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Abstract. An increasing amount of data are becoming publicly availa-
ble over the Internet. These data are released after applying some anony-
mization techniques. Recently, researchers have paid significant attention
to analyzing the risks of publishing privacy-sensitive data. Even if data
anonymization techniques were applied to protect privacy-sensitive data,
several de-anonymization attacks have been proposed to break their pri-
vacy. However, no theoretical quantification for relating the data vul-
nerability against de-anonymization attacks and the data utility that is
preserved by the anonymization techniques exists.

In this paper, we first address several fundamental open problems in
the structure-based de-anonymization research by establishing a formal
model for privacy breaches on anonymized data and quantifying the con-
ditions for successful de-anonymization under a general graph model. To
the best of our knowledge, this is the first work on quantifying the re-
lationship between anonymized utility and de-anonymization capability.
Our quantification works under very general assumptions about the dis-
tribution from which the data are drawn, thus providing a theoretical
guide for practical de-anonymization/anonymization techniques.

Furthermore, we use multiple real-world datasets including a Facebook
dataset, a Collaboration dataset, and two Twitter datasets to show the
limitations of the state-of-the-art de-anonymization attacks. From these
experimental results, we demonstrate the ineffectiveness of previous de-
anonymization attacks and the potential of more powerful de-anonymization
attacks in the future, by comparing the theoretical de-anonymization ca-
pability proposed by us with the practical experimental results of the
state-of-the-art de-anonymization methods.

Keywords: Structure-based de-anonymization attacks; anonymization
utility; de-anonymization capability; theoretical bounds;

1 INTRODUCTION

Individual users’ data such as social relationships, medical records and mobility
traces are becoming increasingly important for application developers and data-
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mining researchers. These data usually contain sensitive and private information
about users. Therefore, several data anonymization techniques have been pro-
posed to protect users’ privacy [2], [3], [4].

The privacy-sensitive data that are closely related to individual behavior usu-
ally contain rich graph structural characteristics. For instance, social network
data can be modeled as graphs in a straightforward manner. Mobility traces can
also be modeled as graph topologies according to [5]. Many people nowadays have
accounts through various social networks such as Facebook, Twitter, Google+,
Myspace and Flickr. Therefore, even equipped with advanced anonymization
techniques, the privacy of structural data still suffers from de-anonymization
attacks assuming that the adversaries have access to rich auxiliary information
from other channels [5], [6], [7], [8], [9], [10], [11]. For instance, Narayanan et
al. [8] effectively de-anonymized a Twitter dataset by utilizing a Flickr dataset
as auxiliary information based on the inherent cross-site correlations. Nilizadeh
et al. [10] exploited the community structure of graphs to de-anonymize social
networks. Furthermore, Srivatsa et al. [5] proposed to de-anonymize a set of lo-
cation traces based on a social network.

However, to the best of our knowledge, there is no work on theoretically quan-
tifying the data anonymization techniques to defend against de-anonymization
attacks. In this paper, we aim to theoretically analyze the de-anonymization at-
tacks in order to provide effective guidelines for evaluating the threats of future
de-anonymization attacks. We aim to rigorously evaluate the vulnerabilities of
existing anonymization techniques. For an anonymization approach, not only
the users’ sensitive information should be protected, but also the anonymized
data should remain useful for applications, i.e., the anonymized utility should
be guaranteed. Then, under what range of anonymized utility, is it possible for
the privacy of an individual to be broken? We will quantify the vulnerabilities
of existing anonymization techniques and establish the inherent relationships
between the application-specific anonymized utility and the de-anonymization
capability. Our quantification not only provides theoretical foundations for exis-
ting de-anonymization attacks, but also can serve as a guide for designing new
de-anonymization and anonymization schemes. For example, the comparison bet-
ween the theoretical de-anonymization capability and the practical experimental
results of current de-anonymization attacks demonstrates the ineffectiveness of
existing de-anonymization attacks. Overall, we make the following contributions:

– We theoretically analyze the performance of structure-based de-anonymization
attacks through formally quantifying the vulnerabilities of anonymization
techniques. Furthermore, we rigorously quantify the relationships between
the de-anonymization capability and the utility of anonymized data, which
is the first such attempt to the best of our knowledge. Our quantification pro-
vides theoretical foundations for existing structure-based de-anonymization
attacks, and can also serve as a guideline for evaluating the effectiveness of
new de-anonymization and anonymization schemes through comparing their
corresponding de-anonymization performance with our derived theoretical
bounds.
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– To demonstrate the ineffectiveness of existing de-anonymization attacks, we
implemented these attacks on multiple real-world datasets including Face-
book dataset, Collaboration dataset, and Twitter dataset. Experimental re-
sults show that previous methods are not robust to data perturbations and
there is a significant gap between their de-anonymization performance and
our derived theoretically achievable de-anonymization capability. This ana-
lysis further demonstrates the potential of developing more powerful de-
anonymization attacks in the future.

2 RELATED WORK

2.1 Challenges for Anonymization Techniques

Privacy preservation on structural data has been studied extensively. The naive
method is to remove users’ personal identities (e.g., names, social security num-
bers), which, unfortunately, is rather vulnerable to structure-based de-anonymiza-
-tion attacks [6], [7], [8], [12], [3], [5], [9], [13], [14], [10], [15]. An advanced mecha-
nism, k-anonymity, was proposed in [12], which obfuscates the attributes of users
so that each user is indistinguishable from at least k − 1 other users. Although
k-anonymity has been well adopted, it still suffers from severe privacy problems
due to the lack of diversity with respect to the sensitive attributes as stated in
[16]. Differential privacy [17], [18] is a popular privacy metric that statistically
minimizes the privacy leakage. Sala et al. in [19] proposed to share a graph in
a differentially private manner. However, to enable the applicability of such an
anonymized graph, the differential private parameter should not be large, which
would thus make their method ineffective in defending against structure-based
de-anonymization attacks [9]. Hay et al. in [2] proposed a perturbation algo-
rithm that applies a sequence of r random edge deletions followed by r other
random edge insertions. However, their method also suffers from structure-based
de-anonymization attacks as shown in [10].

In summary, existing anonymization techniques are subject to two intrinsic
limitations: 1) they are not scalable and thus would fail on high-dimensional
datasets; 2) They are susceptible to adversaries that leverage the rich amount
of auxiliary information to achieve structure-based de-anonymization attacks.

2.2 De-anonymization Techniques

Structure-based de-anonymization was first introduced in [6], where both active
and passive attacks were discussed. However, the limitation of scalability reduces
the effectiveness of both attacks.

