1	
2	
3	
4	Timely synthesis of the adenovirus type5 E1B 55 kDa protein is required for efficient genome
5	replication in normal human cells.
6	
7	Jasdave S. Chahal and S.J. Flint [†]
8	Department of Molecular Biology, Princeton University
9	Lewis Thomas Laboratory, Princeton NJ 08544
10	
11	Running Title: E1B 55 kDa protein and viral DNA synthesis
12	
13	Corresponding Author: Jane Flint, Phone: 609-258-6113 Fax: 609-258-4575
14	email: sjflint@princeton.edu
15	
16	Abstract word count: 186
17	Text word count: 4,716
18	

Previous studies have indicated that the adenovirus type 5 E1B 55 kDa protein facilitates 21 22 viral DNA synthesis in normal human fibroblasts, but not in primary epithelial cells. To 23 investigate this apparent difference further, viral DNA accumulation was examined in primary 24 human fibroblasts and epithelial cells infected by the mutant AdEasyE1 Δ 2347, which carries the 25 Hr6 frameshift mutation that prevents production of the E1B 55 kDa protein, in an E1-containing 26 derivative of AdEasy. Impaired viral DNA synthesis was observed in normal human fibroblasts (HFFs), but not in normal human bronchial epithelial cells infected by this mutant. However, 27 acceleration of progression through the early phase, which is significantly slower in HFFs than in 28 29 epithelial cells, eliminated the dependence of efficient viral DNA synthesis in HFFs on the E1B 55 kDa protein. These observations suggest that timely synthesis of the E1B 55 kDa protein 30 31 protects normal cells against a host defense that inhibits adenoviral genome replication. One such 32 defense is mediated by the Mre11-Rad50-Nbs1 complex. Nevertheless, examination of the 33 localization of Mre11 and viral proteins by immunofluorescence suggested that this complex is 34 inactivated similarly in AdEasyE1Δ2347- and AdEasyE1- infected HFFs.

35

<u>JVI Accepts published online ahead of print</u>

36

Introduction

38	The E1B gene of species C human adenoviruses, such as adenovirus type 5 (Ad5),
39	encodes unrelated proteins of 19 and 55 kDa that contribute to optimizing the environment for
40	efficient viral replication within infected cells. The 1kDa protein blocks apoptosis in infected
41	cells (24, 66, 87, 101), and was the first viral homologue of cellular anti-apoptotic proteins to be
42	identified (20, 86, 89). The E1B 55 kDa protein also counteracts cellular responses to infection
43	that would be detrimental to efficient virus reproduction. One of the first properties to be
44	ascribed to the E1B 55 kDa protein was interaction with the cellular tumor suppressor p53 (77).
45	In rodent cells transformed by E1A and E1B gene products, this interaction can sequester p53 in
46	juxtanuclear cytoplasmic structures (13, 42, 109). Binding of the E1B 55kDa protein to the N-
47	terminal activation domain of p53 has also been reported to inhibit p53-dependent transcription
48	both in <i>in vitro</i> reactions and in transient expression systems (54, 107, 108). Insertions or
49	substitutions in the E1B protein that impaired E1B-dependent transcriptional repression were
50	observed to reduce the ability of the E1B protein to cooperate with E1A gene products in
51	transformation of rodent cells (55, 90, 91, 108). Inhibition of p53-dependent transcription and
52	transforming activity have also been reported to be reduced by a substitution that prevents
53	sumoylation of the E1B 55 kDa protein at Lys104 (28), whereas substitutions that block shuttling
54	of this protein between the nucleus and cytoplasm (25, 47) stimulate both activities (27). These
55	observations indicate that inhibition of the transcriptional function of p53, and presumably of
56	induction of apoptosis by this cellular protein, are important for the transforming activity of the
57	E1B 55kDa protein.

Downloaded from http://jvi.asm.org/ on August 29, 2020 at Princeton University Library

In adenovirus-infected cells, the E1B 55kDa protein is necessary for degradation of p53,
as is the E4 Orf6 protein (15, 16, 36, 61, 64, 69, 70, 75, 78, 82). The p53 protein is a substrate of
viral/cellular E3 ubiquitin ligase (the Ad E3 Ub ligase) formed by assembly of the E1B 55kDa
and E4 Orf6 proteins with the cellular proteins cullin 5, elongins B and C and Rbx1, and is

37

62	targeted for proteasomal degradation by the action of this enzyme (19, 39, 53, 69). Although the
63	Ad E3 Ub ligase is necessary to prevent accumulation of p53, the results of both genome-wide
64	analyses of cellular gene expression (58) and examination of expression of subsets of p53-
65	responsive genes (41, 64) indicate that, in several different cell types, the p53 protein that
66	accumulates is transcriptionally inactive. Nor does it induce apoptosis (16, 64). It therefore
67	appears that in infected cells one or more additional viral gene products function redundantly with
68	the Ad E3 Ub ligase to ensure that p53 cannot trigger apoptosis or G1 arrest. One such gene
69	product is the E4 Orf3 protein, which has been reported to induce inhibition of p53-dependent
70	transcription in infected small airway epithelial cells (SAECs) (80).
71	Another function of the E1B 55 kDa protein is induction of selective export of viral late
72	mRNAs from the nucleus to the cytoplasm (67, 102). Such selective export depends on the
73	interaction of the E1B 55 kDa protein with E4 Orf6 (see (12, 31)), and assembly of the Ad E3 Ub
74	ligase (14, 105), although the relevant substrates have not yet been identified. Other known
75	substrates of this enzyme include integrin α 3, degradation of which may facilitate release of viral
76	particles at the end of the infectious cycle (23), DNA ligase IV (7) and the Mre11 and Rad50
77	proteins (83). The latter two proteins and Nbs1 form the MRN complex, which detects, and
78	initiates signaling in response to, double-stranded breaks in the genome, ultimately leading to
79	non-homologous end joining or recombinational repair (reviewed in (22), (73),(96), (50), (85)).
80	The function of the MRN complex is also blocked by the E4 Orf3 protein of species C
81	adenoviruses, which induces recruitment of Mre11 and Rad50 to intranuclear, track-like
82	structures that also contain cellular proteins reorganized from Pml bodies (17, 26, 30, 51, 83, 84).
83	The E4 Orf3 protein has also been reported to colocalize with Mre11 in juxtanuclear cytoplasmic
84	structures with the properties of aggresomes (3, 52). When both the formation of the Ad E3 Ub
85	ligase and relocalization of Mre11 by the E4 Orf3 protein are prevented by mutation, viral DNA
86	synthesis is impaired (29, 48, 56), and large concatemers of randomly orientated copies of the

87	viral genome accumulate very late in infection (83, 100). As such concatemers are far too large
88	to be packaged into capsids, their formation presumably reduces production of progeny virus
89	particles. This phenomenon would also impair initiation of viral DNA synthesis by sequestration
90	of the terminal origins of replication at internal positions within concatemers. Nevertheless,
91	several lines of evidence indicate that the inhibition of viral DNA synthesis observed when MRN
92	components are not inactivated in Ad5 infected cells is not the result of formation of concatemers
93	(29, 48, 79). Although the severe defects in viral DNA synthesis observed in infected cells when
94	MRN components cannot be degraded or sequestered are relieved in cells that lack Mre11 or
95	Nbs1 (30, 48, 56), the mechanism by which MRN components inhibit viral DNA synthesis is not
96	yet well understood. When not relocalized and targeted for proteasomal degradation, Mre11 has
97	been observed to associate with viral genomes in viral replication centers (56, 57, 83). It is
98	therefore possible that recruitment of this and other damage response proteins to viral genomes
99	blocks recognition of viral origins, or subsequent reactions in viral DNA synthesis.
100	With few exceptions, the studies summarized in previous paragraphs were performed
100 101	With few exceptions, the studies summarized in previous paragraphs were performed using HeLa or other established lines of human cells as hosts. Such cells, most of which were
100 101 102	With few exceptions, the studies summarized in previous paragraphs were performed using HeLa or other established lines of human cells as hosts. Such cells, most of which were derived from human tumors, are, by definition, immortal, and proliferate rapidly and under
100 101 102 103	With few exceptions, the studies summarized in previous paragraphs were performed using HeLa or other established lines of human cells as hosts. Such cells, most of which were derived from human tumors, are, by definition, immortal, and proliferate rapidly and under conditions (e.g. contact inhibition) in which normal cells do not. Furthermore, they are
100 101 102 103 104	With few exceptions, the studies summarized in previous paragraphs were performed using HeLa or other established lines of human cells as hosts. Such cells, most of which were derived from human tumors, are, by definition, immortal, and proliferate rapidly and under conditions (e.g. contact inhibition) in which normal cells do not. Furthermore, they are genetically abnormal, for example, carrying mutations that contribute to bypass of the circuits
100 101 102 103 104 105	With few exceptions, the studies summarized in previous paragraphs were performed using HeLa or other established lines of human cells as hosts. Such cells, most of which were derived from human tumors, are, by definition, immortal, and proliferate rapidly and under conditions (e.g. contact inhibition) in which normal cells do not. Furthermore, they are genetically abnormal, for example, carrying mutations that contribute to bypass of the circuits that regulate cell-cycle progression and checkpoint responses, and likely to differ in genotype
100 101 102 103 104 105 106	With few exceptions, the studies summarized in previous paragraphs were performed using HeLa or other established lines of human cells as hosts. Such cells, most of which were derived from human tumors, are, by definition, immortal, and proliferate rapidly and under conditions (e.g. contact inhibition) in which normal cells do not. Furthermore, they are genetically abnormal, for example, carrying mutations that contribute to bypass of the circuits that regulate cell-cycle progression and checkpoint responses, and likely to differ in genotype from one another. These properties raise the possibility that some functions of adenoviral
100 101 102 103 104 105 106 107	With few exceptions, the studies summarized in previous paragraphs were performed using HeLa or other established lines of human cells as hosts. Such cells, most of which were derived from human tumors, are, by definition, immortal, and proliferate rapidly and under conditions (e.g. contact inhibition) in which normal cells do not. Furthermore, they are genetically abnormal, for example, carrying mutations that contribute to bypass of the circuits that regulate cell-cycle progression and checkpoint responses, and likely to differ in genotype from one another. These properties raise the possibility that some functions of adenoviral proteins necessary for efficient replication in normal host cells may be dispensable in transformed
100 101 102 103 104 105 106 107 108	With few exceptions, the studies summarized in previous paragraphs were performed using HeLa or other established lines of human cells as hosts. Such cells, most of which were derived from human tumors, are, by definition, immortal, and proliferate rapidly and under conditions (e.g. contact inhibition) in which normal cells do not. Furthermore, they are genetically abnormal, for example, carrying mutations that contribute to bypass of the circuits that regulate cell-cycle progression and checkpoint responses, and likely to differ in genotype from one another. These properties raise the possibility that some functions of adenoviral proteins necessary for efficient replication in normal host cells may be dispensable in transformed cells. Consistent with this view, the 243R E1A protein is required for efficient viral DNA
100 101 102 103 104 105 106 107 108 109	With few exceptions, the studies summarized in previous paragraphs were performed using HeLa or other established lines of human cells as hosts. Such cells, most of which were derived from human tumors, are, by definition, immortal, and proliferate rapidly and under conditions (e.g. contact inhibition) in which normal cells do not. Furthermore, they are genetically abnormal, for example, carrying mutations that contribute to bypass of the circuits that regulate cell-cycle progression and checkpoint responses, and likely to differ in genotype from one another. These properties raise the possibility that some functions of adenoviral proteins necessary for efficient replication in normal host cells may be dispensable in transformed cells. Consistent with this view, the 243R E1A protein is required for efficient viral DNA synthesis in normal human lung fibroblasts, but not in HeLa cells (81). We therefore initiated
100 101 102 103 104 105 106 107 108 109 110	With few exceptions, the studies summarized in previous paragraphs were performed using HeLa or other established lines of human cells as hosts. Such cells, most of which were derived from human tumors, are, by definition, immortal, and proliferate rapidly and under conditions (e.g. contact inhibition) in which normal cells do not. Furthermore, they are genetically abnormal, for example, carrying mutations that contribute to bypass of the circuits that regulate cell-cycle progression and checkpoint responses, and likely to differ in genotype from one another. These properties raise the possibility that some functions of adenoviral proteins necessary for efficient replication in normal host cells may be dispensable in transformed cells. Consistent with this view, the 243R E1A protein is required for efficient viral DNA synthesis in normal human lung fibroblasts, but not in HeLa cells (81). We therefore initiated investigations of the roles played by the E1B 55 kDa protein during Ad5 replication in normal
100 101 102 103 104 105 106 107 108 109 110 111	With few exceptions, the studies summarized in previous paragraphs were performed using HeLa or other established lines of human cells as hosts. Such cells, most of which were derived from human tumors, are, by definition, immortal, and proliferate rapidly and under conditions (e.g. contact inhibition) in which normal cells do not. Furthermore, they are genetically abnormal, for example, carrying mutations that contribute to bypass of the circuits that regulate cell-cycle progression and checkpoint responses, and likely to differ in genotype from one another. These properties raise the possibility that some functions of adenoviral proteins necessary for efficient replication in normal host cells may be dispensable in transformed cells. Consistent with this view, the 243R E1A protein is required for efficient viral DNA synthesis in normal human lung fibroblasts, but not in HeLa cells (81). We therefore initiated investigations of the roles played by the E1B 55 kDa protein during Ad5 replication in normal human cells. One unexpected observation was that, in the absence of this protein, viral DNA

