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Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution
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The standard approach to analyzing 16S tag sequence data, which relies on clustering reads by
sequence similarity into Operational Taxonomic Units (OTUs), underexploits the accuracy of mod-
ern sequencing technology. We present a clustering-free approach to multi-sample Illumina datasets
that can identify independent bacterial subpopulations regardless of the similarity of their 16S tag
sequences. Using published data from a longitudinal time-series study of human tongue microbiota,
we are able to resolve within standard 97% similarity OTUs up to 20 distinct subpopulations, all
ecologically distinct but with 16S tags differing by as little as 1 nucleotide (99.2% similarity). A
comparative analysis of oral communities of two cohabiting individuals reveals that most such sub-
populations are shared between the two communities at 100% sequence identity, and that dynamical
similarity between subpopulations in one host is strongly predictive of dynamical similarity between
the same subpopulations in the other host. Our method can also be applied to samples collected in
cross-sectional studies and can be used with the 454 sequencing platform. We discuss how the sub-
OTU resolution of our approach can provide new insight into factors shaping community assembly.
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I Introduction

Host-associated microbial communities are known to
be of tremendous importance for host fitness, improving
nutrient uptake, training the immune system, and resist-
ing invasion by pathogens (see, for example, Brestoff &
Artis, 2013; Kamada et al., 2013; Fredricks (ed.), 2013).
Our understanding of these communities, however, re-
mains remarkably poor. The origin, maintenance, and
importance of community diversity (Fierer et al., 2011),
the factors determining community stability and re-
silience (Shade et al., 2012), and the mechanisms of com-
munity assembly (Costello et al., 2012) are only some of
the questions driving this rapidly expanding field.

Although most microorganisms cannot be cultured
in a laboratory setting, advances in genome-sequencing
technology now allow organisms to be probed in their
natural environments. In particular, the 16S rRNA
tag-sequencing approach identifies community members
using fragments of DNA from the hypervariable re-
gions of the ribosomal 16S gene. The development
of this technique and the decreasing cost of high-
throughput sequencing have prompted a large number
of tag-sequencing experiments, including such large-scale
efforts as the Human Microbiome Project or the Earth
Microbiome Project. The amount of collected data is
growing exponentially. However, our ability to interpret
this data still has important limitations.

The de facto standard approach to 16S data analy-
sis begins by clustering reads by sequence similarity into
“Operational Taxonomic Units” (OTUs); see Fig. 1A
(Quince et al., 2009; Kunin et al., 2010; Huse et al., 2010).
A variety of clustering techniques have been developed
and are widely used in popular software tools or pack-
ages (Hunt et al., 2008; Schloss et al., 2009; Edgar, 2010;

Huang et al., 2010; Edgar et al., 2011; Quince et al., 2011;
Schloss et al., 2011; Sul et al., 2011; Caporaso et al., 2012;
Zheng et al., 2012; Morgan et al., 2013; Youngblut et
al., 2013). Despite significant progress in the develop-
ment of such software, all clustering-based approaches
suffer from a major shortcoming (Prosser et al., 2007;
Hamady & Knight, 2009; Schloss & Westcott, 2011). Al-
though an OTU is a useful concept for coarse-graining se-
quencing data, its definition is not biologically motivated,
but as its name acknowledges is purely operational. Se-
quences assigned to a particular OTU are generally pre-
sumed to be close phylogenetic relatives and therefore
likely to derive from ecologically similar bacterial sub-
populations. However, the assumption that 16S sequence
similarity is a good proxy for ecological similarity is no-
toriously problematic (Prosser et al., 2007; Preheim et
al., 2013). Moreover, OTU assignments are not defini-
tive but depend on both the clustering algorithm and
the random seed chosen (Schloss & Westcott, 2011).

Several approaches have been proposed to improve
the resolution of 16S data analysis beyond the standard
97%-similarity OTUs. Denoising algorithms exploit the
predictable structure of certain error types to attempt
to reassign or eliminate noisy reads (Huse et al., 2010;
Quince et al., 2011; Rosen et al., 2012). These algorithms
are widely used for identifying low-abundance (“rare”)
species against a noisy background, often with the aim of
improving estimates of ecological diversity. These objec-
tives, however, remain very challenging due to issues that
no denoiser can fully address. Any error model is neces-
sarily approximate, and no denoising algorithm can deal
with errors that are not adequately described by its error
model; when calling low-abundance species this issue be-
comes particularly problematic. An alternative approach
termed Distribution-Based Clustering (DBC; Preheim et
al., 2013) aims to circumvent the limitations of conven-
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FIG. 1. Clustering reads by OTUs underexploits the quality of modern sequence data. A. Cartoon illustrating
OTU-based noise filtering. Due to sequencing errors, PCR errors or natural intra-strain variability, each bacterial “species”
generates a cloud of similar 16S sequences (blue circles; the radius of a circle represents the abundance of a given 16S sequence in
a sample, and spacing represents distance in sequence space). Clustering reads into OTUs by sequence similarity is a standard
approach to filter this noise. B. Heat map of the abundance, for 100 consecutive samples, of the 10 highest-abundance direct
neighbors (Hamming distance = 1) of Seq. #1, normalized for each sample to the abundance of Seq. #1 (4600 counts/day
on average). Three specific direct neighbors are strongly and consistently overrepresented and exhibit distinct dynamics. C.
Cartoon based on (B) of the expected structure of an “error cloud”. Each circle is a unique sequence, with size representing
abundance in a sample. True biological sequences (S1—S4; green circles) generate “daughter” variants due to substitution errors
(yellow circles). Black lines denote Hamming distance = 1 in sequence space.

tional denoisers by using cross-sample comparisons, i.e.
supplementing sequence information by ecological infor-
mation (distribution of abundance across multiple bio-
logical samples). However, DBC as an OTU clustering
algorithm also has important limitations: for low-count
sequences, cross-sample comparisons necessarily become
unreliable, and the execution time is prohibitively long
even for moderately-sized datasets.

Here, we build on the above methods to address a dis-
tinct question. Rather than trying to further improve the
existing approaches to OTU clustering and rare species
identification, we combine error-model based denoising
and systematic cross-sample comparisons to resolve the
fine (sub-OTU) structure of moderate-to-high abundance
community members in 16S Illumina data. Importantly,
our method does not rely on clustering similar sequences
together. In this regard, our method is similar to oligo-
typing (Eren et al., 2013), but our approach does not re-
quire manual supervision and applies to an entire commu-
nity rather than an isolated OTU. Using published data
from a longitudinal study where the tongue community
of two human individuals was sampled almost daily for
several months (Caporaso et al., 2011), we demonstrate
that sequence similarity is a very poor predictor of eco-
logical similarity, which we quantify for two bacteria as
the correlation of their abundance time traces (“dynami-
cal similarity”). Thus, most clustering-based approaches
would erroneously group together bacterial subpopula-
tions of high ecological diversity for this data set. How-
ever, a comparative analysis of the tongue communities
of the two individuals also shows that when a pair of
16S tags is observed in both individuals, the dynamical
similarity of the pair as measured independently in the
two individuals is highly correlated. This correlation falls
off substantially when sequences differing by 1 nt out of

130 are compared. In other words, the exact sequence
of the 16S tag carried by a bacterial subpopulation is
predictive of its ecology, while even 99.2% similarity be-
tween tags of different subpopulations is generally not
predictive of dynamical similarity, as defined above. Our
results lend support to the recent idea that even a purely
16S-based study can provide insight into functional relat-
edness of community members (cf. PiICRUST, Langille
et al., 2013), while also exhibiting and beginning to quan-
tify the limitations of such methods. We demonstrate the
applicability of our approach to a broad range of dataset
types (host-associated longitudinal; environmental cross-
sectional; mock community), providing examples when
highly similar sequences were found to exhibit ecologi-
cally significant distinctions. Finally, we discuss how the
single-nucleotide sub-OTU resolution of our method can
provide new insights into factors shaping community as-
sembly.

IT Materials and Methods

A Data selection and quality filtering

We used the raw data from a published long-term
longitudinal sampling from four body sites (gut: fe-
ces, right and left palm, and tongue) of one male and
one female individual (Caporaso et al., 2011). In this
study, the hypervariable region V4 of the bacterial 16S
rRNA gene was amplified and sequenced with Illumina
GA-TIx. For details on collection and sequencing see
the original reference (Caporaso et al., 2011). Quality-
filtered data published with that study is available at
MG-RAST:4457768.3-4459735.3 and is sufficient to re-



produce our results using provided analysis scripts (see
Supplementary Information (SI)). However, to investi-
gate the performance of our filtering approach at differ-
ent quality filtering settings, for this work we used the de-
multiplexed, but not quality-filtered FastQ data, kindly
provided to us by the study authors. We split this data
into per-sample FastQ files using a custom MatLab script
(Mathworks, Inc.) and subjected it to minimal qual-
ity filtering using USEARCH v.7.0.1090 (Edgar, 2010),
truncating reads at Phred quality score 2 (other thresh-
olds were also evaluated; see Fig. S4), trimming to a
fixed length of 130 nt and eliminating reads with am-
biguous characters (N). In addition, we removed reads
with expected number of base call errors exceeding 1
(maxEE parameter in USEARCH). This criterion only
eliminated 1% of trimmed reads. Notably, our approach
does not rely on assumptions about a maximum num-
ber of errors in a read. Finally, to facilitate cross-
sample comparisons, we compiled a library of all 1.4M
unique reads ever observed and a global table listing the
abundances of each sequence across samples. This was
done using dereplication capabilities of USEARCH and
a custom Perl script (mergeSeqs.pl). This script and
others referenced in bold below are freely available at
https://github.com/hepcat72/CFF. Finally, the abun-
dance table was normalized to 2.410* total reads per
sample, to correct for varying sample size.

Read quality varied across lanes, so the number of
reads after quality filtering was highest in a subset of
tongue and fecal samples. In this work, we focused pri-
marily on the tongue samples, as these come closest to
probing the internal dynamics of a community living in
a well-defined location on the body; however, the analy-
sis of fecal samples supports the same conclusions and is
presented in Fig. S11.

Tongue samples were distributed over two lanes. The
lane 6 samples from the male subject from day 65 on-
wards (314 consecutive samples covering a period of 355
days, 2.4+0.4 10* reads in quality-filtered samples before
normalization) had approximately 4-fold more reads than
those from the female subject and from days 1-64 of the
male subject (all on lane 5). Consequently, the analysis
below uses the data from the male subject from day 65
onwards, and, for the comparative analysis of the two in-
dividuals, also the 135 samples collected from the female
subject. The early samples from the male subject (days
1-64) are only used for illustrative purposes (Fig. 3D).

To demonstrate the broad applicability of our method
we also employed other published data (Figs. S7 and
S11); the data is described in the corresponding legends.

B Cluster-free filtering

Clustering can be a useful strategy to coarse-grain 16S
data while also reducing noise, but if sequencing noise
is low enough, such coarse-graining may not be neces-
sary. At low noise, each community member is predomi-

nantly represented by the same 16S sequence, surrounded
by a cloud of low-abundance error sequences with the
structure of the cloud determined by reproducible er-
ror rates. Prior work has described such error clouds
in the data (Quince et al., 2009; Edgar, 2013), and the
assumption that high-abundance sequences are likely to
be error-free is used in several rank-based denoising and
chimera-checking algorithms (SLP, Perseus, Uchime de
novo, Uparse, AbundantOTU).