Narayanan et al. in [7] utilized the Internet movie database as the source
of background knowledge to successfully identify users’ Netflix records, unco-
vering their political preferences and other potentially sensitive information. In
[8], Narayanan et al. further de-anonymized a Twitter dataset using a Flickr
dataset as auxiliary information. They proposed the popular seed identification
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and mapping propagation process for de-anonymization. In order to obtain the
seeds, they assume that the attacker has access to a small number of members
of the target network and can determine if these members are also present in the
auxiliary network (e.g., by matching user names and other contextual informa-
tion). Srivatsa et al. in [5] captured the WiFi hotspot and constructed a contact
graph by connecting users who are likely to utilize the same WiFi hotspot for
a long time. Based on the fact that friends (or people with other social relati-
onships) are likely to appear in the same location, they showed how mobility
traces can be de-anonymized using an auxiliary social network. However, their
de-anonymization approach is rather time-consuming and may be computatio-
nally infeasible for real-world applications. In [14], [13], Sharad et al. studied the
de-anonymization attacks on ego graphs with graph radius of one or two and
they only studied the linkage of nodes with degree greater than five. As shown
in previous work [9], nodes with degree less than five cannot be ignored since
they form a large portion of the original real-world data. Recently, Nilizadeh
et al. [10] proposed a community-enhanced de-anonymization scheme for social
networks. The community-level de-anonymization is first implemented for fin-
ding more seed information, which would be leveraged for improving the overall
de-anonymization performance. Their method may, however, suffer from the se-
rious inconsistency problem of community detection algorithms [20].

Most de-anonymization attacks are based on the seed-identification scheme,
which either relies on the adversary’s prior knowledge or a seed mapping process.
Limited work has been proposed that requires no prior seed knowledge by the ad-
versary [21],[9]. In [21], Pedarsani et al. proposed a Bayesian-inference approach
for de-anonymization. However, their method is limited to de-anonymizing sparse
graphs. Ji et al. in [9] proposed a cold-start optimization-based de-anonymization
attack. However, they only utilized very limited structural information (degree,
neighborhood, top-K reference distance and sampling closeness centrality) of the
graph topologies.

Ji et al. further made a detailed comparison for the performance of existing
de-anonymization techniques in [22].

2.3 Theoretical Work for De-anonymization

Despite these empirical de-anonymization methods, limited research has provi-
ded theoretical analysis for such attacks. Pedarsani et al. in [4] conducted pre-
liminary analysis for quantifying the privacy of an anonymized graph according
to the ER graph model [23]. However, their network model (ER model) may not
be realistic, since the degree distribution of the ER model (follows the Poisson
distribution) is quite different from the degree distributions of most observed
real-world structural data [24], [25].

Ji et al. in [9] further considered a configuration model to quantify perfect
de-anonymization and (1 − ε)-perfect de-anonymization. However, their confi-
guration model is also not general for many real-world data structures. Furt-
hermore, their assumption that the anonymized and the auxiliary graphs are
sampled from a conceptual graph is not practical since only edge deletions from
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the conceptual graph have been considered. In reality, edge insertions should
also be taken into consideration. Besides, neither [4] nor [9] formally analyzed
the relationships between the de-anonymization capability and the anonymiza-
tion performance (e.g., the utility performance for the anonymization schemes).

Note that our theoretical analysis in Section 4 takes the application-specific
utility definition into consideration. Such non-linear utility analysis makes the
incorporation of edge insertions to our quantification rather nontrivial. Further-
more, our theoretical quantification does not make any restrictive assumptions
about the graph model. Therefore, our theoretical analysis would provide an im-
portant guide for relating de-anonymization capability and application-specific
anonymizing utility.

Further study on de-anonymization attacks can be found in [26], [27], [28].
These papers provide theoretically guaranteed performance bounds for their de-
anonymization algorithms. However, their derived performance bounds can only
be guaranteed under restricted assumptions of the random graph, such as ER
model and power-law model. We will show the advantage of our analysis over
these approaches where our analysis requires no assumptions or constraints on
the graph model as these approaches required.

3 SYSTEM MODEL

We model the structural data (e.g., social networks, mobility traces, etc.) as a
graph, where the nodes represent users who are connected by certain relations-
hips (social relationships, mobility contacts, etc.). The anonymized graph can be
modeled as Ga = (Va, Ea), where Va = {i|i is an anonymized node} is the set of
users and Ea = {ea(i, j)|ea(i, j) is the relationship between i ∈ Va and j ∈ Va}
is the set of relationships. Here, ea(i, j) = 1 represents the existence of a con-
necting edge between i and j in Ga, and ea(i, j) = 0 represents the non-existence
of such an edge. The neighborhood of node i ∈ Va is Na(i) = {j|ea(i, j) = 1}
and the degree is defined as |Na(i)|.

Similarly, the auxiliary structural data can also be modeled as a graph
Gu = (Vu, Eu) where Vu is the set of labeled (known) users and Eu is the set
of relationships between these users. Note that the auxiliary (background) data
can be easily obtained through various channels, e.g., academic data mining,
online crawling, advertising and third-party applications [8, 4, 29, 5].

A de-anonymization process is a mapping σ : Va → Vu. ∀i ∈ Va, its map-
ping under σ is σ(i) ∈ Vu ∪ {⊥}, where ⊥ indicates a non-existent (null) node.
Similarly, ∀ea(i, j) ∈ Ea, σ(ea(i, j)) = eu(σ(i), σ(j)) ∈ Eu ∪ {⊥}. Under σ,
a successful de-anonymization on i ∈ Va is defined as σ(i) = i, if i ∈ Vu or
σ(i) =⊥, otherwise. For other cases, the de-anonymization on i fails.

3.1 ATTACK MODEL

We assume that the adversary has access to Ga = (Va, Ea) and Gu = (Vu, Eu).
Ga = (Va, Ea) is the anonymized graph and the adversary can only get access
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to the structural information of Ga. Gu = (Vu, Eu) is the auxiliary graph and
the adversary already knows all the identities of the nodes in Gu. In addition,
we do not assume that the adversary has other prior information (e.g., seed
information). These assumptions are more reasonable than most of the state-of-
the-art research [8, 5, 10].

