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Abstract—Optimization of information freshness in wireless
networks has usually been performed based on queueing analysis
that captures only the temporal traffic dynamics associated with
the transmitters and receivers. However, the effect of interfer-
ence, which is mainly dominated by the interferers’ geographic
locations, is not well understood. In this paper, we leverage a
spatiotemporal model, which allows one to characterize the age
of information (Aol) from a joint queueing-geometry perspective,
for the design of a decentralized scheduling policy that exploits
local observation to make transmission decisions that minimize
the Aol. To quantify the performance, we also derive accurate
and tractable expressions for the peak Aol. Numerical results
reveal that: 7) the packet arrival rate directly affects the service
process due to queueing interactions, i:) the proposed scheme can
adapt to traffic variations and largely reduce the peak Aol, and
11%) the proposed scheme scales well as the network grows in size.
This is done by adaptively adjusting the radio access probability
at each transmitter to the change of the ambient environment.

Index Terms—Poisson bipolar network, age of information,
scheduling policy, spatiotemporal analysis, stochastic geometry.

I. INTRODUCTION

Fast-growing wireless services like factory automation and
vehicular communication, as well as the likes of mobile ap-
plications, have imposed a more stringent requirement for the
timely delivery of information. To give an adequate response,
network operators need not only understand how the network
activities affect the timeliness of information delivery, but
more importantly, they need to assert substantial control to en-
hance transmission. Recognizing the limitation in conventional
performance indicators, e.g., delay or throughput, as not being
able to account the “information lag” caused by queueing
aspects, there emerges a new metric, referred to as the age of
information (Aol), which explicitly measures the time elapsed
since the last recorded update was generated. The notion was
originally conceived to maintain timely status update in a
standard first-come-first-served (FCFS) queue [1]]. Soon after
that, a host of research has been conducted to investigate
different schemes aimed at minimizing the Aol, whereas the
results range from controlling the update generating policy
[2]-[8], deploying last-come-first-served (LCFS) queue [9],
to proactively discarding stale packets at the source node
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[10]. Although these works have extensively explored the
minimization of the information age on a single-node basis,
many fundamental questions, especially those pertaining to
large scale networks are not understood satisfactorily. To that
end, it spurred a series of studies seeking different approaches,
mainly in the form of scheduling protocols, to optimize
information freshness in the context of wireless networks [11]]—
[18]. The problem of finding optimal scheduling protocol,
despite being NP hard [[I1]], is shown to possess a solution
in terms of a greedy algorithm, which schedules the link with
the highest age to transmit, in a symmetric network [12]], and
the optimality of such a maximum age first policy is shown
in [13]], which provided a general and insightful sample-path
proof. Moreover, depending on whether the channel state is
perfectly available or not [15]], advanced virtual queue
and age-based protocols are proposed. Further, the scheduling
decision can even be made online using the approximation
from Markov decision process [17], which largely boosts the
implementational efficiency. However, these models simplify
the packet departure process by adopting a Poisson process
and do not account for the interference that differs according
to the distance between simultaneous transmitters as well as
channel gains. As a result, the space-time interactions are yet
to be precisely captured.

By nature, the wireless channel is a broadcast medium.
Thus, transmitters sharing a common spectrum in space will
interact with each other through the interference they cause.
To understand the performance of communication links in
such networks, stochastic geometry has been introduced as
a tool by which one can model node locations as spatial
point processes and obtain closed form expressions for various
network statistics, e.g., the distribution of interference, the
successful transmission probability, and the coverage proba-
bility [19]. The power of stochastic geometry has made it
a disruptive tool for performance evaluation among various
wireless applications, including ad-hoc and cellular networks
[20], D2D communications [21]], MIMO [22]], and mmWave
systems [23]. While such model has been conventionally
relying on the full buffer assumption, i.e., every link always has
a packet to transmit, a line of recent works managed to bring
in queueing theory and relax this constraint [24]-[27]. The
application territory of stochastic geometry is then stretched,
allowing one to give a complete treatment for the behavior
of wireless links in a network with spatial and temporal
dynamics. As a result, the model is further employed to design
scheduling policies [23]], [27], study the scaling property in IoT
networks [24]], and analyze the delay performance in cellular
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networks [26].

In light of its effectiveness, we leverage a spatiotemporal
model as in [28], for the design of a transmission protocol
that optimizes information freshness in wireless networks.
Particularly, our goal is to develop a policy that decides
whether the current transmission attempt from any transmitter
shall be approved or not so as to control the cross-network
interference level and hence assure the timely delivery of
information. By noticing that centralized protocols, e.g., the
ones proposed in [14]], [13]], can incur large communication
overhead and do not scale with the network size, we propose
a distributed scheduling policy that exploits only local infor-
mation to control the medium access probability at each node.
Notably, while a few recent attempts to the design and analysis
of a scheduling scheme under similar model have been made in
(23], [28]], [29], the current paper differs from and generalizes
these works in two key aspects:

1) Design: Different from [23], [28], [29], where the channel
access probability is universally designed as a single pa-
rameter, our approach gives a channel access probability
which is a function of local topology and varies among
different transmitters.

2) Analysis: While [23]], [28], carry out their analysis
based on constant channel access probabilities, our analy-
sis characterizes the dynamics of a scheduling policy that
changes according to node locations. We also provide an
analysis for the peak Aol with dynamic channel access
probabilities at different transmitters.