synthesis was impaired in proliferating human fibroblasts (32), although it is not in HeLa and
other lines of transformed human cells (5, 34, 38, 67, 102). Furthermore, McCormick and
colleagues had previously reported that no differences in viral DNA synthesis were observed in
quiescent small airway epithelial cells infected by wild-type virus or the E1B 55kDa null mutant
Onyx-015 (dl1520) (64). The studies reported here were initiated in an attempt to resolve this
apparent discrepancy.

118 Materials and Methods

119

<u>NI Accepts published online ahead of prini</u>

120 Cells and viruses. 293 cells and human foreskin fibroblasts (HFFs) were grown as monolayer 121 cultures in Dulbecco's modified Eagle's medium (DMEM) supplemented with 5% and 10% fetal 122 calf serum, respectively. Primary human bronchial/tracheal epithelial cells (NHBECs) were 123 obtained from BioWhittaker, Inc. and cultured using pre-defined media, BEGM, and growth 124 conditions according to the manufacturer's recommendations. Cells were considered to be in the 125 proliferative phase when $\leq 90\%$ confluent, whereas cells in the quiescent state were obtained by 126 prolonged incubation (≥ 4 days) after contact inhibition was observed. The construction of a 127 phenotypically wild-type derivative of AdEasy (40) containing the E1A and E1B genes (AdEasy 128 E1) was described previously (44). To introduce a GFP reporter gene into this background, the 129 segment of pShuttleE1 (44) from the BamHI site downstream of the left arm (40) to the NotI site 130 at bp 364 (40) was replaced with the corresponding fragment of pAdTrack-CMV (40). The 131 resulting plasmid, pShuttle E1-G, contains the expression cassette comprising the human 132 cytomegalovirus immediate early promoter/enhancer, the eGFP coding sequence and a poly(A) 133 addition site from pADTrack-CMV immediately upstream of, and in inverse orientation to, the 134 E1A transcription unit. Recovery of this modified E1A region into the AdEasy-1 genome to 135 create AdEasyE1-G by homologous recombination in E. coli, introduction of the Hr6 frameshift 136 mutation (deletion of bp2347 in Ad5 DNA (102)) into this background, and isolation of viruses 137 were as described for AdEasyE1 and AdEasyE1 Δ 2347 (44). Phenotypically wild-type 138 (AdEasyE1, and AdEasyE1-G) and E1B 55 kDa null mutants. AdEasyE1∆2347 and 139 AdEasyE1 Δ 2347-G) were propagated in monolayers of 293 cells. Viruses were titrated by plaque 140 assay on these same cells as described (103).

141

142	Analysis of accumulation of viral DNA. Proliferating or quiescent cells in 6-well dishes were
143	infected in parallel with wild-type virus and the corresponding E1B 55 kDa null mutant (e.g.
144	AdEasyE1 and AdEasyE1 Δ 2347), and harvested after increasing periods of infection. DNA was
145	purified from nuclei isolated as described previously (32), or by using the DNeasy tissue kit
146	(Qiagen) according to the manufacturer's protocol. Quantitative real-time PCR was carried out
147	using the ABI PRISM 7900HT sequence detection system, and SyberGreen detection of an
148	amplicon within the ML transcription units, 90 base pairs long (nucleotides 7128 to 7218). The
149	primer set was as follows: ML Fwd: 5'-ACT CTT CGC GGT TCC AGT ACT C-3', ML Rev: 5'-
150	CAG GCC GTC ACC CAG TTC TAC-3'. Reactions contained 2-4 μl sample DNA (diluted as
151	necessary), 300 nM each primer, and Power SYBR Green mastermix (Applied Biosystems). To
152	provide an internal control, concentrations of cellular DNA were determined in parallel, using
153	primers for an amplicon within the promoter of the human glyceraldehyde-3 phosphate
154	dehydrogenase (GAPDH) promoter. The forward primer corresponded to positions 6513800-
155	6513820 of human chromosome 12 reference assembly, genebank accession number
156	NC_000012.10 (5 -TACTAGCGGTTTTACGGGCG-3) and the reverse primer was
157	complementary to positions 6513942-6513965 (5 -TCGAACAGGAGGAGCAGAGAGCA-
158	3). PCR cycles were programmed as follows: two initial steps at 50°C for 2 min and 95°C for
159	10 min, and then 40 cycles of 95°C for 15 sec and 60°C for 60 sec. Relative DNA concentrations
160	were determined by the standard curve method. All measurements were performed in triplicate.
161	
162	Immunoblotting. HFFs or NHBECs at approximately 75-80% confluence were infected with

vith 163 wild type or E1B 55 kDa null mutant viruses. Cells were harvested at the times after infection 164 indicated, washed with phosphate-buffered saline (PBS), and extracted with 25 mM TrisHCl, pH 165 8.0, containing 50 mM NaCl, 0.5% (w/v) sodium deoxycholate, 0.5% (v/v) Nonidet P-40 (NP-40) 166 and 1 mM phenylmethylsulfonyl fluoride for 30 min at 4°C. Extracts were incubated with 125

167 units Benzonase[®] nuclease (Sigma) for 30 minutes at 37°C, and cell debris removed by 168 centrifugation at 10,000 X g at 4°C for 5 min. The extracts were analyzed by sodium dodecyl 169 sulfate (SDS)-polyacrylamide gel electrophoresis and immunoblotting as described previously 170 (33). The E2 DBP was detected with the monoclonal antibodies (MAb) B6 (71) and cellular β -171 actin, as an internal control, with an HRP-labeled anti β -actin MAb (Abcam).

172

JVI Accepts published online ahead of print

186	The dependence of viral DNA synthesis in normal human fibroblasts and epithelial cells on
185	Results
184	
183	(33). Images were organized using Adobe Photoshop 7.0.
182	(Polysciences Inc.), and samples were examined by confocal microscopy as described previously
181	secondary antibody. The coverslips were mounted on glass slides in Aqua Polymount
180	(GeneTex) and Cy5-donkey anti-rabbit IgG (Jackson Immuno Research Laboratories Inc)
179	(Invitrogen). The cellular Mre11 protein was examined using a rabbit polyclonal antibody
178	monoclonal antibody 6A11 (62) and Alexa Flour TM 568-conjugated goat anti-mouse IgG
177	(Jackson Immuno Research laboratories Inc.) and the E4 Orf3 protein by using the rat
176	visualized using the B6 antibody (71) and donkey anti-mouse IgG labeled with Alexa Fluor TM 488
175	the cells processed for immunofluorescence as described previously (33). The viral E2 DBP was
174	infected, or infected with wild type or E1B 55 kDa null mutant viruses for various periods, and
173	Immunofluorescence. HFFs grown on coverslips to approximately 90% confluence were mock

187 the E1B 55 kDa protein.