4 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis for the structure-based de-
anonymization attacks. Under any anonymization technique, the users’ sensitive
information should be protected without significantly affecting the utility of the
anonymized data for real-world systems or research applications. We aim to
quantify the trade-off between preserving users’ privacy and the utility of ano-
nymized data. Under what range of anonymized utility, is it possible for the
privacy of an individual to be broken (i.e., for the success of de-anonymization
attacks)? To answer this, we quantify the limitations of existing anonymization
schemes and establish an inherent relationship between the anonymized uti-
lity and de-anonymization capability. Our theoretical analysis incorporates an
application-specific utility metric for the anonymized graph, which further makes
our rigorous quantification useful for real world scenarios. Our theoretical analy-
sis can serve as an effective guideline for evaluating the performance of practical
de-anonymization/anonymization schemes (will be discussed in Section 6).

First, we assume that there exists a conceptually underlying graph G =
(V,E) with V = Va∪Vu and E is a set of relationships among users in V , where
e(i, j) = 1 ∈ E represents the existence of a connecting edge between i and j,
and e(i, j) = 0 ∈ E represents the non-existence of such an edge. Consequently,
Ga and Gu could be viewed as observable versions of G by applying edge inserti-
ons or deletions on G according to proper relationships, such as ‘co-occurrence’
relationships in Gowalla dataset [29]. In comparison, previous work [9, 4] only
considers edge deletions which is an unrealistic assumption.

For edge insertions from G to Ga, the process is: ∀e(i, j) = 0 ∈ E, e(i, j) = 1
appears in Ea with probability padda , i.e., Pr(ea(i, j) = 1|e(i, j) = 0) = padda . The
probability of edge deletion from G to Ga is pdela , i.e., Pr(ea(i, j) = 0|e(i, j) =
1) = pdela . Similarly, the insertions and deletions from G to Gu can be cha-
racterized with probabilities paddu and pdelu . Furthermore, we assume that both
the insertion/deletion relationship of each edge is independent of every other
edge. Furthermore, this model is intuitively reasonable since the three graphs
G, Ga, Gu are related with each other. In addition, our model is more reasona-
ble than the existing models in [9, 4] because we take both edge deletions and
insertions into consideration. Note that the incorporation of edge insertion is
non-trivial in our quantification of non-linear application-specific utility analy-
sis. Our quantification analysis would therefore contribute to relating the real
world application-specific anonymizing utility and the de-anonymization capa-
bility.

Adjacency matrix and transition probability matrix are two important des-
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criptions of a graph, and the graph utility is also closely related to these matrices.
The adjacency matrix is a means of representing which nodes of a graph are ad-
jacent to which other nodes. We denote the adjacency matrix by A (resp. Aa and
Au) for graph G (resp. Ga and Gu), where the element A(i, j) = e(i, j) (resp.
Aa(i, j) = ea(i, j) and Au(i, j) = eu(i, j)). Furthermore, the transition probabi-
lity matrix is a matrix consisting of the one-step transition probabilities, which
is the probability of transitioning from one node to another in a single step. We
denote the transition probability matrix by T (resp. Ta and Tu) for graph G
(resp. Ga and Gu), where the element T (i, j) = e(i, j)/deg(i) (resp. Ta(i, j) =
ea(i, j)/dega(i) and Tu(i, j) = eu(i, j)/degu(i)), and deg(i), dega(i), degu(i) re-
present the degree of node i in G,Ga, Gu, respectively.

We now define the smallest (l) and largest (h) probabilities of an edge exis-
ting between two nodes in the graph G, and the graph density (denoted by R).
For graph G, we denote |V | = N and |E| = M . Let p(i, j) be the probability of
an edge existing between i, j ∈ V and define l = min{p(i, j)|i, j ∈ V, i 6= j}, h =
max{p(i, j)|i, j ∈ V, i 6= j}, the expected number of edges PT =

∑
i,j∈V p(i, j)

and the graph density R = PT
(N2 )

.

Then, we start our formal quantification from the simplest scenario where the
anonymized data and the auxiliary data correspond to the same group of users
i.e., Va = Vu as in [8, 4, 5]. This assumption does not limit our theoretical ana-
lysis since we can either (a) apply it to the overlapped users between Va and Vu
or (b) extend the set of users to V newa = Va∪ (Vu\Va) and V newu = Vu∪ (Va\Vu),
and apply the analysis to Ga = (V newa , Ea) and Gu = (V newu , Eu). Therefore, in
order to prevent any confusion and without loss of generality, we assume Va = Vu
in our theoretical analysis. We define σk as a mapping between Ga and Gu that
contains k incorrectly-mapped pairs.

Given a mapping σ : Va → Vu, we define the Difference of Common Neig-

hbors (DCN) on a node i’s mapping σ(i) as φi,σ(i) = |N i
a\N

σ(i)
u | + |Nσ(i)

u \N i
a|,

which measures the neighborhoods’ difference between node i in Ga and node
σ(i) in Gu under the mapping σ. Then, we define the overall DCN for all the
nodes under the mapping σ as Φσ =

∑
(i,σ(i))∈σ φi,σ(i).

Next, we not only explain why structure-based de-anonymization attacks
work but also quantify the trade-off between the anonymized utility and the de-
anonymization capability. We first quantify the relationship between a straight-
forward utility metric, named local neighborhood utility, and the de-anonymization
capability. Then we carefully analyze a more general utility metric, named global
structure utility, to accommodate a broad class of real-world applications.

4.1 Relation Between the Local Neighborhood Utility and
De-anonymization Capability

At the beginning, we explore a straightforward utility metric, local neighborhood
utility, which evaluates the distortion of the anonymized graph Ga from the
conceptually underlying graph G as
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Fig. 1. Visualization of utility region (green shaded) for successful de-anonymization
under different scenarios. To guarantee the applicability of the anonymized data, the
anonymized utility should be preserved by the anonymization techniques. We theoreti-
cally demonstrate that successful de-anonymization can be achieved if the anonymized
utility locates within these shaded regions [1].

Definition 1 The local neighborhood utility for the anonymized graph is Ua =

1− ||Aa−A||1
N(N−1) = 1− E[D(Ga,G)]

N(N−1) (the denominator is a normalizing factor to gua-

rantee Ua ∈ [0, 1]), where D(·, ·) is the hamming distance [30] of edges between
two graphs, i.e., if ea(i, j) 6= e(i, j), D(ea(i, j), e(i, j)) = 1 and E[D(Ga, G)] is
the distortion between Ga and G and E[D(Ga, G)] = E[

∑
i,j

D(ea(i, j), e(i, j))] =∑
i,j(p(i, j)p

del
a + (1− p(i, j))padda ).

