preparations, neuronal activity was normalized using
the eye-position sensitivities and intercepts given by the steady-state (control) tuning curve
relationships (equation (1)). Firing rates for cell i were normalized by first subtracting its
primary rate r0,i and then dividing by its position sensitivity ki, resulting in normalized rates
in units of eye position. Firing rate drifts were normalized by the position sensitivity ki. An
identical analysis was performed on the model firing rate data, permitting a direct
comparison between experiment and theory.

Computational Model
The model circuit contained 100 conductance-based neurons: 25 excitatory and 25 inhibitory
neurons on each side of the midline. Tuning curves ri (E) for 37 of the neurons were taken
directly from the experimental measurements, with the other 63 generated by varying the
slopes k and thresholds Eth of the experimental ones by uniformly distributed factors
between 0.9 and 1.1, and −1° and 1°, respectively. Tuning curves of excitatory and
inhibitory neurons were drawn from the same distribution.

Neuronal description—The membrane potential V (t) of each neuron i is determined by

(2)

The intrinsic leak Ileak, voltage-dependent transient sodium INa, delayed rectifier potassium
IK, and transient potassium IKt currents were modeled in the Hodgkin-Huxley formalism
(Supplemental Methods). Ti represents tonic input currents of vestibular origin, Bi (t)
represents saccadic burst command inputs, and Inoise is a noise current. Wij sj gives the
recurrent input from neuron j to i, where Wij is the connection strength and sj (uj, t) is the
synaptic activation.

The synaptic activation functions sj(uj, t) are governed by a two time-constant approach
(Supplemental Methods) to steady-state activation functions s∞, j(rj). s∞, j (r) were chosen
from a two-parameter family of functions that increase from 0 at r = 0 to 1 at large r :

(3)

Rf,j gives the inflection point: s∞, j (r) is superlinear for r < R f,j and sublinear for r > Rf,j. Θj
scales the slope of the curves: s∞, j (r) increases sharply over a narrow range of r for small
Θj, and increases gently for large Θj. This family allowed us to generate a wide range of
sigmoidal, saturating, and approximately linear curves within the relevant range of r.
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Synaptic activation curves s∞, j (rj) were chosen to be different for excitatory and inhibitory
synapses, but the same within each synapse type.

Model fitting procedure—The model fitting procedure was conducted in two steps. First,
we fit a conductance-based model neuron that reproduced the current injection experiments
of Figure 2D. Second, we incorporated this conductance-based neuron into a circuit model
of the goldfish oculomotor integrator and used a constrained regression procedure to fit the
connectivity parameters Wij and Ti of the circuit model for different choices of the steady-
state synaptic activation functions s∞ (r).

Single-neuron model calibration: Parameters of the intrinsic ionic conductances were
calibrated to accurately match the current injection experiments illustrated in Figure 2D. In
the experiments, slow up-and-down ramps of injected current drove the recorded neuron
across the firing-rate range observed during fixations. The model neuron’s parameters were
optimized to reduce the least-squares distance between the experimental and simulated
cumulative sum of the spike train as a function of time (Figure 3B). Parameter optimization
was performed using the Nelder-Mead downhill simplex algorithm.

To obtain the steady-state response curve r = f (I) (Figure 3C), the single-neuron model was
injected for 60 seconds with constant currents of various, finely discretized strengths, and
the firing rate r was found from the inverse interspike intervals (ISI), discarding the first 5

sec to assure convergence to steady-state. A noise current  was included to
approximately match the coefficient of variation (CV) of ISI’s observed experimentally
(Aksay et al., 2003; Supplemental Methods).

Fitting the recurrent connectivity: The circuit connectivity was fit using a constrained
linear regression procedure that simultaneously incorporated anatomical constraints (Figure
2B), tuning curve data (Figure 2A), and firing rate drift patterns following inactivations
(Figure 2C).

