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SCANN: Synthesis of Compact and Accurate
Neural Networks

Shayan Hassantabar, Zeyu Wang, and Niraj K. Jha, Fellow, IEEE

Abstract—Deep neural networks (DNNs) have become the driving force behind recent artificial intelligence (AI) research. With the help
of a vast amount of training data, neural networks can perform better than traditional machine learning algorithms in many applications.
An important problem with implementing a neural network is the design of its architecture. Typically, such an architecture is obtained
manually by exploring its hyperparameter space and kept fixed during training. This approach is both time-consuming and inefficient.
Another issue is that modern neural networks often contain millions of parameters, whereas many applications require small inference
models due to imposed resource constraints, such as energy constraints on battery-operated devices. However, efforts to migrate DNNs
to such devices typically entail a significant loss of classification accuracy. To address these challenges, we propose a two-step neural
network synthesis methodology, called DR+SCANN, that combines two complementary approaches to design compact and accurate
DNNs. At the core of our framework is the SCANN methodology that uses three basic architecture-changing operations, namely
connection growth, neuron growth, and connection pruning, to synthesize feed-forward architectures with arbitrary structure. These neural
networks are not limited to the multilayer perceptron structure. SCANN encapsulates three synthesis methodologies that apply a repeated
grow-and-prune paradigm to three architectural starting points. DR+SCANN combines the SCANN methodology with dataset
dimensionality reduction to alleviate the curse of dimensionality. We demonstrate the efficacy of SCANN and DR+SCANN on various
image and non-image datasets. We evaluate SCANN on MNIST and ImageNet benchmarks. Without any loss in accuracy, SCANN
generates a 46.3× smaller network than the LeNet-5 Caffe model. We also compare SCANN-synthesized networks with a state-of-the-art
fully-connected feed-forward model for MNIST, and show 20× (19.9×) reduction in number of parameters (floating-point operations) with
little drop in accuracy. On the ImageNet dataset, for the VGG-16 and MobileNetV2 architectures, we reduce the network parameters by
8.0× and 1.3× with a similar performance or improvement over their respective baselines. We also evaluate the efficacy of using
dimensionality reduction alongside SCANN (DR+SCANN) on nine small to medium-size datasets. Using this methodology enables us to
reduce the number of connections in the network by up to 5078.7× (geometric mean: 82.1×), with little to no drop in accuracy. We also
show that our synthesis methodology yields neural networks that are much better at navigating the accuracy vs. energy efficiency space.
This would enable neural network-based inference even on Internet-of-Things sensors.

Index Terms—Architecture synthesis; compact network; compression; dimensionality reduction; energy efficiency; neural network.
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1 INTRODUCTION

A RTIFICIAL neural networks have a long history, dating
back to 1950’s. However, interest in neural networks

has waxed and waned over the years. The recent spurt in
interest in deep neural networks (DNNs) is due to large
datasets becoming available, enabling them to be trained
to high accuracy. This trend is due to a significant increase
in computing power that speeds up the training process.
DNNs demonstrate very high classification accuracies for
many applications of interest, e.g., image recognition, speech
recognition, and machine translation. They have become
deeper, with tens to hundreds of layers. Thus, the phrase
‘deep learning’ is often associated with such DNNs. Deep
learning refers to the ability of DNNs to learn hierarchically,
with complex features built upon simple ones.

The DNN architecture trained on a specific dataset has
a great impact on the final performance of the model.
For example, Table 1 compares several well-known DNNs
designed for the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2012-2016 [1]. We show the architectures
in terms of the number of parameters in the network
(#params) and floating-point operations (FLOPs), as well

This work was supported by IP Group and NSF Grant No. CNS-1617640 and
CNS-1907381. Shayan Hassantabar, Zeyu Wang, and Niraj K. Jha are with
the Department of Electrical Engineering, Princeton University, Princeton, NJ,
08544 USA, e-mail:{seyedh, zeyuwang,jha}@princeton.edu.

TABLE 1
Comparison of different classification models on ImageNet

Architecture Top-5 accuracy #Params FLOPs

AlexNet [2] 84.7% 62M 1.5B
VGG-16 [3] 92.3% 138M 30.9B
Inception [4] 93.3% 6.4M 2B
ResNet-152 [5] 95.5% 60.3M 11B
MobileNetV2 [6] 91.0% 3.5M 300M

as their performance on this task, i.e., the top-5 accuracy.
Although all these well-known DNN architectures were
obtained using the same training dataset and the same back-
propagation (BP) algorithm for training weights, due to their
architectural differences, their performance is vastly different
in terms of classification accuracy, computational costs, and
memory requirements.

Though critically important, how to derive an appropriate
DNN architecture for small, medium, and large datasets has
remained a vexing problem. Since the DNN architecture
directly influences the learned representations and thus the
performance of the model, this is an important challenge
in deploying DNNs in practice and using their knowledge
distillation power in various applications, such as smart
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healthcare [7], [8]. Typically, it takes researchers a huge
amount of time through much trial-and-error to find a good
architecture because the search space is exponentially large
with respect to many of its hyperparameters. Furthermore,
these architectures need to be trained on large datasets. This
approach suffers from four major problems:

• Fixed network architecture: These methods use the BP
algorithm to train the weights, and not to optimize the
architecture. This means that the DNN architecture,
including the depth and connections of the network,
is kept fixed during the training process. This does
not lead to better DNN architectures.

• Lengthy search process: Searching for an accurate DNN
architecture through trial and error is inefficient. This
problem is exacerbated when the DNN becomes
larger. Each trial can easily take tens of hours on
fast graphical processing units (GPUs). In addition,
it takes months to design more efficient architectures
for certain tasks, such as the architectures shown in
Table 1 for image classification.

• Architectural redundancy: Most DNNs suffer from
substantial storage and computation redundancy [9].
For example, Dai et al. [10] show that the number
of parameters and the FLOPs of ResNet-50 can be
reduced by 4.1× and 2.1×, respectively, without loss
of accuracy.

• Need for large datasets: Collecting a large number
of data instances and manually labeling them is a
costly process, especially in domains where experts
are needed to label the data instances, such as data
collected for healthcare [11]. Using synthetic data
generated from the same distribution as the real data,
however, can reduce the need for large datasets [12].