Thus, we further have

Ua = 1−
∑
i,j(p(i, j)p

del
a + (1− p(i, j))padda )(

N
2

)
= 1− (Rpdela + (1−R)padda ) [1]

(1)

Similarly, the local neighborhood utility for the auxiliary graph is

Uu = 1− (Rpdelu + (1−R)paddu ) [1] (2)

Though the utility metric for structural data is application-dependent, our
utility metric can provide a comprehensive understanding for utility performance
by considering both the edge insertions and deletions, and incorporating the dis-
tance between the anonymized (auxiliary) graph and the conceptual underlying
graph. Although our utility is one of the most straightforward definitions, to the
best of our knowledge, it is still the first scientific work that theoretically ana-
lyzes the relationship between de-anonymization performance and the utility of
the anonymized data. Furthermore, we will provide more analysis by considering
a general utility metric that can be applied to a broad coverage of applications.
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Based on the local neighborhood utility in Definition 1, we theoretically ana-
lyze the de-anonymization capability of structure-based attacks and quantify the
anonymized utility for successful de-anonymization.

Theorem 1 implies that as the number of nodes in the graphs Ga and Gu
increase, the probability of successful deanonymization approaches 1 when the
four conditions (in Eqs. 3,4,5,6) regarding graph density R, and the smallest and
largest probabilities of the edges between nodes hold.

Theorem 1 For any σk 6= σ0, where k is the number of incorrectly-mapped
nodes between Ga and Gu, limn→∞ Pr(Φσk ≥ Φσ0

) = 1 when the following
conditions are satisfied.

Uu + 2lUa > 1 + 2l −Rl [1] (3)

Uu + 2(1− h)Ua > 1 + 2(1− h)− (1− h)(1−R) [1] (4)

Uu + 2l
1−R
R

Ua > 1 + 2l
1−R
R
− l(1−R) [1] (5)

Uu + 2(1− h)
R

1−R
Ua > 1 + 2(1− h)

R

1−R
−R(1− h) [1] (6)

From Theorem 1, we know that when the local neighborhood utility for the ano-
nymized graph and the auxiliary graph satisfies the four conditions in Eqs. 3,4,5,6,
we can achieve successful de-anonymization from a statistical perspective. The
reason is that, the attacker can discover the correct mapping with high probabi-
lity by choosing the mapping with the minimal Difference of Common Neighbors
(DCN), out of all the possible mappings between the anonymized graph and the
auxiliary graph. To the best of our knowledge, this is the first work to quantify
the relationship between anonymized utility and de-anonymization capability. It
also essentially explains why structure-based de-anonymization attacks work.

The four conditions in Theorem 1 can be reduced to one or two conditions
under four types of graph density. Figure 1(a) is the triangular utility region for
R < min{0.5, 1−h

1−h+l} (where the graph density R is smaller than 0.5 and 1−h
1−h+l ),

which is only bounded by Eq. 3. Figure 1(b) is the quadrilateral utility region for
min{0.5, 1−h

1−h+l} ≤ R < 0.5 (where the graph density R is larger than 1−h
1−h+l and

smaller than 0.5), which is bounded by Eq. 3 and Eq. 4. Similarly, Figure 1(c)
is the triangular utility region for 0.5 ≤ R < max{0.5, l

1−h+l} (where the graph

density R is larger than l
1−h+l and 0.5), which is only bounded by Eq. 6. Figure

1(d) is the quadrilateral utility region for R ≥ max{0.5, l
1−h+l} (where the graph

density R is larger than 0.5 and smaller than l
1−h+l ), which is bounded by Eq. 5

and Eq. 6. Therefore, we not only analytically explain why the structure-based
de-anonymization works, but also theoretically provide the bound of anonymi-
zed utlity for sucessful de-anonymization. When the anonymized utility satisfies
the conditions in Theorem 1 (or locates within the green shaded utility regions
shown in Figure 1), successful de-anonymization is theoretically achievable.
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5 Proof for Theorem 1

We first prove the following two lemmas based on the four conditions in Eqs. 3,4,5,6,
before obtaining the final result limn→∞ Pr(Φσk,Euk \Euτ ≥ Φσ0,Euk \Euτ ) = 1 in
Theorem 1. The two Lemmas provide the important properties of puadd, p

u
del and

puaadd, p
ua
del respectively, where puadd, p

u
del represent the edge insertion and deletion

probabilities from the conceptually underlying graph to the auxiliary graph and
puaadd, p

ua
del represent the edge insertion and deletion probabilities from the auxili-

ary graph to the anonymized graph.

5.1 Properties for pu
add, p

u
del

Lemma 1 Consider puadd(i, j) which represents the edge insertion probability
from G to Ga and pudel(i, j) which represents the deletion process from G to Ga.
We have the following properties for puadd, p

u
del as:

max{puadd, pudel} <
1

2
(7)

Proof. From Eqs. 3,4,5,6, we can obtain Uu > max{1− lR, 1−(1−h)R, 1− l(1−
R), 1 − (1 − h)(1 − R)}. Based on that, we further have Rpudel + (1 − R)puadd =
1 − Uu < min{lR, (1 − h)R, l(1 − R), (1 − h)(1 − R)} ⇒ 1

2 > max{puadd, pudel}.
Similarly, for the anonymized graph, we can prove max{paadd, padel} < 1

2 .

5.2 Properties for pua
add(i, j), pua

del(i, j)

Lemma 2 Consider puaadd(i, j) which represents the edge insertion probability
from Gu to Ga and puadel(i, j) which represents the deletion process from Gu to
Ga. We have the following properties for puaadd(i, j), puadel(i, j) as:

max{puaadd(i, j), puadel(i, j)} <
1

2
(8)

Proof. Based on the definition of puaadd(i, j) and puadel(i, j), we have

puaadd(i, j) = Pr(eai,j = 1|eui,j = 0)

=
Pr(eai,j = 1|ei,j = 0)Pr(eui,j = 0|ei,j = 0)Pr(ei,j = 0)

Pr(eui,j = 0)

+
Pr(eai,j = 1|ei,j = 1)Pr(eui,j = 0|ei,j = 1)Pr(ei,j = 1)

Pr(eui,j = 0)

=
paadd(1− puadd)(1− p(i, j)) + (1− padel)pudelp(i, j)

(1− puadd)(1− p(i, j)) + pudelp(i, j)

(9)
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puadel(i, j) = Pr(eai,j = 0|eui,j = 1)

=
Pr(eai,j = 0|ei,j = 0)Pr(eui,j = 1|ei,j = 0)Pr(ei,j = 0)

Pr(eui,j = 1)

+
Pr(eai,j = 0|ei,j = 1)Pr(eui,j = 1|ei,j = 1)Pr(ei,j = 1)

Pr(eui,j = 1)

=
(1− paadd)puadd(1− p(i, j)) + padel(1− pudel)p(i, j)

puadd(1− p(i, j)) + (1− pudel)p(i, j)

(10)

Next, it is easy to show that Eq. 8 is equivalent to Eqs. 11,12 as follows.