188

189	In initial studies of viral replication in normal human cells, we observed that accumulation of
190	viral DNA was impaired in HFFs infected by the E1B 55 kDa-null mutant Hr6 (32). In
191	subsequent experiments, Hr6-infected normal cell nuclei have been found to contain 20 to 30-fold
192	higher concentration of viral DNA at 2 hrs. p.i. than nuclei from cells infected in parallel with an
193	equal multiplicity of Ad5 (S. Kato, J.S.C. and S. J.F., in preparation). This property, and the
194	subsequent extensive degradation of Hr6 genomes, precluded meaningful interpretation and
195	comparison of temporal changes in the concentrations of viral DNA in Ad5- and Hr6- infected
196	cells. To investigate further the contribution of the E1B 55 kDa protein to viral DNA synthesis in
197	normal human cells, we therefore exploited a mutant (AdEasyE1 Δ 2347) that carries the Hr6
198	frameshift mutation in the background of a phenotypically wild-type derivative of AdEasy (40),
199	which includes the E1A and E1B genes (AdEasyE1)(44). As reported elsewhere (44), no E1B 55
200	kDa protein can be detected in HeLa cells or HFFs infected by AdEasy E1∆2347, as expected,
201	and this mutant reproduced the defects in viral late gene expression observed in cells infected by
202	other E1B 55 kDa null mutants (6, 35, 38, 67, 102).
203	HFFs or NHBECs were infected in parallel with 30 pfu/cell or 5 pfu/cell, respectively,
204	AdEasyE1 or AdEasyE1 Δ 2347, and the concentrations of viral DNA entering nuclei by 2 hours
205	after infection measured as described in Materials and Methods. Similar concentrations of
206	intranuclear DNA were observed in wild-type and mutant-infected HFFs or NHBECs (Table 1),
207	indicating that a mutation other than the E1B 55 kDa coding sequence frameshift mutation
208	(deletion of bp2347) is responsible for the poor infectivity of Hr6 virus particles. The closely
209	similar infectivities of AdEasyE1 and AdEasyE1 Δ 2347 were therefore exploited to assess
210	unambiguously the impact of failure to produce the E1B 55 kDa protein on viral DNA synthesis
211	in normal human fibroblasts and epithelial cells.
212	Proliferating HFFs were infected with the wild-type and mutant viruses, and the

213 concentrations of intranuclear DNA measured after increasing periods of infection by quantitative

214	PCR, as described in Materials and Methods. The concentration of viral DNA was observed to
215	decrease somewhat between 2 and 18 hours after infection, but by a similar factor in AdEasyE1-
216	and AdEasyE1 Δ 2347- infected cells (Fig 1A). In both cases, viral DNA concentrations increased
217	thereafter, in agreement with results of previous analysis of the kinetics of the viral infectious
218	cycle in HFFs (32). However, viral DNA synthesis was less efficient in AdEasyE1 Δ 2347-
219	infected cells, which contained a 10-fold lower concentration of viral DNA than did wild type-
220	infected cells at 36 hours after infection (Fig 1A). As illustrated in Figure 1B, the difference in
221	the accumulation of viral DNA in AdEasy $E1\Delta 2347$ -compared to wild type- infected cells was
222	lower later in infection (44 hours p.i.) than at around the time of the onset of viral DNA synthesis
223	(22-24 hours p.i.), suggesting that this process is delayed in HFFs in the absence of the E1B 55
224	kDa protein. A similar impairment in viral DNA synthesis was observed when quiescent HFFs
225	were infected by the E1B kDa-null mutant (Fig. 1C).
226	In an alternative approach to assess viral DNA synthesis, the formation of viral
227	replication centers containing the E2 DNA binding protein (DBP) was compared in HFFs
228	infected by AdEasyE1 or AdEasy E1 Δ 2347. In adenovirus-infected cell nuclei, the DBP forms
229	two morphologically distinct structures, small dot-like foci and larger, globular ring-like
230	structures (88, 98). The small foci appear early in infection and their formation is independent of
231	viral DNA synthesis. In contrast, the ring-like structures, which are associated with newly-
232	synthesized viral DNA (60, 68, 98), do not appear when viral DNA synthesis is blocked by drugs
233	or mutations (88, 97). We have reported previously that synthesis of the DBP is not impaired in
234	AdEasyE1 Δ 2347-infected HFFs (44). Replication centers were therefore examined by
235	immunofluorescence as described in Materials and Methods. Striking differences were observed:
236	
	the majority of AdEasyE1- infected cells contained enlarged rings of DBP, which are formed

as diffuse nuclear staining in most AdEasy $E1\Delta 2347$ -infected cells (Fig. 2A). Quantification of

239	the different patterns of intranuclear localization of DBP indicated that the enlarged ring-like
240	structures characteristic of replicating viral DNA developed in over 90% of AdEasyE1-infected
241	cells, but in less than 30% of those infected by the mutant (Fig. 2B). These observations indicate
242	that the E1B 55 kDa protein is required for efficient genome replication in Ad5-infected HFFs.
243	We next compared the temporal changes in viral DNA concentration in normal human
244	bronchial/tracheal cells (NHBECs) infected by AdEasyE1 or AdEasyE1∆2347. As subgroup C
245	adenoviruses, such as Ad5, are associated with upper respiratory tract infections (reviewed in
246	(104), these cells seemed likely to provide a closer facsimile of natural host cells than either HFFs
247	or SAECs used in other studies (63), which were derived from the lower respiratory tract.
248	Proliferating NHBECs, which are significantly more infectable than HFFs (32), were infected
249	with 5 pfu/cell, and viral DNA concentrations measured at various times thereafter. In these
250	cells, significantly higher concentrations of viral DNA were detected than in HFFs (compare Figs
251	3A and 1A), a property also observed in SAECs (data not shown). In contrast to the results
252	obtained in HFFs, the kinetics and efficiency of viral DNA synthesis were essentially
253	indistinguishable in AdEasyE1- and AdEasyE1 Δ 2347-infected cells (Fig. 3A), nor was any
254	significant difference detected when quiescent NHBECs were infected (Fig. 3B).
255	Acceleration of early phase progression in HFFs restores efficient genome replication in the
256	absence of the E1B 55 kDa protein.
257	
257	Comparison of genome replication of AdEasyE1 in HFFs and NHBEs demonstrated not
258	only more efficient viral DNA synthesis in the latter cell type, but also differences in the kinetics
259	of this process. In wild-type-infected NHBECs, viral DNA synthesis was well underway by 16

260 hours p.i., when the relative viral DNA concentration had increased some 200-fold (Fig. 3A). In 261 contrast, no genome replication was detected at this time after AdEasyE1 infection of HFFs, and 262 by 24 hours p.i. the quantity of intranuclear viral DNA had increased by a factor of only 4 (Fig.

263	1A). The delayed onset of viral DNA synthesis in HFFs is consistent with our previous
264	observations that in these cells viral immediate early E1A proteins cannot be detected until 14 -
265	16 hours after infection (32). Indeed, the E2 DBP does not accumulate to a significant
266	concentration until 24 hours after infection (Fig 4A). In contrast, this viral replication protein
267	was readily detected by 12 hrs. after infection of NHBECs with AdEasy E1 (Fig. 4B), consistent
268	with the earlier onset of viral DNA synthesis in these cells (Fig. 3A). Because of this difference
269	in the rate of progression through the early phase, it was not clear whether the E1B 55 kDa
270	protein were required to promote viral DNA synthesis specifically in fibroblasts, or whether some
271	inhibitory mechanism, blocked by this viral protein, became activated during the extended period
272	before initiation of genome replication in HFFs. To distinguish between these possibilities, we
273	exploited derivatives of AdEasyE1 and AdEasyE1 Δ 2347 that carry the coding sequence for eGFP
274	under the control of the human cytomegalovirus (HCMV) immediate early (IE)
275	promoter/enhancer upstream of, and in inverse orientation to, the E1A transcription unit. As
276	illustrated in Figure 4C, synthesis of the E2 DBP was evident by 9 hrs. after infection of HFFs by
277	the wild-type derivative, AdEasyE1-G, and had accumulated to a much higher concentration by
278	12 hrs. p.i. These data indicate that insertion of the expression cassette led to considerably
279	accelerated progression through the early phase of infection in HFFs, presumably as a result of
280	activation of E1A transcription by the HCMV IE enhancer. We therefore compared viral DNA
281	synthesis in proliferating HFFs infected with AdEasyE1-G or AdEasyE1 Δ 2347-G, by the
282	methods described previously. In contrast to the results shown in Figure 1, no differences were
283	observed in the kinetics or efficiency of viral DNA synthesis in mutant- compared to wild type-
284	infected cells, and in both cases, an increase in intranuclear viral DNA concentration, albeit
285	modest, was detected by 16 hrs. p.i. (Fig. 5). Although accelerated synthesis of viral early
286	proteins eliminated the dependence of viral DNA synthesis in HFFs on the E1B protein, the
287	relative quantity of viral DNA made by 36 hrs. p.i. remained lower than observed in NHBECs

288 (compare Figs 3A and 5), suggesting that cell type-specific differences govern the degree of

amplification of the viral genome.

290 Localization of Mre11 in infected HFFs

291 The E1B 55kDa protein neither participates directly in viral DNA synthesis (10), nor 292 facilitates production of viral replication proteins during the early phase of infection in 293 transformed or normal human cells (4, 35, 44, 49, 74). The results described in the previous 294 section therefore suggest that, when synthesized in timely fashion, this early protein protects 295 against inhibition of viral DNA synthesis by a cellular defense mechanism, such as the double-296 stranded DNA break repair response. As discussed in the Introduction, the activity of the Ad E3 297 Ub ligase targets proteins of the cellular MRN complex for proteasomal degradation, and viral 298 DNA synthesis is inhibited in established lines of human cells when both assembly of this 299 infected cell-specific enzyme and synthesis of the viral E4 Orf3protein are prevented by mutation. 300 Consistent with these previous studies, the steady state concentration Mre11 was observed to 301 decrease more slowly in HFFs infected by AdEasyE1 Δ 2347 than in AdEasyE1-infected cells 302 (44). We therefore wish to compare the relocalization of Mre11 by E4 Orf3 in normal human 303 cells in the presence and absence of the E1B 55kDa protein. Proliferating HFFs were infected in 304 parallel with AdEasyE1 or AdEasyE1 Δ 2347 for 24 hours, and viral replication centers (E2 DBP), 305 the E4 Orf3 protein and Mre11 visualized by immunofluorescence using mouse, rat and rabbit 306 primary antibodies, respectively, as described in Materials and Methods.