The treatment of reads that are very similar to high-
abundance sequences is different across existing algo-
rithms. For example, SLP (Huse et al., 2010) would
consider any read differing by a single nucleotide from a
higher-abundance sequence (its “direct neighbor” in se-
quence space) as an error. However, some of these reads
may actually represent true community members (Pre-
heim et al., 2013). A more nuanced treatment can accept
a sequence as likely to be real if its observed abundance
is highly unlikely to have arisen in error, given some as-
sumptions about error rates. This idea is at the founda-
tion of error-model based denoising. It was used in Am-
pliconNoise (Quince et al., 2011), and its recent imple-
mentation in DADA (Rosen et al., 2012) makes DADA,
to our knowledge, the best denoiser currently available.

However, no error model is perfect, and for all de-
noisers, errors not explicitly described by their model
are labeled as true sequences. Thus a denoising algo-
rithm alone is insufficient for achieving sub-OTU reso-
lution: if two close sequences that would fall within a
single OTU are both identified as “probably real”, one of
these could still be an error. In the context of a single
sample, confidently resolving close sequences as indepen-
dently real requires a different experimental technique
(Faith et al., 2013) or a complete, high-quality reference
database of all bacteria in the sample, which in practice
is available only for mock communities.

It is possible to resolve this problem in the framework
of standard 16S experiments through a comparison of
multiple samples, either longitudinal or cross-sectional
(Preheim et al., 2013). As an example, Fig. 1B shows
the abundances of the 10 highest-abundance direct neigh-
bors of the overall top sequence of the tongue commu-
nity, Seq. #1, for a representative set of 100 consecutive
samples. We see that three specific direct neighbors are
strongly and consistently overrepresented compared to
the other neighboring sequences and, more importantly,
exhibit a dynamical behavior of their own (consider, for
example, the 3rd most abundant neighbor). This has
a clear interpretation (Fig. 1C): these three sequences
must belong to other, fairly abundant bacterial subpop-
ulations, possibly related to Seq. #1, but distinct and
with their own dynamics.

To achieve sub-OTU resolution, we adopt precisely this
strategy, namely a cross-sample correlation analysis of
individually denoised samples. Which denoiser should
we use? DADA would be an excellent option; however,
its estimated execution time on the tongue dataset used
here is 2.310° sec (see SI). This is largely due to its ex-
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act treatment of probabilities, critically important for
the processing of sequences with an abundance of just
a few counts. However, for such sequences the imperfec-
tions of the error model become non-negligible and can-
not be controlled, since cross-sample comparisons are in-
terpretable only for sequences with sufficient abundance.
We therefore designed a new, simplified denoiser. Our
algorithm, described below, takes two orders of magni-
tude less time to execute, yet for sequences of moderate
abundance considered here achieves performance equal
to DADA, as demonstrated using mock community data
(Sup. Table S2).

C Cluster-free filtering — the denoiser

For 16S data obtained using the Illumina platform,
the main sources of errors are PCR substitutions, PCR
chimeras, and substitution errors due to Illumina base
call errors. Of these, the substitution errors are respon-
sible for generating the largest number of unique se-
quences (Fig. S2; see also Edgar, 2013) and have the
most predictable structure: their rates can be estimated
directly from the data. To do so, we considered the
error clouds around the top 10 sequences by overall
abundance (in all tongue samples combined). Assum-
ing that most of these sequences are in fact errors, we
determined the rates of specific one-nucleotide substitu-
tions (errorRates.pl with z-score threshold of 2; see
SI). These inferred rates were consistent across error
clouds observed in the data (Fig. S3), with the aver-
age error rate of only 0.10% per nucleotide (Sup. Ta-
ble 1; compare with Quince et al., 2011, Table 2). We
then used these error rates to predict the expected abun-
dance of any given sequence if its presence were entirely
due to independently generated sequencing errors of its
more abundant neighbors (the “null model”; Fig. S5;
nZeros.pl). Sequences whose abundance exceeded a
threshold of 10 counts and the null-model prediction by
at least 10-fold (very conservative filtering parameters),
were marked as “candidates”; their presence cannot be
explained as an error within a substitution-only error
model (getCandidates.pl). Candidate sequences in-
clude true biological 16S sequences, but also sequences
that arose through a different type of error, most notably
PCR chimeras. Chimeric sequences were identified using
UCHIME denovo (Edgar, 2011) on the pooled data from
all samples. Most such sequences were already eliminated
by the abundance threshold requirement: if we relax the
abundance threshold to 2 (excluding singletons only),
we find that the chimeras detected by UCHIME, when
present in a sample, have abundance under 10 counts
in 95% of cases. However, chimeras of highly abundant
parents reproducibly occur at higher abundances (Haas
et al, 2011) and are filtered at this step.

Candidate sequences that remained after filtering
chimeras were labeled “real”. Our highly conservative
filtering criteria allow us to assume that this list contains

only true biological sequences, i.e. that there are no false
positives (cf. Sup. Table S2), except possibly those due
to some exceptionally frequent errors not described by
our error model (see SI). This stringency comes at the
expense of low-abundance false negatives (true biological
sequences labeled as “possible noise”). Our strategy is
to retain all sequences marked “real” in 2 or more sam-
ples (out of 507; getReals.pl). This makes our denoiser
specifically adapted to multi-sample analysis: in each
sample, only high-confidence detections are identified,
which is very fast, and then a liberal criterion applied
across samples retains all sequences that ever generated
a high-confidence detection, except sample singletons. In
particular, we stress that our detection threshold of 10
counts is not equivalent to removing all sequences with
abundance below 10; the only sequences excluded from
consideration are those than never rise to 10 counts in
the entire set of 504 tongue samples, or do so only once.
For such sequences, the measured counts are dominated
by detection and counting noise.

In the interest of speed, and to ensure the robustness of
reported sequence-abundance values with respect to the
details of the error model, we did not attempt to remap
noisy reads to their most probable source. Our approach
relies on the accuracy of measurement of relative abun-
dances of true sequences. The error remapping process
modifies sequence counts in a way that depends on the
assumptions of the error model, distorting the relative
abundance values whenever neighboring sequences are in-
correctly classified as “reals” or “errors”. In contrast, dis-
carding noisy reads leaves the relative abundances intact,
as long as the probability of making zero errors is approx-
imately constant across all sequences. This assumption
is much weaker than adopting a particular error model.
We estimate the zero-error probability at =~ 85% (see
SI); in other words, discarding noisy reads leads only to
a = 15% loss of sequencing depth. If read remapping is
desired, the analysis described below can be applied to
DADA denoiser output.

Since non-identical reads are never clustered together,
ours is a single-nucleotide resolution approach. The
complete workflow of cluster-free filtering is outlined in
Fig. S6 and detailed in the SI. The code is freely available
at https://github.com/hepcat72/CFF.

IITI Results

The starting point for our analysis is a global sequence
abundance table listing the abundances of each unique
16S sequence across samples. We retained the 307 se-
quences that passed the multi-sample filtering algorithm
described in Methods, and thus putatively belong to bac-
teria present in the population at least part of the time.
We denote these sequences by their overall abundance
rank: Seq. #1, #2, etc. In this list, 184 pairs of sequences
were direct neighbors in sequence space (Hamming dis-
tance 1). These pairs had 99.2% sequence similarity but
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FIG. 2. Sequence similarity need not imply dynamical similarity, and vice versa. Panels show sequence counts
versus observation day, for days 65-420. A. Seq. #4 and #11, despite 99.2% sequence similarity, display significant differences
in time dependence, indicating that these 16S tags belong to ecologically distinct bacterial subpopulations. B. For Seq. #6 and
#8, 99.2% sequence similarity (1nt difference) is mirrored by near perfect correlation of time series. Red trace renormalized for
best overlap. C. Seq. #23 and #28, with only 81% sequence similarity, nevertheless display near perfect correlation. Red trace
renormalized for best overlap. D. 2D histogram of dynamical similarity (Pearson correlation of abundance traces, normalized
by maximum expected correlation cmax, see text) versus distance in sequence space (nt), for all pairs of the top 200 sequences

(19900 data points).
clarity.

were resolved by our criteria as independently present
in the community. The population of bacteria sharing
the exact same sequenced fragment of the 16S gene (at
100% identity) is the smallest taxonomic unit resolvable
by 16S analysis. For notational convenience, throughout
this work we call it the “subpopulation” identified by a
sequence.

A Sequence similarity need not imply
ecological similarity, and vice versa

In the standard approach to tag-sequencing data, it
is assumed that sequence similarity of 16S hypervari-
able regions can be used as a proxy for phylogenetic,
and therefore ecological relatedness. Our new filtering
method, applied to time-series data, allows us to bypass
this assumption and assess ecological relatedness inde-
pendently, based on the similarity of time traces, since
each distinct subpopulation will respond in its own way
to variation in environmental conditions (Youngblut et
al., 2013), causing the abundance time traces to be more
or less correlated (or possibly anticorrelated; see Fig. S8).
Fig. 2A-C illustrates this by showing time traces (normal-

E. Zoom-in of D (1321 sequence pairs), showing the most similar sequences. Histogram smoothed for

ized counts versus observation day) for three examples of
sequence pairs. We find that sequences differing by as
little as 1 nucleotide (99.2% similarity) can be ecologi-
cally distinct as evidenced by their very different time
series (Fig. 2A); see also Vandewalle et al., 2012. For
comparison, Fig. 2B shows another pair of sequences,
also with 99.2% sequence similarity but whose abundance
time traces appear indistinguishable. The remarkable
correlation between these two traces provides an internal
control and demonstrates that the much lower correla-
tion of traces in Fig. 2A cannot be explained by mea-
surement error but reflects a true ecological difference.
Note that the abundances of the two sequences shown
in Fig. 2B are not equal, but occur with a highly stable
ratio. This could reflect a stable difference in abundance
of the bacteria they represent, but is more likely caused
by differential amplification efficiency of these sequences
by the PCA primers (Turnbaugh et al., 2010; Klindworth
et al., 2013) and/or a different number of genomic 16S
copies per cell (Tourova, 2003). Panels A-B show that
sequence similarity need not imply ecological similarity.
Finally, Fig. 2C illustrates that the converse is also true:
sequences exhibiting identical time-dependence may have
as little as 81% sequence identity.



To quantify the generality of these examples, it is use-
ful to define a measure of the ecological similarity of the
bacterial subpopulations represented by two sequences.
A natural candidate metric is the Pearson correlation
of the measured abundance traces. Note, however, that
the maximum correlation one can expect between the
time traces of two sequences depends on their abun-
dance: for low-abundance sequences Poisson sampling
noise becomes non-negligible and sets an upper bound
on the correlation coefficient. We therefore define the
“dynamical similarity” of two traces as the Pearson cor-
relation of their abundance, normalized by their maxi-
mum possible correlation ¢y, computed as the correla-
tion of the higher-abundance time trace with a Poisson-
downsampled version of itself (see SI). For sequence dis-
tance, we use the Hamming distance between sequences
after pairwise alignment (see SI). With these definitions,
we can present a 2D histogram of dynamical similar-
ity vs. distance in sequence space for all sequence pairs
constructed from the top 200 real sequences (Fig. 2D).
As expected, most sequence pairs exhibit no significant
dynamical similarity and are also far apart in sequence
space, but a subset of closely similar sequences appears
to display some degree of anticorrelation between the two
measures. Zooming in on this region (Fig. 2E) makes
this anticorrelation more apparent; however, even when
restricted to the subset shown in Fig. 2E, the correlation
coefficient remains weak (R = —0.3). Sequences sepa-
rated by up to 6-7 nt (95% sequence similarity) tend to
be dynamically similar, the effect increasing for smaller
distances, but this general trend is very loose and is not
a reliable predictor of similarity for any particular pair.
This result was not unexpected, and is frequently used
in arguments against over-reliance on the 16S gene se-
quence (see, for example, Prosser et al., 2007), in favor of
methods providing functional information, such as shot-
gun metagenomics. The novelty of Fig. 2E lies in the
fact that it was obtained entirely within the framework
of 16S tag sequencing methodology.