(1− puadd)(1− 2paadd)(1− p(i, j)) > pudel(1− 2padel)p(i, j) (11)

puadd(1− 2paadd)(1− p(i, j)) < (1− pudel)(1− 2padel)p(i, j) (12)

We prove Eq. 11 and Eq. 12 under the following four situations: (a) pudel ≥
puadd and padel ≥ paadd; (b) pudel ≥ puadd and padel ≤ paadd; (c) pudel ≤ puadd and
padel ≥ paadd and (d) pudel ≤ puadd and padel ≤ paadd, respectively.
Situation (a): under situation (a), we only need to consider Eq. 3 and Eq. 6.
Eq. 6 is equivalent to 1−Uu

R < (1 − h)(1 − 2 1−Ua
R ) ⇒ 1−Uu

R < (1 − h) ⇒
Rpudel+(1−R)puadd

R < 1−h⇒ pudel < 1−h. Based on that, we have pudel < 1− p(i, j)
and p(i, j) < 1 − pudel < 1 − puadd. In addition, we have 1 − 2padel < 1 − 2paadd.
Therefore, Eq. 11 is satisfied.

Eq. 3 is equivalent to 1−Uu
R < l−2l 1−U

a

R ⇒ Rpudel+(1−R)puadd
R < l−2l

Rpadel+(1−R)paadd
R ⇒

Rpudel

R < l− 2l
Rpadel

R ⇒ pudel < l(1− 2padel)⇒ pudel < l(
1−2padel
1−2paadd

). Therefore, we have

1

pudel
− 1 >

1

l
1−2padel
1−2paadd

− 1

>
1

p(i, j)
1−2padel
1−2paadd

− 1

= (
1

p(i, j)
− 1− 2padel

1− 2paadd
)
1− 2paadd
1− 2padel

= (
1

p(i, j)
− 1)

1− 2paadd
1− 2padel

(13)

Furthermore, we can prove that Eq. 13 is equivalent to

(1− pudel)(1− 2padel)p(i, j) > pudel(1− 2paadd)(1− p(i, j)) (14)

Considering that pudel > puadd, Eq. 12 thus holds. Therefore, we have proved that
puaadd(i, j) < 1

2 and puadel(i, j) <
1
2 under situation (a).

Situation (b): under situation (b), we only need to consider Eq. 3 and Eq. 6.

Eq. 3 is equivalent to 1−Uu
R < l(1−2 1−Ua

R )⇒ 1−Uu
R < l⇒ Rpudel+(1−R)puadd

R < l⇒
pudel < l. Therefore, we can obtain puadd < pudel < p(i, j) and 1− p(i, j) < 1− pudel.
Further combining with 1− 2padel < 1− 2paadd, we have that Eq. 12 is satisfied.



12 How to Quantify Graph De-anonymization Risks

Eq. 6 is equivalent to 1−Uu
R < (1 − h)(1 − 2 1−Ua

1−R ) ⇒ Rpudel+(1−R)puadd
R <

(1 − h)(1 − 2
Rpadel+(1−R)paadd

1−R ⇒ Rpudel
R < (1 − h)(1 − 2

(1−R)paadd
1−R ) ⇒ pudel < (1 −

h)(1− 2paadd)⇒ pudel < (1− h)(
1−2padel
1−2paadd

). Therefore, we have

1

pudel
− 1 >

1

(1− h)
1−2paadd
1−2padel

− 1

>
1

(1− p(i, j)) 1−2paadd
1−2padel

− 1

= (
1

(1− p(i, j))
− 1− 2paadd

1− 2padel
)

1− 2padel
1− 2paadd

= (
1

(1− p(i, j))
− 1)

1− 2padel
1− 2paadd

(15)

Furthermore, we can prove that Eq. 15 is equivalent to

(1− pudel)(1− 2paadd)(1− p(i, j)) > pudel(1− 2padel)p(i, j) (16)

In addition, we have pudel > puadd, and Eq. 11 is thus satisfied. Therefore, we have
proved that puaadd(i, j) < 1

2 and puadel(i, j) <
1
2 under situation (b).

Situation (c): under situation (c), we only need to consider Eq. 4 and Eq.
5. Eq. 4 is equivalent to 1−Uu

1−R < (1 − h)(1 − 2 1−Ua
1−R ) ⇒ 1−Uu

1−R < 1 − h ⇒
Rpudel+(1−R)puadd

1−R < 1 − h ⇒ pudel < puadd < 1 − h. Therefore, we can obtain
puadd < 1− p(i, j) and p(i, j) < 1− puadd. Besides, 1− 2padel < 1− 2paadd, therefore
Eq. 11 holds.

Eq. 5 is equivalent to 1−Uu
1−R < l−2l 1−U

a

R ⇒ Rpudel+(1−R)puadd
1−R < l−2l

Rpadel+(1−R)paadd
R ⇒

(1−R)puadd

1−R < l − 2l
Rpadel

R ⇒ puadd < l(1 − 2padel) ⇒ puadd < l(
1−2padel
1−2paadd

). Thus, we

have
1

puadd
− 1 >

1

l
1−2padel
1−2paadd

− 1

>
1

p(i, j)
1−2padel
1−2paadd

− 1

= (
1

p(i, j)
− 1− 2padel

1− 2paadd
)
1− 2paadd
1− 2padel

= (
1

p(i, j)
− 1)

1− 2paadd
1− 2padel

(17)

Eq. 17 is equivalent to

(1− puadd)(1− 2padel)p(i, j) > puadd(1− 2paadd)(1− p(i, j)) (18)

Combining with pudel < puadd, we have Eq. 12 satisfied. Therefore, we have proved
that puaadd(i, j) < 1

2 and puadel(i, j) <
1
2 under situation (c).

Situation (d): under situation (d), we only need to consider Eq. 4 and Eq. 5.
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Eq. 5 is equivalent to 1−Uu
1−R < l(1 − 2 1−Ua

R ) ⇒ 1−Uu
1−R < l ⇒ Rpudel+(1−R)puadd

1−R <
l ⇒ puadd < l. Therefore, we can obtain puadd < p(i, j) and 1− p(i, j) < 1− pudel.
In addition, we have 1− 2padel > 1− 2paadd. Thus, Eq. 12 holds.