As the number of features, i.e., dimension, of the dataset
increases, in order to generalize accurately, we need expo-
nentially more data. This is another challenge that is referred
to as the curse of dimensionality. Hence, one way to reduce the
need for large amounts of data is to reduce the dimensionality
of the dataset. In addition, with the same amount of data,
by reducing the number of features, the accuracy of the
inference model may also improve to a degree. However,
beyond a certain point, which is dataset-dependent, reducing
the number of features may lead to loss of information, which
may lead to inferior classification results.

To address the above problems, we propose a new
DNN synthesis tool called DR+SCANN that combines two
different approaches to synthesize very compact, yet accurate,
DNNs. DR+SCANN starts the DNN synthesis from a seed
DNN architecture. We refer to this architecture as the baseline
model. The baseline model can be chosen from among the
well-known architectures for certain datasets, e.g., ImageNet,
or a well-performing fully-connected (FC) architecture. First,
we use dimensionality reduction (DR) methods for the
non-image datasets to reduce their feature size. This helps
with network compression while improving its classification
accuracy.

The second step of our methodology is its main part,
called SCANN. SCANN starts DNN synthesis with a seed
architecture. It uses three architecture-changing operations
in multiple iterations to synthesize accurate and compact

models. It focuses on the FC layers of the architecture and
allows DNNs to grow connections and neurons based on the
gradient information so that the model can be adapted to the
task at hand. SCANN uses two different operations for net-
work growth, namely connection growth and neuron growth.
Then, SCANN prunes away insignificant connections in the
architecture based on the magnitude information. Unlike
previous grow-and-prune synthesis approaches [10], SCANN
does not limit the architecture to the multi-layer perceptron
(MLP) structure. By allowing any neuron to connect to
any other neuron in the DNN architecture, SCANN allows
skipped connections in the network. In addition, although
previous grow-and-prune synthesis approaches allow the
weights and connections to be learned during the training
process, they do not allow a change in the number of
artchitecture layers during training. SCANN removes this
limitation, allowing it to derive better architectures.

We use SCANN and DR+SCANN to synthesize various
compact DNNs for small, medium, and large datasets.
We used the SCANN methodology to generate compact
DNNs for MNIST [13] and ImageNet [1] datasets. We
use DR+SCANN to generate compact DNNs for several
non-image datasets. As we show later, DR+SCANN leads
to drastic reductions in the number of parameters and
computational cost of the model relative to the FC DNN
baselines while also improving classification performance.

The major contributions of this work can be summarized
as follows:

• We present SCANN, a grow-and-prune synthesis
methodology, that yields compact and accurate feed-
forward neural networks for datasets spanning small
to large sizes. SCANN addresses a limitation of prior
work that fixes the number of layers in the architecture
prior to the training process.

• We use DR methods to mitigate the curse of di-
mensionality and improve the performance while
compressing the network architecture.

• We propose a two-step DNN synthesis process,
DR+SCANN, that combines DR with SCANN to learn
very compact and accurate neural network models.

• We evaluate the performance of SCANN on MNIST
and ImageNet datasets with various seed architec-
tures. SCANN targets the FC layers of image-based
architectures since these layers contain a large fraction
of all parameters.

• We evaluate the performance of DR+SCANN on
nine small to medium datasets and demonstrate
1.2× to 5078.7× compression in network parameters
with little to no drop in accuracy. We demonstrate
that DR+SCANN yields DNNs that are very energy-
efficient, while offering a similar accuracy to other
methods. This opens the door for such DNNs to even
be used in Internet-of-Things (IoT) sensors.

The rest of the article is organized as follows. Section
2 describes related work. Section 3 describes the SCANN
and DR+SCANN synthesis methodologies in detail. Section
4 provides results of our evaluations. Section 5 provides a
short discussion. Finally, Section 6 concludes the article.
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2 RELATED WORK

In this section, we review some of the previous work in two
related areas: DR and automatic architecture synthesis.

2.1 Dimensionality Reduction

The high dimensionality of many datasets used in various
applications of machine learning leads to the curse of dimen-
sionality problem. Therefore, researchers have explored DR
methods to improve the performance of machine learning
models by decreasing the number of features. Traditional
DR methods include Principal Component Analysis (PCA),
Kernel PCA, Factor Analysis (FA), Independent Component
Analysis (ICA), as well as Spectral Embedding methods.
Some graph-based methods include Isomap [14] and Max-
imum Variance Unfolding [15]. FeatureNet [16] uses com-
munity detection in small sample size datasets to map high-
dimensional data to lower dimensions. Other DR methods
include stochastic proximity embedding, linear discriminant
analysis , and t-distributed stochastic neighbor embedding
[17]. A detailed survey of DR methods can be found in [18].

2.2 Automatic Architecture Synthesis

There are three different categories of automatic architecture
synthesis methods that have been proposed by researchers:
evolutionary algorithm, reinforcement learning algorithm,
and structure adaptation algorithm.

2.2.1 Reinforcement Learning Algorithm

In a recent trend, reinforcement learning (RL) has been
used to search for architectures in an automated flow
[19]. This approach is known as neural architecture search
(NAS). A typical NAS framework uses a controller based on
recurrent neural networks to iteratively generate candidate
architectures in the search process. Based on the performance
of the candidate architectures, the RL controller gets updated
in the next iteration. Zoph and Le [19] use a recurrent neural
network as a controller to generate a string that specifies
the network architecture. They use the performance of the
generated network on a validation set as the reward signal
to compute the policy gradient and update the controller.
NASNet [20] yields a new search space that is transferable. It
uses RL to find the best convolutional layers on the CIFAR-10
dataset and then uses these layers for the ImageNet dataset
by stacking multiple copies each with its own parameters.
RL-based approaches can also be used to design efficient
DNN architectures for mobile platforms. MNasNet [21]
uses this approach to achieve top-1 accuracy of 75.2%
on the ImageNet classification task with very low latency
on the mobile platforms. Although RL-based architecture
search approaches have been successful, this process remains
computationally intensive.

2.2.2 Evolutionary Algorithm

The use of an evolutionary algorithm to select a DNN
architecture dates back to 1989 [22]. One of the seminal
works in neuroevolution is the NEAT algorithm [23], which
uses direct encoding of every neuron and connection to
simultaneously evolve the network architecture and weights

through weight mutation, connection mutation, node mu-
tation, and crossover. Recent years have seen extensions of
the evolutionary algorithm to generate convolutional neural
networks (CNNs). For example, Xie and Yuille [24] use a
concise binary representation of network connections and
demonstrate a comparable classification accuracy to previous
human-designed architectures. It is also beneficial to com-
bine efficient evolutionary search with various performance
predictors to optimize architectural hyperparameters [25],
[26]. FBNetV3 [27] adds the training recipe (i.e., training
hyperparameters) to the evolutionary search process. As a
result, the search process can find higher accuracy-recipe
combinations.