B Cluster-free filtering can resolve distinct
subpopulations with high dynamical
similarity.

As explained in the previous section, 16S tags with low
dynamical similarity clearly derive from distinct bacte-
rial subpopulations, even if the sequences are themselves
highly similar. We now consider pairs of sequences with
highly correlated time traces such as observed in Fig. 2B,
C. Such correlated pairs could derive from the same bac-
terial cells (as multiple genomic copies of the 16S gene, or
as exceptionally common PCR errors not included in our
model). Alternatively, they could derive from distinct
bacterial subpopulations that either occupy the same eco-
logical niche or engage in a strong obligate symbiosis.
Such pairs are thus of significant ecological interest, pro-
vided it can be shown that the sequences actually derive

from different bacterial cells. In this section, we demon-
strate that cross-sample correlation analysis can, in some
cases, successfully make this subtle distinction between
same-cell or different-cell sources.

To draw this distinction, we make use of the following
observation. The abundance ratio of two sequences that
derive from the same bacterium is set by some sample-
independent parameter (e.g. involving differential ampli-
fication efficiency, 16S copy number, and/or PCR error
rate); therefore, any fluctuation in their abundance ra-
tio is due to measurement noise, and must be uncorre-
lated between samples. Any statistically significant time
(or location; see SI) correlation of abundance ratio fluc-
tuations, e.g. in consecutive (or proximate) samples, is
therefore strong evidence that the two sequences are at
least partially contributed by physically distinct subpop-
ulations.

For this approach to succeed, the dynamics of individ-
ual subpopulations must be slow enough to allow corre-
lations between consecutive samples to be observed. We
therefore began by computing, for each of the top 100
sequences, the autocorrelation function ca, defined as
the correlation between abundance fluctuations in sam-
ples separated by At time points, and normalized so that
co = 1 (for simplicity, we treat samples as though they
were equally spaced in time, which is approximately cor-
rect; the mean separation between samples was 1.1 days).
The environment experienced by tongue microorganisms
changes frequently, and one might have expected that
daily sampling would probe the space of possible commu-
nity states, but provide little information about commu-
nity dynamics as these would occur on a faster time scale.
Surprisingly, we found the time dependence of most se-
quences in the top 100 to have a significant autocorrela-
tion despite the relatively low sampling rate (Fig. 3A).
Although conditions on the tongue make fast abundance
changes possible, as evidenced by the large, rapid fluc-
tuations in Fig. 2A-C, we found the correlation time for
the top 100 sequences to be surprisingly long, typically
2-4 days but often longer (Fig. 3B), sometimes exceeding
a month (Fig. S10).

These multi-day autocorrelations make it plausible
that for physically distinct subpopulations, the fluctua-
tions of their abundances relative to each other could be
slow enough to be detectable even if their ecology is sim-
ilar. Consider two sequences A and B whose abundance
time traces are highly correlated. Denote by n4(t), np(t)
the two traces renormalized to the same mean for best
overlap, as in Fig. 2B,C, and let A(¢) be their fractional
difference in a given sample (a quantity more robust to
noise than the naive abundance ratio):

nA —7NpB

A= T ap) 2

If ny p(t) reflects abundances of two distinct subpop-
ulations, then A(t) can be expected to exhibit an auto-
correlation on par with that observed for the individual
sequences. Intuitively, if on day 1, subpopulation A is,
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the autocorrelation time 7 as the time shift A¢ at which the autocorrelation function ca¢ falls below the threshold of statistical
significance as illustrated in the inset (see SI). For 19 sequences the autocorrelation time exceeds 35 days (not shown). C.
Persistence of difference Pp for all pairs of sequences from the top 100, plotted against the correlation of their abundances
(normalized by maximum expected correlation cmax. Green ellipse indicates mean and standard deviation for the null model
obtained by reversing in all pairs the time order for one of the sequences. Most pairs are consistent with the null model, except
for a broadening of the correlation coefficient distribution (mean and standard deviations indicated by the red cross). Pairs
to the right of the plot are dynamically similar (strong abundance correlation), often accompanied by high sequence similarity
(color code indicates Hamming distance between aligned sequences in the pair; see SI). Of these, a subset (bottom right) also
exhibit weak or negligible persistence of difference. These pairs, such as pair “X”, most likely correspond to genomic 16S
variants found within a single bacterium. Letters A-C identify pairs shown in Fig. 2A-C. The large persistence of difference
identifies pair B as coming from distinct bacterial cells. D. Sequence counts versus observation day for early samples of Seq. #6
and #8 (99.2% similarity), normalized as in Fig. 3B but excluded there due to relatively poor sequencing depth. The clear
separation observed prior to day 40 confirms that these two sequences are contributed at least in part by distinct bacterial
subpopulations. E. Autocorrelation functions of the relative difference A(t) for two pairs identified in (C): pair “B” (red
squares; high Pp indicative of distinct bacterial cells) and pair “X” (blue circles; low Pp indicative of 16S variants found within
a single bacterium).

say, 10% more abundant than B, and the dynamics of
both are slow, then A is likely to maintain its lead on day
2. In contrast, if the two sequences are genomic variants
contained within the same bacterium, then any difference
between n4(t) and np(t) must be due to measurement
noise, and A(¢) will be uncorrelated between samples.
We therefore introduce the persistence of difference Pp
as the 1-day autocorrelation coefficient of A(¢):

_ (A@MARE+1)
(A@? 7

where angular brackets denote averaging over time. Pp
characterizes the persistence of abundance fluctuations

Pp

of two sequences relative to each other. For sequences
arising from the same cells, Pp must vanish. Any pair
of sequences exhibiting a statistically significant Pp must
be contributed, at least in part, by two physically distinct
bacterial subpopulations. Note that the absolute abun-
dance of a sequence may change dramatically between
days (e.g. more favorable conditions can cause both sub-
populations to proliferate quickly), but the normalization
of A(t) makes Pp insensitive to such overall correlated
behavior.

Summarizing the above, we have the following expec-
tation for Pp: For a randomly chosen pair of sequences,
with insignificant dynamical similarity, Pp should be sig-



nificantly non-zero (due to the slow dynamics of the in-
dividual subpopulations; see SI), and form a unimodal
distribution consistent with the null model of unrelated
subpopulations. In contrast, pairs displaying high dy-
namical similarity come in two types, and the persistence
of difference Pp should display a bimodal distribution:
pairs of sequences found within the same bacterial cell
will have vanishing or insignificant Pp, while pairs be-
longing to distinct subpopulations will likely exhibit a
persistence of difference comparable with the null model
prediction.

This is precisely what we observe. Fig. 3C shows,
for all sequence pairs constructed from the top 100 se-
quences, a scatter plot of their persistence of difference
Pp versus dynamical similarity as defined previously
(the normalized Pearson correlation of their abundances).
The mean and standard deviations of the distribution
predicted by the null model (unrelated subpopulations)
are indicated by the green ellipse, and were computed di-
rectly from the data by reversing in all pairs the time or-
der for one of the sequences. The mean and standard de-
viations of the actual data are indicated by the red cross.
We find, as expected, that the Pp score of dynamically
dissimilar sequence pairs is unimodal and consistent with
the null-model prediction. In contrast, the Pp score of
dynamically similar pairs exhibits the predicted bimodal-
ity (right side of the plot), with a subset exhibiting weak
or negligible persistence of difference (bottom right). As
explained above, we interpret these low-Pp pairs as cor-
responding to genomic 16S variants found within a single
bacterium. Letters A-C identify pairs shown on Fig. 2A-
C. Note that the strong persistence of difference identi-
fies the pair “B” as being contributed, at least in part,
by distinct bacterial cells, despite 99.2% sequence sim-
ilarity and an almost perfect correlation of abundances
(Fig. 2B). Conversely, the low-Pp pair “C” (with only
81% sequence similarity) likely corresponds to an exam-
ple of two dissimilar 16S genes contained within a single
bacterium. Note the enrichment of pairs with high se-
quence similarity among the dynamically similar pairs,
as indicated by the color code (compare with Fig. 2D).

Remarkably, in the case of pair “B”, the conclusion
of distinct bacterial subpopulations drawn from Fig. 3C
can be confirmed directly. Panel D shows the time traces
of this pair for days 1-64 (normalization as in Fig. 2B).
Due to the relatively poor sequencing depth in these early
samples, they were not included in Fig. 2B. The clear sep-
aration observed prior to day 40 provides an independent
confirmation of our conclusion. We stress that these data
were not used in the analysis presented in Fig. 3C, but the
sensitivity of the autocorrelation method was sufficient to
identify these sequences as deriving from physically dis-
tinct cells based solely on the data shown in Fig. 2B. The
autocorrelation function of the fractional difference A(t)
for this pair is shown in Fig. 3E. We have verified that
the persistence of difference for this pair does not change
significantly if any window of 100 consecutive samples is
used instead of the full time series (data not shown).

C Clustering reads into OTUs vastly
underestimates ecological richness

Figs. 2A, S7, S10, and S11 provide examples of some
fine features that standard OTU-based methods would
fail to detect, but which become accessible with cluster-
free filtering. We now ask whether such cases are the
exception or the rule. For a given sequence similarity
threshold, we can define, for each of the most abun-
dant sequences, its would-be OTU, namely the ensemble
{S;} of all “real” sequences within the chosen similarity
threshold. We construct the time trace of the abundance
of this OTU as the sum of the abundances of all its mem-
bers. We can now ask: how representative is this time
trace of the true behavior of the member sequences? Let
{¢;} be the correlation coefficients between time traces
of individual members and the OTU itself, normalized
to the maximum expected correlation as before. We de-
fine unweighted and weighted OTU quality scores Q,, and
Q. as, respectively, the simple average of {¢;}, and an
average weighted by the abundance of the member:
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Here K is the number of subpopulations in the OTU
and N, is the average abundance of member i. The
weighted quality score @Q,, is always larger, because the
most abundant sequence dominates the sum and so is
better correlated with the OTU trace. Thus @, tells
us how representative the OTU is of its most abundant
member. The unweighted quality score @, tells us how
diverse is the group of subpopulations lumped together
into an OTU. If the sequences grouped into an OTU
are all dynamically identical (are Poisson-resampled ver-
sions of each other at different abundances), both quality
scores will be close to 1. If the OTU is dominated by one
subpopulation, with other members dynamically differ-
ent but very low in abundance, we will have Q,, =~ 1, but
Q. < 1. Finally, if the OTU contains several dynami-
cally distinct subpopulations at comparable abundances,
both quality scores will be low.

