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Abstract
Experimental control and detection of atoms and molecules often rely on optical transitions
between different electronic states. In many cases, substructure such as hyperfine or spin-rotation
structure leads to the need for multiple optical frequencies spaced by MHz to GHz. The task of
creating multiple optical frequencies—optical spectral engineering—becomes challenging when
the number of frequencies becomes large, a situation that one could encounter in complex
molecules and atoms in large magnetic fields. In this work, we point out a novel mapping between
computer-generated holography (CGH) and spectrum generation via phase modulation, which is
an established technique. Using this mapping, we synthesize arbitrary optical spectra by
modulating a monochromatic light field with a time-dependent phase generated through CGH
techniques. Our method is compatible with non-linear optical processes such as sum frequency
generation and second harmonic generation. Additional requirements that arise from the finite
lifetimes of excited states can also be satisfied in our approach. As a proof-of-principle
demonstration, we generate spectra suitable for cycling photons on the X–B transition in CaF, and
verify via optical Bloch equation simulations that one can achieve high photon scattering rates,
which are important for fluorescent detection and laser cooling. Our method could offer
significant simplifications in future experiments that would otherwise be prohibitively complex.

1. Introduction

Optical transitions are an indispensable part of the atomic, molecular, and optical physics experimental
toolbox, as they are often used to manipulate and detect atoms and molecules. Substructure, such as
hyperfine structure or spin-rotation structure, often leads to multiple optical transitions spaced by MHz to
GHz. For many tasks, such as fluorescent detection and laser cooling [1, 2], it is necessary to simultaneously
address these closely-spaced transitions in order to cycle photons. This becomes challenging when the
number of desired frequencies is large, a situation that arises in complex molecules [3, 4] and atoms in large
magnetic fields [5–8].

To elaborate, even at zero magnetic field, optical cycling in molecules often requires multiple
frequencies. Even in the case of a 2Σ diatomic molecule with a single nuclear spin I = 1/2, one would need
four frequencies when the spin-rotation and hyperfine splittings are resolved in the ground electronic
manifold [9–11]. In complex molecules with multiple nuclear spins or molecules with higher nuclear spin,
the number of frequencies needed can become much larger. In atoms, a similar situation occurs at finite
magnetic fields. Even in the case of an alkali atom, the ground and excited electronic manifolds split into a
total of 4(2I + 1) levels, where I is the nuclear spin. One would generically need 2(2I + 1) distinct
frequencies in order to optically cycle photons.

Starting from monochromatic input light, one often uses an acousto-optic modulator (AOM) to shift
the light to reach a desired target frequency. In this approach, the number of AOMs and associated optical
components scales linearly with the number of required frequencies. Hence, this approach becomes
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impractical when there is a large number of frequencies. Additionally, AOMs have limited bandwidths and
changes in their modulation frequencies are accompanied by changes in beam pointing, which is
undesirable in many cases. Another common method to generate multiple frequencies is sinusoidal phase
modulation, which can be accomplished by passing light through an electro-optic modulator (EOM). When
the phase of monochromatic light is sinusoidally modulated, sidebands spaced by the modulation frequency
are created about the carrier. Although there exist fortuitous cases where the resulting spectrum produces a
near match to the desired set of target frequencies, invariably, undesired spectral components remain.

By considering arbitrary phase modulation profiles beyond sinusoidal ones, one can create arbitrary
optical spectra. Nevertheless, it is not trivial to find the appropriate phase modulation profiles that will
produce a target spectrum. In this work, we show that this inversion problem is equivalent to a
computer-generated holography (CGH) problem, where well-known algorithms such as the
Gerchberg–Saxton algorithm (GSA) exist [12, 13]. We show that our CGH-based method can be
straightforwardly adapted for use in laser systems with non-linear optical processes such as sum frequency
generation (SFG) and second harmonic generation (SHG). As a proof-of-principle demonstration, we
generate an optical spectrum that can be used to cycle photons on the X–B transition in CaF molecules and
show via optical Bloch equation (OBE) simulations that favorable photon cycling could be achieved with
our method.

Outline: in section 2, we show how engineering a spectrum via phase modulation is equivalent to
generating a 1D hologram using a phase-only spatial light modulator (SLM). In section 3, we introduce
GSA as a method to solve the spectral engineering problem, and show that its solutions are compatible with
SFG and SHG. In section 4, we discuss technical considerations for implementing our method. In section 5,
we present procedures to calibrate our system. We also show an example of GSA producing an optical
spectrum that addresses the four N = 1 hyperfine levels of CaF on the X(N = 1) → B(N = 0) optical
cycling transition. In section 6, we discuss additional considerations when addressing atoms and molecules.
In our method, the phase is modulated with a repeated waveform of arbitrary period. Since the finite
excited state lifetimes in atoms or molecules provide additional timescales, waveforms with different periods
could lead to different responses despite producing similar spectra. In section 7, we summarize our results
and identify situations where our method could be particularly advantageous.