In uninfected HFFs, Mre11 was concentrated in nuclei, where it was excluded from nucleoli (Fig 6, panels a and b). Upon infection, the nuclear Mre11 signal was reduced (compare panels g and l with panel b), as expected (see Introduction). In AdEasyE1- infected cells, the cellular protein was observed in discrete fleck-like structures not present in uninfected cells (Fig 6, panel g, orange arrows). In these structures, Mre11 was localized with the E4 Orf3 protein,

312	and was not associated with viral replication centers (Fig 6, panels g, k, I and j), as initially
313	observed in Ad5-infected established human cell lines (30, 83). These same changes in the
314	properties of Mrel1, reduced intranuclear concentration, reorganization to structures that
315	contained the E4 Orf3 protein and lack of association with viral replication centers, were
316	observed in HFFs infected by AdEasyE1Δ2347 (Fig 6A, panels 1-o). Furthermore, examination
317	of ~100 cells infected by the mutant or its wild type parent indicated that the number of infected
318	cells in which Mre11 was localized with the E4 Orf3 proteins was not reduced in the absence of
319	the E1B 55 kDa protein, but rather increased somewhat, from 51.2% to 73.6%. This difference
320	probably a consequence of the delayed degradation of Mre11 when the Ad E3 Ub ligase is not
321	present in infected cells.
322	

Discussion 323

JVI Accepts published online ahead of print

324	The apparent discrepancies in the dependence of viral DNA synthesis in normal human
325	cells on the E1B 55 kDa protein reported previously (32, 63) have been investigated further by
326	exploiting a mutant (AdEasyE1 Δ 2347) that carries the Hr6 E1B frameshift mutation in the
327	AdEasyE1 genome (44): this mutant reproduces such phenotypes of Hr6 (and other E1B 55 kDa
328	null mutants) as impaired expression of viral late genes (44), but does not exhibit (Table 1) the
329	low infectivity of Hr6 that will be described elsewhere (S. Kato, J.S.C. and S.J.F., in preparation).
330	Comparison of the accumulation of viral DNA in cells infected by this mutant and its wild type
331	parent indicated that viral genome replication is impaired in proliferating and quiescent normal
332	human fibroblasts in the absence of the E1B 55 kDa protein (Fig. 1), consistent with our previous
333	observation that viral DNA synthesis was reduced in HFFs infected not only by Hr6, but also by a
334	mutant (H224) that carries a 4 amino acid insertion mutation in the E1B 55 kDa protein coding
335	sequence (32). However, no such defect was detected in normal human bronchial/tracheal

This difference is

336	epithelial cells (Fig. 3). It has been reported previously that viral DNA synthesis is not defective
337	in small airway epithelial cells infected by the E1B 55 kDa null mutant Onyx-015 (a.k.a. dl1520)
338	(63). Nevertheless, the difference in the dependence of viral DNA synthesis on the E1B protein
339	observed between normal human fibroblasts and epithelial cells does not appear to represent yet
340	another example of the well-documented variation in the efficiency of replication of E1B 55 kDa
341	null mutants with host cell type (11, 35, 38, 76, 92): when introduction of the HMCV IE
342	promoter/enhancer into the viral genome accelerated expression of early genes and progression
343	through the early phase in infected HFFs (Fig 4), no defect in viral DNA synthesis was observed
344	in the absence of the E1B 55 kDa protein (Fig 5). We therefore propose that synthesis of this
345	protein within a prescribed period after initiation of the infectious cycle is necessary to allow
346	maximally efficient viral DNA synthesis, most probably by countering a cellular defense
347	mechanism.
348	When the Ad E3 Ub ligase cannot assemble in transformed human cells, relocalization of
349	the cellular Mre11, Rad50 and Nbs1 protein by the species C adenovirus E4 Orf3 protein (84) is
350	necessary to block inhibition of viral DNA synthesis by the MRN complex (30). If the E4 Orf3
351	protein is also absent, Mre11 and other MRN proteins become localized with E2 DBP-containing
352	viral replication centers (56, 57, 83), where Mre11 binds to viral DNA (57). Although

degradation of Mre11 is delayed in HFFs infected by AdEasyE1Δ2347 compared to its

phenotypically wild type parent (44), this cellular protein was observed to be sequestered with E4

355 Orf3 in both wild type- and mutant- infected cells (Fig 6). As such relocalization of Mre11 is

356 sufficient to prevent inhibition of viral DNA by the MRN complex (30), it is highly unlikely that

this complex is responsible for the impaired genome replication observed in AdEasyE1Δ2347infected HFFs.

361	function as a Sumo1 E3 ligase (59, 65)). It is therefore possible that timely synthesis of the
362	enzymes that contain this E1B protein in normal human cells is required to induce removal, or
363	inhibition by modification, of an as yet unidentified cellular protein that inhibits genome
364	replication directly or indirectly. However, in HFFs the E1B 55 kDa protein also represses
365	expression of a subset of cellular genes highly enriched for those associated with innate antiviral
366	defenses and immune responses (58). The former class includes a substantial number of
367	interferon (IFN)-inducible genes, as well as several encoding components of signaling pathways
368	that are activated in response to infection, such as Myd88 and Irf7. One mechanism by which
369	adenovirus infection is recognized to initiate innate immune responses is by the pathogen
370	recognition receptor Tlr 9 (2, 8, 9, 18, 106, 110), which signals via the adaptor Myd88, Irf7 and
371	other transcriptional activators to induce production of type I IFN and other proinflammatory
372	cytokines (see (21, 93), (99)). Repression of expression of these genes by the E1B 55 kDa
373	protein may therefore contribute to antagonism of antiviral defenses induced by type I IFN in
374	Ad5-infected cells, as do the small viral RNA VA-RNAI (45, 46), the E1A proteins (1, 37, 43,
375	72), and the E4 Orf3 protein (94, 95). Such a function of the E1B protein could account for
376	impaired genome replication when the early phase of infection is prolonged in HFFs infected by
377	E1B 55kDa null mutants, as the longer period prior to induction of viral DNA synthesis might
378	permit production of quantities of type 1 IFN sufficient to induce an effective anti-viral state by
379	autocrine and paracrine mechanisms.

381 Acknowledgements

We thank Thomas Dobner for the generous gift of rat anti-E4 Orf3 monoclonal antibody,
6AII, Wenying Huang for expert technical assistance, Mohammed Selman for analysis of viral
early protein synthesis in NHBECs, and Ellen Brindle-Clark for assistance with preparation of the

385	manuscript. This work was supported by Public Health Service grant RO1AI058172 from the
386	National Institute of Allergy and Infectious Disease. Jasdave Chahal was partially supported by
387	post graduate scholarship from the National Science and Engineering Research Council of
388	Canada.
389	
390	
391	
392	
393	

а

Downloaded from http://jvi.asm.org/ on August 29, 2020 at Princeton University Library

394 References:

395	1.	Ackrill, A. M., G. R. Foster, C. D. Laxton, D. M. Flavell, G. R. Stark, and I. M. Kerr. 1991.
396		Inhibition of the cellular response to interferons by products of the adenovirus type 5
397		E1A oncogene. Nucleic Acids Res 19: 4387-93.
398	2.	Appledorn, D. M., S. Patial, A. McBride, S. Godbehere, N. Van Rooijen, N.
399		Parameswaran, and A. Amalfitano. 2008. Adenovirus vector-induced innate
400		inflammatory mediators, MAPK signaling, as well as adaptive immune responses are
401		dependent upon both TLR2 and TLR9 in vivo. J Immunol 181: 2134-44.
402	3.	Araujo, F. D., T. H. Stracker, C. T. Carson, D. V. Lee, and M. D. Weitzman. 2005.
403		Adenovirus type 5 E4orf3 protein targets the Mre11 complex to cytoplasmic
404		aggresomes. J Virol 79: 11382-91.
405	4.	Babiss, L. E., and H. S. Ginsberg. 1984. Adenovirus type 5 early region 1b gene product
406		is required for efficient shutoff of host protein synthesis. J. Virol. 50 :202-212.
407	5.	Babiss, L. E., H. S. Ginsberg, and P. B. Fisher. 1983. Cold-sensitive expression of
408		transformation by a host-range mutant of type 5 adenovirus. Proc Natl Acad Sci USA
409		80: 1352-1356.
410	6.	Babiss, L. E., C. S. H. Young, P. P. Fisher, and H. S. Ginsberg. 1983. Expression of
411		adenovirus E1A and E1B gene products and the Escheriria coli XPRT gene in KB cells. J.
412		Virol. 46: 454-465.
413	7.	Baker, A., K. J. Rohleder, L. A. Hanakahi, and G. Ketner. 2007. Adenovirus E4 34k and
414		E1b 55k oncoproteins target host DNA ligase IV for proteasomal degradation. J Virol
415		81: 7034-40.
416	8.	Barlan, A. U., T. M. Griffin, K. A. McGuire, and C. M. Wiethoff. 2011. Adenovirus
417		membrane penetration activates the NLRP3 inflammasome. J Virol 85:146-55.
418	9.	Basner-Tschakarjan, E., E. Gaffal, M. O'Keeffe, D. Tormo, A. Limmer, H. Wagner, H.
419		Hochrein, and T. Tuting. 2006. Adenovirus efficiently transduces plasmacytoid dendritic
420		cells resulting in TLR9-dependent maturation and IFN-alpha production. J Gene Med
421		8: 1300-6.
422	10.	Berk, A. J. 2007. Adenoviridae: The Viruses and Their Replication, p. 2355-2394. In D. M.
423		Knipe and P. M. Howley (ed.), Fields Virology, 5 ed, vol. 2. Lippincott Williams & Wilkins,
424		Philadelphia, PA.
425	11.	Bischoff, J. R., D. H. Kirn, A. Williams, C. Heise, S. Horn, M. Muna, L. Ng, J. A. Nye, A.
426		Sampson-Johannes, A. Fattaey, and F. McCormick. 1996. An adenovirus mutant that
427		replicates selectively in p53-deficient human tumor cells. Science 274:373-376.
428	12.	Blackford, A. N., and R. J. Grand. 2009. Adenovirus E1B 55-kilodalton protein: multiple
429		roles in viral infection and cell transformation. J Virol 83:4000-12.
430	13.	Blair-Zajdel, M. E., and G. E. Blair. 1988. The intracellular distribution of the
431		transformation-associated protein p53 in adenovirus-transformed rodent cells.
432		Oncogene 2: 579-84.
433	14.	Blanchette, P., K. Kindsmuller, P. Groitl, F. Dallaire, T. Speiseder, P. E. Branton, and T.
434		Dobner. 2008. Control of mRNA export by adenovirus E4orf6 and E1B55K proteins
435		during productive infection requires E4orf6 ubiquitin ligase activity. J Virol 82:2642-51.
436	15.	Boyer, J. L., and G. Ketner. 2000. Genetic analysis of a potential zinc-binding domain of
437		the adenovirus E4 34k protein. J. Biol. Chem. 275: 14969-14978.
438	16.	Cardoso, F. M., S. E. Kato, W. Huang, S. J. Flint, and R. A. Gonzalez. 2008. An early
439		function of the adenoviral E1B 55 kDa protein is required for the nuclear relocalization