To enforce the anatomical constraint that excitatory neurons project ipsilaterally and
inhibitory neurons project contralaterally, contralateral excitatory and ipsilateral inhibitory

weights were set to zero. Dale’s law was enforced by imposing hard constraints  on

the weights  from excitatory neurons and  on the weights  from inhibitory
neurons. Connection weights Wij and Ti onto each neuron i then were fit simultaneously to
the tuning curve data and firing rate drift data using the following cost function:

(4)

The first term above penalizes the sum, over a finely discretized set of eye positions m, of
the squared differences between the current f−1(r0,i + ki Em) required to drive neuron i at the
firing rate rj(Em) = r0, j+kj E m given by its tuning curve, and the current it receives when all
other neurons are firing at the rates given by their tuning curves (Figure 3F).
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The second term enforces the observation that, following total contralateral inactivation, no
drift is observed to occur for normalized firing rates greater than approximately 5° into the
half of the oculomotor range ipsilateral to the recording (Figure 5D, blue points). Since loss
of current due to the inactivation disrupts the balance of currents that maintain persistent
activity, we penalized the squared sum over all inputs to neuron i of the mean inhibitory

current  received over the non-drifting range of firing rates.

The third (gray) term similarly penalized the squared sum of the total mean excitatory
current over the range of firing rates that did not drift following the partial ipsilateral
experiments. This term guaranteed that neurons ipsilateral to a partial inactivation could
maintain persistent low firing rates by assuring that minimal recurrent excitatory current was
present at such low firing rates. However, this condition is overly restrictive because these
low rates might be held stable over at least a portion of their firing rate range by persistent
synaptic drive arriving from the stably firing neurons of the unlesioned half of the integrator.
Thus, this third term was not used to strictly rule out circuits as incompatible with
experiment; instead, it was used in a subset of simulations to generate a lower bound on the
number of well-fit networks. In Figure 4B, the error grids report the across-neuron averages
of the maximum of the root-mean current mismatches for the first two terms of the cost
function for model fits in which only these two conditions were enforced. The yellow-and-
black boundary line reports the location of approximately 5 pA error in the same averages
for the first three terms of the cost function for fits in which all three conditions were
enforced. These reports thus represent upper and lower bounds on the set of well-fit
activation parameters.

The fourth term is a regularization term that penalizes excessively strong weights. Similar
goodness-of-fits and circuit connectivities were obtained when, instead of the soft constraint
described by the fourth term, we applied a fixed maximum weight Wmax=0.1 nA.

The cost function described above consists of a sum of quadratic terms, which allowed the
weights onto each neuron to be fit with a constrained linear regression algorithm. Because
each neuron could be fit separately from every other, the overall fitting procedure
represented a sequence of 100 constrained linear regressions for 101 coefficients Wij and Ti
(of which 50 are constrained to be zero, see Figure 2B).

Coefficients of the different regression terms (ρinh, ρexc, λ) were chosen to maximize the
number of circuits that provided good fits to both the tuning curve data and the inactivation
experiments (Supplemental Methods). However, the region of well-fit activation curves and
basic themes of circuit organization were not observed to change significantly over a broad
range of coefficient values around the optimum.

Connectivity sensitivity analysis—The sensitivity of the circuit to changing patterns of

synaptic connectivity were calculated from the Hessian matrix  described in
the Results. For the individual connection weight analyses, the Hessian matrix for a given
neuron (e.g. the kth lowest-threshold neuron in each circuit) was averaged across 100 circuits
generated by randomly drawing tuning curves from the experimental distribution of Figure
2A (inset). Tolerance bars were generated for each connection weight onto neuron k by
determining from the Hessian the amount this weight would be required to change in order
to produce a noticeable (5 pA) change in the cost function. These bars then were overlayed
upon the weighted average of the optimal connection weights for the 100 circuit simulations,
where each model’s connection strengths were weighted by their sensitivities.
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Eigenvectors and eigenvalues were found for each of the 100 randomly generated circuits.
To identify salient features present across circuits, we then generated the average 1st, 2nd,
3rd, etc. eigenvectors across all 100 circuits (Figure 6E, green lines). Perturbations in Figures
6F and 6G corresponded to changing weights by a fixed vector length along all of the shown
eigenvectors; thus, differences between sensitive and insensitive perturbations reflected
summing (for sensitive) or cancelling (for insensitive) effects of individual weight changes,
and not different sizes of weight perturbations. To produce the nth column of Figure 6G,
each neuron was perturbed along its nth eigenvector. Further description of the connectivity
analysis and perturbations along insensitive directions (Figures S6, S7) are given in the
Supplemental Methods.