The average quality scores for OTUs assembled around
the top 5 sequences are presented in Fig. 4 as a func-
tion of sequence similarity threshold. The relatively high
weighted quality score @, means that an OTU time trace
is, on average, fairly representative of its most abundant
member. The unweighted score @, is, however, dramat-
ically lower, indicating that the OTUs group together
sequences from subpopulations with high dynamical di-
versity.

These quality scores rely on abundance time-trace cor-
relations, which become contaminated with noise for low-
abundance sequences. For the purposes of Fig. 4, to
apply these definitions conservatively, we therefore re-
stricted our attention only to high-abundance members
of the OTU, considering only sequences from the top 200
by overall abundance. Further, our cluster-free filtering
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FIG. 4. Clustering reads into OTUs vastly underes-
timates dynamical diversity. Average quality score for
OTUs assembled around the top 5 sequences (defined as the
ensemble of “real” sequences within a given sequence simi-
larity threshold), as a function of similarity threshold. Er-
ror bars are standard deviations across 5 considered OTUs.
Weighted quality score Q. (dashed line; see text) is high, in-
dicating that the OTU time traces are representative of the
time traces of their most abundant members. However, the
unweighted score Q., (solid line) is dramatically lower, indicat-
ing that OTUs group together sequences with very different
time traces. Thus OTUs combine strains with high dynam-
ical diversity. The commonly used “species-level” similarity
threshold of 97% is highlighted.

method also has finite resolution, as the sequences we
analyze are only 130nt long and may derive from distinct
16S genes, implying some unresolved diversity. This lim-
ited resolution leads to an artificial inflation of OTU qual-
ity scores as the similarity threshold approaches 100%.
For both these reasons the true quality scores of OTUs
are likely even lower (see SI).

D Exact tag sequence identity is substantially
more predictive of subpopulation dynamics
than 99.2% sequence similarity

The fact that tag sequence similarity within the 16S
gene is only loosely correlated with dynamical similarity
(Fig. 2E) was not unexpected (see, for example, Prosser
et al., 2007 and references therein). At a neutral mu-
tation rate of order 10-9 per base pair per generation
(Ochman, 2003), an average difference of a single nu-
cleotide out of 100 would already require divergence for
millions of generations. A more precise estimate of di-
vergence time should take into account the possibility
of horizontal gene transfer, whose rate in an ecologically
relevant setting is hard to assess. However, it is clear
that, generically, two bacteria that differ by even 1 nt in

a particular hypervariable region of the 16S gene likely
diverged a long time ago. These bacteria are likely to
also differ elsewhere in their 16S gene, and to carry even
more significant differences in functional parts of their
genome.

In contrast, what if we consider two bacteria whose se-
quenced portions of their 16S genes are identical? Since
the length of the sequenced fragment is small (typically
~ 100 nt) and the mutation rate is low, these bacte-
ria could still have diverged a very long time ago (Luk-
jancenko et al., 2010). However, depending on circum-
stances, the actual time since the last common ancestor
may be much shorter. For example, consider two commu-
nities that frequently exchange members. If two bacteria
drawn from two such communities are 100% identical in
their 16S tags, a likely explanation for this identity is a
recent exchange event, in which case the entire genomes
of these bacteria may be close to identical. We conclude
that in the presence of strain exchange between com-
munities, exact sequence identity and near-identity may
have fundamentally different implications. The study of
Caporaso et al. sampled the tongue microbiota of two
cohabiting individuals (Rob Knight, personal communi-
cation), and so strain exchange is likely to be a highly
significant factor (Song et al., 2013). We hypothesized,
therefore, that these communities would share some non-
negligible number of subpopulations at 100% sequence
identity, and that these common subpopulations might
have similar ecology in both communities.

We began by identifying the fraction of common 16S
sequences in the list of the top N for each individual (at
100% sequence identity). Based on our strain exchange
hypothesis, we expected to find some matches, but were
still surprised to find this fraction to be as high as 75%
(Fig. 5A). Such a high proportion of perfect matches pro-
vides strong evidence that the identical sequences found
in these two communities most likely diverged from a
common ancestor more recently than any pair of close,
but non-identical sequences within the same community.
The same conclusion is supported by the analysis of fecal
samples from the two individuals (Fig. S11).

We then considered the 73 sequences that were found
among the top 100 of both individuals and asked whether
the behavior of these subpopulations was predominantly
shaped by their presumed common origin (causing them
to be similar) or by local adaptation (causing them to
diverge while leaving the 16S region intact; see Lukjan-
cenko et al., 2010). To this end, for each pair of se-
quences (i,7) drawn from this list, we measured their
dynamical similarity independently in the two datasets;
S’,];/I for the male and Sf; for the female. If the effect of
local adaptation were dominant, then the exactness of a
match of 16S sequences would not carry much informa-
tion: the ecologies and genomes would be no more similar
between 100%-identical partners in the two communities
than between any other sequences within the same bacte-
rial “species” (OTU); this scenario is implicitly assumed
by taxonomy-based methods. Alternatively, if the ecol-
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FIG. 5. Comparative analysis at 100% sequence identity of oral community composition in two cohabiting
individuals reveals shared subpopulations. A. Fraction of shared 16S sequences, defined as the fraction of common tags
(at 100% sequence identity) among the most abundant N sequences in each of the two individuals, plotted as a function of N.
B. Scatter plot of the dynamical similarity of pairs of common sequences, as measured independently in the two individuals,
for all possible pairs among the 73 common sequences shared within the top N = 100. C. Same as (B), but with intentionally
inexact pairing of sequences across individuals (each sequence is mapped to a partner differing by exactly 1 nt). Despite 99.2%
sequence similarity of such pairs, allowing the 1nt mismatch significantly decreases the degree to which dynamical similarity as

observed in the two individuals is correlated.

ogy were determined primarily by the shared recent an-
cestor, then identical 16S tag sequences in the two com-
munities would correspond to bacterial subpopulations
with almost identical genomes. In this scenario, provided
local adaptation did not modify the ecology of a sub-
population significantly, S{‘f and Sf;- should be strongly
correlated, and unlike the first scenario, this correlation
would be noticeably degraded for any less than 100% se-
quence identity. The latter is indeed what we observe
(Fig. 5B-C). Fig. 5B demonstrates that subpopulations
identified by the exact same 16S tags in the two indi-
viduals are dynamically similar; see also Fig. S11D and
S12. To obtain Fig. 5C, we constructed an “inexact pair-
ing” of sequences between individuals, whereupon each
sequence from the top 100 in the female individual was
matched to the highest-abundance sequence from the top
100 in the male individual that differed from it by exactly
1 nucleotide, when such a match existed. This match-
ing corresponds to 99.2% sequence identity, yet already
substantially degrades the correlation between Sijyf and
Sk (Fig. 5C). We conclude that 100% identity of tag se-
quences has qualitatively different implications from even
99.2% near-identity.

IV  Discussion

In this work, we have demonstrated that cross-sample
correlation analysis of denoised 16S data can be exploited
to achieve sub-OTU resolution. The cluster-free filter-
ing approach we presented reliably identified up to 20
distinct subpopulations within standard 97% similarity
OTUs, and a comparative analysis of oral communities
of two cohabiting individuals demonstrates that most

such subpopulations are shared between the two com-
munities. Furthermore, subpopulations identified by the
exact same 16S tags in the two individuals are dynami-
cally similar, whereas even a single nucleotide mismatch
is enough to degrade this similarity. Overall, our analy-
sis shows that coarse-graining sequence data into OTUs
is not essential for ecological applications of 16S tag se-
quencing methodology.

Our approach combines two novelties. First and fore-
most, we do not cluster similar sequences together. Re-
grettably, in the literature the term “clustering” has
multiple meanings. Most denoising algorithms aim to
assign erroneous reads to their most likely source, to
make the abundance estimates of true sequences more
accurate. The same term “clustering” is used both for
this read remapping and for merging multiple true se-
quences into a single OTU. However, these two prac-
tices are fundamentally different. Read remapping con-
stitutes data denoising; as such, it is always advanta-
geous, can be done in a principled way, and can be
evaluated against an objective standard of performance.
Adding it to our approach would likely somewhat im-
prove the results. In contrast, OTU clustering is a form
of data coarse-graining, and the optimal degree of coarse-
graining is necessarily application-dependent. Impor-
tantly, for some applications it may not be necessary
or desirable. When studying coarse features of commu-
nity composition and dynamics, e.g. comparing commu-
nities across habitats (Costello et al., 2009, Huttenhower
et al. 2012) coarse-graining is appropriate. For exam-
ple, metrics of community comparison such as UniFrac
(Lozupone & Knight, 2005) are widely used precisely be-
cause, by construction, they are not sensitive to OTU
sub-structure. However, when studying subtle differences



between broadly similar communities, e.g. samples from
similar habitats or repeated sampling of the same habi-
tat, the sub-OTU structure becomes a valuable source
of insight. This is the intended application for our ap-
proach. Although we focused on longitudinal Illumina
data, the denoising algorithm we developed does not as-
sume short read length or low error rate and is directly
applicable to a wide range of dataset types (see examples
in Fig. S7 and S11), provided the error structure is con-
sistent across samples (Preheim et al., 2013). We expect
our approach to be useful for investigating the structure
and dynamics of discrete community subtypes such as
those observed in the vaginal community (Huttenhower
et al. 2012).

Our second novelty is to exploit the quantitative ad-
vantage offered by multi-sample (time-course or cross-
sectional) data. Since the copy number of the 16S
gene carried by a bacterium is typically unknown
(Tourova, 2003), and the PCR amplification bias among
different 16S fragments can sometimes reach orders
of magnitude (Turnbaugh et al., 2010; Klindworth et
al., 2013), the 16S data from a single sample carries very
little quantitative information about community compo-
sition. In contrast, the ratios of sequence abundance are
highly informative and can be measured very precisely,
as demonstrated in Fig. 2B,C. Recently, time-course data
collection has been gaining in popularity, as it was rec-
ognized that such experiments can offer valuable insight
into community dynamics (Shade et al., 2013 and ref-
erences therein). However, another major advantage of
such datasets, namely that changes in sequence abun-
dance ratios can be measured much more accurately than
absolute abundances, is only beginning to be explored.
For us, time-series data provides a context where sub-
OTU resolution acquires its full power. Specifically, we
have shown that cross-sample comparisons enable us to
decouple sequence similarity from dynamical similarity
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while remaining fully within the framework of 16S tag
sequencing. High-quality reference databases can com-
plement our approach to facilitate paralog identification.
The basic methodology described here should also be ex-
tendable to other marker genes.