440		of the cellular p53 protein in adenovirus-infected normal human cells. Virology 378: 339-				
441		46.				
442	17.	Carvalho, T., J. S. Seeler, K. Ohman, P. Jordan, U. Pettersson, G. Akusjärvi, M. Carmo-				
443		Fonseca, and A. Dejean. 1995. Targeting of adenovirus E1A and E4-ORF3 proteins to				
444		nuclear matrix- associated PML bodies. J. Cell Biol. 131:45-56.				
445	18.	Cerullo, V., M. P. Seiler, V. Mane, N. Brunetti-Pierri, C. Clarke, T. K. Bertin, J. R.				
446		Rodgers, and B. Lee. 2007. Toll-like receptor 9 triggers an innate immune response to				
447		helper-dependent adenoviral vectors. Mol Ther 15 :378-85.				
448	19.	Cheng, C. Y., P. Blanchette, and P. E. Branton. 2007. The adenovirus E4orf6 E3 ubiquitin				
449		ligase complex assembles in a novel fashion. Virology 364: 36-44.				
450	20.	Chiou, S. K., C. C. Tseng, L. Rao, and E. White. 1994. Functional complementation of the				
451		adenovirus E1B 19-kilodalton protein with Bcl-2 in the inhibition of apoptosis in infected				
452		cells. J Virol 68: 6553-66.				
453	21.	Colonna, M. 2007. TLR pathways and IFN-regulatory factors: to each its own. Eur J				
454		Immunol 37: 306-9.				
455	22.	D'Amours, D., and S. P. Jackson. 2002. The Mre11 complex: at the crossroads of dna				
456		repair and checkpoint signalling. Nat Rev Mol Cell Biol 3 :317-27.				
457	23.	Dallaire, F., P. Blanchette, P. Groitl, T. Dobner, and P. E. Branton. 2009. Identification				
458		of integrin alpha3 as a new substrate of the adenovirus E4orf6/E1B 55-kilodalton E3				
459		ubiguitin ligase complex. J Virol 83: 5329-38.				
460	24.	Debbas, M., and E. White. 1993. Wild-type p53 mediates apoptosis by E1A, which is				
461		inhibited by E1B. Genes Dev 7: 546-54.				
462	25.	Dosch, T., F. Horn, G. Schneider, F. Kratzer, T. Dobner, J. Hauber, and R. H. Stauber.				
463		2001. The adenovirus type 5 E1B-55k oncoprotein actively shuttles in virus- infected				
464		cells, whereas transport of E4Orf6 is mediated by a CRM1- independent mechanism. J.				
465		Virol. 75: 5677-5683.				
466	26.	Doucas, V., A. M. Ishov, A. Romo, H. Juguilon, M. D. Weitzman, R. M. Evans, and G. G.				
467		Maul. 1996. Adenovirus replication is coupled with the dynamic properties of the PML				
468		nuclear structure. Genes Dev. 10:196-207.				
469	27.	Endter, C., B. Hartl, T. Spruss, J. Hauber, and T. Dobner. 2005. Blockage of CRM1-				
470		dependent nuclear export of the adenovirus type 5 early region 1B 55-kDa protein				
471		augments oncogenic transformation of primary rat cells. Oncogene 24: 55-64.				
472	28.	Endter, C., J. Kzhyshkowska, R. Stauber, and T. Dobner. 2001. SUMO-1 modification				
473		required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein.				
474		Proc. Natl. Acad. Sci. USA 98:11312-11317.				
475	29.	Evans, J. D., and P. Hearing. 2003. Distinct roles of the Adenovirus E4 ORF3 protein in				
476		viral DNA replication and inhibition of genome concatenation. J Virol 77: 5295-304.				
477	30.	Evans, J. D., and P. Hearing. 2005. Relocalization of the Mre11-Rad50-Nbs1 complex by				
478		the adenovirus E4 ORF3 protein is required for viral replication. J Virol 79: 6207-15.				
479	31.	Flint, S. J., and R. A. Gonzalez. 2003. Regulation of mRNA production by the adenoviral				
480		E1B 55kDa and E4 Orf6 proteins. Curr. Top. Microbiol. Immunol. 272:287-330.				
481	32.	Gonzalez, R., W. Huang, R. Finnen, C. Bragg, and S. J. Flint. 2006. Adenovirus E1B 55-				
482		kilodalton protein is required for both regulation of mRNA export and efficient entry				
483		into the late phase of infection in normal human fibroblasts. J Virol 80:964-74.				
484	33.	Gonzalez, R. A., and S. J. Flint. 2002. Effects of mutations in the adenoviral E1B 55 kDa				
485		protein coding sequence on viral late mRNA metabolism. J. Virol. 76: 4507-4519.				

486	34.	Goodrum, F. D., and D. A. Ornelles. 1997. The early region 1B 55-kilodalton oncoprotein
487		of adenovirus relieves growth restrictions imposed on viral replication by the cell cycle.
488		J. Virol. 71: 548-561.
489	35.	Goodrum, F. D., and D. A. Ornelles. 1999. Roles for the E4 orf6, orf3, and E1B 55-
490		kilodalton proteins in cell cycle-independent adenovirus replication. J. Virol. 73:7474-
491		7488.
492	36.	Grand, R. J., M. L. Grant, and P. H. Gallimore. 1994. Enhanced expression of p53 in
493		human cells infected with mutant adenoviruses. Virology 203 :229-40.
494	37.	Gutch. M. J., and N. C. Reich. 1991. Repression of the interferon signal transduction
495		pathway by the adenovirus E1A oncogene. Proc Natl Acad Sci U S A 88:7913-7.
496	38.	Harada, J. N., and A. J. Berk, 1999, p53-Independent and -dependent requirements for
497		F1B-55K in adenovirus type 5 replication 1 Virol 73: 5333-5344
197	30	Harada I N A Shevchenko D C Pallas and A I Berk 2002 Analysis of the
100	55.	adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery
500		Virol 76 -0104 0206
500	40	VII.01. 70.5154-5200.
501	40.	rimplified system for generating recombinant adappuiruses. Dres Natl Acad Sci U.S.A
502		Simplified system for generating recombinant adenoviruses. Proc Nati Acad Sci U S A
503	4.4	95:2509-14.
504	41.	Hobom, U., and W. Dobbeistein. 2004. E1B-55-kilodalton protein is not required to
505		block p53-induced transcription during adenovirus infection. J Virol 78 :7685-97.
506	42.	Hutton, F. G., A. S. Turnell, P. H. Gallimore, and R. J. Grand. 2000. Consequences of
507		disruption of the interaction between p53 and the larger adenovirus early region 1B
508		protein in adenovirus E1 transformed human cells. Oncogene 19: 452-462.
509	43.	Kalvakolanu, D. V., S. K. Bandyopadhyay, M. L. Harter, and G. C. Sen. 1991. Inhibition
510		of interferon-inducible gene expression by adenovirus E1A proteins: block in
511		transcriptional complex formation. Proc Natl Acad Sci U S A 88:7459-63.
512	44.	Kato, S. E., W. Huang, and S. J. Flint. 2011. Role of the RNA recognition motif of the E1B
513		55kDa protein in the adenovirus type 5 infectious cycle. Virology.
514	45.	Kitajewski, J., R. J. Schneider, B. Safer, S. M. Munemitsu, C. E. Samuel, B.
515		Thimmappaya, and T. Shenk. 1986. Adenovirus VAI RNA antagonizes the antiviral action
516		of interferon by preventing activation of the interferon-induced eIF-2 alpha kinase. Cell
517		45: 195-200.
518	46.	Kitajewski, J., R. J. Schneider, B. Safer, and T. Shenk. 1986. An adenovirus mutant
519		unable to express VAI RNA displays different growth responses and sensitivity to
520		interferon in various host cell lines. Mol Cell Biol 6:4493-8.
521	47.	Kratzer, F., O. Rosorius, P. Heger, N. Hirschmann, T. Dobner, J. Hauber, and R. H.
522		Stauber. 2000. The adenovirus type 5 E1B-55K oncoprotein is a highly active shuttle
523		protein and shuttling is independent of E4orf6, p53 and Mdm2. Oncogene 19 :850-857.
524	48.	Lakdawala, S. S., R. A. Schwartz, K. Ferenchak, C. T. Carson, B. P. McSharry, G. W.
525		Wilkinson, and M. D. Weitzman. 2008. Differential requirements of the C terminus of
526		Nbs1 in suppressing adenovirus DNA replication and promoting concatemer formation.
527		Virol 82: 8362-72.
528	49	Lassam, N. L. S. T. Bayley, and F. L. Graham, 1979 Tumor antigens of human Ad5 in
529		transformed cells and in cells infected with transformation defective host range
530		mutants Cell 18 :781-791
531	50	Lavin M E 2007 ATM and the Mre11 complex combine to recognize and signal DNA
532	50.	double-strand breaks. Oncogene 26:7749-58
552		

533	51.	Leppard, K. N., and R. D. Everett. 1999. The adenovirus type 5 E1b 55K and E4 Orf3			
534		proteins associate in infected cells and affect ND10 components. J Gen Virol 80 (Pt			
535		4): 997-1008.			
536	52.	Liu, Y., A. Shevchenko, and A. J. Berk. 2005. Adenovirus exploits the cellular aggresome			
537		response to accelerate inactivation of the MRN complex. J Virol 79: 14004-16.			
538	53.	Luo, K., E. Ehrlich, Z. Xiao, W. Zhang, G. Ketner, and X. F. Yu. 2007. Adenovirus E4orf6			
539		assembles with Cullin5-ElonginB-ElonginC E3 ubiquitin ligase through an HIV/SIV Vif-like			
540		BC-box to regulate p53. FASEB J 21: 1742-50.			
541	54.	Martin, M. E., and A. J. Berk. 1998. Adenovirus E1B 55K represses p53 activation in			
542		vitro. J Virol 72: 3146-3154.			
543	55.	Martin, M. E., and A. J. Berk. 1999. Corepressor required for adenovirus E1B 55,000-			
544		molecular-weight protein repression of basal transcription. Mol Cell Biol 19 :3403-3414.			
545	56.	Mathew, S. S., and E. Bridge. 2007. The cellular Mre11 protein interferes with			
546		adenovirus E4 mutant DNA replication. Virology 365: 346-55.			
547	57.	Mathew, S. S., and E. Bridge. 2008. Nbs1-dependent binding of Mre11 to adenovirus E4			
548		mutant viral DNA is important for inhibiting DNA replication. Virology 374: 11-22.			
549	58.	Miller, D. L., B. Rickards, M. Mashiba, W. Huang, and S. J. Flint. 2009. The adenoviral			
550		E1B 55-kilodalton protein controls expression of immune response genes but not p53-			
551		dependent transcription. J Virol 83:3591-603.			
552	59.	Muller, S., and T. Dobner. 2008. The adenovirus E1B-55K oncoprotein induces SUMO			
553		modification of p53. Cell Cycle 7:754-8.			
554	60.	Murti, K. G., D. S. Davis, and G. R. Kitchingman. 1990. Localization of adenovirus-			
555		encoded DNA replication proteins in the nucleus by immunogold electron microscopy. J			
556		Gen Virol 71 (Pt 12): 2847-57.			
557	61.	Nevels, M., S. Rubenwolf, T. Spruss, H. Wolf, and T. Dobner. 2000. Two distinct			
558		activities contribute to the oncogenic potential of the adenovirus type 5 E4orf6 protein.			
559		J. Virol. 74: 5168-5181.			
560	62.	Nevels, M., B. Tauber, E. Kremmer, T. Spruss, H. Wolf, and T. Dobner. 1999.			
561		Transforming potential of the adenovirus type 5 E4orf3 protein. J. Virol. 73: 1591-1600.			
562	63.	O'Shea, C., L. Johnson, B. Bagus, S. Choi, C. Nicholas, A. Shen, L. Boyle, K. Pandey, C.			
563		Soria, J. Kunich, Y. Shen, G. Habets, D. Ginzinger, and F. McCormick. 2004. Late viral			
564		RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity.			
565		Cancer Cell 6: 611-623.			
566	64.	O'Shea, C. C., L. Johnson, B. Bagus, S. Choi, C. Nicholas, A. Shen, L. Boyle, K. Pandey, C.			
567		Soria, J. Kunich, Y. Shen, G. Habets, D. Ginzinger, and F. McCormick. 2004. Late viral			
568		RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity.			
569		Cancer Cell 6: 611-23.			
570	65.	Pennella, M. A., Y. Liu, J. L. Woo, C. A. Kim, and A. J. Berk. 2010. Adenovirus E1B 55-			
571		kilodalton protein is a p53-SUMO1 E3 ligase that represses p53 and stimulates its			
572		nuclear export through interactions with promyelocytic leukemia nuclear bodies. J Virol			
573		84: 12210-25.			
574	66.	Pilder, S., J. Logan, and T. E. Shenk. 1984. Deletion of the gene encoding the			
575		adenovirus 5 early region 1b 21,000-molecular weight polypeptide leads to degradation			
576		of viral and host cell DNA. J. Virol. 52:664-671.			
577	67.	Pilder, S., M. Moore, J. Logan, and T. Shenk. 1986. The adenovirus E1B-55kd			
578		transforming polypeptide modulates transport or cytoplasmic stablization of viral and			
579		host cell mRNAs. Mol. Cell. Biol. 6: 470-476.			