2. Equivalence of hologram generation and spectral engineering via phase
modulation

In this section, we show that spectral engineering via phase modulation is equivalent to a well-known
problem in optics—how to generate a light intensity pattern I(x̃, ỹ) in the image plane (x̃-ỹ plane) by
modulating only the light’s phase in the Fourier plane (x–y plane). For concreteness, consider an imaging
system consisting of a single lens with focal length f. Suppose an electric field of the form E(x, y) = E0eiφ(x,y)

is in the Fourier plane. In the image plane (under the paraxial approximation), the electric field is given by

E(x̃, ỹ) =
ei4πf

i

∫
dx dy E0 eiφ(x,y)e−ik0(xx̃+yỹ)/f , (1)

where k0 = 2π/λ, and λ is the wavelength of the light. Thus, the electric field E(x̃, ỹ) in the image plane is
the Fourier transform of the electric field E(x, y) in the Fourier plane, a well-known result in Fourier optics.

In CGH, given a desired target intensity pattern I(x̃, ỹ) in the image plane, one seeks the optimal 2D
phase profile φ(x, y). Explicitly, one tries to invert

I(x̃, ỹ) =

∣∣∣∣
∫

dx dy E0 eiφ(x,y)e−i(xx̃+yỹ)

∣∣∣∣
2

, (2)

where we have picked units such that k0 and f are 1. In 1D, the corresponding equation to invert is

I(x̃) =

∣∣∣∣
∫

dx E0 eiφ(x) e−ĩxx

∣∣∣∣
2

, (3)

where one seeks an optimal φ(x) when given I(x̃).
The 1D hologram problem is in fact equivalent to the problem encountered in engineering spectra.

When creating spectra via phase modulation, one attempts to produce a target power spectral density S(ω)
by applying a temporally varying phase φ(t) to a monochromatic light field E0 eiω0t . The problem is thus to
invert

S(ω) =

∣∣∣∣
∫

dt E0 ei(ω0t+φ(t)) e−iωt

∣∣∣∣
2

. (4)
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Figure 1. The GSA. (a) GSA is an iterative algorithm that enforces amplitude constraints on a signal and its Fourier transform.
In spectral engineering, the amplitudes in the time and frequency domains are constrained via G0(t) and G̃0(ω), respectively.
(b) A GSA solution (blue solid) for a Lorentzian target (+5 MHz from carrier, 100 kHz full-width-at-half-maximum (FWHM))
closely resembles a serrodyne solution (+5 MHz, red dashed).

Identifying time (frequency) with the spatial coordinate in the Fourier (image) plane ({x, x̃} → {t,ω}), we
see that equations (3) and (4) are identical up to a frequency offset of ω0 in ω. Therefore, finding a temporal
phase modulation profile φ(t) that produces a desired spectrum S(ω) is equivalent to finding a spatial phase
profile φ(x) that produces a target image I(x̃) in 1D hologram generation. Hence, algorithms developed for
CGH can directly be used to engineer spectra via phase modulation.

3. Spectral engineering with computer holography solutions

In order to find a phase modulation profile φ(t) that produces a target spectrum S(ω), one has to invert
equation (4). While many algorithms have been developed for this purpose [14–16], in this work, we will
use GSA [12], a well-known iterative Fourier transform algorithm (IFTA) that produces approximate
solutions.

We describe GSA in brief (figure 1(a)). Given a target amplitude G̃0(ω) in the frequency domain and an
input amplitude G0(t) in the time domain, the algorithm returns a phase modulation profile φ(t) that
closely reproduces G̃0(ω). For the particular case of inverting equation (4), one sets G̃0(ω) =

√
S(ω) and

G0(t) = E0. Starting with a seed phase φ0(t), one follows the following steps:

(a) The time domain signal G0(t)eiφj(t) is propagated to the frequency domain via a Fourier transform,

producing F[G0(t)eiφj(t)] = G̃j+1(ω)eiφ̃j+1(ω), expressed in terms of a propagated amplitude G̃j+1(ω)
and phase φ̃j+1(ω).

(b) The propagated amplitude is discarded and replaced with the target amplitude G̃0(ω) to generate the

frequency domain signal G̃0(ω)eiφ̃j+1(ω). This step enforces a constraint on the amplitude in the
frequency domain.

(c) The frequency domain signal is propagated back to the time domain via an inverse Fourier transform,

producing F−1[G̃0(ω)eiφ̃j+1(ω)] = Gj+1(t)eiφj+1(t).

(d) The propagated amplitude Gj+1(t) is discarded and replaced with the input amplitude G0(t) acting as a
constraint, producing the subsequent time domain signal G0(t)eiφj+1(t).

The algorithm terminates either after a predetermined number of steps or when |G̃j(ω) − G̃0(ω)| < ε

for a specified convergence tolerance ε.
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3.1. Creating a single frequency
Although CGH algorithms such as IFTAs often appear as ‘black boxes’ whose solutions elude physical
intuition, GSA solutions for simple target spectra can often be interpreted. A simple case concerns shifting
the angular frequency of an input light field E0 eiωt by δ, E0 eiω0t → E0 ei(ω0+δ)t . It is clear that φ(t) = δt +Φ0

is a solution, where Φ0 is a constant that does not affect the power spectrum. As shown in figure 1(b), GSA
reproduces this solution, modulo 2π. This sawtooth-like solution, the so-called ‘serrodyne’ solution, has
been used to shift frequencies both in the microwave [17] and optical domains [18, 19]. Note that since the
constant Φ0 does not affect the power spectral density, it is not unique and depends on the initial seed φ0(t).
Hence, as in hologram generation, there always exist multiple φ(t) yielding identical spectra.