A. Approach and Summary of Results

In this paper, we model the deployment of transmitters
and receivers as independent Poisson point processes (PPPs).
The temporal dynamic of Aol is modeled as a discrete-time
queueing system, in which we consider the arrival of packets
at each transmitter to be independent Bernoulli processes.
Each transmitter maintains an infinite capacity buffer to store
the incoming packets, and initiates a transmission attempt at
each time slot if the buffer is not empty. Transmissions are
successful only if the signal-to-interference-plus-noise ratio
(SINR) exceeds a predefined threshold, upon which the packet
can be removed from the buffer. In order to control the cross-
network interference level and hence assure the timely delivery
of information, a scheduling protocol is employed at each
node to decide whether the current transmission attempt should
be approved or not. Design of the scheduling policy exploits
local observation, which is encapsulated via the concept of
stopping sets [30], to make the transmission decision, aimed
at optimizing the network-wide information freshness. In order
to characterize the performance of our proposed scheme, we
derive accurate and tractable expressions for the scheduled
channel access probability, the transmission success proba-
bility, and the peak Aol. The analytical results enable us to
explore the effect from various network parameters on the Aol
and hence devise useful insights for the protocol design. Our
main contributions are summarized below.

o« We propose a decentralized scheduling policy to min-
imize the information age in a wireless network. The

proposed scheme is efficient in the sense that it requires
only local information and has very low implementation
complexity.

o« We develop an analytical framework that captures the
interplay between the geographic locations of information
source nodes and their temporal traffic dynamics. Using
the framework, we derive tractable expressions for vari-
ous network statistics by taking into account all the key
features of a wireless network, including packet arrival
rate, small scale fading and large scale path-loss, random
network topology, and spatially queueing interactions.

o Numerical results show that although the packet arrival
rate directly affects the service process via queueing
interaction, our proposed scheme can adapt to the traffic
variations and largely reduce the peak Aol. Moreover, the
proposed scheme can also adequately adjust according to
the change of the ambient environment and thus scales
well as the network grows in size.

To the best of our knowledge, this is the first work
which successfully combines queueing theory and stochastic
geometry for the optimization of Aol in wireless networks.
In addition, several mathematical results are also new: %)
the characterization of the scheduling policy which exploits
spatial information from any stopping set, i¢) closed-form
expressions for the transmission success probabilities, and
117) the analytical expression for peak Aol in the context of
wireless networks.

The remainder of the paper is organized as follows. We
introduce the system model in Section II. There, we describe
the quasi-static networks of interest, in which transmitters
learn how to incorporate their location information in the
scheduling policy design. In Section III, we focus on the
stopping set based distributed algorithm design, which leads
to a locally adaptive scheduling policy. We show that nodes
can compute the channel access probability as solutions to
certain fixed point equations. Section I'V contains the analytical
performance results. We show the numerical results in Section
V to quantify the benefit of using local information to design a
scheduling policy and minimize the information age. Finally,
we conclude the paper in Section VI.

II. SYSTEM MODEL

In this section, we provide a general introduction to the
network topology, the traffic profile, as well as the concept
of peak Aol and stopping sets. The main notations used
throughout the paper are summarized in Table 1.

A. Network Structure

We model the wireless network as a set of transmitters
and their corresponding receivers, all located in the Euclidean
plane. The transmitting nodes are scattered according to a
homogeneous Poisson point process (PPP) P of spatial density
A. Each transmitter located at X; € ® has a dedicated receiver,
whose location y; is at distance r in a random orientation.
According to the displacement theorem [31]], the location set
® = {y;}2°, also forms a homogeneous PPP with spatial
density \. We segment the time into slots with the duration



TABLE I
NOTATION SUMMARY

Notation Definition
<i>; A PPP modeling the location of transmitters; trans-
mitter spatial deployment density
D; A PPP modeling the location of receivers; receiver
spatial deployment density
Pix; o Transmit power; path loss exponent
& T Packet arrival rate; SINR decoding threshold
ug)t Transmission success probability of node O at
time slot ¢, conditioned on the point process ®
a;? Queue non-empty probability at transmitter node
j, conditioned on the point process ¢
AP Network peak age of information
S Locally stopping set, contains all the observable

information from any transmitter

Channel access probability of transmitter 4, con-
structed based on the stopping set S and the
point processes ¢ and P

of each slot equal to the time to transmit a single packet. The
packet arrivals at each transmitter are modeled as independent
and identically distributed (i.i.d.) Bernoulli processes with
parameter £. All incoming packets are stored in a single-
server queue with infinite capacity under the FCFS disciplineEl.
During each time slot, the queue-nonempty transmitter will
initiate a channel access attempt according to its scheduling
protocol, and send out one packet upon approval. The trans-
mission succeeds if the signal-to-interference-plus-noise ratio
(SINR) at the corresponding receiver exceeds a predefined
threshold. A packet is removed from the buffer when its
reception is acknowledged by the receiver through an ACK
feedback. If the packet is not correctly decoded, the receiver
sends a NACK message and the packet is retransmitted. We
assume the ACK/NACK transmission is instantaneous and
error-free, as commonly done in the literature [14]]. In order to
investigate the time-domain evolution, we limit the mobility of
transceivers by considering a static network, i.e., the locations
of transmitters and receivers remain unchanged in all the time
slots.

We assume that each transmitter uses unit transmission
power Pt,E. The channel is subjected to both Rayleigh fading,
which varies independently across time slots, and path-loss
that follows power law attenuation. Moreover, the receiver is
also subjected to white Gaussian thermal noise with variance
o2. By applying Slivnyak’s theorem [31], it is sufficient to
focus on a typical receiver located at the origin, with its tagged
transmitter at X. Thus, when the tagged transmitter sends out
a packet during slot ¢, the corresponding SINR received at the
typical node can be written as

Py Hoor™®
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SINRg; = (1)

'Note that the framework developed in this paper can also be extended to
account for other transmission protocols, e.g., the LCFS with preemption [32]]

2 We unify the transmit power to keep the analysis tractable, it shall be
noted that the results from this paper can be extended to account for power
control via similar approach as in [24].
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Fig. 1. An example of the time evolution of age at a typical link. The time
instance T () denotes the moment when the i-th packet is successfully deliv-
ered, and G(Tp(¢)) is the generation moment of the packet to be transmitted
in the time slot following Tp (7). The age is set to be Tp(¢) — G(To(3)) + 1.

where « denotes the path loss exponent, H;; ~ exp(1l) is the
channel fading from transmitter j to receiver 4, (;; € {0,1}
is an indicator showing whether the buffer of node j is empty
(¢t = 0) or not ((j+ = 1), and v;; € {0,1} represents
the scheduling decision of node j, where it is set to 1 upon
assuming transmission approval and 0 otherwise.

Remark 1: From an engineering point of view, our system
model is motivated by the emerging interest in applications like
Device-to-Device (D2D) networking, mobile crowd sourcing,
and Internet-of-Things (IoT), which do not require a cen-
tralized infrastructure, e.g., bases stations or access points,
to conduct communications. Note that the framework can be
extended to consider other channel models such as the multiple
access channels (multiple transmitters and one receiver) [24)]
or broadcast channels (one transmitter and multiple receivers)
[27], or even scenarios with multi-hop transmissions [33)].