Eq. 4 is equivalent to 1−Uu
1−R < (1 − h)(1 − 2 1−Ua

1−R ) ⇒ Rpudel+(1−R)puadd
1−R < (1 −

h)(1 − 2
Rpadel+(1−R)paadd

1−R ) ⇒ (1−R)puadd
1−R < (1 − h)(1 − 2

(1−R)paadd
1−R ) ⇒ puadd < (1 −

h)(1− 2paadd)⇒ puadd < (1− h)(
1−2paadd
1−2padel

). Therefore, we have

1

puadd
− 1 >

1

(1− h)
1−2padel
1−2paadd

− 1

>
1

(1− p(i, j)) 1−2padel
1−2paadd

− 1

= (
1

(1− p(i, j))
− 1− 2padel

1− 2paadd
)
1− 2paadd
1− 2padel

= (
1

(1− p(i, j))
− 1)

1− 2paadd
1− 2padel

(19)

Eq. 19 is equivalent to

(1− puadd)(1− 2padel)(1− p(i, j)) > puadd(1− 2paadd)p(i, j) (20)

Besides, pudel < puadd, therefore Eq. 11 is satisfied. Finally, we have proved that
puaadd(i, j) < 1

2 and puadel(i, j) <
1
2 under situation (d).

5.3 Achieving Successful De-anonymization

Since k is the number of incorrect mappings in σk 6= σ0, 2 ≤ k ≤ n is satisfied.
With σk, we consider V uk ⊆ V u as the set of incorrectly de-anonymized nodes,
and Euk = {eui,j |i ∈ V uk or j ∈ V uk } as the set of all the possible edges adjacent to
at least one user in V uk , Euτ = {eui,j |i, j ∈ V uk , (i, j) ∈ Euk , and (j, i) ∈ Euk } as the
set of all the possible edges corresponding to transposition mappings in σk, and
Eu = {eui,j |1 ≤ i 6= j ≤ n} as the set of all the possible edges on V . Furthermore,

definemk = |Euk | andmτ = |Euτ |. We have |V uk | = k,mk =
(
k
2

)
+k(n−k),mτ ≤ k

2

since there are at most k
2 transposition mappings in σk, |Eu| =

(
n
2

)
.

Next, we quantify Φσ0
from a stochastic perspective. To quantify Φσ0

, we
consider the DCN caused by the projection of each link including both the
existing links and the non-existing links in the conceptually underlying graph,
i.e., ∀eui,j ∈ Eu. We further define Φσk,E′ as the DCN caused by edges in the set
E′ under the mapping σk. If this link exists in Gu but not exist in Ga, according
to the definition of DCN, it will cause a DCN of 2 and vice versa. Therefore,
Φσk = Φσk,Eu\Euk + Φσk,Euk \Euτ + Φσk,Euτ and Φσ0

= Φσ0,Eu\Euk + Φσ0,Euk \Euτ +
Φσ0,Euτ

. Since Φσk,Eu\Euk = Φσ0,Eu\Euk and Φσk,Euτ = Φσ0,Euτ
, we can obtain

Pr(Φσk ≥ Φσ0
) = Pr(Φσk,Euk \Euτ ≥ Φσ0,Euk \Euτ ).

Then, ∀eui,j ∈ Euk \Euτ under σk, it will be mapped to some other possible
edge σk(eui,j) = euσk(i),σk(j) ∈ E

u since eui,j /∈ Euτ and at least one of i and j is
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incorrectly de-anonymized under σk. Therefore, in this case, the DCN/2 caused
by eui,j during the projection process satisfies the Bernoulli distribution Φσk,eui,j ∼
B(1, p(i, j)u(p(σk(i), σk(j))

u×puadel(i, j)+(1−p(σk(i), σk(j))u)× (1−puaadd(i, j)))+
(1−p(i, j)u)(p(σk(i), σk(j))

u× (1−puadel(i, j)) +(1−p(σk(i), σk(j))u)×puaadd(i, j))).
For σ0, ∀eui,j ∈ Euk \Euτ , the DCN/2 caused by eui,j after the projection process

satisfies Bernoulli distribution Φσ0,eui,j
∼ B(1, p(i, j)upuadel + (1− p(i, j)u)puaadd).

Let λσ0,eui,j
and λσk,eui,j be the mean of Φσ0,eui,j

and Φσk,eui,j , respectively.

Since puaadd(i, j) < 1
2 and puadel(i, j) <

1
2 , we have puadel(i, j) < 1 − puaadd(i, j) and

puaadd(i, j) < 1− puadel(i, j). Furthermore, we can prove

λσk,eui,j > p(i, j)upuadel + (1− p(i, j)u)puaadd = λσ0,eui,j (21)

Lemma 3 [9] (i) Let X ∼ B(n1, p) and Y ∼ B(n2, p) be independent binomial
variables. Then, X + Y is also a binomial variable and X + Y ∼ B(n1 + n2, p);
(ii) Let X and Y be two binomial random variables with means λx and λy,

respectively. Then, when λx > λy, Pr(X − Y ≤ 0) ≤ 2exp(
(λx−λy)2
−8(λx+λy) ).

By applying Lemma 3, we thus have

Pr(Φσk,eui,j >Φσ0,eui,j
) > 1− 2 exp

(
−

(λσk,eui,j − λσ0,eui,j
)2

8λσk,eui,jλσ0,eui,j

)
=1− 2 exp (−f(p(i, j)u, p(σk(i), σk(j))um2)

(22)

where p(., .) is a function of p(i, j)u and p(σk(i), σk(j))u.
Similarly, we have Pr(Φσk,Euk \Euτ ≥ Φσ0,Euk \Euτ ) = Pr(

∑
ei,j∈Euk \Euτ

Φσk,ei,j ≥∑
ei,j∈Euk \Euτ

Φσ0,ei,j ) ≥
∏
ei,j∈Euk \Euτ

Pr(Φσk,ei,j ≥ Φσ0,ei,j ).

Considering fmin = min f (p(i, j), p(σk(i), σk(j))), we can obtain Pr(Φσk,Euk \Euτ ≥
Φσ0,Euk \Euτ ) ≥

∏
ei,j∈Euk \Euτ

Pr(Φσk,ei,j ≥ Φσ0,ei,j ) ≥
∏
ei,j∈Euk \Euτ

(1−2 exp (−fminm2)) =

(1− 2 exp (−fminm2))mk .