The new approach described in this work is not a re-
placement for OTU clustering; it discards low-abundance
sequences and so is unsuitable for studies of population-
level alpha- or beta-diversity. However, the novel statis-
tical and computational techniques we present allow full
utilization of the quantitative information carried by se-
quences with a moderate-to-high abundance. This has
promising applications for the study of factors affecting
community assembly. As discussed above, sub-OTU res-
olution can provide insight into the prevalence of strain
exchange between communities, invasion / extinction dy-
namics of OTU subpopulations, and the time scale of
ecological divergence relative to sequence divergence. In
addition, the dynamics of individual-specific subpopula-
tions could help characterize the role of host genetics or
the host immune system on shaping the community, par-
ticularly in the context of highly controlled experiments
with germ-free animals.
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A Supplementary methods. Cluster-free filtering: details and applications

In this section, we illustrate the idea of error-model-based denoising (see also the introduction in Rosen et al., 2012)
and give a detailed description of the simple denoiser we designed for this work. We then describe the workflow of an
open source software package we created to implement this denoiser, and compare its performance on mock community
data with DADA (Rosen et al., 2012). Finally, to illustrate that our cluster-free filtering approach is not restricted
to longitudinal Illumina data, we provide an example of its application to a very different dataset, specifically 454
sequencing data from a cross-sectional environmental sampling performed by Preheim et al., 2013.

1 Motivation: sequencing noise is low

Clustering can be a useful strategy for filtering noise by coarse-graining data. However, such coarse-graining may
not be a necessity: if the noise level is low, as suggested by known estimates of PCR and sequencing error rates
(see, for example, Quince et al. 2011), then we can avoid clustering, since we expect each community member to be
predominantly represented by the same 16S sequences.

We begin by illustrating this idea using the tongue microbiome data of Caporaso et al. Since the tongue community
is relatively stable (Costello et al., 2009), the low-noise scenario would predict that certain specific sequences should
consistently dominate in each sample. Alternatively, if the noise were high, then the high-abundance community
members would be represented by clouds of similar reads, none of which would clearly dominate.
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To show that the data of Caporaso et al. supports the first (low-noise) scenario, we identified the top 5 sequences
by overall abundance. These sequences were strongly different (Fig. inset), corresponding for the most part to
bacteria from different phyla: in decreasing order of abundance, these were Neisseria sp. (phylum Proteobacteria,
class Betaproteobacteria), Haemophilus sp. (phylum Proteobacteria, class Gammaproteobacteria), Fusobacterium sp.
(phylum Fusobacteria), Streptococcus sp. (phylum Firmicutes), and Prevotella sp. (phylum Bacteroidetes). (Taxon-
omy assigned by a BLAST search (BLASTN 2.2.22, matrix (1, —1), gap/extenstion penalty (5, 2)) against GreenGenes
database; DeSantis et al., 2006. All 5 sequences had a match with 100% identity over 100% of sequence length.) The
sample-by-sample rank of these overall top 5 sequences was consistently in the top 10. We stress that the goal of
Fig. is not to characterize the temporal stability of community composition (previously characterized, for example,
in Costello et al., 2009); rather, it serves to show that the community members that correspond to these highest-
abundance tags are consistently represented by the same 130nt sequence (at 100% identity) across all samples. In
other words, despite the presence of noise in the data, 100% sequence identity is not an unreasonable criterion: the
error rate is low enough that the error-free sequence dominates over the “error cloud” of its variants (Edgar, 2013).
This key observation is the foundation of the approach described in this work.

N
o
o

100

Number of samples

1 2 3 4 5 6 7 8
Abundance rank

FIG. S1. The distribution of ranks for the top 5 sequences over all samples. Inset: pairwise sequence similarity (%). The top
sequences are strongly distinct and their rank is consistent across samples.

2 Estimating rates of one-nucleotide substitutions

To estimate the rates of substitution errors observed in data after quality filtering, we used the “error clouds”
around the high-abundance sequences in the dataset. Since all sequences were trimmed to a length of 130nt, each
“mother” sequence has 390 direct neighbors in sequence space (Hamming distance = 1). For very high-abundance
sequences such as Seq. #1, all 390 neighbors were observed in at least one sample of the time series. The time series
of their abundances, normalized to the abundance of Seq. #1, is shown in Fig.[S2] For this figure, the neighbors were
ordered by the type of substitution that differentiates them from the mother sequence, and, within these categories,
by the position of the differing nucleotide along the sequence. We see that, with a few exceptions (most notably the
three neighbors also shown in Fig. 1B), the abundance of a given neighbor is a constant fraction of the abundance of
the mother sequence. This is precisely what we expect for neighbors that arise as PCR or sequencing errors of the
mother sequence, and the abundance ratio is then the probability of that particular error.

We see that the error rate is set primarily by the type of substitution, and does not exhibit significant dependence
on the position along the sequence. For long reads, we would likely have seen an increase in error rates towards the
end of the sequence, but our sequences are only 130nt long, well within the capabilities of accurate base-calling of the
Illumina platform. We can therefore assign probabilities to substitution errors based solely on the substitution type
(which nucleotide was replaced by which other), independent of the position along the read.

To determine these probabilities, we first identify the neighbors that are outliers in their substitution category;
they likely correspond to true biological sequences physically present in the community, rather than sequencing
errors. Outlier exclusion is done based on z-scores, i.e. for each sequence we compare its raw cumulative abundance
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over all samples to the mean in its substitution category, and normalize by the standard deviation in the category.
A strong outlier differing from the mother sequence by a nucleotide substitution at location K will skew the error
rate estimation at that location: some substitution type will appear to be unusually frequent. Therefore, we exclude
nucleotide locations that correspond to the strongest outliers, those for which the z-score exceeds some threshold.
The remaining locations are then used to estimate the error rates: for each of these locations, we count the number of
times a particular substitution occurred, as well as the number of times the nucleotide was recorded correctly. After
appropriate normalization, these counts give us the probability of each type of the error.

Fig. shows the inferred substitution rates for error clouds around the top 50 sequences by abundance, using
minimally quality-filtered data processed as described in the Methods (Phred score cutoff 2, z-score threshold 2). We
find that the rates of different substitutions can differ dramatically (up to 50-fold), but our estimates are highly
reproducible (note the log scale on the Y axis), with variability predictably increasing if lower-abundance error
clouds are used. Table SI lists the error rates estimated from the error clouds of the top 10 sequences (mean +
standard deviation). Note that, in principle, this effective error probability includes both the base-call errors of the
Illumina sequencer and the single-nucleotide substitution errors occurring during PCR. However, the approximate
symmetry between rates of a substitution and its reverse-complement partner (e.g. pr_a = pc—c), and a clear
bias towards transitions as opposed to transversions, suggests that the observed substitutions are dominated by PCR
errors (compare with Quince et al., 2011, Table 2).

Inferring error rates directly from the data offers multiple strong advantages. Specifying the error rate as an external
parameter (e.g., Morgan et al., 2013) necessarily requires resorting to a conservative global upper bound. Different
PCR conditions and different sequencing machines will have different error rates (for example, compare Fig. and

Log10 abundance of all 390 neighbors of sequence #1, sorted by substitution type

A >
-0.5
A >
A > -1
T >
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T >
T >
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>
c F1-2.5
C >
G > -3
G > 35
G >
-4
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FIG. S2. This extended version of Fig. 1B shows all 390 first neighbors of Seq. #1, ordered by the type of substitution
(and within these classes, by the position of the substitution along the sequence). Color indicates abundance on a log scale,
normalized to the abundance of Seq. #1. Except for a few overrepresented neighbors (¢f. Fig. 1B), the substitution type
accounts for most of the variance in neighbor abundance.
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Reproducibility of error rates measured in different error clouds

Inferred substitution rates

10 ) ) ) ) J
0 10 20 30 40 50
Seq. #

FIG. S3. The substitution error rates directly inferred from the error clouds of top 50 sequences by abundance are reproducible
across error clouds. Each of 12 separate plots shows the inferred rate of a specific substitution (not labeled to reduce clutter;
see also Fig. and Sup. Table S1). Predictably, the variability increases when the error clouds of less abundant sequences are
used.

— A —C —-T — G Total
A — 0.14 £0.06 0.15 £ 0.02 1.34 +£0.12 1.63 +£0.14
C — 0.07 £0.02 0.59 £ 0.04 0.06 £0.01 0.72 £0.05
T — 0.12 £ 0.03 1.06 &£ 0.07 0.07 £0.01 1.26 4+ 0.08
G — 0.42 £+ 0.03 0.02 £0.01 0.05 £ 0.01 0.49 £ 0.03

TABLE S1. Substitution error rates per nucleotide, multiplied by 1000, as measured from the “error clouds” of the top 10
sequences by abundance. Error bars are standard deviations across the 10 estimates.

Fig. ) Further, substitutions vary strongly in probability: in our case, using a single upper bound on error rates
would have over-estimated the probability of certain error types by up to 50-fold, reducing our ability to resolve close
sequences. In other words, measuring substitution rates directly from the data both reduces the number of algorithm
parameters and improves performance.

To investigate how the measured substitution probabilities depend on the quality filtering parameters, we applied
the same analysis to data filtered using different Phred quality score thresholds (Qmin = 2,10,15,20) as well as
different z-score thresholds (2.0, 3.5). The results are presented in Fig. As expected, the average error rates
increase as the Phred score threshold is lowered; however, the magnitude of this change is very small, comparable
with the variability of error rate estimates across the top 10 sequences as indicated with the error bars on the plot
corresponding to the most stringent filtering, Qmin = 20, Z = 2. This provides further evidence that the majority
of substitution errors occur during PCR amplification rather than during sequencing, and thus are not captured by
Phred quality scores. We conclude that strict Phred quality filtering unnecessarily reduces data quantity while only
marginally improving its quality; for our analysis, we therefore subjected the reads to minimal quality filtering as
described in the Methods.

The dependence on z-score threshold is also consistent with our expectations: a high z-score threshold increases
the error rate estimate. Predictably, including stronger outliers (z = 3.5) causes the measured error rate to vary
significantly across filtering conditions; we used z = 2 which provided excellent reproducibility.

The reproducibility of error rates as observed on Fig. [S3] justifies a posteriori our simplifying assumptions such as
neglecting the probability of double substitutions in our calculation. Note that, according to the Table S1, the average
total error rate per nucleotide is only 1.0 1073 /nt. Therefore, within our error model, assuming that errors occur
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Dependence of measured error rates

x 107 on quality filtering parameters
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FIG. S4. The estimates of substitution error rates exhibit only a weak dependence on Phred quality score filtering parameters,
as expected if the dominant source of substitution errors is PCR amplification rather than base call errors. Shown are average
error rates as measured for top 10 sequences in the sample. Error bars on the (Q=20, Z=2) plot indicate standard deviation
across the 10 estimates.

independently, we estimate find that a 130 nt-long sequence has 88% probability of being recorded with no errors.
In practice, errors appear to correlate and the true zero-error probability is likely lower. As a different estimate,
we calculate the total abundance of all sequences retained by our filtering (7 057 860 reads in 507 samples), and
compare to the total number of reads before filtering (8 685 722 reads distributed across 1.4M unique sequences).
We find that the filtering algorithm retained 81% of all reads. Since the algorithm intentionally disregards true
sequences with low abundance, this estimate is conservative. Further, this estimate is largely insensitive to the error
independence assumption: given our stringent filtering criteria, even an unexpectedly frequent double error will be
discarded, provided it is less common that a single error. We conclude that > 81% of reads in the dataset had no
errors, which justifies our decision to discard noisy reads rather than attempting to remap them to their most likely
source. For longer reads or noisier data, our approach remains applicable without changes; however, the fraction of
error-free reads will be lower. In this case, to avoid significant loss of sequencing depth, we recommend replacing our
simple denoiser by an algorithm such as DADA that performs read remapping.