B. Age of Information

Without loss of generality, we denote the communication
link between the transmitter-receiver pair located at (X, yo)
as rypical. Then, as illustrated in Figure[I] the Aol Ay (¢) over
the typical link grows linearly in the absence of successful
communication, and, when the transmission is successful, re-
duces to the time elapsed since the generation of the delivered
packet. To make the statement more precise, we formalize the
evolution of Ag(t) via the following expression:

Ao(t) +1,
Aolt+1) = {tgGo(tH—l,

where Go(t) is the generation time of the packet delivered
over the typical link at time ¢.

In this paper, we use the peak Aol as our metric to evaluate
the age performance across a wireless networkl. Formally, the
peak Aol at one generic link j is defined as

Soney Ai(T5(n))
N b

if transmission fails,
otherwise

2)

AP = limsup
J
N —oc0

3 We focus on the peak Aol because it is often the maximum status
information delay that determines the performance loss in many wireless
systems [34]. Besides, compared to the average Aol, the peak Aol often
possesses a simpler form and hence facilitates many low-complexity designs.
Nevertheless, the theoretical framework developed in this paper can be
extended to analyze the average Aol [I0], given rise to a more involved
computation.



where T;(n) is the time slot at which the n-th packet from
link j is successfully delivered. We can extend this concept to
a network scale and define the network peak Aol as follows:

ZXJ- ednNB(0,R) A?

AP = lim sup

R—o00 ijei X{X;eB(0,R)}

@ ol 1 X
=E [hfvn_ffop N ;Ao(To(n))}
where B(0, R) denotes a disk centered at the origin with radius
R, xg is an indicator function which takes value 1 if event
E occurs and 0 otherwise, and (a) follows from Campbell’s
theorem [31]. The notion E°[-] indicates the expectation is
taken with respect to the Palm distribution PY of the stationary

point process, where under P almost surely there is a node
located at the origin [31]).

C. Stopping Sets and Scheduling Policy

In a wireless network, as all transmitters are intertwined
through the interference they cause to each other, it is impor-
tant to have an effective protocol that schedules the appropriate
channel access state for each node. Inspired by the fact that
knowledge from local activities can be utilized to improve
the overall network performance, we incorporate such local
information in the design of the scheduling policy.

For a generic transmitter, note that it can only obtain
the information about its geometry vicinity, we thus encap-
sulate such local knowledge by the notion of stopping set
S = S(®,®) [30], [31]. More precisely, the stopping set
is a random element taking each realization from the Borel
sets in R? such that for any observation window A, one can
determine whether S = S(®,®) C A. This concept enables
us to model the region in which the information of nodes,
including their locations, are known to a typical observer. In
particular, depending on the scenarios under consideration,
stopping sets can take various forms. For instance, if the
transmitters have unified sensing power, the observation region
at each node will be a disk with a constant radius and the
stopping set takes a deterministic form. When the transmitters
are empowered with heterogeneous sensing capabilities, each
node may want to obtain information up to the p-th nearest
neighbor, in which case the observation region varies across
different nodes and the stopping set takes a random shape.
Aside from disks, the stopping set can have more complicated
formats, e.g., a hexagon under clustering regulation or different
orders of Voronoi cells in the context of cellular networks
[33], depending on the specific task under consideration. An
illustration of deterministic stopping sets in a Poisson bipolar
network is given in Fig. 2l Note that different transmitters,
e.g., the nodes located at X; and X5, can have various local
observations.

To generalize the concept network wide, we further in-
troduce a shifting operation, denoted by 6, and performs
on ® and ®, which translates all the network nodes by the
vector —z, i.e., 0,{X;} = {X; — 2} and similarly for the
receivers. Extending this operator to a Borel A C R?, we have
0:(A) = {a —x : a € A}. Using the shifting operator and
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Fig. 2. Illustration of a Poisson bipolar network with stopping sets being
disks with constant radii, where black squares and dots are the transmitters and
receivers, respectively, and the circles with dashed lines are two exemplary
stopping sets centered at X7 and Xo.

the stopping set, we define the set of candidated scheduling
policies to be the ones that take into the local knowledge at
every source node and output a channel access probability for
it. More precisely, given a stopping set S = S(®,®), the
scheduling policy at the typical transmitter can be defined as
follows:

% = ns(®, P)

:ns(éms,cims), (3)
where ng(-) is a measurable function whose argument is the
network geometry (®, ®) and has value in [0, 1]. For node
7 located at X, its scheduling policy can be obtained by
applying the shifting operator fx, to (), which resulted in
¢ = ng(0x,®,0x,P). To this end, a feasible scheduling
policy is translation invariant which allows us to devise it
by only focusing on the typical node. Note that to apply
such a policy and evaluate the channel access probability
ns(0x,®, 0x,P), node i needs to obtain only local knowledge
about the other nodes in the stopping set S; = S(0x,®, 0x,®),
which can be obtained via, e.g., the methods in [30]. In this
regard, the scheme can run without a central controller and is
thus decentralized.

Remark 2: By leveraging the notion of stopping sets, our
framework is able to provide a unified approach to account
for various types of local information.

Remark 3: When each source node in this network is able
to obtain the location information of its nearest neighbors, it is
also possible to devise a distributed power control mechanism
to reduce the Aol in a similar spirit to [I36]].

ITII. SCHEDULING POLICY DESIGN

We now present the main structural result of this paper.
Specifically, by leveraging the spatial information contained in
locally stopping sets, we design a low-complexity scheduling
policy to reduce the peak Aol of a wireless network.



A. Preliminaries

The radio interface between any transmitter-receiver pair %
can be modeled as a Geo/G/1 queue where the departure rate
varies according to the link throughput. In the steady state,
the link throughput, or equivalently service rate, is determined
by both the scheduled channel access probability, i.e., how
frequent a transmitter with non-empty buffer can access the
channel, and the transmission success probability. Particularly,
conditioned on the realization of the point process ® £ PUD,
the transmission success probability, u, is given by [23],

p® =P (SINR; > T|®) @

where 7' is the decoding threshold. We first average out the
randomness from channel fading and derive a conditional form
of the transmission success probability:

Lemma 1: Conditioned on the spatial realization ®, the
transmission success probability at the typical link during time
slot t is given by

e T 1 ‘ }
—e 7 E ——)|® (5)
Ho ¢ |:317:[O (1 + gj,tyj,t/DjO)

where p = P /o? and D;; = || X; — y;||*/Tr.