3.2. Creating multiple frequencies
Simple solutions to generate multiple frequencies are not always available. One approach involves stitching
together multiple serrodyne waveforms to create multiple frequencies [20]. The desired power of each
frequency component can be controlled via the duration of each serrodyne. However, concatenation
introduces imperfections, since the transitions between different serrodynes contribute additional frequency
content. This content becomes particularly problematic when the duration of each serrodyne is short. By
design, CGH algorithms such as GSA can find better solutions. In addition, while concatenating serrodynes
can approximately create multiple discrete frequencies, it is difficult to generalize this method to extended
spectral distributions. In contrast, GSA can create extended spectral distributions in addition to multiple
discrete frequencies.

We note in passing that some simple solutions become obscured when using GSA. It is well-known that
modulation with a sinusoidal drive φ(t) = β cos(Ωt) generates multiple sidebands spaced by nΩ from the
carrier, with strengths |Jn(β)|2, where β is the modulation depth and Jn(x) is the nth order Bessel function
of the first kind: ∣∣∣∣

∫
dt eiβ cos(Ωt) e−iωt

∣∣∣∣
2

∝
∞∑

n=−∞
|Jn(β)|2δ(ω − nΩ). (5)

Suppose the target is exactly the spectrum created by sinusoidal modulation with a depth β > π. Due to the
restriction of a GSA solution to φ(t) ∈ [−π,π), the simple sinusoidal solution would not be apparent.

3.3. Use in non-linear optical processes
The CGH approach can be applied even in the presence of non-linear optical processes such as SFG and
multiple harmonic generation. In SFG, two monochromatic light fields E1 eiω1t and E2 eiω2t combine to
produce a new field proportional to E1E2 ei(ω1+ω2)t . Since the second light field only acts to modulate the
amplitude and frequency-shift the first light field by ω2, a spectrum centered about ω1 + ω2 can be
generated by creating the same spectrum on the first light field but centered about ω1.

For nth harmonic generation, an input of E0 eiω0t produces an output proportional to En
0 einω0t .

Phase-modulating the input light by φ(t) produces a phase modulation of nφ(t) on the output light. Thus, a
desired spectrum S(ω) in the nth harmonic can be generated by applying φ(t) = φsoln(t)/n to the input
light, where φsoln(t) is the CGH solution.

The compatibility with non-linear processes provides practical advantages. Often, high power visible
light can be created via SFG or SHG applied to near-infrared light, where high power fiber amplifiers and
high-bandwidth fiberized EOMs are available. In section 5, we provide a proof-of-principle demonstration
of such an implementation, where a target spectrum centered about 531 nm is produced by
phase-modulating light at 1062 nm.

4. Technical considerations

In this section, we discuss technical considerations when implementing arbitrary phase modulation for
spectral engineering. We generate a phase modulation signal φ(t) by applying a voltage V(t) to an EOM.
The advent of high-bandwidth fiberized EOMs, available with bandwidths up to 10’s of GHz, makes this a
feasible approach for generating optical spectra spanning 100s of MHz. Nevertheless, various effects make
the system non-ideal, leading to behavior deviating from equation (4). These effects can arise at the level of
V(t) (electronic) or after the phase φ(t) has been imprinted by the EOM on the light field (optical). The
electronic effects can be separated into linear ones and nonlinear ones. Effects that are linear in the voltage
signal V(t) can be described by a transfer function. Once the transfer function is known, it can be
compensated. Electronic effects that are non-linear are much more difficult to deal with. Our strategy is to
minimize these effects. Beyond electronic effects, a major possible source of non-ideal behavior is chromatic
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dispersion, which can be large especially when long optical fibers are used. We will show that as long as the
dispersion is linear, our method is not affected.

4.1. Linear electronic effects
Certain electronic effects encountered when generating V(t), such as finite bandwidth and
frequency-dependent amplitude responses in various components, modify the resulting phase modulation
waveform from φ(t) to φeff (t). As long as these effects are linear, they can be captured by a transfer function
acting in the frequency domain. Specifically, the resulting phase modulation in the frequency domain,
φ̃eff(ω) =

∫
dt φeff(t)e−iωt , is given by φ̃eff(ω) = T(ω)φ̃(ω), where T(ω) is the transfer function and φ̃(ω) is

the Fourier transform of the initial signal. The transfer function T(ω) can be expressed as
T(ω) = A(ω)eiΦ(ω), where A(ω) is the amplitude response and Φ(ω) is the phase response. We will show in
section 5 how to measure both of these functions. We note in passing that the hologram analogs to these
linear effects include non-ideal SLM surface flatness and spatially dependent transmission of the SLM when
it is placed in the Fourier plane.

4.2. Non-linear electronic effects
Non-linear electronic effects can occur when generating a time-dependent voltage V(t). For example,
suppose V(t) consists of a single tone at Ω. Amplifier non-linearities will produce higher harmonics at nΩ.
This situation worsens when V(t) contains multiple frequencies, since intermodulation distortion produces
signals at the sums and differences of the input frequencies. Since non-linear effects cannot be captured by a
transfer function, we try to minimize these effects through an appropriate choice of components.
Specifically, in our implementation, we impose a high frequency cutoff of 500 MHz in φ(t), and verify using
a spectrum analyzer that for single frequency inputs, harmonics in V(t) are suppressed by at least 40 dB.