2.2.3 Structure Adaptation Algorithm
Several previous works achieve compact and accurate neural
networks through structure adaptation algorithms. One such
method is network pruning, which has been used in several
works [10], [28]–[30]. Structure adaptation algorithms can be
constructive or destructive. Constructive algorithms start
with a small neural network and grow it into a larger
more accurate neural network. Destructive algorithms start
with a large neural network and prune connections and
neurons to get rid of redundancy while maintaining accuracy.
NeST [10] is a network synthesis tool that combines both
the constructive and destructive approaches in a grow-
and-prune synthesis paradigm. However, its limitation is
that both growth and pruning are performed at a specific
DNN layer. Thus, network depth cannot be adjusted and
is fixed throughout training. In the next section, we show
this problem can be solved by synthesizing a general feed-
forward network instead of an MLP architecture, allowing
the DNN depth to be learned dynamically during the training
process.

Several works have also proposed more efficient building
blocks for CNN architectures [6], [31], [32]. They result
in compact networks, with much fewer parameters, while
maintaining or improving performance. Platform-aware
search for an optimized DNN architecture has also been
used in this area. Yin et al. [33] combine the grow-prune
synthesis methodology with hardware-guided training to
achieve compact long short-term memory cells.

Orthogonal to the above works, quantization has also
been used to reduce computations in a network with little to
no accuracy drop [34].

3 METHODOLOGY

In this section, we describe various parts of the proposed
DNN synthesis methodology. First, we give an overview of
our two-step DNN synthesis approach. Then, we discuss the
SCANN synthesis methodology to learn both the weights
and an efficient DNN architecture. We then explain our DR
pre-processing step to not only reduce the number of features,
but to improve the classification accuracy as well.

3.1 Framework Overview

Our DNN synthesis methodology covers both non-image and
image datasets. For the non-image datasets, we use a two-
step sequential method, which we refer to as DR+SCANN.
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We illustrate the block diagram of DR+SCANN framework
in Fig. 1. For the image dataset, we use just the SCANN
DNN synthesis framework, as shown in Fig. 2. In the DR
step, we first modify the dataset by conducting dataset
normalization and performing DR on dataset features. DR
is aimed at alleviating the curse of dimensionality and
increasing classification accuracy. As a result, we also obtain
a smaller DNN architecture.

For the non-image datasets, we compare the DNN models
designed by the DR+SCANN methodology with FC baselines
obtained by training various DNNs (with different numbers
of layers and different numbers of neurons per layer) and
verifying their performance on the validation set. The DR
step chooses the best DR method and feature compression
ratio for each dataset. We also demonstrate that we can
use a smaller FC baseline architecture and still improve
its classification accuracy when the number of features is
reduced. The process of neural network compression with
DR is explained in Section 3.2.

For the image datasets, MNIST and ImageNet in our
experiments, we use well-known DNN models as the seed
architectures. We use the SCANN synthesis methodology
for designing efficient DNNs. SCANN combines gradient
information to grow connections, activation information
to grow neurons, and magnitude information to prune
insignificant connections in the FC layers of the network.
By allowing skipped connection between neurons in the
architecture, SCANN addresses the limitation of prior work
that requires the DNN depth to be fixed prior to the training
phase. These architecture-changing operations are used in
three different training schemes. This process is explained in
Section 3.3.

3.2 Dimensionality reduction
In this step, we first normalize the data. Data normalization
generally leads to higher accuracy and better noise tolerance.
We use range normalization for this purpose.

xnormalized =
x−min(x)

max(x)−min(x)

This scales each input data instance into the [0,1] range. Next,
we use DR to reduce the number of features in the dataset.
An N × d-dimensional dataset is mapped onto an N × k-
dimensional space, k < d, using various DR methods. We
explore nine such methods, including four random projection
(RP) methods.

Dimensionality reduction with RP is based on the
Johnson-Lindenstrauss lemma [35], [36]. The essence of this
lemma is that sufficiently high-dimensionality data points
can be projected onto a suitable lower dimension, while
approximately maintaining inter-point distances. More pre-
cisely, this lemma shows that the distance between the points
changes only by a factor of (1± ε), when they are randomly
projected onto the subspace of O(log d

ε2 ) dimensions, for any
0 < ε < 1.

RP uses a projection matrix to compute the features in
the lower dimension. The RP matrix Φ can be generated in
several ways. Here, we discuss four RP matrices that we
used in our implementation. One approach is to generate Φ
using a Gaussian distribution. In this case, the entries φi,j are

i.i.d. samples drawn from a Gaussian distribution N (0, 1k ).
Another RP matrix can be obtained by sampling entries from
N (0, 1). These entries are shown below.

φ1ij ∼ N (0,
1

k
) φ2ij ∼ N (0, 1)

Achlioptas [37] proposed several other sparse RP matrices.
Two of these proposals are as follows, where entries φij ’s are
independent random variables that are drawn based on the
following probability distributions:

φ3ij =

{
+1 with probability 1

2

−1 with probability 1
2

φ4ij =

√
3

k


1 with probability 1

6

0 with probability 2
3

−1 with probability 1
6

The other DR methods that we use are PCA, FA, Isomap,
ICA, and Spectral Embedding. Implementations of these
methods are obtained from the Scikit-learn machine learning
library [38].

DR maps the dataset into a vector space of lower
dimension. As the number of features reduces, the number
of neurons in the input layer of the neural network decreases
accordingly. However, since the dataset dimension is reduced,
one might expect the task of classification to become easier.
This means that we may be able to use a smaller DNN
architecture, in general. We show that we can indeed reduce
the number of neurons in all layers, not just the input layer.
In fact, we show that we can use a DNN architecture with
the number of neurons in each layer reduced by the same
feature compression ratio obtained in the DR step, except for the
output layer. We use this ratio to show that DR can increase
classification accuracy while enabling the use of a smaller
DNN architecture. Fig. 3 shows an example of the process of
reducing the number of neurons in the architecture. We refer
to this model as the DR model.