3 The algorithm for filtering substitution errors

For the Illumina sequencing platform, substitution errors account for the bulk of the errors. As described above,
these errors have a reproducible structure and their rates can be estimated directly from the data. Using these
numbers, for any sequence S present in a given sample, we can estimate its null model abundance, denoted N°
(abundance derived from sequencing errors of its more abundant neighbors), as follows (Fig. [S5):

1. Order sequences by decreasing abundance: S, Ss, etc.
2. Set NP =0 for all ¢
3. For each sequence S; with abundance N;:

(a) Find all j such that S; is a first neighbor of S; and N; < N,.
(b) For each j, use the substitution error table to determine the probability p;; of S; to be recorded as S;
(c) Set N? = N? + p;; N; (“spillover” from S; into S;)

This zero-parameter algorithm assigns, for each sequence, its null-model abundance expected in that particular
sample, using error rates estimated directly from the data. We next use this information to identify “candidate
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FIG. S5. A more detailed version of the error cloud cartoon in Fig. 1C. Each circle is a unique sequence, with size representing
abundance in a sample. True biological sequences (S1-Ss; green circles) generate “daughter” variants due to substitution errors
(yellow circles). Black lines denote Hamming distance = 1 in sequence space. The error rates calculated from the error clouds
(see Fig. can be used to calculate, for every sequence, its expected abundance under the assumption that it arose through
substitution errors from its more abundant neighbors. Sequences whose abundance is significantly above this expectation are
labeled as real (green circles). Note that sequences may arise as substitution errors of multiple “mother” sequences: common
neighbors of S1 and Ss in this cartoon will have a larger abundance than other substitution errors of either S; or S5. However,
if this increase in abundance is consistent with the null model, they will be correctly recognized as substitution errors.

sequences”: those whose presence cannot be explained by a substitution-only error model. Candidate sequences are
selected through an abundance criterion, requiring their abundance to exceed the null model prediction (N°) by at
least ten-fold, and be no less than 10 counts. We then retain all sequences that independently passed this stringent
filtering in at least 2 samples. The reasoning behind this strategy is explained in the Methods section of the main
text.

4 Other error types, including chimeras and PCR indels

With [lumina sequencing, substitution errors account for most of the erroneous sequences in the data, and their
occurrence appears to be adequately described by a simple quantitative model. This type of errors is therefore well-
suited for error-model based denoising. The list of sequences retained after denoising includes true biological sequences,
but also errors not described by our model. The latter category includes chimeras, PCR indels, and possibly other
errors such as context-dependent PCR substitutions occurring much more frequently than expected within our model.

We are not aware of any quantitative model for PCR indel errors, which, in our experience, are strongly context-
specific. Following Rosen et al., one could make the conservative decision that whenever two candidate sequences
differ by pure indels, the lower-abundance should be treated as a possible error. A corresponding script is included in
our cluster-free filtering pipeline. However, by definition, this makes it impossible to resolve true biological sequences
differing by an indel. Retaining putative indel errors and comparing their abundance distribution across samples
with their presumed “mother sequences” would allow identifying such cases. Since PCR indels are comparatively
infrequent, for Illumina sequencing we consider indel filtering an optional step of the pipeline. In contrast, the 454
sequencing platform introduces frequent indel errors at homopolymer regions of the sequence. For 454 data, therefore,
proper indel treatment becomes a necessity. The indel-filtering script we provide offers one solution; however, since
errors we seek to eliminate occur during PCR, while indels occur during 454 sequencing, the best indel treatment
strategy for the 454 platform is to merge sequences into “indel families” (Rosen et al., 2012) prior to denoising.
Implementing this functionality within our software package will improve its support of 454 data; at the moment, the
better approach is to apply our cross-sample analysis to the output of the DADA denoiser (Rosen et al., 2012).

As for chimeras, in our analysis pipeline, we filter chimeric sequences with UCHIME de novo (Edgar, 2011).
Following Robert Edgar (UCHIME documentation), we recommend applying chimera filtering to pooled data across
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samples.

5 Cluster-free filtering software package

The implementation of the denoising algorithm described here is freely available at |http://github.com /hepcat72/cff
as a suite of open-source Perl scripts. Fig. [S6 summarizes the workflow of the filtering process.

B Sample 1 | Sample 2 B8 Sample S
\ J
errorRates.pl mergeSeqs.pl

Error rates Library I8 Consistently
- |: : :l : named samples
neighbors.pl

Sample with NO
information

getCandidates.pl

Candidate reals

getReals.pl
filterindels.pl

Final output

Neighbors errorRates.pl

Error rates

Samples with
NO information

getCandidates.pl

Candidate reals

getReals.pl

Final output

(Optional)

FIG. S6. The workflow of cluster-free filtering software package. A: The simplest way of running cluster-free filtering denoiser
on a single sample. B: Extended workflow diagram appropriate for large multi-sample datasets. The optional indel filtering
step is omitted for simplicity. In both cases, the blue rectangles represent dereplicated FASTA files with sequences of identical
length. getReals.pl includes chimera filtering (performed with UCHIME).

Applying the denoiser on a per-sample basis is a straightforward four-step process, optionally supplemented by
indel filtering (Fig. ) However, our denoiser is specifically designed to be run on large multi-sample datasets. The
extended workflow appropriate for large datasets (Fig. ) has three key differences:

1. The original samples are pooled to construct a library of all unique sequences ever observed, and sequences in the
original samples are renamed so that the same sequence has the same identifier in all samples (mergeSegs.pl).

2. The error rates are estimated using the pooled data from all samples (i.e. the library) for better accuracy.

3. The neighbor structure is constructed once, for all sequences in the library (neighbors.pl). In the per-sample
workflow (Fig. ), neighbors.pl is automatically invoked for every sample in a manner transparent to the
user, which simplifies the workflow; however, many sequences are shared across samples, so for sufficiently large
datasets, explicitly calculating the neighbor structure only once results in better performance.

The optional indel-filtering step uses MUSCLE aligner (Edgar, 2004) with modified gap penalty parameters, ap-
propriate for detecting 454 homopolymer indels (-gapopen -400 -gapextend -399; see documentation).

The software package is provided with built-in documentation, a test dataset and two shell scripts that allow running
the entire workflow presented above with a single command: run_CFF_on_FastA.tcsh and run_CFF_on_FastQ.tcsh
(the latter script uses USEARCH to perform the minimal quality filtering as described in the Methods). The flexible
and thoroughly documented command-line interface makes it easy to incorporate cluster-free filtering into any existing
pipeline. To reproduce our analysis of the data from Caporaso et al. (2011), download the quality-filtered data
published with that study (available at MG-RAST:4457768.3-4459735.3), place it in a folder CaporasoData and run:

tcsh run_CFF_on_FastA.tcsh 130 analysisResults "CaporasoData/*.fna".


http://github.com/hepcat72/cff

Category

DADA

CFF

Abundance

Divergent: 23 reference sequences

23 true positives
0 false negatives

23 true positives
0 false negatives

231-1426 counts

Other detections

0

0

Artificial: 49 reference sequences

48 true positives
1 false negative

49 true positives
0 false negatives

18-3587 counts

Other detections

Seq. #35

Seq. #35
Seq. #95
Seq. #103
Seq. #119

163 counts
13 counts
12 counts
12 counts

20

TABLE S2. Comparison of DADA and cluster-free filtering (CFF) denoiser on mock community data. Sequences numbered
by decreasing abundance in the dataset.

6 Mock community validation and comparison with DADA

To validate the performance of our simplified denoiser, we compared it with a state-of-the art denoiser DADA
(Rosen et al., 2012) using two mock community datasets (Divergent and Artificial; Quince et al., 2011) that Rosen et
al. used to demonstrate DADA’s superior accuracy to AmpliconNoise. Quoting from the original publication, these
datasets were constructed by amplifying the V5 region of the 16S rRNA gene from 23 and 90 clones, respectively,
isolated from lake water. The Divergent clones were mixed in equal proportions and are separated from each other by
a minimum nucleotide divergence of 7%, while the Artificial clones were mixed in abundances that span several orders
of magnitude, with some of the clones differing by a single-nucleotide substitution. For purposes of comparison, we
used the exact same sets of filtered reads (35190 reads in Divergent set; 31867 in Artifiical), kindly provided to us
by Michael Rosen.

The comparison of denoiser output and the reference set of Sanger clones was complicated by the imperfections of
the reference set. A number of “reference” Sanger clones differed from their closest high-abundant matches in the 454
data at the same locations towards the beginning of the read, which is suggestive of errors in the reference sequences.
Further, some reference sequences of the Artificial set had no close matches in the data; some Sanger clones differed
at locations that were not part of the 454 sequenced fragments; and 454 sequences included 6 extra bases at the
beginning of the sequence that were absent from the Sanger clones.

We therefore began by constructing “cleaned” reference sets as follows: for each reference Sanger clone, we found its
closest match in the dataset that had at least 98% similarity and an abundance of at least 10 counts. This matching
454 read was used as the new reference sequence, and the differences, if any, were ascribed to Sanger clone errors.
For the Divergent dataset, each reference sequence had exactly one clear match in the 454 data. For the Artificial
set, of the 90 reference Sanger clones, we found that one was 29 nts away from the closest 454 read; for 3 other
clones, no 454 read within > 98% sequence similarity radius reached an abundance of 10 counts. Our algorithm
intentionally disregards any sequences below this abundance threshold; therefore, for the purposes of this comparison
these reference sequences were considered absent and we did not count them as false negative for any of the algorithms.
Several groups of clones were not distinguishable by the 454 sequenced fragment. Altogether, the new reference set
of sequences that were both present and distinct contained 49 reference sequences.

We then ran DADA and cluster-free-filtering on both datasets. DADA was run with the same parameters as used
for this data in the original publication, namely €, = 107° and Q, = 1073. Cluster-free-filtering included indel
filtering step, since this data was obtained using the 454 platform and indels appear frequently.

The results are presented in Table. Both algorithms identified correctly all 23 reference sequences of the
Divergent dataset. For the Artificial set, and due to the conservative parameters recommended by Rosen et al., one
of the reference sequences was missed by DADA but was correctly identified by our algorithm. Sequence #35 (in
order of decreasing abundance), absent from the reference set, was retained by both algorithms and is likely a true
biological sequence. Cluster-free filtering generated 3 additional detections just above its threshold of 10 counts. It is
instructive to trace the origin of these calls. For example, Seq. #95 was discarded by DADA as possibly an erroneous
read generated by its closest reference sequence (Seq. #1) two substitutions away. Specifically, Seq. #95 differs from
Seq. #1 by a T at location 23 and a G at location 118, a relation that we denote “Seq.#95 = Seq.#1 23T 118G”. If it
were true that Seq. #95 is a substitution error of Seq. #1, we would generally expect single-error variants to be more
abundant than double errors. In reality, Seq.#1 23T (=Seq. #587) and Seq.#1 118G (=Seq. #121) have abundances
of just 4 and 12 counts, respectively, which is why our algorithm identified Seq. #95 as likely real. However, its
unexplainably high abundance could also have arisen through amplification of a double substitution that occurred
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ESPRIT+DADA ESPRIT+DADA, abundant clusters only CFF denoiser
Lane 5, 10 samples 969 + 1297 sec 969 + 49 sec 12 sec
Lane 6, 10 samples 924 4 5133 sec 924 + 186 sec 16 sec
Whole dataset 2.310° sec (est.) 5.510* sec (est.) 626 sec (actual)

TABLE S3. Runtime comparison of DADA and the simplified cluster-free filtering (CFF) denoiser on two representative sets
of 10 tongue samples (lane 5 and lane 6). Lanes were considered separately since samples in the two groups tended to differ
significantly in the number of reads retained by quality filtering. The whole dataset consisted of 189 samples on lane 5 and 320
samples on lane 6. Comparisons were performed on an Intel Xeon CPU 2.83GHz.

early in the PCR cycle, and the default parameters of DADA were chosen conservatively so as to eliminate such
cases (Rosen et al., 2012). Whether or not these detections are false positives or true biological contaminants can be
determined only by a cross-sample analysis as presented in the main text.