4.3. Chromatic dispersion
Beyond electronic effects that modify the phase φ(t), optical effects could also lead to non-ideal behavior. In
laser systems that contain optical fibers, chromatic dispersion is an effect that one has to consider. Here, we
show that as long as the material has linear chromatic dispersion over the modulation bandwidth,
dispersion only introduces a global time delay and our method is unaffected.

Suppose a material has linear chromatic dispersion, i.e. its index of refraction is approximately described
by n(λ) ≈ n0 + α(λ− λ0), where λ is the wavelength, n0 is the index of refraction at λ0, and α = dn

dλ . After
propagation of length L, an input light field with Fourier spectrum Ẽ(ω) =

∫
dt E(t)e−iωt becomes

Eout(t) =

∫
dω

2π
Ẽ(ω)e−in(λ) 2π

λ L eiωt

= e−i2παL

∫
dω

2π
Ẽ(ω)e−i(n0−αλ0) ωc L eiωt . (6)

Now, suppose the input light is monochromatic with frequency ω0 and is phase-modulated by φ(t), i.e.
E(t) = E0 ei(ω0t+φ(t)). After propagation, the output light field is given by

Eout(t) = E0 e−i2παL

∫
dω

2π

∫
dt′ ei(ω0t′+φ(t′))e−i(t′−t+(n0−αλ0)L/c)ω

= E0 e−iω0n0L/c ei(ω0t+φ(t−Δt)), (7)

where Δt = (n0 − αλ0)L/c. Therefore, linear dispersion leads to a trivial phase factor e−iω0n0L/c and a time
delay Δt in the phase modulation φ(t), which does not affect the spectrum. In the case of optical fibers,
linear chromatic dispersion is a good approximation over ∼GHz bandwidths.

5. Proof-of-principle demonstration

In this section, we present methods to measure the amplitude and phase response, A(ω) and Φ(ω), of the
transfer function. We then apply the inverse of the measured transfer function to the ideal modulation
waveforms to generate compensated modulation waveforms. We will show that when this compensation is
applied, we obtain good agreement between observed and simulated spectra.

Our system (figure 2) consists of a seed laser at 1062 nm whose light passes through a fiberized phase
modulator (2 GHz bandwidth) that is controlled by the amplified output of an AWG. After phase
modulation, the light enters a high-power fiber amplifier, whose output is frequency doubled to 531 nm. To
characterize the spectrum of the doubled light, we measure the transmission T through a Fabry–Perot
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Figure 2. Experimental setup. 1062 nm light from a seed laser is sent through a fiberized phase modulator, amplified, and then
frequency doubled (SHG) to 531 nm. The phase applied by the modulator is controlled by the amplified output of an arbitrary
waveform generator (AWG). To measure the spectrum of the 531 nm light, we observe the transmission through a scanning
Fabry–Perot cavity.

cavity (1.5 GHz free spectral range, 4.2(1) MHz FWHM linewidth) as a function of the cavity length, which
is scanned using a piezo-electric actuator. By converting the piezo drive voltage to an angular frequency
difference δ and aligning δ = 0 with the carrier, one produces a transmission curve T (δ), which is directly
proportional to the power spectrum of the light S(ω), with δ = ω. To calibrate the piezo response, we apply
sinusoidal phase modulation to the light at frequency Ω, which produces sidebands spaced by nΩ about the
carrier. We approximate the piezo response to be linear in the drive voltage. Piezo non-linearities lead to
small deviations, which are unimportant for our present work.

5.1. Calibrating the amplitude response
To measure the amplitude response A(ω), we apply a voltage to our EOM of the form V(t) = V0 cos(Ωt)
with frequencies Ω/(2π) ranging from 5 to 650 MHz. This creates a phase modulation profile of
φ(t) = β cos(Ωt), which produces sidebands at nΩ on the undoubled light. The effect of
frequency-doubling can be absorbed into the modulation depth via β → 2β. We measure the resulting
optical spectra of the doubled light using a scanning Fabry–Perot cavity and fit the results to the known
sinusoidal modulation solution (equation (5)), extracting the effective modulation depth βeff . This provides
the amplitude transfer function A(ω) (figure 3). The calibration is performed such that the measured
modulation depth stays near βeff ≈ 1.2, producing only a few sidebands whose amplitudes are sensitive to
variations in βeff .

5.2. Calibrating the phase response
To measure the phase response Φ(ω), we developed an interferometric method that is sensitive to the
relative phase shift between two frequencies. Inspired by the fact that a non-symmetric spectrum is
produced when the modulation signal φ(t) breaks time-reversal symmetry, we apply modulation of the
form

φ(t) = β1 cos(Ωt) + β2 cos(2Ωt + ϕ). (8)

One observes that unless ϕ = 0 modulo π, φ(t) is not time-reversal symmetric. Incorporating the
amplitude and phase response of the system, the effective modulation signal is then

φeff(t) = A(Ω)β1 cos(Ωt +Φ(Ω)) + A(2Ω)β2 cos(2Ωt +Φ(2Ω) + ϕ). (9)

Shifting the time coordinate by t → t − Φ(Ω)/Ω, one finds that

φ(t) = A(Ω)β1 cos(Ωt) + A(2Ω)β2 cos(2Ωt +ΔΦ(Ω) + ϕ), (10)

where ΔΦ(Ω) = Φ(2Ω) − 2Φ(Ω). The sidebands generated by the 2Ω modulation will interfere with the
sidebands generated by the Ω modulation, and the resulting spectrum encodes information about the
relative phase ΔΦ(ω). Applying equation (5), one finds that the cavity spectrum S(ω) is given by