Algorithm 1 summarizes the process of dataset DR and
architecture compression. We obtain the reduced-dimension
dataset for all the DR methods and various feature com-
pression ratios. Dimensionality reduction methods perform
differently on various datasets. We also use early stopping
to terminate DR methods that do not perform well on
the validation set. Furthermore, we stop reducing the DR
compression ratio when the performance drops significantly.
As we reduce the number of features, we reduce the number
of neurons in each layer of the initial architecture with
the same ratio. Note that the number of neurons in each
layer could be reduced using different ratios. However,
the combinatorial explosion of choices makes navigation
of this larger search space computationally prohibitive. We
show later that uniform reduction across layers works very
well in practice. Then, we train the new architecture using
the reduced-dimension training set and evaluate it on the
reduced-dimension validation set. Finally, we select the
architecture with the highest validation accuracy and record
its test accuracy. The output of this algorithm is the best
performing architecture Â (on the validation dataset), its
corresponding test accuracy, and the corresponding reduced-
dimension dataset.
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Non-image  
data FC baseline DR method

DR compression 
ratio

Dimensionality reduction

Processed 
data

Architecture
compression 

Connection growth

Neuron growth

Connection pruning

Network changing 
operations

SCANN training schemes

Scheme A: 
Constructive approach

Scheme B: 
Destructive approach

Scheme C: 
MLP-based destructive 
approach

DNN 1
(DR)

DNN 2
(DR+SCANN)

Fig. 1. Block diagram of DR+SCANN. DR enables a smaller dataset to be used to synthesize the DNN 1 architecture and the DR+SCANN architecture
using SCANN. The SCANN step uses three architecture-changing operations in three different training schemes and uses the reduced-dimension
dataset.

Image
data

Connection growth

Neuron growth

Connection pruning

Network changing 
operations

SCANN training schemes

Scheme A: 
Constructive approach

Scheme B: 
Destructive approach

Scheme C: 
MLP-based destructive 
approach

DNN
(SCANN)

Seed 
architecture

Fig. 2. Block diagram of SCANN. SCANN uses three different architecture
changing operation in its three training schemes to change the baseline
seed architecture and synthesize compact architectures.

3.3 SCANN Synthesis Methodology

Next, we explain the SCANN methodology that leverages
both destructive and constructive architecture synthesis
approaches through a grow-and-prune synthesis paradigm.
As a result, the synthesis cost of this process is significantly
reduced compared to RL-based approaches. SCANN can also
be used in conjunction with the DR process, as explained in
Section 3.2. DR+SCANN works on the reduced-dimension
dataset whereas SCANN works on the original dataset.

We first propose a technique to address the limitation
of prior work that requires the number of layers of DNN
architecture to be fixed prior to the training process. Then, we
introduce three basic architecture-changing techniques that

Compression 
ratio = 2

Fig. 3. Compressing the neural network by a 2× compression ratio: the
number of neurons in each layer, except the last layer, is reduced by a
factor of 2.

enable the synthesis of an optimized feed-forward network
architecture. Finally, we describe three training Schemes,
A, B, and C, that can be used to learn the weights and
connections in the network during the training process.
Each of these training schemes uses a different approach
to synthesizing efficient DNN architectures. Scheme A is a
constructive approach that starts from a small network and
iteratively grows the network to a larger one. On the other
hand, Schemes B and C are based on destructive synthesis
that starts from a larger network and iteratively prunes the
architecture to a smaller one.

3.4 Depth Change
To address the problem of having to fix the depth of the DNN
(number of layers in the architecture) prior to the training
process, we adopt a general feed-forward architecture instead
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Algorithm 1 Dimensionality reduction process
Input: Original dataset (training, validation, and test set) of

size N with d features, initial network architecture Ainit,
with m layers of |L1|, |L2|, . . . , |Lm| neurons

Output: Reduced-dimension dataset X̃ , compressed archi-
tecture Â, and test accuracy

1: Dataset min-max normalization
2: for all DR methods do
3: for all feature compression ratios do
4: Reduce the dataset dimension using the DR method

to get X̃train, X̃validation, and X̃test

5: for i = 1 : m− 1 do
6: |L̂i| = b |Li|

feature compression ratioc
7: Train the new architecture Â with (X̃train, ytrain)
8: Evaluate the trained architecture Â on

(X̃validation, yvalidation)
9: Save the trained architecture with the highest

validation accuracy
10: end for
11: end for
12: end for
13: testAcc = Accuracy of the trained architecture Â on

(X̃test, ytest)
14: return X̃ , Â, and testAcc

of an MLP structure. Specifically, in this setting, depth is
determined by how hidden neurons are connected and thus
can be changed through the rewiring of hidden neurons. As
shown in Fig. 4, depending on how the hidden neurons are
connected, they can form one, two, or three hidden layers. In
addition, by allowing skipped connections in the architecture,
we address the limitation of MLP structures in learning the
architecture during the training process.

(a) (b) (c)

Fig. 4. Connection pattern determines network depth. Only hidden
neurons are shown. (a) One hidden layer, (b) two hidden layers, and (c)
three hidden layers.

3.5 SCANN: Overall Workflow

The overall workflow for architecture synthesis is shown in
Algorithm 2. The synthesis process iteratively alternates be-
tween architecture change and weight training. Thus, the net-
work architecture evolves along the way. The growth phase
uses gradient information to gradually grow connections and
activation information to grow neurons, in order to achieve
the desired accuracy. In the pruning phase, the magnitude
information is used to remove the redundant connections.

Va
lid

at
io

n 
ac

cu
ra

cy

Epochs

Fig. 5. The impact of iterative grow-and-prune process on recovering the
lost accuracy.

After a specified number of iterations, the checkpoint that
achieves the best performance on the validation set is output
as the final network.

Next, we first elaborate on the three basic architecture-
changing operations and then introduce three different
training schemes based on how the architectures evolve.
The process of applying architecture-changing operations in
the flow of Algorithm 2 differs in each training scheme. In
general, we found that using iterative growth-and-pruning
enables both higher accuracies and compression ratios. Fig. 5
shows the accuracy versus training epochs when applying
SCANN to the MobileNetV2 architecture for the ImageNet
dataset. As can be seen, pruning leads to a drop in accuracy
after the growth operation. However, applying growth and
pruning over multiple iterations enables the architecture to
recover from the loss in performance.

Algorithm 2 Automatic architecture synthesis
Input: Initial network architecture Ainit, weights Winit, and

maximum number of iterations Imax

while maximum iterations Imax not reached do
(a) Perform one of the three basic architecture-changing
operations (different in various schemes)
(b) Train weights of the network and test its perfor-
mance on the validation set

end while
Output: Final network architecture Afinal and associated

weights Wfinal that achieve the best performance on the
validation set

3.6 Basic Architecture-changing Operations
Three basic operations, connection growth, neuron growth,
and connection pruning, are used to evolve a feed-forward
network architecture through multiple iterations. Fig. 6
shows a simple example in which an MLP architecture
with one hidden layer evolves into a non-MLP architecture
with two hidden layers, with a sequence of basic operations
mentioned above.
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Fig. 6. An MLP architecture with one hidden layer evolves into a non-MLP architecture with two hidden layers through a sequence of neuron growth,
connection growth, and connection pruning.