7 Runtime comparison with DADA

The methodology presented in this work was designed to perform cross-sample comparisons of sequence abundance
in individually denoised samples. As explained in the Methods, the simplified denoiser we developed is meant to
maximize performance on large datasets specifically for this application, taking advantage of our focus on moderate-
to-high abundance sequences. Other denoisers can be used. To estimate the runtime of DADA on the tongue dataset
considered here, we used a representative subset of 20 samples, 10 from lane 5 and 10 from lane 6 of Caporaso
et al. Following the instructions in Rosen et al., 2012, we used ESPRIT to precluster sequences in each sample
prior to processing them with DADA. The measured runtime is presented in Table Extrapolation to the full
set of 507 samples yields the estimate of 2.310° sec total runtime quoted in the text, compared to 626 sec actual
runtime for cluster-free-filtering. As explained in the main text, one of the reasons for this speedup is that our
multi-sample detection strategy allows us, in any given sample, to look for candidate sequences only among those
with abundance >10 counts. This speedup can be applied to DADA as well; to this end, we removed all clusters that
contained no sequences with abundance >10 counts, and measured DADA runtime after this filtering; this decreased
the estimated runtime on the full dataset to 5.510% sec. Using DADA in this way is the strategy we recommend for
applying our cross-sample comparison methodology to 454 data with long reads where erroneous read remapping and
indel family merging become advisable. Eliminating low-abundance sequences leads to a considerable improvement
of DADA runtime; nevertheless, the total runtime remained two orders of magnitude slower than our cluster-free
filtering approach, due primarily to the computational cost of preclustering.

8 Example of other applications: environmental cross-sectional 454 data

The approach described in this work does not explicitly rely on the longitudinal nature of the sampling. Most
of our analysis can be readily applied to any multi-sample datasets, e.g. a cross-sectional sampling or a location
series, provided samples were collected and processed in a similar way so that the error structure can be assumed
to be similar. Further, and despite the caveats we described, our method can be applied even to data collected
using the 454 sequencing platform. To illustrate the broad applicability of our approach, we used data from a cross-
sectional environmental sampling conducted by Preheim et al. (SRA accession number from SRP029470). Lake water
microbiota were sampled at depths ranging from 0 m (surface) to 22 m with 1-meter depth intervals. The authors
used this data to illustrate their sequence clustering algorithm (DBC) that also relies on cross-sample comparisons to
distinguish between closely related OTUs; for details, see the original reference (Preheim et al., 2013). They report
their algorithm worked best with stringent quality filtering whereupon sequences were trimmed to just 76 nt, and
any reads containing bases with Phred quality scores at or below 16 were discarded. This filtering retained 7.78M
total sequences (120K unique). Since our approach includes data denoising, we could use much more liberal quality
score filtering and retain more data (USEARCH maxEE of 1 and truncating at Phred quality score 2). To compare
runtime of our algorithm and DBC, we increased the read truncation length so as to keep the same total number of
sequences. This set the quality-filtered sequence length to L = 91 nt, 20% longer than used by the authors (7.98M
sequences, 300K unique; tcsh run_CFF_on_FastQ.tcsh 91 analysisResults "PreheimData/*.fastq".).

Fig. [STA shows the substitution error rates inferred from the data at both sets of quality filtering parameters.
Note that these rates are significantly lower than those of Fig. (the scales of the two plots are identical), exhibit
a very weak transition/transversion bias, and are more sensitive to Phred score quality filtering than what we have
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seen with Caporaso et al. data (Fig.([S4]). This seems to indicate that the protocol used by Preheim et al. generates
significantly fewer PCR substitution errors. This dependence of error rates on the experimental protocol highlights
the advantage of being able to estimate error rates for a given dataset directly from the data, without the need for a
separate calibration.

Fig. [STBC provide examples of sequences differing by a single nucleotide exhibiting ecologically significant distinc-
tions, as identified by our method in this environmental dataset; compare with Fig. 2A, Fig. and Fig. [STIAB.
Sequence abundance is shown as a function of depth (each sample was independently normalized to 3.210° total
quality-filtered reads per sample, to correct for varying sample size). The DBC method of Preheim et al. is also
capable of identifying OTUs differing by a single nucleotide (compare Fig. C to Fig. 5b in the original reference);
however, our analysis achieved higher resolution by retaining longer reads and took only 13 min single-core processor
time (Intel Xeon CPU 2.83GHz), compared to 8 hours analysis time the authors report for parallelized DBC running
on a cluster with 60-100 processes executing simultaneously. In fact, the true runtime difference is even greater,
since the complexity of both algorithms scales with the number of unique sequences rather than total reads. For
Qumin = 17, L = 76 as used by the authors of DBC, our algorithm completes in only 210 seconds.

We stress, however, that DBC and cluster-free filtering seek to achieve different goals and are not directly compa-
rable. DBC is an OTU clustering algorithm, whereas the goal of cluster-free filtering is to identify sub-OTU structure
of moderate-to-high-abundance community members. However, to our knowledge DBC is the only existing tool that
exploits cross-sample comparisons to inform the interpretation of sequencing data, and the performance comparison
above serves to illustrate the drastically different computational cost of the two approaches.

9 How many samples is enough?

We have described a method that employs cross-sample comparisons to achieve sub-OTU resolution. The analysis
presented in the main text uses data from a study with an uncommonly large number of samples; in contrast, the
previous section demonstrates that our method can be usefully applied to a dataset with only 22 datapoints. What
is the minimum number of samples required by our method?

The answer is that the number of samples determines the resolution that can be achieved; more samples will always
allow higher resolution, but coarser differences can be resolved with just a few. For example, just 2 samples (say, Om
and 10m) would have been enough to resolve the two subpopulations presented on Fig. . By contrast, the difference
between depth traces of Seq. #10 and Seq. #49 (Fig. ) is less pronounced and more samples are required. Finally,
resolving the sequences in Fig. 2B would not have been possible with fewer than ~100 samples. For high-abundance
sequences where the complex struture of noise in the counts can be neglected, this tradeoff can be formally quantified
using the Jensen-Shannon divergence as a measure of distance between abundance distributions of two sequences
across samples; for details, see Preheim et al., 2013.
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FIG. S7. Cross-sectional environmental 454 data: lake water microbiota (Lake Mystic) sampled at depths 0-22m. A: Substi-
tution error rates inferred from the data for two sets of quality filtering parameters indicated in the legend; @ is the Phred
quality score truncation threshold; L is read truncation length. B: Three sequences resolved by our analysis; Seq. #49 and
Seq. #60 both differ from Seq. #10 by a single nucleotide at locations 70 and 87, respectively. Sequence abundance is shown
as a function of depth; sequences are labeled by cumulative abundance rank. C: Same, for sequences Seq. #2 and Seq. #14
differing at nucleotide 77.



B Supplementary information for Figure 2

1 A pair of sequences representing strongly anticorrelated subpopulations
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FIG. S8. A. Abundance time traces of Seq. #7 and Seq. #9. B. Scatter plot for the same sequences of their discrete derivatives
of abundance (i.e. abundance changes from each day to the next). A BLAST search against the GreenGenes database identifies
the likely taxonomy of Seq. #7 as Streptococcus thermophilus. Seq. #9 does not have a good match; the closest hit is an
unclassified Prevotella sp. at only 88% identity.

2 Best expected correlation of two time traces

The maximum degree to which time traces of two sequences can be correlated is a function of their abundance: for
low-abundance sequences the Poisson sampling noise becomes non-negligible and sets an upper bound for the best
achievable correlation coefficient. Consequently, to define a correlation as strong or weak, any measured correlation
coefficient should be compared to this abundance-dependent quantity rather than to 1.

Let N(t) be the true abundance time trace of some bacterial strain (in units of cells, rather than sequence counts).
Imagine that two sequences in the dataset were measuring the abundance of this exact same strain, but with different
amplification efficiencies A\; and Ao (let Ay > A3). Neglecting all sources of noise other than the Poisson counting
noise, the abundance traces of these two sequences can be modeled by

TLLQ(t) = POiSS[)\LQN(t)],

where Poiss|-] denotes adding Poisson noise. Since Poisson noise is unavoidable, the correlation coefficient between
these two traces sets an upper bound for the correlation between n,(t) and any other trace n*(t) with the same mean
abundance as nz(t). This maximum correlation depends on the shape of the trace N(t) and amplification efficiencies
A1, A9, and can be expressed as follows:

Cmax| N (1), A1, Ag] = corr (Poiss[A1 N ()], Poiss[Aa /A1 * Ay N (¢)]) .

And therefore, in terms of measurable quantities only:
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FIG. S9. Best expected correlation cmax for a pair of abundance time traces n1,2(t) is sensitive to the shape of the distribution
of the daily counts, not just the average abundance (n12(t)). The figure shows the best expected correlation cmax[n1(t), (n2)]
as defined in the Supplementary Information, for two different mock traces n1(t) with the same mean ({n;1) = 1000 counts/day)
but with different distributions, modeled here by Gamma distributions with shape parameter 1 (blue) and 5 (red). The best
expected correlation increases with the mean abundance (n2(t)), but for the same mean it is higher for the blue trace whose
distribution covers a wider dynamic range. Because of this nontrivial dependence on the distribution shape, in our definition
of dynamical similarity we compute the best expected correlation individually for every pair of sequences.

Cmax|n1(t), (n2)] & corr (Poiss[nq ()], Poiss[(na) /(n1) * n1(t)]) .