Proof: Conditioned on the spatial realization of all the
transceiver locations, the transmission success probability can
be derived as follows:

P(SINRg, > T|®)
P Hpor™ )
=P > T‘ ®
(§L¢onHﬁKﬂVNHXH|“+02
HjoCiavie 1
—P (Hoo >Tre (S Hi0iaie +-)| @)
= 1Xl p
a r H . X
(:)IE {e_ = H exp(— TTO‘M) ‘@} , (6)
740
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where (a) follows by leveraging the Rayleigh distribution of
the channel gain, i.e., Hyy ~ exp(1l), and the result then fol-
lows by noticing that the random variables {H,o,j = 1,2, ...}
are i.i.d. and exponentially distributed as Hjo ~ exp(1). O
Lemma 1 presents a general result for wireless queueing
networks. Note that because the spectrum is shared amongst
the transmitters, their active states, (j;, are by nature corre-
lated, regardless of the transmission decisions, v; ¢, are made
independently or not, due to the interference they cause to
each other. These phenomena are commonly known as the
spatially interacting queues, and, at the current stage, there is
no comprehensive theory to characterize it [37)]. Therefore, we
need to opt for a few approximations in the sequel to trade
for usable results.

Next, by conditioning on the realization of the point process
®, the communication between a typical transceiver pair can
be regarded as a Geo/Geo/l queue where the service rate is
given by & HBI), +- As such, using tools from queueing theory,
we arrive at a conditional form of the peak Aol.

Lemma 2: In the steady state, conditioned on the spatial
realization ®, the peak Aol at a typical link is given as

1 1-¢ DD
]EO[AP|cI>] = { § +v§’u3’—£’ i%@mﬂb ><€€ (7)
+09, U Yo Mo >

where ,ug’ = limy o ugt.
Proof: See Appendix H of [38] for a detailed proof. O
From (@), it is obvious that the principle of optimizing
information freshness consists in maximizing the link through-
put. In order to achieve this goal, a policy that schedules the
channel access at each node by jointly balancing the radio
resource utility and mutual interference is essential. In the
following, we formulate a stochastic decision problem to find
the scheduling policy that accomplishes this task.

B. Locally Adaptive Scheduling Policy
1) Design: Let a stopping set S = S(®, ®) be given. Using
Lemma 2] the design of scheduling policy can be written as:
1-¢ 1
min K {7} + 2 (®)
e T A

st 0<® =g (exé,oxici) <1, Vi (9)
& < Eg[nspg)- (10)

It is worthwhile to point out that the design factor ng in (8) is
not a single parameter but instead a policy, which takes input
the state information, i.e., the node’s location and information
observed from the corresponding stopping set, and as an output
the channel access probability. As such, the scheduling policy
varies from node to node, which is stated in constraint (9},
because the local knowledge is location dependent. Moreover,
the queueing stability shall be guaranteed in the average sense,
as shown in (I0), according to Loynes’ theorem [39].

However, according to (3, we find the optimization problem
@ is hardly solvable because ;& does not even possess an
analytical expression. For that reason, we leverage the dom-
inant system [40], in which every transmitter keeps sending
out packets in each time slot (if one transmitter has an empty
buffer at any given time slot, it sends out a dummy packet),
for an approximation. Since each node is backlogged in the
dominant system, that allows us to unpack the interaction
amongst queues and derive a closed-form expression for the
conditional transmission success probability:

Lemma 3: Given stopping set S and conditioned on the
spatial realization ®, the transmission success probability at
the typical link under the dominant system is given by

P
Tre H (1 _ Y5 )
%0 1+ Djo
where p = P /02, 7;-1’ = nS(HXjCi),HXj@), and D;j = || X; —
yil|° /T
Proof: See Appendix [Al O
Besides, because transmitters under the dominant sytem are
subject to higher interference levels, the policies devised from
a dominant sytem can also help us prepare for the “worst
case” interference condition in the original system when all the

Y



transmitters are active. As such, instead of directly solving the
original problem (8), we minimize the following alternative:

. 1-¢ 1
min  EY [Ai} + = (12)

N Y T e A I3
st 0<A® =1 (exié,exé) <1, Vi (13)
£ <Eglnsig] (14)

where /i is given by (TI). The design of the scheduling policy
can now be cast into an optimization problem with explicit
terms. And that brings us to the main structural result of this
paper.

Theorem 1: For all given stopping sets S = S(fi), ®), the
solution to the optimization problem in (12) is given by the
unique solution of the following fixed point equation:

1 1 Ad
T T‘/ e =0 09
TS is0ies +Doj—ns  Jras 1+ 2% Tr
if the following condition holds
1 / Adz
— 4 — > 1. (16)
Z Doj  Jras L+ 2%/ Tre

J#0,y;€S8

Otherwise, ng = 1.
Proof: See Appendix [Al O

The above theorem gives an explicit way to construct
the scheduling policy at the typical node, ie., 7§ =
ns(0x,®,0x,P). In regard to a generic node i, the corre-
sponding policy can be attained by shifting the origin of the
point process ® to X; and then apply the same approach
as per Theorem 1, which gives 7> = 7s(fx, ®,0x,®). As
such, every source node only need to identify and record the
transmitting neighbors located inside its observation window,
i.e., the stopping set S, and solve for the channel access
probability via a fixed point equation, which has very low
complexity. Essentially, such a scheduling policy is a spatial
version of ALOHA, where the channel access probability at
each transmitter is conceived based on the local topology
information. Different from the interference graphs [[13]], which
mute simultaneous transmissions from nodes in proximity
locations, the proposed approach allows neighboring transmit-
ters to initiate the radio channel access attempts at the same
time while communally controlling the mutual interference
with a location-dependent probability and thus achieves better
spectrum reuse.