Next, we describe these three operations. We denote the
ith hidden neuron as ni, its activity as xi, and its preactivity
as ui, where xi = f(ui) and f is the nonlinear activation
function. We denote the depth of ni by Di and the loss
function by L. Finally, we denote the connection between ni
and nj , where Di < Dj , as wij . In our implementation,
we use a mask-based approach to ignore the dormant
connections.

3.6.1 Connection Growth
The connection growth algorithm greedily adds connections
between neurons that are unconnected. The initial weights
of all newly added connections are set to 0. Depending on
how connections are added, we use two different methods,
as shown in Algorithm 3.

• Gradient-based growth: Gradient-based growth was
proposed by Dai et al. [10]. It adds connections
that tend to reduce the loss function L significantly.
Suppose two neurons ni and nj are not connected
and Di ≤ Dj , then gradient-based growth adds a
new connection wij if

∣∣∣ ∂L∂uj
xi

∣∣∣ is large. We evaluate
the |∂L/∂w| for all the dormant connections w and
activate the ones with the largest values. This is done
based on a large data batch B. We use a predefined
threshold to activate the dormant neurons. This
threshold can be chosen based on a certain percentage
of elements in the computed gradient matrix.
The intuition behind this approach is the Hebbian
theory that states ”neurons that wire together fire

together” [39]. The connections activated based on
this theory would have a strong correlation between
presynaptic and postsynaptic cells. Therefore, this
translates to the large

∣∣∣ ∂L∂uj
xi

∣∣∣ values.
• Full growth: Full growth restores all possible connec-

tions to the network.

Algorithm 3 Connection growth algorithm
Input: Network N , weight matrix W , mask matrix C, data

batch B, threshold t
if full growth then

set all elements in C to 1
else if gradient-based growth then

forward propagation through N using data B and
then back propagation
compute gij =

∣∣∣ ∂L∂uj
xi

∣∣∣
For gij > t, set cij = 1, wij = 0

end if
Output: Modified weight matrix W and mask matrix C

3.6.2 Neuron Growth
Neuron growth adds new neurons to the network, thus
gradually increases the network size. Algorithm 4 shows
the process of neuron growth. By drawing an analogy from
biological cell division, neuron growth can be achieved by
duplicating an existing neuron. To do this, we process a
large batch of data through the network and compute the
activation value of the neurons in the architecture. We choose
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the neurons with the highest activation values for duplication.
To break the symmetry, random noise is added to the weights
of all the connections related to this newly added neuron.

Algorithm 4 Neuron growth algorithm
Input: Network N , weight matrix W , mask matrix C, data

batch B, a candidate neuron nj to be added in
forward propagation through N using data B
i = argmax ui
cj· = ci·, c·j = c·i
wj· = wi· + noise, w·j = w·i + noise

Output: Modified weight matrix W and mask matrix C

3.6.3 Connection Pruning
Connection pruning disconnects previously connected neu-
rons and reduces the number of network parameters. If all
connections associated with a neuron are pruned, then the
neuron is removed from the network. We adopt a widely-
used method [10], [28] to prune connections with small
magnitude, as shown in Algorithm 5. The rationale behind it
is that since small weights have a relatively small influence
on the network, DNN performance can be restored through
retraining after pruning.

Algorithm 5 Connection pruning algorithm
Input: Weight matrix W , mask matrix C , threshold t

for all wij do
if |wij | < t then
cij = 0

end if
end for

Output: Modified weight matrix W and mask matrix C

3.7 Training Schemes

In practice, depending on how the initial network architec-
ture Ainit and basic operations in Step (a) of Algorithm 2 are
chosen, we adopt three training schemes in our experiments,
as explained next. These training schemes enable us to
synthesize different architectures with various structures,
and yield compact and accurate models for each dataset.

3.7.1 Scheme A
Scheme A is a constructive approach, where we start with
a tiny network, and gradually increase the network size.
This can be achieved by performing connection and neuron
growth more often than connection pruning or carefully
selecting the growth and pruning rates, such that each
growth operation grows a large number of connections
and neurons, while each pruning operation prunes a small
number of connections.

To implement this scheme, we specify the initial number
of hidden neurons (the minimum number of hidden neurons)
in the architecture, as well as the maximum allowed number
of hidden neurons in the final model. This scheme starts
from the initial small number of hidden neurons, and applies
connection growth, neuron growth, and connection pruning
in this order. The neuron growth phase each time adds a

certain number of neurons to the architecture (e.g., 5 or 10
neurons). In the connection growth process, we use gradient-
based growth to add a certain percentile top connections
(e.g. top 80%) to the network. Connection pruning is used to
prune the network after each growth phase.

3.7.2 Scheme B
Scheme B is a destructive approach, where we start with a
large network and make the network smaller by iteratively
pruning connections. One approach for accomplishing this
[10], [28] is based on iteratively pruning a small number of
connections and then training the weights. This gradually
reduces the network size and finally results in a small
network after many iterations. We use a different method in
Scheme B. Rather than pruning the network gradually, we
prune the network aggressively to a tiny size. However, to
recover the performance, we repeatedly prune the network
and then grow the network back, rather than just perform
gradual pruning and retraining.

To implement this scheme, we start with a network
architecture with a large number of hidden neurons. We
consider the initial point as the maximum allowed number
of hidden neurons in the architecture. We apply iterative
gradient-based connection growth and magnitude-based
connection pruning to train both the architecture and weights.
For the connection growth process, we use the gradient-based
growth to add a certain top percentile (e.g., 70% to 90%)
connections to the network. Subsequently, we use aggressive
connection pruning to reduce the number of connections
drastically. In addition, we train the architecture for 10 to 20
epochs after applying each architecture-changing operation.
We perform these operations for several (5-10) iterations.

3.7.3 Scheme C
Similar to Scheme B, Scheme C is also a destructive approach.
The main difference is the use of MLP architectures in Scheme
C. This can be achieved by adjusting the connection growth
algorithm to only allow connections between adjacent layers
and not allow skipped connections. Scheme C can be viewed
as an iterative version of the dense-sparse-dense technique
proposed in [40].