580	68.	Puvion-Dutilleul, F., E. Puvion, C. Icard-Liepkalns, and A. Macieira-Coelho. 1984.
581		Chromatin structure, DNA synthesis and transcription through the lifespan of human
582		embryonic lung fibroblasts. Exp. Cell Res. 151:283-298.
583	69.	Querido, E., P. Blanchette, Q. Yan, T. Kamura, M. Morrison, D. Boivin, W. G. Kaelin, R.
584		C. Conaway, J. W. Conaway, and P. E. Branton. 2001. Degradation of p53 by adenovirus
585		E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing
586		complex. Genes Dev 15: 3104-17.
587	70.	Querido, E., R. C. Marcellus, A. Lai, R. Charbonneau, J. G. Teodoro, G. Ketner, and P. E.
588		Branton, 1997. Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in
589		adenovirus-infected cells. J. Virol. 71: 3788-3798.
590	71.	Reich, N. C., P. Sarnow, E. Duprey, and A. J. Levine, 1983. Monoclonal antibodies which
591		recognise native and denatured forms of the adenovirus DNA-binding protein. Virology
592		128 :480-484
593	72	Reichel R Kovesdi and R Nevins 1988 Activation of a pre-existing cellular factor
59/	72.	as a basis for adenovirus F1A-mediated transcription control. Proc. Natl. Acad. Sci. LISA
505		
596	73	Riches I. C. A. M. Lunch and N. I. Gooderham 2008. Early events in the mammalian
507	75.	response to DNA double strand brooks. Mutagonesis 22 :221.0
509	74	Pose S P A L Loving P S Galos L Williams and T Shork 1980 Early viral protoins
230	74.	in Hold a colle infected with adapavirue type E best range mutants. Virology 162 :475 0
599	75	Poth L. C. Konig, S. Wienzek, S. Weigel, S. Piston, and M. Debhelstein, 1009
600	75.	Rotti, J., C. Rottig, S. Wielizek, S. Weigel, S. Risted, and W. Dobbelstein. 1990.
601		liledelter erecercteire L Virel 73 9510 9510
602	76	Rioualton oncoproteins. J. Virol. 72:8510-8510.
603	70.	Rothmann, T., A. Hengstermann, N. J. Whitaker, W. Schemner, and H. zur Hausen.
604 605		status in tumor colls. 1 Virol. 72 :0470-0478
605		Status III tumor cens. J. VIIOI. 72:9470-9478.
606	//.	Sarnow, P., Y. S. Ho, J. Williams, and A. J. Levine. 1982. Adenovirus ELD-58Kd tumor
607		anugen and SV40 large tumor anugen are physically associated with the same 54 kd
608	70	cellular protein in transformed cells. Cell 28: 387-94.
609	78.	Shen, Y., G. Kitzes, J. A. Nye, A. Fattaey, and I. Hermiston. 2001. Analyses of single-
610		amino-acid substitution mutants of adenovirus type 5 E1B-55K protein. J. Virol. 75: 4297-
611		
612	79.	Shepard, R. N., and D. A. Ornelles. 2004. Diverse roles for E4orf3 at late times of
613		infection revealed in an E1B 55-kilodalton protein mutant background. J Virol 78: 9924-
614		35.
615	80.	Soria, C., F. E. Estermann, K. C. Espantman, and C. C. O'Shea. 2010. Heterochromatin
616		silencing of p53 target genes by a small viral protein. Nature 466 :1076-81.
617	81.	Spindler, K. R., C. Y. Eng, and A. J. Berk. 1985. An adenovirus early region 1A protein is
618		required for maximal viral DNA replication in growth-arrested human cells. J Virol
619		53 :742-750.
620	82.	Steegenga, W. T., N. Riteco, A. G. Jochemsen, F. J. Fallaux, and J. L. Bos. 1998. The large
621		E1B protein together with the E4orf6 protein target p53 for active degradation in
622		adenovirus infected cells. Oncogene 16: 349-357.
623	83.	Stracker, T. H., C. T. Carson, and M. D. Weitzman. 2002. Adenovirus oncoproteins
624		inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418: 348-352.
625	84.	Stracker, T. H., D. V. Lee, C. T. Carson, F. D. Araujo, D. A. Ornelles, and M. D.
626		Weitzman. 2005. Serotype-specific reorganization of the Mre11 complex by adenoviral
627		E4orf3 proteins. J Virol 79: 6664-73.