∣∣∣∣∣
∑

m

Jn−2m(β1,eff)Jm(β2,eff)einπ/2 e−im(ΔΦ+ϕ+π/2)

∣∣∣∣∣
2

δ(ω0 − nΩ), (11)

where β1,eff = A(Ω)β1 and β2,eff = A(2Ω)β2.
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Figure 3. Amplitude eesponse. (a) Measured amplitude transfer function A(ω)/A(0) obtained by fitting cavity transmission
spectra of sinusoidally modulated light. Example transmission spectra T (δ) (black points) and their fits are shown in (b)
100 MHz (red dashed) and (c) 200 MHz (blue dashed). These frequencies are marked in (a) by the red circle and blue square,
respectively.

Our procedure to obtain Φ(ω) is as follows. First, we calibrate our amplitude response as described
above. We then set the modulation depths to β1,eff = β2,eff = 0.7 and measure the resulting spectra for
ϕ = 0 and ϕ = π/2. The amplitudes are chosen to maximize contrast while keeping the spectra relatively
simple. The two values of ϕ help resolve a quadrant ambiguity in equation (11). Figure 4(a) shows the
extracted relative phase ΔΦ(ω) and figure 4(b) shows a representative fitted spectrum.

To reconstruct Φ(ω) from ΔΦ(ω), we first make the following assumptions. We assume that
ΔΦ(ω) ≈ 0 at the lowest measured frequency. We also assume that the leading order term in Φ(ω) is at
most quadratic. We rule out a linear leading order term because of the following. A phase delay that is
linear in frequency translates to a common time delay, which is not observable in our interferometric
measurement. We further assume that Φ(ω) is smooth and slowly varying over the frequency range that we
measure. We therefore fix Φ(0) = 0 and fit the ΔΦ(ω) data to a low-order polynomial with zero offset and
vanishing linear term. The fitted and smoothed version of ΔΦ(ω) is then used to reconstruct Φ(ω).

To obtain the total phase response Φ(ω), we start near ω = 0 and proceed in a ladder-like manner. For
example, Φ(2Ω) is obtained from lower frequency measurements using Φ(2Ω) = ΔΦ(Ω) + 2Φ(Ω). To
verify the validity of our procedure, we obtain the relative phase ΔΦ(ω) from the reconstructed total phase
Φ(ω) (figure 4(c)) and compare it with the measured relative phase ΔΦ(ω). We find good agreement,
indicating proper reconstruction of Φ(ω) from the measurements (figure 4(d)).

5.3. Compensated signal comparison
To verify the accuracy of our measured transfer function, we compare measured and simulated spectra. The
measured spectra come from compensated and uncompensated serrodyne waveforms, and are measured
using our Fabry–Perot cavity. The simulated spectra come from applying the measured modulation transfer

7
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Figure 4. Phase response. (a) The measured relative phase response ΔΦ(ω) = Φ(2ω) − 2Φ(ω) extracted from modulation with
ϕ = 0 (blue circles) and ϕ = π/2 (red triangles). Shown in black is the rolling average. The two sets of ϕ data are plotted in the
frequency ranges where they are sensitive to ΔΦ(ω). (b) Cavity scan (black dots) and the fitted curve (orange dashed) of a
representative interferometric spectrum at the frequency indicated by the orange square in (a). (c) Phase response Φ(ω) (black
solid) reconstructed from the measured ΔΦ(ω). (d) Comparison between the measured relative phase ΔΦ(ω) (blue solid) and
the relative phase obtained from the reconstructed phase response Φ(ω) (red dashed).

function to the phase modulation profiles and convolving with the measured Fabry–Perot lineshape
(figure 5).

To generate the compensated waveforms, we apply the inverse of the measured transfer function to the
uncompensated modulation profiles. The frequency range of our serrodynes is between 12.5 and 190 MHz,
with the highest frequency chosen so that all serrodynes contain at least two compensated Fourier
components. Apart from small deviations in the locations of the peaks that we attribute to a nonlinear piezo
response, we find good agreement between measured and simulated spectra. This verifies that the measured
transfer function is accurate and validates our transfer function measurement protocol.

We find that compensating for the transfer function leads to improved spectra. For example, the −1
order sideband and the carrier are suppressed on average to 24(8)% and 16(10)% of their respective values
in uncompensated spectra. Furthermore, the 1st order sideband increases on average by 6(5)%, suggesting
improved efficiency. Nevertheless, even with compensation, the overall modulation efficiency, as measured
by the power in the desired sideband, decreases with increasing serrodyne frequency. For (un)compensated
modulation profiles, the efficiency decreases from (88)90% at 12.5 MHz to (48)50% at 190 MHz. The
decrease becomes significant as the serrodyne frequency approaches our bandwidth limit of 500 MHz.
While the improvements in efficiency are modest, compensation greatly suppresses spurious peaks within
the system bandwidth, as shown in figure 5.
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Figure 5. Compensated and uncompensated serrodyne spectra. (a) Measured (blue solid) and simulated spectra (red dashed) of
uncompensated serrodynes, for serrodyne frequencies of 12.5 MHz, 63.5 MHz, 145 MHz, and 165 MHz. (b) Measured (blue
solid) and simulated (red dashed) spectra of compensated serrodynes for the same serrodyne frequencies. For the simulated
spectra, we apply a single vertical scaling factor, which is obtained by comparing the maxima of the simulated and measured
spectrum for the uncompensated 12.5 MHz serodyne. The cavity traces are shifted horizontally to align the main peaks with the
simulation, and a single horizontal scaling factor is used for all traces.