It is also worthwhile to mention that condition (T8) implies
the typical transmitter will only opt for an opportunistic
channel access when the following holds:

—Q
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namely the ratio between the average signal power and in-
terference generated by the transmitter is smaller than the
decoding threshold. In other words, a given source node will
reduce the channel access frequency when its own transmis-
sion may cause potential transmission failure to the neighbors.
Such an observation also coincides with the intuition that
transmitters located close to each other can cause severe
mutual interference and hence need to be scheduled for more
stringent channel access, while the ones located far away from
their neighbors can access the radio channel more frequently.

2) Examples: Below, we illustrate the proposed scheme via
a few examples to better understand the results of the theorem.
To keep the results intuitive, we limit the example stopping
sets to be disk-based, but note that the framework is quite
versatile and can accommodate more general situations, e.g.,
with stopping sets being the irregular extended cells [35].

a) S = (): When transmitters have no topological informa-
tion about their neighbors, the scheduling policy shall be as-
signed as a universal constant. Using results from Theorem [1}
we have 7g(X;) = 1,Vi € N. This can also be recognized by
the fact that the average link throughput

E°[yofi0] = ns exp ( — /
0

monotonically increases with respect to ng. Thus, the best
strategy is to set s = 1 at every transmitter.

b) S = B(0,]|yc||): Here, for a generic transmitter j, y.
denotes the nearest receiver that node j generates interference
to. This corresponds to the scenario where S is a random
stopping set. By solving (I3)), the scheduling policy takes the
following form:

SR 4 el Tr®
M(llyel) — 2Tre

where M(||yc||) is given as

2w Angvdv )
1+ v /Tre
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Yel

¢) S = B(0,R): In this example, each transmitter knows
the location of receivers in a disk of radius R centered at
its location, with R > 0. Note that such stopping set is a
deterministic set. The proposed policy can thus be attained by
solving

1 < dodo
—-3 PR +2”/ oo/ Tre”
S o<lig i<k Tra T1oMs r 1tve/Tr
The effectiveness of the proposed protocol will be amply
illustrated by numerical examples in Section V. Before that,
we would like to present a few quantitative results to assess
the performance of the developed scheme.

IV. PERFORMANCE ANALYSIS

In this section, we derive analytical expressions to character-
ize the stochastic behavior of several network statistics when
the proposed scheme is employed. Specifically, we analyze
the distribution of channel access probabilities resulted from
our proposed scheduling policy, the conditional transmission



success probability, and the mean value of Peak Aol. For
better readability, most proofs and mathematical derivations
have been relegated to the Appendix.

A. Distribution of the Scheduling Policy

Due to randomness in the node locations, information ob-
served from the stopping sets varies from different transmitters
and so does the scheduling policy. Hence, the channel access
probability, 7> = 7s(0x,®, 0x,P), at a generic node i is a
random variable whose behavior can only be captured by
the distribution. In the following, we derive the analytical
expressions for the distribution of such a quantltyﬁ To main-
tain the computational complexity at a reasonable level, we
constrain the stopping sets to take deterministic forms, though
a generalization to random sets is straightforward (cf. Remark
3).

Theorem 2: Given a deterministic set S and 0 < k < 1,
the complementary cumulative distribution function (CCDF)
of the channel access probabilities resulted from the proposed
scheduling policy has the following expression:
eJw(1=V(x,5)) _

1 [t , 1
P(ns > k) = o Lii(x,s)(Jw) dw, (17)

Jw
and when k = 1, the following holds:
P(ns=1) =P(

where j = \/—1, the quantities U(k,S) and V(k,S) are
respectively defined as

Uu1,5)<1-v(1,9)), (18)

— K,.X{U'LES}
Uk.S) =D, e o (19)
gy, €d Tre
Asdz
V(k, S :/ _Amdr (20)
5 S) = Joons TH 2o/ T

whereas Ly (., 5)(8) is the Laplace transform of U(k, S), given
by
Lu(m,s)(5) = e~ M s[1=exp (= e e )]dz.
Proof: See Appendix [Al O

The accuracy of this theorem will be verified in Fig. @ in
Section V. A few important remarks are in order:

Remark 4: Due to condition (I8) and the PPP model, the
event ng = 1 takes a non-zero probability. In particular, we
have P (ng = 1) — 1 under the following scenarios:

a) X\ — 0, i.e, the network is sparse,
b) |S| — 0, i.e., the observation region is very small,
c) r— 0, i.e., the received signal power is very strong.

Remark 5: While the above result is derived under de-
terministic stopping sets, it also holds for random stopping
sets by first conditioning on S and then averaging on it.
Furthermore, an approximation also follows by replacing S

by a disk S = B(0, R) where R = \/E[S]/x.

4From now on, we use 7ng to denote both the scheduling policy and the
resultant channel access probability at a generic node when that does not
cause ambiguity.

B. Transmission Success Probability and Stable Condition

We next deal with the distribution of the conditional trans-
mission success probability, uf, as defined in @ﬂ It is
worthwhile to mention that although we leverage the dominant
system in Section 3 to devise the scheduling policy, the anal-
ysis presented in this section is conducted upon the original
system which does not assume full buffer at the transmitters.

To begin with, because the scheduling policy is constructed
via stopping sets, as given by Theorem [Il it is inevitably
correlated with the distances to the neighboring transmitters.
The following result captures such behavior.

Lemma 4: Given the distance between the typical receiver
and a generic transmitter j as || X; — yo|| =, the probability
that transmitter j can be scheduled for channel access is given
by the following

Py =11¢G = 1, I1X; —woll = 1) = 2(%/Tr")

I (A=Y (5, S) — o) _
// Eu (.5) (jw) . dwdk.
J2mw
(21)

Proof: See Appendix [Al O

The function Z(-) from the above characterizes the relation-
ship between the channel access probability and the distance
from the typical receiver to a generic interfering transmitter.
As illustrated in Fig. Bl we can see that transmitters located
close to the typical receiver will have a relatively small channel
access probability in order to reduce the mutual interference,
while such active probability asymptotically converges to a
global constant, i.e., E[ng], as the distance increases.