Lemma 4
lim
x→∞

(1− exp(−(ax+ b)))
cx+d

= 1 (23)

where a, b, c, d are positive real numbers.

Proof. Let us take logarithm of Eq.(23), it is thus equivalent to limx→∞(cx +
d) ln (1− 2 exp(−(ax+ b))) = 0. Then, we can prove that

lim
x→∞

(cx+ d) ln (1− 2 exp(−(ax+ b)))

= lim
x→∞

ln (1− 2 exp(−(ax+ b)))
1

cx+d

= lim
x→∞

2a exp(−(ax+b))
1−2 exp(−(ax+b))

−c
(cx+d)2

(L′Hospital′sRule)

= lim
x→∞

c

−2a3 exp(ax+ b)

=0.

(24)



How to Quantify Graph De-anonymization Risks 15

Applying Lemma 4, we obtain the final result of Theorem 1 as

lim
n→∞

Pr(Φσk,Euk \Euτ ≥ Φσ0,Euk \Euτ ) = 1 (25)

5.4 Relation Between the Global Structure Utility and
De-anonymization Capability

In Definition 1, we consider a straightforward local neighborhood utility metric,
which evaluates the distortion between the adjacency matrices of the two graphs,
i.e., ||Aa − A||1. However, the real-world data utility is application-oriented
such that we need to consider a more general utility metric, to incorporate
more aggregate information of the graph instead of just the adjacency matrix.
Motivated by the general utility distance in [31, 32], we consider to utilize the
w-th power of the transition probability matrix Tw, which is induced by the
w-hop random walk on graph G, to define the global structure utility as follows:

Definition 2 The global structure utility for the anonymized graph Ga is defined
as

Ua(w) = 1− ||T
w
a − Tw||1

2N
(26)

where Tw
a ,T

w are the w-th power of the transition probability matrix Ta,T ,
respectively. The denominator in Eq. 26 is a normalization factor to guarantee
Ua(w) ∈ [0, 1]. Similarly, the global structure utility for the auxiliary graph is

Uu(w) = 1− ||T
w
u − Tw||1

2N
(27)

Our metric of global structure utility in Definition 2 is intuitively reasona-
ble for a broad class of real-world applications, and captures the w-hop random
walks between the conceptually underlying graph G and the anonymized graph
Ga. We note that random walks are closely linked to structural properties of
real-world data. For example, a lot of high-level social network based applica-
tions such as recommendation systems [33], Sybil defenses [34] and anonymity
systems [35] directly perform random walks in their protocols. The parameter w
is application specific; for applications that require access to fine-grained com-
munity structure, such as recommendation systems [33], the value of w should
be small (typically 2 or 3). For other applications that utilize coarse and macro
community structure of the data, such as Sybil defense mechanisms [34], w can
be set to a larger value (typically around 10). Therefore, our global structure
utility metric can quantify the utility performance of a perturbed graph for va-
rious real-world applications in a general and universal manner.

Based on this general utility metric, we further theoretically analyze the
de-anonymization capability of structure-based attacks and quantify the anony-
mized utility for successful de-anonymization.

Theorem 2 For any σk 6= σ0, where k is the number of incorrectly-mapped
nodes between Ga and Gu, limn→∞ Pr(Φσk ≥ Φσ0) = 1 when the following
conditions are satisfied:
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Uu(w) + 2lUa(w) > 1 + 2l − wRl(N − 1)

2
(28)

Uu(w) + 2(1− h)Ua(w) > 1 + 2(1− h)− w(N − 1)(1− h)(1−R)

2
(29)

Uu(w) + 2l
1−R
R

Ua(w) > 1 + 2l
1−R
R
− wl(1−R)(N − 1)

2
(30)

Uu(w) + 2(1− h)
R

1−R
Ua(w) > 1 + 2(1− h)

R

1−R
− wR(1− h)(N − 1)

2
(31)

Proof. We first relate the adjacency matrix A with the transition probability
matrix T as A = ΛT, where Λ is a diagonal matrix and Λ(i, i) = deg(i). Then
we analyze the global utility distance for the anonymized graph. When w = 1, we
can prove ||Aa −A||1 = ||ΛaTa −ΛT||1 = ||(ΛaTa −ΛaT + ΛaT−ΛT)||1 ≥
||Λa||1||Ta−T||1. Since the element in the diagonal of Λa is greater than 1, we
have ||Aa−A||1 ≥ ||Ta−T||1. Therefore, we can obtain Ua ≤ Ua(w). Similarly,
we have Uu ≤ Uu(w). Incorporating these two inequalities into Eqs. 3,4,5,6, we
have Theorem 2 satisfied under w = 1. Next, we consider w ≥ 1. It is easy to
prove that ||Tw

a−Tw||1 ≤ w||Ta−T||1 so ||Tw
a−Tw||1 ≤ w||Aa−A||1. Therefore,

we have Ua ≤ wUa(w) + 1 − w. Similarly, we also have Uu ≤ wUu(w) + 1 − w
for the auxiliary graph. Incorporating these two inequalities into Eqs. 3,4,5,6, we
thus have Theorem 2 proved.

Similar to Theorem 1, when the global structure utility for the anonymized
graph and the auxiliary graph satisfies all of the four conditions in Theorem 2,
we can achieve successful de-anonymization from a statistical perspective. With
rather high probability, the attacker can find out the correct mapping between
the anonymized graph and the auxiliary graph, by choosing the mapping with
the minimal DCN out of all the potential mappings.

Furthermore, both Theorem 1 and Theorem 2 give meaningful guidelines
for future designs of de-anonymization and anonymization schemes: 1) Since
successful de-anonymization is theoretically achievable when the anonymized
utility satisfies the conditions in Theorem 1 (for the local neighborhood utility)
and Theorem 2 (for the global structure utility), the gap between the practical
de-anonymization accuracy and the theoretically achievable performance can be
utilized to evaluate the effectiveness of a real-world de-anonymization attack; 2)
we can also leverage Theorem 1 and Theorem 2 for designing future secure data
publishing to defend against de-anonymization attacks. For instance, a secure
data publishing scheme should provide anonymized utility that locates out of the
theoretical bound (green shaded region) in Figure 1 while enabling real-world
applications. We will provide a practical analysis for such privacy and utility
tradeoffs in Section 6.

6 Practical Privacy and Utility Trade-off

In this section, we show how the theoretical analysis in Section 4 can be utilized
to evaluate the privacy risks of practical data publishing and the performance of
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Table 1. De-anonymization Accuracy of State-of-the-Art De-anonymization Methods.