The above analysis implicitly assumes that the minimum of the cost function over the
allowed range of weights corresponds to a local minimum, so that the first derivative is zero
and the second derivatives characterize deviations from the minimum. However, because
Dale’s law constrains the weights to be strictly non-negative or non-positive, the best-fit
parameters can occur on the boundary of the permitted set of weights. In such cases, we also
computed the gradient of the cost function to determine the direction of greatest sensitivity
to infinitesimal changes in weights. However, for changes in weights large enough to lead to
noticeable mistuning, the increase in the cost function due to linear changes along the
gradient direction were much smaller than the quadratic changes determined by the
sensitivity matrix (Figure S6G). In addition, because the gradient vector reflected weights
that were prevented by Dale’s law from changing signs, its direction corresponded to
increasing magnitudes of all zero-valued weights and therefore overlapped with eigenvector
2. Thus, for the circuits analyzed here, the gradient provided little additional information
beyond that provided by the sensitivity matrix.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The challenge of understanding memory circuits
(A,B) In recurrent circuits, the activity of a given neuron both influences and depends upon
the activity of other neurons in the circuit. Circuit-level interactions between cells can be
characterized by two factors, the matrix of connection strengths Wij (panel B) and the
transformations in the synaptic pathways from one cell to another defined by the synaptic
activation functions s(r). Many possible sets of connection strengths and synaptic activations
could support persistent firing. Here we show how combining multiple types of
experimental measurements can be used to constrain the set of possible circuit models. (C–
E) To model recurrent memory circuits, previous studies were forced to make strong
simplifications such as allowing negative firing rates (C, dashed line) and assuming linear
synaptic activation functions (D) to permit the use of linear systems analysis (e.g. Goldman,
2009; Machens et al., 2010; Robinson, 1989), or assuming simplified connectivities like
constant (left), symmetric (middle, see Machens and Brody, 2008; Renart et al., 2003 for
review), or low-dimensional (right, see Eliasmith and Anderson, 2003; Seung et al., 2000)
weight matrices.
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Figure 2. Data used to constrain a model of short-term memory in the oculomotor neural
integrator
(A) (Top) Firing rate vs. eye position tuning curve of a right-side integrator neuron.
Leftward (L) eye positions are defined as negative and rightward (R) as positive. Data points
show time-averaged values for individual fixations. Inset, tuning curve parameters for 37
recorded neurons; to pool all data together, left-side neurons are plotted with −k and −Eth.
For our modeling, the measured tuning curves were supplemented with 63 others resampled
from the original 37 (Experimental Procedures) to generate a bilateral population of 100
neurons (bottom). (B) Schematic of the recurrent anatomical connectivity suggested by
experiments in the goldfish oculomotor integrator. The dashed line indicates the midline.
Excitatory neurons (red) project ipsilaterally. Inhibitory neurons (blue) project
contralaterally. (C) Example firing rate traces illustrating drift in firing rates following
complete contralateral (blue) or partial ipsilateral (red) inactivation (adapted from Aksay et
al., 2007). In each case, minimal drift occurs over the firing rate range corresponding to
when the inactivated population would have been firing at low rates. For population
averages, see Figure 5D. (D) Response of an integrator neuron to a current ramp injection
during a fixation (top: injected current; middle: spike train; bottom: firing rate). Panels A
(top), C, and D adapted with permission from Aksay et al. (2000), Aksay et al. (2007), and
Aksay et al. (2001), respectively.
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Figure 3. Deriving model parameters directly from experimental data
(A,B) Fit of the single-neuron model. (A) Experimental current injection profile (top), and