Next, we derive the analytical expression for the distribution
of the conditional transmission success probability u&. Note
that there are still two issues associated with the analysis: )
due to interference, the active state, (j;¢, at each transmitter
7 is correlated with each other and varies over time, and
11) there may exist common transmitters seen by the same
receiver from one time slot to another, which introduces
temporal correlation. The interaction among queues, together
with the temporal correlation, incurs memory to the service
process and can highly complicate the analysis. Fortunately,
such dependency of neighborhood queueing status becomes
relatively weak at the macroscopic scale, which motivates the
following assumption [29]:

Assumption 1: The temporal correlation of interference
has a negligible effect on the transmission success probability.
We thus assume the typical receiver sees almost independent
interference at each time slot.

Assumption 1 is commonly known as the mean field approxi-
mation, which ignores the spatiotemporal correlation between
the buffer states of interfering nodes. And based on this
approximation, it is reasonable to assume that the service rate
at all transmitters follows i.i.d. distribution in the steady state.

Armed with the above preparation, we are now ready to
present the distribution of conditional transmission success
probability.

5 In the following, we will drop the time index ¢ from the subscript as we
are dealing with the situation under steady state.
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06 The result then follows from substituting 23) into (24) and
055 | manipulating with further algebraic operations. O
0s Using the above result, we give a condition for the network
to be stable.
0455 10 15 20 25 30 35 40 45 Corollary 2: In order to maintain the queueing stability of
Distance, [X[=1 the network, packet arrival rate shall satisfy the following
Fig. 3. The value of function Z(-) vs the distance to an interferer located !

at X;: the system parameters are set as o = 3.8, T' = 0 dB, r = 25,
A =10"% and S = B(0, R) where R = 200.

Theorem 3: In a wireless network with every transmitter
adopting the scheduling policy as per Theorem|[l) the CDF of
the conditional transmission success probability at the typical
link can be tightly approximated by equation @2) at the top of
this page, where § = 2/«, and Im{-} denotes the imaginary
part of a complex variable.

Proof: See Appendix [Al O

Notably, the effect of queueing interaction on the SINR is
characterized by the fixed-point functional equation in @22).
Besides, (22)) can be solved via an iterative approach, and low-
computational-complexity approximation is available to boost
up the convergence speed [26].

Motivated by the important role it plays in the network
performance assessment, we further provide the first moment
of ud, ie., the transmission success probability [20] as an
immediate byproduct of Theorem 3

Corollary 1: The transmission success probability is given
by the solution of the following fixed-point equation

P(SINR > T) = E[ug]

T {7
=exp (— I A2 T‘i/
P 0

where Z(-) is given in 21).

Proof: By taking an expectation of (3) with respect to
the random measure ®, we have the transmission success
probability given as

wmin{ﬁg],Z(u%)}
14+uz

du), (23)

Tr®

ES (1] = Eo [
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P(ns > k) dk. (26)

§SE[M3’]/O

Proof: By using Loynes’ theorem to the Geo/G/1
queue at the typical link, we have

¢ <Elnspug]-

Since 7mg is constructed under the dominant system, it is
thus independent of p. As such, by individually taking
expectations to the two random variables on the right hand
side of ([@27), the result follows. O

27)

C. Peak Aol

We finally obtain the expression for the peak Aol, which
characterizes the freshness of information delivery in the
wireless network.

Theorem 4: [f every transmitter makes its transmission
decision according to Theorem [I| the peak Aol achievable
at the typical link can be computed as

5 //g/vuv— u)

1—
~ E EEAT
where F,(-) and F,(-) = 1 — F,(-) are given by @2) and

(D, respectively.
Proof: With the stable condition being satisfied, taking
an expectation on both sides of (7) yields

) F, (dv) (28)

(29)

1 1
AP = _+E%[E{¢7‘% 1o fH (30)
13 Yo M
The expression in (28) then follows from substituting (T’7) and
@2) in equation (30). O

Equation (28) quantifies how all the key features of a wire-
less network, i.e., interference, scheduling policy, and spatially
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queueing interaction, affect the Aol. Several numerical results
based on (@8) will be shown in Section V to give more
practical insights into the optimization of Aol in a wireless
network.

V. SIMULATION AND NUMERICAL RESULTS

In this section, we verify the accuracy of our analysis
through simulations and evaluate the effectiveness of the pro-
posed scheduling policy. Particularly, during each simulation
run, we realize the locations of the transmitters and receivers
over a 10 km? area via independent PPPs. The packets arriving
at each node are generated according to independent Bernoulli
processes. We average over 10,000 realizations and collect the
statistic from each communication link to finally calculate the
peak Aol. Unless differently specified, we use the following
parameters: o = 3.8, £ = 0.3, T = 0 dB, P = 23.7 dBm,
02 =—-90 dBm, and A = 10~*m 2.

A. Validation of Analysis

Fig. [ depicts the CDF of the scheduling policy under
different network densities. We first note the close match
between the analysis and simulation results, which validates
the analysis in Theorem [2l We further observe that as the
spatial density increases, the scheduling policy reduces the
channel access probability at different transmitters to keep the
mutual interference at a low level. In this manner, our scheme
is able to adjust the access of the radio channel according to
the change of the spatial topology.

In Fig.[5l we compare the simulated CDF of the conditional
transmission success probability to the analysis developed in
Theorem 3 for various values of the packet arrival rate &.
First, the results show a good match for all values of &,
which verify the mathematical analysis. Next, we can see that
an increase in the packet arrival rate defects the conditional
transmission success probability, or equivalently, service rate,
in a non-linear manner. Specifically, the service rate declines
rapidly as the traffic condition changes from low (£ = 0.05)
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Fig. 5. CDF of the conditional transmission success probability under deter-
ministic stopping set S = B(0, R), with R = 200: the transceiver distance
is » = 50, and we vary the packet arrival rate as & = 0.05,0.1,0.3,0.5.
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Fig. 6. Peak Aol vs packet arrival rate: » = 25, with deterministic stopping
set S = B(0, R), where R = 100.

to medium (£ = 0.3) regime, while the trend slows down as
the packet arrival rate further goes up (£ = 0.5). This mainly
amounts to the composite effect of the temporal variation: in
the light traffic condition, when the packet arrival rate goes
up, the accrued packets at each buffer will incur additional
transmission attempts. In consequence, more transmitters are
activated and they together raise the interference level. As
a result, the received SINR at each node decreases and the
active duration of transmitters is then prolonged, which in turn
defects the service rate across the network. In the heavy traffic
regime, however, as the majority of the queues are already
saturated, the additional activated transmitters cannot largely
change the interference, and thus the descent of conditional
transmission success probability is leveled off.