To implement Scheme C, we start with an FC MLP
architecture and apply connection pruning to drastically
reduce the number of connections in the network. Then, in
several iterations, we apply full growth to recover all the
connections in the network, followed by connection pruning
to reduce network size.

Fig. 7 shows examples of the initial and final architectures
for each scheme. Both Schemes A and B evolve general feed-
forward architectures, thus allowing network depth to be
learned during training. Scheme C evolves an MLP structure,
thus keeping the number of layers fixed.

4 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of DR+SCANN
and SCANN on nine small to medium size datasets, as
well as on MNIST and ImageNet datasets. Table 2 shows
the characteristics of the nine datasets. For such non-image
datasets, we compare our synthesized DNN model with the
FC DNN architecture that performs the best on the validation
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(a)

(b)

(c)

Fig. 7. Illustration of the three training schemes. Shown are examples
of initial and final architectures: (a) Scheme A, (b) Scheme B, and (c)
Scheme C.

set. For the MNIST and ImageNet datasets, we compare our
synthesized models with various well-known benchmark
architectures.

The evaluation results are divided into two parts. Section
4.1 discusses results obtained by SCANN when applied
to image datasets: MNIST and ImageNet. As we will see,
SCANN generates neural networks with similar classification
accuracy relative to well-known architectures, but with much
fewer parameters and FLOPs.

In Section 4.2, we present experimental resuls for DR,
SCANN, and DR+SCANN methodologies, on nine non-
image datasets. We demonstrate that the DNNs generated
by SCANN and DR+SCANN are very compact and energy-
efficient while maintaining performance. These results open
up opportunities to use SCANN-generated DNNs in energy-
constrained edge devices and IoT sensors.

4.1 Experiments with MNIST and ImageNet

MNIST is a well-studied dataset of handwritten digits. It
contains 60000 training images and 10000 test images. We set
aside 10000 images from the training set as the validation
set. We first target the Lenet-5 Caffe model [13]. The LeNet-5
Caffe model contains two convolutional layers with 20 and
50 filters, and also one FC hidden layer with 500 neurons.

We use the stochastic gradient descent (SGD) optimizer
with a learning rate of 0.03, momentum of 0.9, and weight
decay of 1e-4. For schemes A and B, the feed-forward part
of the network is learnt by SCANN, while the convolutional
part of the architecture is kept the same. For scheme A, we
start from 300 hidden neurons in the hidden layer, and set
the maximum number of neurons to 500. At the beginning,

Fig. 8. Growth and pruning time vs. the number of hidden neurons in the
seed architecture for the MNIST dataset.

we use connection pruning to prune 95 percent of the con-
nections in the network. Subsequently, we apply connection
growth, neuron growth, and connection pruning in several
iterations. The neuron growth operation duplicates the five
neurons in the architecture with the highest activation values.
The connection growth activates 35 percent of all connections
and connection pruning prunes 25 percent of the existing
connections. In Scheme B, the best results correspond to
400 hidden neurons in the feed-forward part. We iteratively
perform a sequence of connection pruning such that 19.3K
connections are left in the architecture, and connection
growth such that 90 percent of all connections are restored.
In Scheme C, we start the feed-forward part of the network
with the FC part of the baseline architecture. We iteratively
prune the network to its final number of parameters and
then use connection growth to restore all connections.

Table 3 summarizes the results. The baseline error rate is
0.72% with 430.5K parameters. The most compressed model
generated by SCANN contains only 9.3K parameters (with
a compression ratio of 46.3× over the baseline), achieving
the same 0.72% error rate when using Scheme C. Scheme
A obtains the best error rate of 0.68%, however, with a
lower compression ratio of 2.3×. For a fair comparison, we
implement the method given in [28] on the same data split.

Next, we study the impact of the seed architecture on
GPU time (Nvidia Tesla P100) for growth and pruning
operations on the MNIST dataset. Fig. 8 demonstrates this
trend for different numbers of maximum hidden neurons
in the architecture (Scheme B was used in this case). The
growth operation is more computationally intensive than
the pruning operation. This is because while magnitude-
based pruning only needs the forward pass, gradient-based
growth needs both forward and backward passes on the
network. In addition, as the number of hidden neurons in
the architecture increases, the GPU time of both operations
increases, as expected.

We now use the feed-forward architecture proposed by
Ciresan et al. [41] as the baseline architecture for SCANN
synthesis. This architecture has six layers with 2500, 2000,
1500, 1000, 500, and 10 neurons, respectively. As shown in
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TABLE 2
Characteristics of the datasets

Dataset Training Set Validation Set Test Set Features Classes

Sensorless Drive Diagnosis 40509 9000 9000 48 11
Human Activity Recognition (HAR) 5881 1471 2947 561 6
Musk v2 4100 1000 1974 166 2
Pen-Based Recognition of Handwritten Digits 5995 1499 3498 16 10
Landsat Satellite Image 3104 1331 2000 36 6
Letter Recognition 10500 4500 5000 16 26
Epileptic Seizure Recognition 6560 1620 3320 178 2
Smartphone Human Activity Recognition 6121 153 3277 561 12
DNA 1400 600 1186 180 3

TABLE 3
Comparison of different methods on the LeNet-5 Caffe model

Methods Error rate #Params Compression ratio

Baseline 0.72% 430.5K 1.0×
Network pruning [28] 0.77% 34.5K 12.5×
Scheme A 0.68% 184.6K 2.3×
Scheme B 0.72% 19.3K 22.3×
Scheme C 0.72% 9.3K 46.3×

TABLE 4
Further comparisons on MNIST

Methods Error rate #Params FLOPs

Ciresan et al [41] 0.35% 12.0M 23.9M
Scheme C 0.37% 0.6M (20.0×) 1.2M (19.9×)

Table 4, this baseline reduces the error rate to just 0.35%
through a dramatic increase in the number of parameters to
12.0M. It represents the state-of-the-art test accuracy for an FC
DNN on the MNIST benchmark. It consumes 23.9M FLOPs.
Thus, this network is computationally intensive and has
significant memory requirements. We use this architecture
as the starting point for SCANN Scheme C. We use the
SGD optimizer with an initial learning rate of 1e-3 and
gradually decrease it to 1e-6. We use connection pruning
to remove 95 percent of the connections in the network, and
connection growth to restore all the connections. Through
iterative growth and pruning, we are able to synthesize a
much more compact architecture. We are able to reduce the
number of parameters by 20.0× and computational cost by
19.9× with only a 0.02% increase in error rate.