experimental (blue) and calibrated model (red) neuron spike trains (middle and bottom). (B)
Model neuron parameters were determined by fitting the cumulative sum of spikes as a
function of time (+’s indicate spike times). (C–E) Key components of the circuit model: (C)
Steady-state response curve of the calibrated spiking neuron in the presence of noise
(without-noise case shown for comparison). (D) Tuning curve of a neuron. (E) Example
activation curves for excitatory (red) and inhibitory (blue) synapses. (F) From the steady-
state response curve (C) and the tuning curve of each neuron (D), we determine the somatic
current necessary to maintain the observed persistent firing rate at any eye position (black).
This current is provided by a weighted combination of the recurrent excitatory (red) and
inhibitory (blue) synaptic activation functions s∞, plus tonic background currents T (orange)
(Figure S1). For a given form of the synaptic activations, and considering different
(discretized) eye positions as different data points, the weights Wij and background current
Ti are determined by a constrained linear regression. (G) Because firing rates corresponding
to eye positions greater than 50 past the primary eye position (black or colored portions of
graphs) are maintained following total silencing of inhibitory inputs by unilateral
inactivation, we required that these high rates be maintained even when the recurrent
inhibitory input is set to zero. See also Figures S1 and S8.
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Figure 4. Circuit mechanisms enabling all experiments to be fit: control data
(A) Examples from the parameter grid of tested synaptic activation curves s∞ (r). (B)
Accuracy of the circuit fitting for different choices of synaptic activation functions s∞,exc(r)
and s∞,inh(r). Three example planes in the 4-dimensional parameter space (Rf,exc, Rf,inh,
Θ exc, Θinh) are shown. (Left) s∞,exc (r) = s∞,inh(r) plane; (middle) plane of relatively steep
activation curves, Θexc = Θinh = 6 Hz; (right) plane of relatively gentle activation curves,
Θexc = Θinh = 22 Hz. Main grids show model fits without the third term of the cost function;
black and yellow dashed line indicates location of a 5 pA fit error for fits that included the
third term. See Figure S3 for calibration of color scale. (C,D) Synaptic activation curves and
weight matrices for example circuits using synaptic (C) or neuronal recruitment-threshold
(D) mechanisms. Weight matrices Wij are plotted with cells grouped by side and synaptic
polarity (dashed lines) and, within each group, ordered by increasing eye-position threshold
−|Eth|. See text for details. (E,F) Circuits using each mechanism integrate arbitrary
sequences of saccadic inputs (not shown) into stable sequences of fixations (left: mean rate
of right-side (black) and left-side (gray) neurons and corresponding rates for a perfect
integrator (magenta, orange)). At each fixation, every model neuron’s firing rate (boxes:
mean±25th percentiles) precisely reproduces its corresponding experimental neuron’s tuning
curve (solid lines, 4 examples). (G) Illustration of an insensitive direction (from points 1 to 2
in panel B) in the parameter space of synaptic activations. See also Figures S2–S5 and S8.
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Figure 5. Circuit mechanisms enabling all experiments to be fit: inactivation data
Comparison of the effects of selective inactivations on the goldfish oculomotor integrator in
the experiments (C–E) and in model circuits using each mechanism (F–K). (A,B)
Schematics of contralateral (left) and ipsilateral (right) inactivation experiments. (C)
Experimental firing rates before (first row) and after (second row) complete contralateral
inactivation. Here and below, we show both firing rate (gray) and smoothed firing rate
(black), and highlight in blue the regions where the firing rate for the shown neuron is below
its primary rate r0. (D) Population average drift rates. Both firing rate and drift were
normalized to allow data from different fish to be pooled (Experimental Procedures).
Individual points: difference between average drift in control fish and following
inactivation, calculated in discretized bins. Vertical lines: 95% confidence intervals. (E)