Datasets Method noise = 0.05 noise = 0.15 noise = 0.25

Facebook Ji et al. [9] 0.95 0.81 0.73

Facebook Nilizadeh et al. [10] 0.83 0.74 0.68

Collaboration Ji et al. [9] 0.27 0.09 0.05

Collaboration Nilizadeh et al. [10] 0.58 0.23 0.11

Twitter: small Ji et al. [9] 0.55 0.39 0.21

Twitter: small Nilizadeh et al. [10] 0.92 0.79 0.69

Twitter: large Ji et al. [9] 0.48 0.21 0.12

Twitter: large Nilizadeh et al. [10] 0.91 0.66 0.21

practical de-anonymization attacks. To enable real-world applications without
compromising the privacy of users, a secure data anonymization scheme should
provide anonymized utility which does not locate within the utility region for
perfect de-anonymization shown as the green shaded regions in Figure 1. From
a data publisher’s point of view, we consider the worst-case attacker who has
access to perfect auxiliary information, i.e., noiseu = 0. Based on Theorem 1,
we aim to quantify the amount of noise that is added to the anonymized data
for achieving successful de-anonymization. Note that our derivation is from a
statistical point of view instead of from the perspective of a concrete graph.

Theorem 1. When the noise of the anonymized graph is less than 0.25, success-
ful de-anonymization can be theoretically achieved.

Proof. For the anonymization method of Hay et al. in [2], we have P dela = ka/Ma

and P adda = ka/(
(
N
2

)
−Ma). Similarly, we have P delu = ku/Mu and P addu =

ku/(
(
N
2

)
−Mu). Based on our utility metric in Definition 1, we have Uu = 1 −

2R×noiseu and Ua = 1−2R×noisea. Considering the sparsity property in most
real-world structural graphs [7], the utility condition for achieving successful de-
anonymization is restricted by Eq. 3, which can be represented as noiseu + l ×
noisea <

l
2 . Consider the worst-case attacker who has access to perfect auxiliary

information, i.e., noiseu = 0. Therefore, we have noisea < 0.25.

Therefore, when the noise added to the anonymized graph is less than 0.25,
there would be a serious privacy breach since successful de-anonymization is the-
oretically achievable. Note that such a utility bound only conservatively provides
the minimum noise that should be added to the anonymized data. Practically,
we suggest a real-world data publisher to add more noise to protect the privacy
of the data. Furthermore, such privacy-utility trade-off can be leveraged as a
guide for designing new anonymization schemes.

In addition, our derived theoretical analysis can also be utilized to evaluate
the performance of existing de-anonymization attacks. We implement our expe-
riments on Facebook dataset, Collaboration dataset [36], Twitter dataset [10].
The Facebook dataset [37] which contains 46, 952 nodes (i.e., users) connected
by 876, 993 edges (i.e., social relationships). The Collaboration dataset [36] is a
network of co-authorships between scientists who have posted preprints on the
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Condensed Matter E-Print Archive, which consists of 36,458 users and 171,735
edges. The Twitter dataset [10] captures the connections between users who
mentioned each other at least once between March 24th, 2012 and April 25th,
2012, and contains two different graphs named Twitter (small) with 9,745 users
and 50,164 edges, and Twitter (large) with 90,331 users and 358,422 edges.

To evaluate the performance of existing de-anonymization attacks, we consi-
der a popular perturbation method of Hay et al. in [2], which applies a sequence
of r edge deletions followed by r random edge insertions. A similar perturbation
process has been utilized for the de-anonymization attacks in [10]. Candidates
for edge deletion are sampled uniformly at random from the space of the exis-
ting edges in graph G, while candidates for edge insertion are sampled uniformly
at random from the space of edges that are not existing in G. Here, we define
noise (perturbations) as the extent of edge modification, i.e., the ratio of altered
edges r to the total number of edges, i.e., noise = r

M . Note that we add the
same amount of noise to the original graph to obtain the anonymized graph
and the auxiliary graph, respectively. Then, we apply the state-of-the-art de-
anonymization attacks in [9] and [10] to de-anonymize the anonymized graph by
leveraging the auxiliary graph.

We utilize Accuracy as an effective evaluation metric to measure the de-
anonymization performance. Accuracy is the ratio of the correctly de-anonymized
nodes out of all the overlapped nodes between the anonymized graph and the
auxiliary graph:

Accuracy =
Ncor
|Va ∩ Vu|

, (32)

where Ncor is the number of correctly de-anonymized nodes. The Accuracy
of these de-anonymization attacks corresponding to different levels of noise is
shown in Table 1.

From Table 1, we can see that the state-of-the-art de-anonymization attacks
can only achieve less than 75% de-anonymization accuracy when the noise is
0.25, which demonstrates the ineffectiveness of previous work and the potential
of developing more powerful de-anonymization attacks in the future.

7 DISCUSSION

There is a clear trade-off between utility and privacy for data publis-
hing. In this work, we analytically quantify the relationships between the utility
of anonymized data and the de-anonymization capability. Our quantification re-
sults show that privacy could be breached if the utility of anonymized data is
high. Hence, striking the balance between utility and privacy for data publishing
is important yet difficult - providing the high utility for real-world applications
would decrease the data’s resistance to de-anonymization attacks.

Suggestions for Secure Data Publishing. Secure data publishing (sharing)
is important for companies (e.g., online social network providers), governments
and researchers. Here, we give several general guidelines: (i) Data owners should
carefully evaluate the potential vulnerabilities of the data before publishing. For
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example, our quantification result in Section 4 can be utilized to evaluate the
vulnerabilities of the structural data. (ii) Data owners should develop proper
policies on data collections to defend against adversaries who aim to leverage
auxiliary information to launch de-anonymization attacks. To mitigate such pri-
vacy threats, online social network providers, such as Facebook, Twitter, and
Google+, should reasonably limit the access to users’ social relationships.

8 CONCLUSION

In this paper, we theoretically analyze the de-anonymization attacks and provide
conditions on the utility of the anonymized data (denoted by anonymized utility)
to achieve successful de-anonymization under a general graph model. Our ana-
lysis provides a theoretical foundation for structure-based de-anonymization at-
tacks, and can serve as a guide for designing new de-anonymization/anonymization
systems in practice. By comparing these experimental results and the theoreti-
cally achievable de-anonymization capability derived in our analysis, future work
can include studying our utility versus privacy trade-offs for more datasets, and
designing more powerful anonymization/de-anonymization approaches.
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