5.4. Proof-of-principle demonstration
As a proof-of-principle demonstration, we use the above methods to generate a spectrum relevant to
laser-cooling CaF [21–23]. In CaF, one can cycle photons by addressing the
X(v = 0, N = 1) → B(v = 0, N = 0) optical transition at 531 nm. The ground state X(N = 1) is composed
of four hyperfine states while the excited state hyperfine structure is unresolved (figure 6(a)). As a result,
four optical frequencies are needed to prevent molecules from falling into unaddressed ‘dark’ hyperfine
manifolds. Magnetic dark states (mF states) are typically destabilized either by a small magnetic field or a
time-varying polarization, which remixes these states with bright states. Here, we use GSA to generate the
required spectrum addressing all hyperfine manifolds with the appropriate splittings. The intensities are
picked with weights corresponding to the (2F + 1) degeneracies of the hyperfine manifolds. In addition, to
demonstrate GSA’s ability to shape spectral distributions, the target hyperfine components are intentionally
broadened to have Lorentzian profiles with FWHM linewidths of 2 MHz. As shown in figure 6(b), the
measured spectrum generated using GSA and the simulated target spectrum agree well, demonstrating that
our method can be used to generate and shape multi-frequency spectra for typical hyperfine spacings. The
good agreement also shows that our method works in SHG systems and that chromatic dispersion in long
fibers is not a concern.

We next characterize the efficiency of producing spectral weight about the targeted frequencies. We find
that 74% of the power is contained in the four hyperfine lines. The power in each line is obtained by
integrating over a frequency width of 14 MHz, roughly twice the observed FWHM in the cavity
transmission. As shown in the inset in figure 6(b), the residual power is distributed over a broad
background at the �10−2 level relative to the peak features. This background is better suppressed in the
spectral window of width 2× 500 MHz surrounding the carrier, with the half-width determined by the
electronic bandwidth (500 MHz) of our system. In heavy molecules with small rotational constants, this
could be problematic since non-rotationally closed transitions can be excited. Nevertheless, GSA is just one
of many CGH algorithms, and more advanced algorithms can potentially produce solutions with lower
backgrounds within this window.

5.5. Comparison of GSA solutions with concatenated serrodynes
To gain some insight into how the differences between the concatenated serrodynes and GSA solutions
affect a spectrum, we examine the phase modulation profiles in detail. The spectra of concatenated
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Figure 6. Proof-of-principle spectrum generation for X(N = 1) → B(N = 0) transition in CaF. (a) Hyperfine structure of CaF
for states in the X(N = 1) → B(N = 0) optical cycling transition. The excited hyperfine structure is unresolved. (b) A spectrum
that can address all the ground hyperfine states in (a) is generated using GSA, and compensated by the measured transfer
function. The hyperfine components are addressed with relative powers 5 : 3 : 1 : 3, and a target linewidth of 2 MHz is used.
Shown in blue solid (red dashed) is the measured (simulated) cavity transmission T (δ). Inset shows the simulated spectral
weight on a logarithmic scale. The horizontal scaling is identical to that in figure 5. A horizontal shift is applied to overlap the
measured and simulated maxima (F = 2 feature). (c) Compensated φ(t) used to generate the spectrum in (b).

serrodynes contain unintended spectral content due to transients between the different serrodyne sections.
For long waveform durations, these transients are sparse and hence the spectral deviations are small. The
GSA solutions, when seeded with concatenated serrodyne solutions, then converge near the initial seeds
(figure 7(a)). However, for short waveform durations, switching transients occur often, and the GSA
solutions significantly deviate from the initial concatenated serrodyne seeds. At waveform durations much
shorter than 1/Δω, where Δω is the typical difference between two adjacent target frequencies, the GSA
solution will no longer resemble the serrodyne seed but will still closely produce the target spectrum.

For multiple discrete frequencies, concatenated serrodynes can be thought of as an approximate solution
to the spectral engineering/holography problem. CGH algorithms such as GSA are designed to find optimal
solutions that minimize spectral deviations and can potentially offer improved spectra. This holds true even
at short waveform durations. We note that concatenated serrodynes of arbitrarily long duration can
produce arbitrarily clean discrete frequency spectra, since the spectral weight contributed by transient
features becomes vanishingly small. But as we discuss in section 6, this might not be desirable when
addressing atoms or molecules. For these applications, the quality of the spectrum might not be the only
figure-of-merit.

Although for discrete frequencies, GSA might only offer modest improvements over concatenated
serrodynes, a key advantage of GSA lies in its ability to create extended spectral distributions. This could be
useful in situations that require broadened spectral features, such as white light slowing and optical cycling
in inhomogeneous magnetic or electric fields.
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Figure 7. Comparison of concatenated serrodynes and GSA solutions. The target spectrum is the same as in figure 6. (a) Shown
are the seeded GSA solution φ(t) (blue solid) and the initial seed φ0(t) (red dashed) for a waveform duration of τ = 787 ns. This
waveform duration yields a Fourier limit 1/(2πτ) = 200 kHz, and the smallest hyperfine spacing of 25 MHz is therefore fully
resolvable. (b) For a shorter waveform duration of 78.7 ns, the corresponding Fourier limit is 1/(2πτ) = 2 MHz. The seeded
GSA solution φ(t) (blue solid) deviates significantly from the concatenated serrodyne seed φ0(t) (red dashed).