 Statuter, I. H., and J. H. Petim. 2011. The WRETT Complex. starting Holl fue relos. Nat Rev Mol Cell Biol 12:90-103. Subramanian, K., T. H. McPhillips, and S. K. Samal. 1994. Characterization of the polypeptides and determination of genome coding assignments of an aquareovirus. Virology 205:75-81. Subramanian, T., M. Kuppuswamy, S. Mak, and G. Chinnadurai. 1984. Adenovirus cyr locus, which controls cell transformation and tumorigenicity, is an allele of <i>lp</i> locus, which codes for a 19-kilodation tumor antigen. J. Virol. 52:336-34. Sugawara, K., Z. Gilead, W. S. M. Wold, and M. Green. 1977. Immunofluorescence study of the adenovirus type 2 single-stranded DNA binding protein in infected and transformed cells. J. Virol. 22:527-539. Tarodi, B., T. Subramanian, and G. Chinnadurai. 1993. Functional similarity between adenovirus tb 19 kgene and bcl2 oncogene - mutant complementation and suppression of cell-death induced by DNA-damaging agents. Int J Oncol 3:467-72. Teodoro, J. G., and P. E. Branton. 1997. Regulation of p33-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55- kilodaton E18 protein of human adenovirus type 5. J. Virol. 71:3620-3627. Teodoro, J. G., T. Haliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodation adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. Uman, A. J., and P. Hearing. 2007. Cellular proteins PML and Daxx mediate an innate antiviral defines antagonized by the adenovirus E4 ORF3 protein. J. Virol 82:7325-35. Ullman, A. J., and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. van den Bosch, M., R. T. Bree, and N. P. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Reg	620	05	Stracker T U and U Detrin: 2011 The MDE11 complexy starting from the ends Nat
 Net Win Cell Bolt, K., T. H. McPhillips, and S. K. Samal. 1994. Characterization of the polypeptides and determination of genome coding assignments of an aquareovirus. Virology 205:75-81. Subramanian, T., M. Kuppuswamy, S. Mak, and G. Chinnadurai. 1984. Adenovirus cyl locus, which controls cell transformation and tumorigenicity, is an allele of <i>lp</i> locus, which codes for a 19-kilodalton tumor antigen. J. Virol. 52:336-343. Sugawara, K., Z. Gilead, W. S. M. Wold, and M. Green. 1977. Immunofluorescence study of the adenovirus type 2 single-stranded DNA binding protein in infected and transformed cells. J. Virol. 22:527-539. Tarodi, B., T. Subramanian, and G. Chinnadurai. 1993. Functional similarity between adenovirus e1b 19k gene and bcl2 oncogene - mutant complementation and supression of cell-death induced by DNA-damaging agents. Int J Oncol 3:467-72. Teodoro, J. G., and P. E. Branton. 1997. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5. J. Virol. 71:3620-3627. Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 ELB protein regulates transforming activity. J. Virol. 68:776-786. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 32:273-2074-2083. Ulman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. Ulman, A. J., and P. Hearing. 2008. Cellular proteins. J Virol 82:7325-35. Ulman, A. J., and P. Hearing. 2008. Cellular proteins. J Virol 60:2533-362. Voelkerding, K., and D. Klessig. 1986.	620	65.	Stracker, I. n., and J. n. Petrini. 2011. The WREIT complex. Starting from the ends. Nat
 Subrahaman, K., F. H. McFinings, and S. K. Sahraf. 1994. Characterization to the polyopetides and determination of genome coding assignments of an aquareovirus. Virology 205:75-81. Subramanian, T., M. Kuppuswamy, S. Mak, and G. Chinnadurai. 1984. Adenovirus cyr locus, which controls cell transformation and tumorigenicity, is an allele of <i>lp</i> locus, which codes for a 19-kilodalton tumor antigen. J. Virol. 52:336-343. Sugawara, K., Z. Gilead, W. S. M. Wold, and M. Green. 1977. Immunofluorescence study of the adenovirus type 2 single-stranded DNA binding protein in infected and transformed cells. J. Virol. 22:527-539. Tarodi, B., T. Subramanian, and G. Chinnadurai. 1993. Functional similarity between adenovirus e1b 19k gene and bcl2 oncogene - mutant complementation and suppression of cell-death induced by DNA-damaging agents. Int J Oncol 3:467-72. Teodoro, J. G., and P. E. Branton. 1997. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55- kilodalton E1B protein of human adenovirus type 5. J. Virol. 71:3620-3627. Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. Ulematsu, S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem 282:15319-23. Uliman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. Uliman, A. J., M. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein. J Virol 82:7325-35.	620	96	Rev Mol Cell Diol 12.90-105.
 bit polypeputes and other minimum of genome coding assignments of an aquateoutus. Virology 205:75-81. Subramanian, T., M. Kuppuswamy, S. Mak, and G. Chinnadurai. 1984. Adenovirus cyr locus, which controls cell transformation and tumorigenicity, is an allele of <i>Ip</i> locus, which costs for a 19-kilodalton tumor antigen. J. Virol. 52:336-343. Sugawara, K., Z. Gilead, W. S. M. Wold, and M. Green. 1977. Immunofluorescence study of the adenovirus type 2 single-stranded DNA binding protein in infected and transformed cells. J. Virol. 22:527-539. Tarodi, B., T. Subramanian, and G. Chinnadurai. 1993. Functional similarity between adenovirus e1b 19k gene and bcl2 oncogene - mutant complementation and suppression of cell-death induced by DNA-damaging agents. Int J Oncol 3:467-72. Teodoro, J. G., and P. E. Branton. 1997. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kiklodalton E1B protein of human adenovirus type 15. U. Virol. 73:2620-3627. Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenovirus E4 ORF3 protein. J Virol 32:7325-35. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:7424-52. Voelkerding, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Vir	621	o 0 .	sublamanian, K., T. H. MCPhinips, and S. K. Samai. 1994. Characterization of the
 Subramaian, T., M. Kuppuswamy, S. Mak, and G. Chinnadurai. 1984. Adenovirus cyr locus, which controls cell transformation and tumorigenicity, is an allele of <i>lp</i> locus, which codes for a 19-kilodalton tumor antigen, J. Virol. 52:336-343. Sugawara, K., Z. Gilead, W. S. M. Wold, and M. Green. 1977. Immunofluorescence study of the adenovirus type 2 single-stranded DNA binding protein in infected and transformed cells. J. Virol. 22:527-539. Tarodi, B., T. Subramanian, and G. Chinnadurai. 1993. Functional similarity between adenovirus e1b 19k gene and bcl2 oncogene - mutant complementation and suppression of cell-death induced by DNA-damaging agents. Int J Oncol 3:467-72. Teodoro, J. G., and P. E. Branton. 1997. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55- kilodalton E1B protein of human adenovirus type 5. J. Virol. 71:3620-3627. Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenovirus E4 and Type 1 interferons. J Biol Chem 282:15319-23. Ulman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein. J. Virol 82:71325-35. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. Volekerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. W	622		Virology 30E -7E 91
 Subramanian, T., M. Kuppuswainy, S. Mak, and C. Chinnadurai. 1944. Adeit/Vitus (vr) locus, which controls cell transformation and tumorigenicity, is an allele of <i>lp</i> locus, which codes for a 19-kilodalton tumor antigen. J. Virol. 52:336-343. Sugawara, K., Z. Gilead, W. S. M. Wold, and M. Green. 1977. Immunofluorescence study of the adenovirus type 2 single-stranded DNA binding protein in infected and transformed cells. J. Virol. 22:527-539. Tarodi, B., T. Subramanian, and G. Chinnadurai. 1993. Functional similarity between adenovirus tb1 DS (gene and bcl2 oncogene - mutant complementation and suppression of cell-death induced by DNA-damaging agents. Int J Oncol 3:467-72. Teodoro, J. G., and P. E. Branton. 1997. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55- kilodalton E1B protein of human adenovirus type 5. J. Virol. 71:3620-3627. Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. Ulman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. Voelkerding, K., and D. F. Kessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. Volderki	032	07	VITOLOgy 205:75-81.
 <i>Cy</i> rocus, which controls cell transformation and tumorgenicity, is an late of <i>p</i> locus, which codes for a 19-kilodation tumor antigen. J. Virol. 52:336-343. Sugawara, K., Z. Gilead, W. S. M. Wold, and M. Green. 1977. Immunofluorescence study of the adenovirus type 2 single-stranded DNA binding protein in infected and transformed cells. J. Virol. 22:527-539. Tarodi, B., T. Subramanian, and G. Chinnadurai. 1993. Functional similarity between adenovirus et b 19k gene and bcl2 oncogene - mutant complementation and suppression of cell-death induced by DNA-damaging agents. Int J Oncol 3:467-72. Teodoro, J. G., and P. E. Branton. 1997. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton et alter of human adenovirus type 5. J. Virol. 71:3620-3627. Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. Ulman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein. J Virol 82:7325-35. Ullman, A. J., and P. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. Volekrding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. Volekrding, K., and D. F. Klessig. 1986. Identifica	633	87.	Subramanian, 1., M. Kuppuswamy, S. Mak, and G. Chinnadurai. 1984. Adenovirus
 Sugawara, K., Z. Gilead, W. S. M. Wold, and M. Green. 1977. Immunofluorescence study of the adenovirus type 2 single-stranded DNA binding protein in infected and transformed cells. J. Virol. 22:527-539. Tarodi, B., T. Subramanian, and G. Chinnadurai. 1993. Functional similarity between adenovirus e1b 19k gene and bcl2 oncogene - mutant complementation and suppression of cell-death induced by DNA-damaging agents. Int J Oncol 3:467-72. Teodoro, J. G., and P. E. Branton. 1997. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55- kilodalton E1B protein of human adenovirus type 5. J. Virol. 71:3620-3627. Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. Uematsu, S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem 282:15319-23. Uliman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:735-35. Uliman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein. J Virol 82:735-35. Uliman, A. J., N. C. Reich, and P. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the tol/livit. 1 r	634 635		which codes for a 19-kilodalton tumor antigen. J. Virol. 52: 336-343.
 study of the adenovirus type 2 single-stranded DNA binding protein in infected and transformed cells. J. Virol. 22:527-539. 89. Tarodi, B., T. Subramanian, and G. Chinnadurai. 1993. Functional similarity between adenovirus e1b 19k gene and bcl2 oncogene - mutant complementation and suppression of cell-death induced by DNA-damaging agents. Int J Oncol 3:467-72. 90. Teodoro, J. G., and P. E. Branton. 1997. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55- kilodalton E1B protein of human adenovirus type 5. J. Virol. 71:3620-3627. 91. Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. 92. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. 93. Uematsu, S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem 282:15319-23. 94. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. 95. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. 96. voalerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 90. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Ac	636	88.	Sugawara, K., Z. Gilead, W. S. M. Wold, and M. Green. 1977. Immunofluorescence
 transformed cells. J. Virol. 22:527-539. Tarodi, B., T. Subramanian, and G. Chinnadurai. 1993. Functional similarity between adenovirus e1b 19k gene and bcl2 oncogene - mutant complementation and suppression of cell-death induced by DNA-damaging agents. Int J Oncol 3:467-72. Teodoro, J. G., and P. E. Branton. 1997. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55- kilodalton E1B protein of human adenovirus type 5. J. Virol. 71:3620-3627. Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. Ulmant, A. J., and S. Akira. 2007. Toll-like receptors and Type 1 interferons. J Biol Chem 282:15319-23. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. Volderkring, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. Wotlers, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. Weiden, M. D., and H. S. Ginsberg. 1994.	637		study of the adenovirus type 2 single-stranded DNA binding protein in infected and
 89. Tarodi, B., T. Subramanian, and G. Chinnadurai. 1993. Functional similarity between adenovirus e1b 19k gene and bcl2 oncogene - mutant complementation and suppression of cell-death induced by DNA-damaging agents. Int J Oncol 3:467-72. 90. Teodoro, J. G., and P. E. Branton. 1997. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55- kilodalton E1B protein of human adenovirus type 5. J. Virol. 71:3620-3627. 91. Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. 92. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. 93. Uematsu, S., and S. Akira. 2007. Toll-like receptors and Type 1 interferons. J Biol Chem 282:15319-23. 94. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. 95. Van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. IMBO Rep 4:844-9. 97. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. <l< td=""><td>638</td><td></td><td>transformed cells. J. Virol. 22:527-539.</td></l<>	638		transformed cells. J. Virol. 22:527-539.
 adenovirus e1b 19k gene and bcl2 oncogene - mutant complementation and suppression of cell-death induced by DNA-damaging agents. Int J Oncol 3:467-72. 90. Teodoro, J. G., and P. E. Branton. 1997. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55- kilodalton E1B protein of human adenovirus type 5. J. Virol. 71:3620-3627. 91. Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. 92. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. 93. Uematsu, S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem 282:15319-23. 94. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Dax mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. 94. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. 95. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. 97. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D.,	639	89.	Tarodi, B., T. Subramanian, and G. Chinnadurai. 1993. Functional similarity between
 suppression of cell-death induced by DNA-damaging agents. Int J Oncol 3:467-72. Teodoro, J. G., and P. E. Branton. 1997. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55- kilodatton E1B protein of human adenovirus type 5. J. Virol. 71:3620-3627. Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodatton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. Ulematsu, S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem 282:15319-23. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. Voelkerding, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-wei	640		adenovirus e1b 19k gene and bcl2 oncogene - mutant complementation and
 90. Teodoro, J. G., and P. E. Branton. 1997. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55- kilodalton E1B protein of human adenovirus type 5. J. Virol. 71:3620-3627. 91. Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. 92. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. 93. Uematsu, S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem 282:15319-23. 94. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. 95. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. 96. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. 97. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 90. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Aca	641		suppression of cell-death induced by DNA-damaging agents. Int J Oncol 3: 467-72.
 transcriptional repression, and cell transformation by phosphorylation of the 55- kilodalton E1B protein of human adenovirus type 5. J. Virol. 71:3620-3627. Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. Uematsu, S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem 282:15319-23. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. Voelkerding, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. Wolderking, K., and D. Klessig. 1984. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. Th	642	90.	Teodoro, J. G., and P. E. Branton. 1997. Regulation of p53-dependent apoptosis,
 kilodalton E1B protein of human adenovirus type 5. J. Virol. 71:3620-3627. 91. Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. 92. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. 93. Uematsu, S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem 282:15319-23. 94. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. 95. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. 96. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. 97. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus E1B 495R protein plays a role in regulating the transport and stability of	643		transcriptional repression, and cell transformation by phosphorylation of the 55-
 Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton. 1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. 92. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. 93. Uematsu, S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem 282:15319-23. 94. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. 95. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. 96. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. 97. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/L-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. 103. Williams, J. F. 1973. Oncog	644		kilodalton E1B protein of human adenovirus type 5. J. Virol. 71: 3620-3627.
 Piosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J. Virol. 68:776-786. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. Uematsu, S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem 282:15319-23. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. Van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus tzB 495R protein plays a role in regulating the transport and stability	645	91.	Teodoro, J. G., T. Halliday, S. G. Whalen, D. Takayesu, F. L. Graham, and P. E. Branton.
 E1B protein regulates transforming activity. J. Virol. 68:776-786. 92. Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. 93. Uematsu, S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem 282:15319-23. 94. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. 95. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. 96. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. 97. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus ently region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus ently region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. 102. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in reg	646		1994. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5
 Turnell, A. S., R. J. Grand, and P. H. Gallimore. 1999. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. Uematsu, S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem 282:15319-23. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	647		E1B protein regulates transforming activity. J. Virol. 68: 776-786.
 E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074-2083. Uematsu, S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem 282:15319-23. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	648	92.	Turnell, A. S., R. J. Grand, and P. H. Gallimore, 1999. The replicative capacities of large
 Virol 73:2074-2083. 93. Uematsu, S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem 282:15319-23. 94. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. 95. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. 96. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. 97. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the fregion of the genome produces adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. 102. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. 103. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus E1B. Adapting E12. 	649	-	E1B-null group A and group C adenoviruses are independent of host cell p53 status. J
 93. Uematsu, S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem 282:15319-23. 94. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. 95. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. 96. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. 97. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. 102. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. 103. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	650		Virol 73: 2074-2083.
 282:15319-23. 94. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. 95. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. 96. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. 97. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. 102. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. 103. Williams, J., F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	651	93.	Uematsu. S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem
 94. Ullman, A. J., and P. Hearing. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. 95. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. 96. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. 97. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. 102. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. 103. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	652		282: 15319-23.
 antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-35. 95. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. 96. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. 97. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. 102. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. 103. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	653	94.	Ullman. A. J., and P. Hearing, 2008. Cellular proteins PML and Daxx mediate an innate
 95. Ullman, A. J., N. C. Reich, and P. Hearing. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-52. 96. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. 97. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. 102. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. 103. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	654	-	antiviral defense antagonized by the adenovirus E4 ORE3 protein. J Virol 82:7325-35.
 interferon-mediated antiviral response. J Virol 81:4744-52. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. 97. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. 102. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. 103. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	655	95.	Ullman, A. J., N. C. Reich, and P. Hearing, 2007. Adenovirus E4 ORE3 protein inhibits the
 96. van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. 97. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. 102. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. 103. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	656		interferon-mediated antiviral response. J Virol 81: 4744-52.
 coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844-9. 97. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. 102. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. 103. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	657	96.	van den Bosch, M., R. T. Bree, and N. F. Lowndes. 2003. The MRN complex:
 97. Voelkerding, K., and D. F. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. 102. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. 103. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	658		coordinating and mediating the response to broken chromosomes. EMBO Rep 4 :844-9.
 adenovirus type 5- encoded DNA-binding protein. J. Virol. 60:353-362. 98. Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. 102. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. 103. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	659	97.	Voelkerding, K., and D. F. Klessig, 1986. Identification of two nuclear subclasses of the
 Volderking, K., and D. Klessig. 1986. Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. 102. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. 103. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	660	••••	adenovirus type 5- encoded DNA-binding protein. J. Virol. 60 :353-362.
 adenovirus type 5-encoded DNA-binding protein. J. Virol. 60:353-362. 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. 102. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. 103. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	661	98.	Volderking, K., and D. Klessig, 1986. Identification of two nuclear subclasses of the
 99. Watters, T. M., E. F. Kenny, and L. A. O'Neill. 2007. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. 100. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. 101. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. 102. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. 103. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	662		adenovirus type 5-encoded DNA-binding protein. J. Virol. 60: 353-362.
 the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411-9. Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	663	99.	Watters, T. M., E. F. Kenny, and L. A. O'Neill, 2007. Structure, function and regulation of
 Weiden, M. D., and H. S. Ginsberg. 1994. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	664	55.	the Toll/II -1 receptor adaptor proteins. Immunol Cell Biol 85: 411-9.
 produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153-7. White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	665	100.	Weiden, M. D., and H. S. Ginsberg, 1994. Deletion of the E4 region of the genome
 White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	666		produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91 :153-7.
 the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J. Virol. 82:410-419. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	667	101.	White, E., T. Grodzicker, and B. W. Stillman, 1984, Mutations in the gene encoding
 degradation of chromosomal DNA. J. Virol. 82:410-419. Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	668		the adenovirus early region 1B 19.000-molecular-weight tumor antigen cause the
 Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	669		degradation of chromosomal DNA. J. Virol. 82: 410-419.
 adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275-284. 103. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	670	102.	Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint, 1986. The
 viral late messages. Cancer Cells 4:275-284. Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	671		adenovirus E1B 495R protein plays a role in regulating the transport and stability of the
 Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by adenovirus type 5. Nature 243:162-163. 	672		viral late messages. Cancer Cells 4: 275-284.
674 adenovirus type 5. Nature 243: 162-163.	673	103.	Williams, J. F. 1973. Oncogenic transformation of hamster embryo cells <i>in vitro</i> by
	674	-	adenovirus type 5. Nature 243: 162-163.