To demonstrate the applicability of SCANN to different
architectures and on different datasets of various sizes, we
also use SCANN to synthesize DNNs for the ImageNet
dataset [1]. Table 5 shows the results of our experiments.
For the ImageNet experiments, we use the SGD optimizer
with an initial learning rate of 0.05 and gradually decrease
it to 1e-4. The weight decay is set to 4e-5. We initialize the
grow-and-prune process with VGG-16 [3] and MobileNetV2
[6] architectures. VGG-16 consists of 13 convolutional layers,
5 max-pooling layers, and 3 FC layers. We use SCANN
to optimize the FC layers, where most of the parameters
reside, to learn the connections and weights in the training
process. VGG-16 consists of 138.4M parameters. Its FC layers
contribute to 123.6M parameters of the architecture. Thus,
reducing the number of parameters in the FC layers can

TABLE 5
Comparison of different methods on the ImageNet dataset

Methods Top-1 error rate #Params FLOPs

VGG-16 [3] 28.4% 138.4M 30.9B
Our VGG-16 26.7% 17.2M (8.0×) 30.6B

MobileNetV2 [6] 28.0% 3.4M 300M
Our MobileNetV2 28.2% 2.6M (1.3×) 298M

have a significant impact on the model size. Our best result
is obtained using SCANN Scheme B. We set the number
of hidden neurons in the architecture to 4000. Initially, we
prune 95 percent of the connections. Next, we use connection
growth to grow 30 percent of the connections, followed by
connection pruning to leave only 2.5M connections in the
feed-forward part of the architecture. As a result, SCANN
reduces the number of parameters to 17.2M for an 8.0×
reduction. In addition, SCANN reduces the top-1 error rate
by 1.7% to 26.7%. However, since most of the computational
cost of a CNN architecture is in its convolution operations,
SCANN is not able to reduce the FLOPs much.

MobileNetV2 is an architecture optimized for mobile
devices. Hence, it has reduced computational cost. Its FC
layer contains 37% of all its parameters. Keeping the rest of
the architecture fixed, we use SCANN Scheme C to optimize
the FC layer. We use connection pruning to remove 800K
connections in the FC layer. Subsequently, we use connection
growth to restore all the connections. Using iterative growth
and pruning, we can reduce the number of parameters by
1.3× at the cost of a slight 0.2% increase in the error rate.

While RL-based architecture search approaches, such
as NASNet [20], consume around 2000 GPU days for the
ImageNet dataset, SCANN requires around 20 GPU days for
optimizing the FC layers of a given architecture.
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4.2 Experiments with Other Datasets

To demonstrate the capability of SCANN and DR+SCANN
for synthesizing accurate and compact neural network
models for various non-image datasets, we experiment with
nine datasets from the UCI machine learning repository
[42] and Statlog collection [43]. Next, we present evaluation
results on these datasets.

SCANN experiments are based on the Adam optimizer
with a learning rate of 0.01 and weight decay of 1e-3.
We compare results obtained by DR+SCANN with those
obtained by only applying SCANN and also DR without
using SCANN in a secondary compression step. Table 6
shows the classification test accuracy obtained. The MLP
column shows the accuracy of the best MLP baseline found
with the help of the validation set. For all the other methods,
we present two columns, the left of which shows the highest
accuracy (H.A.) achieved whereas the right one shows the
result for the most compressed (M.C.) network. Furthermore,
in the DR columns, the DR method employed is shown
in parentheses. In the DR columns, whereas the M.C. and
H.A. columns employ the same DR method, they may use
different DR ratios. Table 7 shows the number of parameters
in the network for the corresponding columns in Table 6.

SCANN-generated networks show improved accuracy for
six of the nine datasets, as compared to the MLP baseline. The
accuracy increase is between 0.41% to 9.43%. These results
correspond to networks that are 1.2× to 42.4× smaller than
the baseline architecture. Furthermore, DR+SCANN shows
improvements on the highest classification accuracy in five
out of the nine datasets, as compared to SCANN-generated
results. In addition, SCANN yields DNNs that achieve the
baseline accuracy with fewer parameters in seven out of the
nine datasets. For these datasets, the results show a parameter
compression ratio between 1.5× to 317.4×. Moreover, as
shown in Tables 6 and 7, combining DR with SCANN
helps achieve higher compression ratios. For these seven
datasets, DR+SCANN can meet the baseline accuracy with a
28.0× to 5078.7× smaller network. This shows a significant
improvement over the compression ratio achievable by just
using SCANN.

We also report the performance of applying DR without
the benefit of the SCANN synthesis step. While these results
show improvements, DR+SCANN can be seen to have much
more compression power, relative to when DR and SCANN
are used separately. This points to a synergy between DR
and SCANN.

Although classification performance is of great impor-
tance, in applications where computing resources are limited,
e.g., in battery-operated devices, energy efficiency might be
a very important concern. Thus, the energy performance
of the models should also be taken into consideration in
such cases. To evaluate the energy performance, we use
the energy analysis method proposed in [44], where the
energy consumption for inference is calculated based on
the number of multiply-accumulate (MAC) and compar-
ison operations and the number of SRAM accesses. For
example, a multiplication of two matrices of size M × N
and N × K would require (M · N · K) MAC operations
and (2 ·M · N ·K) SRAM accesses. In this energy model,
a single MAC operation, SRAM access, and comparison

operation implemented in a 130nm CMOS process (which
may be an appropriate technology for many IoT sensors)
consumes 11.8 pJ , 34.6 pJ , and 6.16 fJ , respectively. Table 8
shows the energy consumption estimates per inference for
the models presented in Tables 6 and 7. Note that energy
consumption does not include dataset DR. However, some
of the DR methods, like RP, just require a single matrix-
vector multiplication. Hence, such methods do not have
much energy overhead.

As can be seen, SCANN models are significantly more
energy-efficient compared to FC baselines. In addition,
DR+SCANN can be seen to have the best overall energy
performance. Except for the Letter dataset (for which the
energy reduction is only 17 percent), the compact DNNs
generated by DR+SCANN consume one to four orders
of magnitude less energy than the baseline MLP models.
Thus, SCANN and DR+SCANN synthesis methodologies are
suitable for heavily energy-constrained devices, such as IoT
sensors.