B. Performance Evaluation

We now compare the proposed scheduling scheme with
local observation from a deterministic stopping set to that with
no available local information, i.e., S = ¢ (in which case,
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ns = 1, V7 € N) in Fig. [6l From this figure, we immediately
note an optimal packet arrival rate exists for both cases due to
a tradeoff between update frequency and the incurred delay.
Moreover, the figure also shows that once armed with sufficient
local information, the proposed scheduling method is able to
maintain the Aol at a low level for a wide range of packet
arrival rates, demonstrating its effectiveness in optimizing the
information freshness in wireless networks.

Fig. [7l further shows the peak Aol per packet arrival rate
under scenarios with no available local information, i.e., S =
¢, and that with different forms of stopping sets. In particular,
we consider the stopping set taking both deterministic form,
i.e., S = B(0, R) with R being a constant, and random form,
ie., S = B(0,R,), where R, denotes the distance to the p-th
closest receiver from a typical transmitter. The figure carries
multiple consequential messages:

o In spite of suffering an SINR degradation, the proposed
scheduling policy greatly improves the peak Aol com-
pared to that without local information. The gain is
especially remarkable in the regime with low to mod-
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Fig. 8. Peak Aol vs spatial density: r = 25, £ = 0.3, p = 4 for the random
stopping set S = B(0, Rp), and R = 100 for the deterministic stopping set
S = B(0, R).

erate packet arrival rates, in which the proposed scheme
reduces more than half of the peak Aol. This is mainly be-
cause this is the regime where the SINR rapidly degrades
while only a few packets are accumulated in the buffer,
and hence if transmitters can tolerate certain increments
in the queueing delay and control their channel access
frequency, the SINR can be greatly boosted up at each
node which leads to a much shorter transmission delay.

o As long as the similar amount of local information can be
extracted to make the transmission decision, there is little
difference in the performance gain attained from using
deterministic or random stopping sets. This observation
implies that it is the amount of information that matters to
the design of a scheduling policy rather than the specific
shape of the observation window, which is in line with
Remark 3.

o In both instances, the performance of the proposed
scheme is shown to be enhanced through expanding the
observation region, i.e., by increasing the radius of the
deterministic disk (Fig. in this case) or directly
counting in more geographical neighbors (Fig. in
this case). Theoretically, such expansion can keep in-
creasing indefinitely to make the performance of our
local scheduling policy ultimately reach that of a central
controller, while practically, the gain from extending
the observation window is marginal compared to the
additional complexity and is thus not desirable.

o Nevertheless, note that even availing the transmitters with
information from one or two neighbors, it is able to
tremendously reduce the peak Aol by using our proposed
scheduling scheme. This observation demonstrates the
practical effectiveness of our approach.

Fig. [8] depicts the peak Aol as a function of the spatial
density for scenarios with and without local observation in
the scheduling policy design. This figure not only illustrates
how network densification affects the information freshness,
but also highlights the critical role played by the scheduling



policy. We hence conclude the observation into the following
takeaways:

o The peak Aol always increases with respect to the spatial
density, since densifying the network inevitably entails
additional interference, thus the SINR is defected and it
further hurts the transmission quality across network.

o By employing the locally adaptive scheduling policy at
each transmitter, the peak Aol undergoes a substantial
discount and the gain is more pronounced in the dense
network scenario. This is because the interference be-
tween neighbors becomes more severe when their mutual
distance is reduced, and hence adequately scheduling
the channel access patterns of transmitters can prevent
interference from rising too quickly and maintain the peak
Aol at a low level.

o When adopting a deterministic stopping set, the proposed
scheduling policy benefits more from network densifica-
tion. The reason comes from the fact that by fixing the
size of the observation window, information from more
neighbors can be taken into account when the spatial
density increases, thus allowing a transmitter to assert
better response. Such observation is also inline with the
above discussion.

VI. CONCLUSION

In this paper, we conducted an analytical study on the design
of a scheduling policy that optimizes information freshness
in wireless networks. We proposed a decentralized protocol
that allows every transmitter to make transmission decisions
based on the observed local information. Using the concept
of stopping sets, we encapsulated the local knowledge from
individual nodes in the analytical framework, and derived
tractable expressions to characterize the stochastic behavior
of our proposed scheme, as well as quantified its effectiveness
in terms of peak Aol. Numerical results showed that while
the link throughput is generally affected by the packet arrival
rate, our proposed scheme managed to adapt the transmission
to the traffic variation and hence largely reduced the peak
Aol. Moreover, the scheme has also been shown to adaptively
adjust according to the geographical change of the ambient
environment and thus scales well as the network grows in
size.

By combining queueing theory with stochastic geometry,
the developed framework bridges the gap between the abstract
service model — which is widely used in the existing Aol
literature — and the physical transmission environment. It thus
enables one to devise fundamental insights on the impact
from both spatial and temporal aspects of a network on the
information freshness. The model can be further applied in
the design of scheduling schemes in wireless systems under
different queueing disciplines, or with multiple sources as well
as multi-hop routings. Investigating up to what extent a non-
binary power control can improve Aol is also regarded as a
concrete direction for future work.
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APPENDIX

Because every link is backlogged in the dominant system,
the SINR received at the typical link can be written as
P Hoor™*

>0 PexHjovs|| X[~ +02

Therefore, by conditioning on the spatial realization ¢ of all
the links, we can compute the transmission success probability

as follows:
1
2)e)

SINR = @31

fiy =P(SINR( >T|®)
— P(Hoo > Tre (Z HXoﬁi

jov.
—[ 1}( e
@, H;o
1 %—%E[eXP(DJO)D, (32)

where (a) follows by noticing that the random variables
{Hjo,j = 1,2,...} are iid. and the scheduling policy is
constructed on ®, namely 'y;-b = ns(ﬁxji), fx,®). The result
then follows from further algebraic manipulations.