Fisher et al. Page 22

Neuron. Author manuscript; available in PMC 2014 September 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Same layout described for C, but for partial ipsilateral inactivation (and with different
recorded neurons). Red regions highlight where firing rate is above the primary rate r0. (F–
K) Results of inactivation of the simulated spiking networks of Figures 4C(F–H) and 4D (I–
K). Layout is identical to C–E above. Panels C and E adapted with permission from Aksay
et al. (2007). See also Figure S2.

Fisher et al. Page 23

Neuron. Author manuscript; available in PMC 2014 September 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Sensitivity of fits to different perturbations.

(A) Sensitivity (Hessian) matrix . Example corresponds to a low-threshold
neuron from the circuit of Figure 4C. (B) Average Hessian matrix, obtained from averaging
Hessians of a low-threshold neuron in 100 different circuits generated by random draws of
tuning curve parameters from the experimental distribution of Figure 2A (inset). (C) Square
roots of the eigenvalues of the Hessian matrix of panel A, which give sensitivity to
perturbations along the corresponding eigenvector directions. (D) Tolerance (red bars) to
changes in individual connection strengths away from their mean best-fit values (green). Bar
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lengths were found from the diagonal elements of the average Hessian matrix and indicate
the weight change required to produce a ±5 pA change in the cost function that lead to
noticeably disrupted circuit performance. (E–G) Sensitivity of the fits to perturbations of
combinations of connection strengths corresponding to the 1st – 4th most sensitive, and a
selection of the insensitive, eigenvectors of the Hessian in panel A. (E) Eigenvectors of the
Hessian. Symbols: eigenvector elements for the Hessian of panel A. Dark green: ensemble
average of the eigenvectors over 100 different circuits generated from the experimental
tuning curve data distribution. (F) Change in the recurrent input fit produced by a 1 nA
perturbation along the respective eigenvector. Black: current required for a perfect
integrator; green: current in tuned circuit; red: current in perturbed circuit. (G) Changes in
the spiking network performance produced by a 30 pA perturbation along the respective
eigenvector (black, mean right side rate; gray, mean left side rate). See also Figures S6 and
S7.
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Figure 7. Predictions for selective ablation experiments
Simulation results for the two circuits of Figure 4 before and after a selective ablation of
low- or high-threshold inhibitory neurons. (A) Circuit with high-threshold synapses.(Top)
Mean rates of left-side (gray) and right-side (black) neurons in the intact circuit. (Middle)
Ablation of the 12 lowest threshold inhibitory neurons on the right side of this circuit results
in a strong drift towards the primary rate r0. (Bottom) Ablation of the 12 highest-threshold
inhibitory neurons on the right side has little effect. (B) The opposite behavior is predicted
for circuits based upon the high neuronal threshold mechanism. See also Figure S2.
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Figure 8. Different structural connectivities hide similarities in functional connectivity
Structural and functional connectivities for the two circuits of Figure 4C,D. (A) Schematic
of gross anatomy. (A–C) Connectivity matrices Wij provide the structural connectivity of
the circuits, but do not reflect nonlinearities in intrinsic and synaptic properties. Indexing of
neurons by location and eye-position recruitment threshold is as in Figure 4C. (D–F)
Functional connectivity when the eyes are directed leftward at E= −0 deg. Shown are the
transmitted currents per spike, Wij s∞, j (rj)/(rj) from neuron j to i, for all i and j. Note the
absence of inhibitory functional connectivity from the right side to the left side in both
circuit types (E,F, presynaptic neurons 76–100; D, gray dotted lines). G–I: Functional
connectivity when the eyes are directed rightward, at E = +10 deg.
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