5 DISCUSSION

The advantages of SCANN are derived from its core benefit:
the network architecture is allowed to dynamically evolve
during training. This benefit is not directly available in
several other existing automatic DNN architecture syn-
thesis techniques, such as the evolutionary and RL-based
approaches. In those methods, a new architecture, whether
generated through mutation and crossover in the evolution-
ary approach or from the controller in the RL approach,
needs to be fixed during training and trained from scratch
again when the architecture is changed. However, human
learning is incremental. Our brain gradually changes based
on the presented stimuli. For example, studies of the human
neocortex have shown that up to 40 percent of the synapses
are rewired every day [45]. Hence, from this perspective,
SCANN takes inspiration from how the human brain evolves
incrementally. SCANN’s dynamic rewiring is easily achieved
through connection growth and pruning.

Comparisons between SCANN and DR+SCANN show
that the latter results in a smaller network in nearly all
the cases. This is due to preceding SCANN with DR. By
mapping data instances into lower dimensions, it reduces
the number of neurons in each layer of the DNN, without
degrading performance. This enables SCANN to start with a
significantly smaller DNN. However, a limitation of SCANN
is that it can only evolve feed-forward networks. How to
extend SCANN to the convolutional layers in CNNs and
recurrent neural networks is the focus of our future work.

6 CONCLUSION

In this article, we proposed a synthesis methodology that can
generate compact and accurate neural networks. It solves the
problem of having to fix the depth of the network during
training that prior synthesis methods suffer from. It is able
to evolve an arbitrary feed-forward network architecture
with the help of three basic operations: connections growth,
neuron growth, and connection pruning. Furthermore, by
combining DR with SCANN synthesis, we showed signifi-
cant improvements in the network compression power of this
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TABLE 6
Test accuracy comparison

Dataset MLP DR (H.A.) DR (M.C.) SCANN (H.A.) SCANN (M.C.) DR+SCANN (H.A.) DR+SCANN (M.C.)

SenDrive 93.53% 99.07% (FA) 97.99% (FA) 97.10% 93.63% 99.34% 94.20%
HAR 95.01% 95.04% (ICA) 95.04% (ICA) 95.52% 95.52% 95.28% 95.08%
Musk 98.68% 98.83% (FA) 98.78% (FA) 99.09% 98.83% 98.08% 98.08%
Pendigits 97.22% 97.51% (Isomap) 97.39% (Isomap) 97.22% 97.22% 97.93% 97.65%
SatIm 91.30% 91.10% (PCA) 91.10% (PCA) 90.10% 90.10% 89.40% 89.40%
Letter 95.24% 94.92% (PCA) 94.92% (PCA) 92.60% 92.60% 92.70% 92.70%
Seizure 87.53% 97.50% (FA) 95.42% (FA) 96.96% 96.23% 97.62% 95.72%
SHAR 90.66% 94.44% (RP) 90.69% (RP) 93.78% 90.93% 94.84% 90.93%
DNA 94.86% 94.69% (FA) 94.69% (FA) 95.86% 95.36% 93.76% 93.76%

TABLE 7
Neural network parameter comparison

Dataset MLP DR (H.A.) DR (M.C.) SCANN (H.A.) SCANN (M.C.) DR+SCANN (H.A.) DR+SCANN (M.C.)

SenDrive 56.9k (1×) 2.6k (21.9×) 1140 (49.9×) 10.0k (5.7×) 750 (75.9×) 2.2k (25.9×) 200 (284.5×)
HAR 212.0k (1×) 108.4k (1.9×) 108.4k (1.9×) 5.0k (42.4×) 5.0k (42.4×) 1.0k (212×) 750 (282.7×)
Musk 55.8k (1×) 17.3k (3.2×) 15.5k (3.6×) 22.0k (2.5×) 20.0k (2.8×) 600 (93.0×) 600 (93.0×)
Pendigits 4.9k (1×) 780 (6.3×) 671 (7.3×) 3.2k (1.5×) 3.2k (1.5×) 400 (12.2×) 175 (28.0×)
SatIm 3.8k (1×) 1.1k (3.4×) 1.1k (3.4×) 3.2k (1.5×) 3.2k (1.5×) 1.0k (3.8×) 1.0k (3.8×)
Letter 4.4k (1×) 3.8k (1.1×) 3.8k (1.1×) 3.8k (1.1×) 3.8k (1.1×) 3.7k (1.2×) 3.7k (1.2×)
Seizure 380.9k (1×) 10.5k (36.3×) 616 (618.3×) 3.0k (127.0×) 1.2k (317.4×) 1.8k (211.6×) 75 (5078.7×)
SHAR 214.0k (1×) 127.1k (1.7×) 3.7k (57.8×) 10.0k (21.4×) 800 (267.5×) 1.0k (214.0×) 500 (428.0×)
DNA 24.6k (1×) 22.9k (1.1×) 22.9k (1.1×) 20.0k (1.2×) 200 (123.0×) 300 (82.0×) 300 (82.0×)

TABLE 8
Inference energy consumption comparison (J)

Dataset MLP DR (H.A.) DR (M.C.) SCANN (H.A.) SCANN (M.C.) DR+SCANN (H.A.) DR+SCANN (M.C.)

SenDrive 4.6e-6 2.1e-7 8.9e-8 8.1e-7 6.1e-8 1.8e-7 1.6e-8
HAR 17.2e-6 8.8e-6 8.8e-6 4.0e-7 4.0e-7 8.1e-8 6.1e-8
Musk 4.5e-6 1.4e-6 1.2e-6 1.8e-6 1.6e-6 4.9e-8 4.9e-8
Pendigits 4.0e-7 6.3e-8 5.4e-8 2.6e-7 2.6e-7 3.2e-8 1.4e-8
SatIm 3.1e-7 8.9e-8 8.9e-8 2.6e-7 2.6e-7 8.1e-8 8.1e-8
Letter 3.6e-7 3.1e-7 3.1e-7 3.1e-7 3.1e-7 3.0e-7 3.0e-7
Seizure 3.1e-5 8.5e-7 5.0e-8 2.4e-7 9.7e-8 1.4e-7 6.1e-9
SHAR 1.7e-5 1.0e-5 3.0e-7 8.1e-7 6.5e-8 8.1e-8 4.0e-8
DNA 2.0e-6 1.8e-6 1.8e-6 1.6e-6 1.6e-8 2.4e-8 2.4e-8

framework. Experiments on MNIST and ImageNet image
datasets, and several other small to medium non-image
datasets, showed that SCANN and DR+SCANN can provide
a good tradeoff between accuracy, model compression, and
energy efficiency in applications where computing resources
are limited.
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