675 676	104.	Wold, W. S. M., and M. S. Horwitz. 2007. Adenoviruses, p. 2395-2436. <i>In</i> D. M. Knipe and P. M. Howley (ed.), Fields Virology, 5 ed, vol. 2. Lippincott Williams & Wilkins,
677		Philadelphia, PA.
678 679	105.	Woo, J. L., and A. J. Berk. 2007. Adenovirus ubiquitin-protein ligase stimulates viral late mRNA nuclear export. J Virol 81: 575-87.
680	106.	Yamaguchi, T., K. Kawabata, N. Koizumi, F. Sakurai, K. Nakashima, H. Sakurai, T.
681		Sasaki, N. Okada, K. Yamanishi, and H. Mizuguchi. 2007. Role of MyD88 and TLR9 in the
682		innate immune response elicited by serotype 5 adenoviral vectors. Hum Gene Ther
683		18: 753-62.
684	107.	Yew, P. R., and A. J. Berk. 1992. Inhibition of p53 transactivation required for
685		transformation by adenovirus early 1B protein. Nature 357: 82-85.
686	108.	Yew, P. R., X. Liu, and A. J. Berk. 1994. Adenovirus E1B oncoprotein tethers a
687		transcriptional repression domain to p53. Genes Dev. 8:190-202.
688	109.	Zantema, A., J. A. Fransen, A. Davis-Olivier, F. C. Ramaekers, G. P. Vooijs, B. DeLeys,
689		and A. J. Van der Eb. 1985. Localization of the E1B proteins of adenovirus 5 in
690		transformed cells, as revealed by interaction with monoclonal antibodies. Virology
691		142: 44-58.
692	110.	Zhu, J., X. Huang, and Y. Yang. 2007. Innate immune response to adenoviral vectors is
693		mediated by both Toll-like receptor-dependent and -independent pathways. J Virol
694		81: 3170-80.
695		
696		
697		
698		

702	Figure 1: Viral DNA synthesis in AdEasyE1- and AdEasyE1∆2347-infected Hffs. A, B
703	Proliferating HFFs at \sim 70% confluency were infected with 50 pfu/cell AdEasyE1 or
704	AdEasyE1 Δ 2347. At the times indicated, viral DNA concentrations were determined by
705	quantitative PCR. These values were corrected for concentrations of GAPDH DNA measured in
706	parallel, and are expressed in arbitrary units (A) or relative to the value measured 2 hours after
707	infection (B). The values shown represent the mean of two independent experiments, with the
708	average deviations indicated by the error bars. (C) As B, except that quiescent HFFs were
709	infected. In all panels, WT=AdEasyE1, $\Delta 2347 = AdEsyE1\Delta 2347$.
710	
711	Figure 2 Formation of viral replication centers in AdEasyE1- and AdEasyE1∆2347-infected
712	HFFs. A. The E2 DBP was examined by immunofluorescence as described in Materials and

713 Methods 25 hours after infection of HFFs with 50 pfu/cell AdEasy E1 or AdEasyE1 Δ 2347, and

in mock-infected cells (M). Nuclei were stained with DAPI (blue) **B.** The appearance of DBP

only as diffuse nuclear staining (Diffuse), in small dot-like foci, with or without diffuse DBP

716 (Small foci) or in enlarged ring-like structures (Large rings) was counted in \ge 100 cells infected

717 by AdEasyE1 or AdEasyE1 Δ 2347. The percentage of the total number of infected cells

718 containing each form of DBP are shown.

719

JVI Accepts published online ahead of print

720 Figure 3: Viral DNA synthesis in AdEasyE1- and AdEasyE1Δ2347-infected NHBECs.

721 Proliferating NHBECs at ~60% confluency (A) or quiescent NHBECs (B) were infected with 5

722 pfu/cell AdEasy E1 or AdEasyE1Δ2347 and viral DNA concentrations measured at the times

- experiments, and the error bars average deviation. In all panels, WT = AdEasyE1, $\Delta 2347$ =
- 725 AdEasyE1Δ2347.

727 Figure 4: Synthesis of early proteins in normal human cells infected by AdEasyE1 or 728 AdEasy E1-G. A. HFFs at ~70% confluence were infected with 50 pfu/cell AdEasyE1 for the 729 periods indicated or mock infected (M), and the concentrations of DBP and β -actin examined by 730 immunoblotting. **B.** As A, except that NHBECs at \sim 70% confluence were infected with 5 731 pfu/cell Ad5, or mock-infected (M). C. As panel A, except that HFFs at ~70% confluence were 732 infected with 50 pfu/cell AdEasyE1-G, which contains the HCMV IE promoter/enhancer 733 immediately upstream of the E1A transcription unit. Note the different time-scales in the 734 different panels. 735

- Figure 5: Viral DNA synthesis in HFFs infected by AdEasyE1-G. HFFs at 70% confluence
 were infected with 50 pfu/cell AdEasyE1-G (WT-G) or AdEasyE1Δ2347-G, and the
 concentrations of intranuclear viral DNA relative to the input value (2 hours p.i.) determined by
 quantitative PCR as described in the legend to Figure 1. Value shown represent the average of
 two independent experiments, and error bars indicate average deviations.
- 741

<u>JVI Accepts published online ahead of print</u>

742 Figure 6: Localization of Mre11, E2 DBP and the E4 Orf3 proteins in infected HFFs.

- 743 HFFs at ~70% confluence were infected with 50pfu/cell AdEasyE1 (WT) or AdEasyE1Δ2347
- 744 (Δ 2347) or mock-infected (M) for 24 hours. They were then processed for immunofluorescence
- rad Mre11, the E2 DBP and the E4 Orf3 visualized as described in Materials and Methods. The

- 746 E4 Orf3 protein signal is false colored in blue. Nuclei stained with DAP1 are shown false colored
- 747 in cyan. The merged images do not include the nuclear stain.

Cell Type		Entering [DNA] ^a	
	AdEasyE1∆2347	AdEasyE1	Mutant: wild-type
HFF			
Experiment 1	0.236	0.197	1.20
Experiment 2	0.099	0.07	1.41
NHBEC			
Experiment 1	0.345	0.318	1.08
Experiment 2	0.175	0.264	1.51

Table 1: Comparison of viral DNA concentrations entering AdEasyE1- and AdEasy Δ 2347-infected cells.

^a Viral DNA concentrations (arbitrary units) 2 hours after infection of proliferating cells with 30 P.f.u./cell (HFFs) or 5 P.f.u./cell (NHBECs) relative to those of GAPDH DNA.

Downloaded from http://jvi.asm.org/ on August 29, 2020 at Princeton University Library

Figure 2

Figure 4

Figure 6