6. Additional considerations with relevance to optically addressing atoms and
molecules

While we have shown that multi-frequency spectra can be generated successfully (e.g. to address the
X(N = 1) → B(N = 0) transition in CaF), producing the desired spectrum is not the only consideration
when addressing optical transitions in atoms and molecules. While the energies of the internal states
determine the required spectrum, the excited state lifetimes of atoms and molecules also affect the internal
state dynamics and therefore provide additional timescales for the phase modulation profiles. For example,
if one tries to address resolved hyperfine manifolds by concatenating a series of serrodynes, but at a rate
much slower than the excited state decay rate, optical pumping into unaddressed manifolds will occur and
molecules will fall into these dark states. This is very different from the case where all hyperfine frequency
components are simultaneously present. This concern of falling into dark states is especially relevant in the
context of photon cycling.

The question then becomes, given an excited state decay rate of Γ, what is the optimal waveform
duration for the application at hand. In this section, we specifically consider the problem of maximizing the
photon scattering rate, which is relevant to fluorescent detection and laser-cooling. Specifically, we will
show that for the case of the X(N = 1) → B(N = 0) transition in CaF, GSA solutions and concatenated
serrodynes can perform comparably and even better than simultaneous frequencies.

6.1. OBE simulations
We perform OBE simulations of the X(v = 0, N = 1) − B(v = 0, N = 0) system in CaF in order to compare
photon cycling rates obtained using different schemes of frequency generation. The goal in photon cycling
is to maximize the photon scattering rate Γsc, which is related to the excited state population Pe via
Γsc = ΓPe. For the B-state in CaF, Γ = 2π × 6.3 MHz. In our OBE simulations, we calculate the
time-averaged steady-state excited state population Pe for concatenated serrodynes and GSA solutions with
different waveform periods τ and light intensities I/Isat, where Isat =

πhcΓ
3λ3 is the saturation intensity.

Non-diagonal vibrational decays are not included in the simulations. The results are compared to the case
of simultaneous frequencies.

To allow a fair comparison between the different schemes, the external fields and the light polarizations
in the simulations are fixed. To avoid the formation of magnetic dark states (mF-states), the following
parameters are used. A small magnetic field of 5 G is applied, and two beams of orthogonal linear
polarizations are used. The polarizations are oriented 45 degrees with respect to the magnetic field, and the
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Figure 8. OBE simulations for the X(N = 1) − B(N = 0) system in CaF. (a) The average steady-state excited state population Pe

as a function of intensity I/Isat. Shown in red triangles and light-red squares are the results of the GSA solution and the
concatenated serrodynes, respectively, for a waveform duration of Γτ = 2.1. For a longer waveform duration (Γτ = 31.4), both
the GSA solution (blue circles) and the concatenated serrodynes (light-blue diamonds) produce lower excited state populations.
For comparison, black stars indicate the results for simultaneous frequencies and the black dashed line marks the theoretical
maximum. (b) Excited state population Pe as a function of waveform duration Γτ . At high intensity (I/Isat = 300), the GSA
solutions (red triangles) shows higher Pe than the concatenated serrodynes (light-red squares). At a lower intensity (I/Isat = 10),
the GSA solutions (blue circles) and concatenated serrodynes (light-blue diamonds) yield similar Pe. For comparison, Pe

obtained using simultaneous frequencies at the corresponding high (dark-gray dashed line) and low intensities (light-gray
dashed line) are shown. Also shown is the theoretical maximum (black dashed line). The vertical black dashed line denotes the
waveform duration used in figure 6.

spectrum of the two beams are identical except for a 12 MHz frequency shift. These parameters were found
by optimizing for the case of simultaneous frequencies in the intensity range of I/Isat ≈ 100–500, where an
excited state population of Pe ≈ 0.19 is reached. We note that under steady-state conditions, the theoretical
maximum excited state population is given by Ne/(Ng + Ne) where Ne and Ng are the number of states in
the excited and ground manifolds, respectively. For the X(N = 1) → B(N = 0) transition, this ratio is 0.25.

Figure 8(a) shows the excited population Pe for simultaneous frequencies, concatenated serrodynes, and
GSA solutions as a function of the intensity I/Isat. We find that for the intensities of I/Isat = 50 and 100,
both the concatenated serrodynes and the GSA solutions provide higher excited state populations compared
to simultaneous frequencies. A plausible explanation is the following. In the case of simultaneous
frequencies, one can form coherent dark states that are superpositions of states from different F levels.
Although the applied magnetic field and polarizations in our simulations destabilize these states, these states
could still have an effect on the scattering rate. In particular, they become more robust as the intensity
increases, since the energy gaps between the dressed dark and bright states scale as the intensity I. In
contrast, the remixing between bright and dark states due to a magnetic field is constant. At higher
intensities, off-resonant scattering from other spectral components reduces the darkness of the coherent
dark states, decreasing their effect on the scattering rate. One therefore expects the effect of coherent
two-photon dark states to be strongest at intermediate intensities. For purely phase-modulated light,
however, two-photon transitions are forbidden in the rotating wave approximation (RWA) even if spectral
content satisfying the two-photon resonance condition exists. For a general electric field E(t), the
two-photon Rabi coupling Ω2 scales as E∗(t)E(t)eiω12t , where �ω12 is the energy difference between the two
states of interest. One notes that for purely phase-modulated light, the Rabi coupling after time-averaging
vanishes. This general property of purely phase-modulated light implies that coherent dark states between
well-resolved F-levels cannot exist for both concatenated serrodynes and GSA solutions, and could explain
why both outperform simultaneous frequencies for intermediate intensities.