Here (-) denotes the average abundance, and we use the higher-abundance trace of the pair as the best estimate of
the shape of the true abundance N(¢). The maximum correlation coefficient depends on the shape of the trace ni(t)
and on the mean abundance of the trace we compare it to; the lower the mean abundance is, the stronger the effect

of Poisson noise and the lower the cpax.
In practice, for a pair of traces nq(t), na(t), we compute their best expected correlation as follows:

1. Take the more abundant trace nq(t)
2. Construct a renormalized trace no%(t) = %nl(t)

3. Poisson-resample both of these 10 times: denote these ngi), ngmd((i), i =1...10.

4. Compute the 100 correlation coefficients between all pairs ¢;; = corr (ngi), néﬂook(j )).

5. Set cmax[n1(t), (n2)] = (cij).
The shape of the function cpax[ni(t), (na)] is illustrated on Fig.

3 Distance metric for sequence pairs

We use the BLAST definition, i.e. the ratio of the number of mismatches to the total number of columns after
pairwise realignment, and multiply this ratio by the length of the sequence (130 nt). For close sequences that differ
by a few substitution errors the alignment is trivial, and this normalization corresponds to the Hamming distance
between sequences, in nt.
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C Supplementary information for Figure 3
1 Estimating correlation time from autocorrelation function

We define the autocorrelation time 7 of a sequence as the time shift At at which the autocorrelation function ca¢
falls below the threshold of statistical significance. For reasons discussed above, the notions of strong (significant)
or weak (insignificant) correlation of sequence time traces are abundance-dependent. Therefore, instead of using a
fixed threshold value for all sequences, we proceed in the following way. For a given sequence, we first compute its
root-mean-square autocorrelation coefficient for time shifts between 70 and 100 samples:

Cnull = \/<(0At)2>At:70.H100~

If we assume that all autocorrelation observed at such large time shifts is entirely due to noise, then ¢y, provides
a natural scale for statistical significance. We conservatively define the significance threshold at twice the magnitude
of Cnull -

Note that ¢y, provides an upper bound on a statistically significant correlation value. If some dynamical processes
in the population are slow enough that they contribute to the autocorrelation function even at such large time shifts
(c¢f. Fig.[S10), this will increase ¢,y and cause us to underestimate the true autocorrelation time. This means that
assuming c,, was entirely due to noise is a safe approximation to make: if it does not hold, it can only strengthen
our conclusion that the sequence abundance time traces exhibit multi-day autocorrelations.

2 Examples of sequences exhibiting consistent dynamics on very long time scales

Fig. [SI0AB shows examples of sequences exhibiting steady change in abundance for more than a month. In both
cases, the slow-changing sequence is 99.2% similar to a very high-abundance community member and could not have
been resolved by traditional OTU-based methods. Note the sharp jump in panel B at day 182 of the sequence
representing the invading subpopulation (red) to an abundance value close to the equilibrium established after day
210. It is intriguing to speculate that this trace may document spatial invasion of a subpopulation already established
elsewhere on the tongue, a region accidentally sampled on day 182.
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FIG. S10. A. Slow extinction of a subpopulation (red; cf. Fig. 1B, neighbor 3). From day 210 onwards the abundance of the
red sequence is consistent with it being a substitution error of Seq. #1 (blue), which is a direct neighbor in sequence space. B.
Slow birth/invasion of a subpopulation (red). The new sequence differs by 1nt from well-established Seq. #2 (blue), and prior
to day 160 its abundance is consistent with being its substitution error. Note the high similarity of fluctuations from day 210
onwards.
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3 Persistence of difference: the null model

To distinguish between 16S tags coming from distinct subpopulations or from physically the same bacterial cells,
we introduced a quantity we called the persistence of difference Pp. For this, we first defined the fractional difference
A(t) between two time traces renormalized to the same mean n4 p(t):

nA —nNp

A= G a2

We then defined the persistence of difference Pp as the 1-day autocorrelation coefficient of A(t). If A and B are two
genomic variants contained within the same bacterium, then any difference between n4(t) and ng(t) must be due to
measurement noise, and Pp must vanish. If, however, ng p(¢) reflect abundances of two distinct subpopulations, then
A(t) can be expected to exhibit some degree of autocorrelation due to the slow dynamics observed for most individual
sequences. We gave an intuitive argument for this in the main text. Here, to gain some extra intuition about the null
model for Pp, we calculate it explicitly in the simplest case when the two traces na p(t) are independent and can be
approximated by a stationary, weakly fluctuating process:

na(t) = p(l+0oaa(t)) (C1)
np(t) =p(l+o5&s(t)) (C2)

Here €4 p have zero mean, unit variance and are uncorrelated. Assuming o4 p < 1, we can write:

A(t) = oa8a(t) — o5€a(1)

And therefore, making use of the independence assumption,

(AMAE+1) _ (ohga®Ealt +1) +05Ep()Ep(t+ 1)) _ ochara +ohan

t
(A(1)?) oh+ ok oh+ 0%

Pp =

Here c1 4,5 are the one-day autocorrelation coefficients of the fluctuations of the two individual sequences.

The independence approximation made above is clearly not valid for the dynamics of most community members. For
this reason, for the purposes of Fig. 3C, the null-model prediction was constructed directly from the data, by reversing
in all pairs the time order for one of the sequences prior to the calculation of Pp. This removes any real correlations
of the traces while preserving autocorrelation and other properties of the traces such as their fluctuation spectrum.
Nevertheless, the calculation above is useful as it explains why the null-model expectation for Pp is non-zero when
both sequences have slow internal dynamics.

Note that a sequence with an exceptionally long intrinsic time scale (as shown in Fig. B) will have a large Pp
score when paired with any other sequence. These two sequences were therefore excluded from Fig. 3C.

4 Persistence of difference for non-longitudinal data

None of the cross-sample comparison methodology described in this work is limited to time series data. The
“persistence of difference” argument accompanying Fig. 4 is no exception; however, it does rely on two additional
assumptions, namely that the composition of samples varies smoothly with some parameter labeling the samples, and
that the sampling frequency is sufficiently high to allow correlations of fluctuations to be observed between consecutive
samples. For the longitudinal data series of Caporaso et al. this parameter was time; for a location series one can
expect community composition to vary smoothly in space, and the same argument can be applied. In other words, the
use of “persistence of difference” Pp need not be limited strictly to longitudinal datasets. However, autocorrelation-
based analysis is particularly sensitive to the number of samples (see section . Determining whether Pp can be a
useful concept for studying the spatial heterogeneity of populations requires further investigation.
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D Supplementary information for Figure 4

1 Over-estimation of OTU quality scores

As described in the main text, for the purposes of Fig. 4, when calculating OTU quality scores, we restricted
our attention only to high-abundance members of the OTU, considering only sequences from the top 200 by overall
abundance. Since most of the diversity is contributed by low-abundance species (Huttenhower et al., 2012), Fig. 4
underestimates the true diversity of an OTU. Including lower-abundance OTU members makes OTU quality scores
drop continuously as new OTU members are added; however, it also becomes increasingly hard to separate dynamical
diversity from the effects of noise. Consequently, in Fig. 4 we report our most conservative estimate of within-OTU
diversity, where we use only the highest-abundance members out of all those resolved by cluster-free filtering (there
was an average of 18 & 4 resolved sequences within a 97% OTU, and only 9 & 2 per OTU were used for Fig. 4).

In addition, OTU quality scores were calculated under the assumption that each sequence represents a separate
subpopulation. Sequences that in fact derive from the same bacteria (16S paralogs or errors not in our model) appear
in the defining equation as independent, dynamically identical subpopulations, increasing the apparent OTU quality
score. This is another reason why the true quality scores of OTUs are likely even lower than reported in Fig. 4.
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E Supplementary information for Figure 5

1 Cross-individual analysis of fecal samples

A Counts in Male 3 (top); Female 4 (bottom)
100001

——#1F ——#2F (1 nt difference)

5000

0 ! 1 ! 1 ! I ! ! ! |

0 20 40 60 80 100 120 140 160 180 200
10000
\“‘W\P,J’\\ '\/\,ﬁ\ 1 M N\ " ‘
M 1 anl) V\/\/\/L\/ “/‘»\M\M\'\/W\/ A
5000( Vi |
I N
O 1 1 1 1 1 1 A 1 1 L J
0 20 40 60 80 100 120 140 160 180 200
B Counts in Male 3
800

——#16F —— #35F (1 nt difference)

600
400

200
0 MM»”
0 50

-- 1] J
100 150 200 250 300

C Exact pairing (100% identity) D Exact pairing (100% identity)
” 1 . 1 ¥
§ ® R =0.52 .
g 0.8 © . S
Z : )
= 05
2 06 z
£ kS
£ E
S 0.4 2
5 g "’
5 IS
202 @
Q c
g 8
w 0 -0.5
0 50 100 150 200 -0.5 0 0.5 1
Top N sequences from each individual Dynamical similarity in Female 4

FIG. S11. A. Abundance time traces (sequence counts vs. observation day) for Seq. #1F and Seq. #2F, which differ by a
single nucleotide and dominate in individuals Male 3 and Female 4, respectively. B. Another example of abundance time traces
of two sequences that differ by a single nucleotide (99.2% similarity), yet exhibit strongly distinct dynamics and so derive from
distinct bacteria. C. Fraction of shared 16S sequences, defined as the fraction of common tags (at 100% sequence identity)
among the most abundant N sequences in the fecal samples of each of the two individuals, plotted as a function of N (compare
with Fig. 5A.) D. Scatter plot of the dynamical similarity of pairs of common fecal sequences, as measured independently in the
two individuals, for all possible pairs among the 44 common sequences shared within the top N = 100 (compare with Fig. 5B).

To confirm our conclusions from the analysis of tongue microbiome data presented in the main text, we repeated
our analysis using fecal samples of the two individuals, collected in the same study (Caporaso et al., 2011). There were
374 samples, 243 from the male subject and 131 from the female, with 2.5 4 0.5 10* reads per sample. We normalized
the observed abundances to 2.5 10* total reads in each sample to correct for varying sample size. As before, we labeled
sequences in order of decreasing overall abundance (pooling samples from both individuals): Seq #1F, Seq #2F, etc.,
where “F” reflects that we are now dealing with fecal samples rather than the tongue.

Again, we find that sequences differing by as little as a single nucleotide can exhibit ecologically significant differences
in their dynamics. The most striking example is that the dominating sequence in individual “Male 3”7 differs from
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the dominating sequence in “Female 4” by a single nucleotide, and virtually no cross-contamination is observed
(Fig/ ) Both these sequences map to Bacteroides sp. in GreenGenes (DeSantis et al., 2006). Another example
is presented in panel B. Finally, we repeat the cross-individual analysis presented, for tongue samples, in Fig. 5AB.
We find that the two gut communities as probed by the fecal samples also share a large fraction of sequences at 100%
identity. This once again supports the scenario whereby the communities exchange members with non-negligible
frequency, although less so than the tongue samples. The observation of panel A is therefore unlikely to represent the
effect of dispersal limitation, suggesting instead a functional difference between the representatives of Bacteroides sp.
established in the two individuals or a resistance to invasion. Finally, we find that the dynamical similarity of shared
sequences, when measured independently in the two individuals, is clearly correlated, just as it was for the tongue
communities (Fig. 5B). With the number of shared sequences being lower for fecal samples than for tongue samples,
the statistics were insufficient to compare dynamical similarity of “intentionally mismatched” sequences as in Fig. 5C.

2 Cross-individual analysis at 97% OTU level
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FIG. S12. Dynamical similarity between pairs of common 97% OTUs, as measured independently in the two individuals, for
78 common OTUs within the top 100, constructed using closed-reference OTU picking as implemented in QIIME.

The same analysis as in Fig. 5B can be performed for shared 97% OTUs rather than shared sequences (at 100%
identity). We constructed OTUs using closed-reference OTU picking as implemented in QIIME, matching sequences at
97% sequence similarity against the GreenGenes database. Fig. shows the scatter plot of the dynamical similarity
between pairs of common OTUs, as measured independently in the two individuals, for 78 common OTUs (those
shared within the top 100). Note, however, that most OTUs are dominated by a single high-abundance sequence (as
evidenced by the high weighted quality score on Fig. 4), and most of these dominating sequences are shared across
the two communities (Fig. 5A). For these reasons, the plot shown here is very similar to Fig. 5B, but only because
the within-OTU diversity is masked by dominating subpopulations.
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