First of all, we note that under a dominant system, the point
process ® is stationary. As such, by substituting (1)) into the
first term of (I2) and using the mass transportation theorem
[31], we obtain the following:

1 _
Eg{ig

eI ey cors
Yous =& nsH#o(l

s —Tr®
_1+D0j)e g _5

Our goal is now to minimize the above expression as a function
of s under the constraint in (I3). To accomplish this target, we
separate the denominator into two sets depending on whether a
generic receiver y; € S or not. As such, by the strong Markov
property, (33) can be written as follows

} . (33)

1-¢
E%|: s — T }
’YSH#o(l—m)e =€
L )T
:IE%[ ( jf - } (34)
ns T (1— g ) e IsTmvTe 4 geTre/p
j7é07yjes

The minimization of (I2) now becomes minimizing the above
expression with respect to 7ng. Note that as ng is defined
as a function, (I2) is in essence a functional optimization
problem which should be solved by the calculus of variations.
Fortunately, as the operator 7g is well-defined in the stationary
point process ®, with the help of (34), we can treate the
operator as a variable [30], and take the derivative of
(12) with respect to ns and equate it to zero, which yields the
following:

1 Z 1
1—|—Doj—775

1S j40.5,e5

Ady

Y L B—
/R2\S 14y Tre

(35)



If we write the left hand side (L.H.S.) of the above equation
as a function f(ng) of ng, i.e.,

)= 3 3

j#0,y;€S

_/ Adz
r2\s L+ 2]/ Tre
(36)

1+D0J

it is easy to verify that (a) f(ns) monotonically decreases
in ng over [0, 1], and (b) lim, 0 f(ns) = +oo. As such,
if f(1) < 0, i.e., the condition (I8) holds, then according
to the Intermediate Value Theorem, the equation in (33)), or
equivalently, (15), has a solution and this solution is unique.
Otherwise, if (I8) does not hold, we have the derivative of
(B4) being negative which indicates that (I2) monotonically
decreases as a function of 7g. Hence, the minimum is achieved
atng = 1.

From the argument in (33)), we know that for all 0 < x < 1,
there is 77g > « as long as the following relationship holds

Z K n / Akdy <1
A0S 14Doj =k Jra\s L+ [yl Tre
which can be equivalently written as U(k,S) + V(x,S) <
1, where U(k,S) and V(k,S) are given by (I9) and (20),
respectively. As such, by using Slivnyark’s theorem [31]], we
have

P(ns > k|®) =P (U(k,S) < 1—V(k,S))

=P (U, S) <1-V(KS)).

Using this result, we can thus write the CCDF of ng as

1-V(k,S) 400
P(ns > k) :/0 g (u)du :/ i (W) (u)du
where g, (u) is the probability density function (PDF) of the
random variable U(x, S), and h,(u) is an indicator function
that takes value 1 if 0 < u < 1 —V(k,S), and 0 otherwise.
As such, by applying the Plancherel-Parseval theorem [31] to
the above equation, we arrive at the following expression

—+oo

P(ns > k) = — fu(n,s)(w)f;(n,s) (w)dw

o (37)

where F4(w) = Elexp(—jwA)] is the characteristic function
of a random variable A and F7 (w) denotes the corresponding
complex conjugate. To this end, we first attain the following
result for V(k, S), i.e

Fo(n,s)(w) = [ejwu—vm,s» - 1} /jw. (38)
On the other hand, the characteristic function F7;(,;, s)(w) can
be derived from its Laplace transform, which is given as

Hexp (

y; €8

The theorem then follows from taking (38) and (39) into (37)
and performing further algebraic manipulation.

Using a similar approach as in the proof of Theorem [2]
we have that for all 0 < k < 1, in order to achieve

Lyy(r,9)( (39)

1 H+DOJ) '
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ns(Ox; P, 0 X; ®) > r, we will need the following condition to
hold:

>

i#5,yi €S

K / Akdy
— + A
1+Dji =k  Jeans 1+ |lyll*/Tre

Now, given a receiver located at the origin, we can rewrite
(@0) in the following way:

K K

— <1-V(k,5) - —————.
#;071-1-@]‘1'—& ( ) 1+Djo—k
yiVGS

<1. (40)

(41)

As such, the conditional distribution of the scheduling policy
can be attained by a similar manner as in the proof of
Theorem 2} given by

P(ns > x| =1, 1 X5 — wol = 1)

(a) “+o0 ejw(lfv(ﬁvs)*W) 1
Lii(x,s)(Jw) . dw. (42)
oo Jj2mw

where (a) follows from Slivnyark’s theorem. Finally, using the
above, we have that

Plv; =1/¢; = 1, | X5 —yoll = 1)

1
- / P > ]G = 1, | X; — goll = Dds. (43)
0

Lemma [ then immediately follows by substituting (@2) into
@3).

Under Assumption 1, we can focus on the steady state of the
network and drop the time index in the subsequential analysis.
To facilitate the presentation, we introduce two notations
Y®? and ¢;, defined as Y;* = InP(SINR, > T|®) and
qi = P(v; x ¢ = 1| Xi — yol| = 1), respectively. Using
Slivnyark’s theorem [31l], we concentrate on the moment
generating function of Y;¥ as follows:

My (s) = E [exp (sYg')] = E [P (SINRg > T'|®)°]
(@) o | —ezee @ °
= l—gi+—————

© H( “1+Tra||Xi||a>

i#£0

( )i _Elgylzde
—exp< 27 / Z sl BECE

where (a) follows from the independent evolution of queues
according to Assumption 1, and (b) by using the probability
generating functional (PGFL).

The complete expression of (#4) requires us to further
compute E[¢¥], which can be written as

[t YE [(7§.min{ﬂé§7§,l})k}
:]E{((”Yf)kX{v;" <£}+(Mi)xhz >g})}, (45)

where (a) follows from the Little’s Law .

At this stage, let us temporally assume the CDF F),(u) of
u® is available. Using Lemma 4, the first term of (#3) can
then be derived as

E {(%(cbf X{vg’ufi’<£}} = Zk(x)

Fu(§/2(x).  (46)



Similarly, we have the second term of (43) given by

gk

E[(%)kxhi’ui’%}} = /g/z(m) t_kFu(dt)- (47)

Finally, we apply the Gil-Pelaez theorem [42] and derive
the CDF of ug as

F (u)=P(uy <u)=P (Y0<D <Inw)

1 1= ; dw
_-_2 —jw T Gt
5 77/0 Im {u My (jw)} — (48)

To this end, by substituting (#3), (#6), and @7) into the above
equation, the result follows.
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