We next examine the dependence of the excited state population Pe on the dimensionless waveform
duration Γτ (figure 8(b)). For short waveform durations, the excited state populations Pe produced by
concatenated serrodynes and GSA solutions are comparable to those produced by sending in simultaneous
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frequencies. At high intensities, the GSA solution and concatenated serrodynes both produce high excited
state populations out to waveform durations of τ ≈ 10Γ−1, much longer than the simple expectation of
τ ≈ Γ−1. In addition, we find that at high intensities (I/Isat = 300), GSA solutions produce higher excited
state populations when compared to concatenated serrodynes. At lower intensities, the two methods
produce similar results.

We believe that the long waveform duration threshold (τ � Γ−1) before the scattering rate decreases
likely comes from the following three effects. First, the rate of going into an unaddressed hyperfine level is
lower than Γ. When a single hyperfine manifold is addressed, the total population in the dark manifolds
will grow at a rate of

Ng−NA
Ng

Γ, where NA is the number of addressed states. The critical waveform duration

(τ c) at which the dark state population becomes significant can be estimated by summing the inverses of
these rates. For the present transition, this gives Γτ c = 5.5. Second, at I/Isat = 300, power broadening leads
to broadened linewidths. Closely-spaced hyperfine manifolds, such as F = 2 and F = 1+, are then
effectively simultaneously addressed, which would further extend τ c. Third, the finite excited state lifetime
implies that molecules experience a spectrum that is obtained from a time window of ∼1/Γ rather than the
entire waveform. This means that the molecules see additional spectral content that can address multiple
hyperfine manifolds simultaneously, further increasing τ c. In the case of photon scattering, the third effect
likely leads to higher scattering rates in general, and could explain why the GSA solutions outperform the
concatenated serrodynes at high intensities.

To summarize, for the case of CaF at the aforementioned external fields and laser configurations, our
simulations show that both concatenated serrodynes and GSA solutions produce excited state populations
Pe comparable to that obtained using simultaneous frequencies. We also find that these solutions continue
to perform well at longer waveform durations (τ � Γ−1). In our setup, we have sufficient bandwidth to
generate waveform durations as short as τ = 2Γ−1 (τ = 52 ns), implying that favorable scattering rates can
be achieved. From the above considerations, we expect that for the purpose of cycling photons in molecules,
our method is robust and will perform favorably for molecules with similar excited state lifetimes and
ground state energy splittings.

7. Summary and outlook

In this paper, we have shown that the problem of generating arbitrary optical spectra via phase modulation
can be mapped to a CGH problem, which can be solved using existing methods such as GSA. We have
further demonstrated the feasibility of this approach, and examined the additional considerations that arise
when addressing atoms and molecules with phase-modulated light. We have verified through OBE
simulations that photon cycling with spectra generated via GSA performs favorably compared to photon
cycling with simultaneous frequencies.

Because of the following novel features of our method, we believe that it is of practical value. First,
although for multiple discrete frequencies, our CGH-based method only offers modest improvements
compared to a previously proposed scheme of concatenated serrodynes, our method can be used to create
extended spectral distributions that are often difficult to create otherwise. Second, our method allows
extended spectra to be controlled dynamically on timescales as fast as typical excited state lifetimes, which
can open up new possibilities. For example, in Doppler cooling, one can first use broadened and
far-detuned spectra to capture fast particles, and subsequently narrow and ramp the spectra closer to
resonance to achieve Doppler-limited temperatures. Third, our method simplifies the problem of generating
N arbitrary frequencies. Compared to existing solutions that require physical resources that scale with N,
our method requires only a single device. This is especially important in light of the present experimental
push toward controlling molecules of ever-increasing complexity, which generically require light of
increased spectral complexity. Based on the features and limitations of our CGH-based spectral engineering
method, we have identified the following scenarios where our method can be advantageous: (1) situations
where a large number of arbitrary frequencies are needed, (2) situations where extra spectral content at the
10−2 level can be tolerated, (3) situations where a weak broadband background is much more desirable than
spurious peaks. The third situation is encountered when non-linearities are present. This occurs, for
example, in laser slowing and atomic/molecular beam experiments, where the finite interaction time implies
that spectral content below a certain intensity threshold is negligible.

The situations we identified above already occur in ongoing searches for nuclear magnetic quadrupole
moments (MQM) in molecules and in a recently proposed molecular slowing scheme. In a molecular
MQM search, molecules with sufficient nuclear spin (I � 1) are required, increasing the number of relevant
optical transition frequencies [24–26]. In a recently-proposed molecular Zeeman slower [27], multiple
optical frequencies are also needed since large Zeeman splittings are encountered at the proposed magnetic
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fields. Beyond these two examples, our method could in the future open up molecular experiments that
would otherwise be prohibitively complex.
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