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We present a method for the exact construction of the fully particle-hole symmetric PH-Pfaffian
ground state and its charged excitations on a sphere. We adopt the Moore-Read state, but with a non-
holomorphic pairing component as in previous studies, and project it to the lowest Landau level. We
study the energetics as well as other properties of these states and find that in a pure system interact-
ing with the Coulomb forces the PH-Pfaffian cannot compete with either the Moore-Read state or its
particle-hole conjugate, the anti-Pfaffian state, as an explanation for the 5/2-effect.

One of the most intriguing topological[1] quantum
phases of matter was discovered[2] in the fractional quan-
tum Hall effect (FQHE)[3, 4] at 5/2 filling of the low-
est two Landau levels (LLs). A large number of studies
of the 5/2-state point to either the Moore-Read[5] Pfaf-
fian (MR-Pf) state, or it’s particle-hole (PH) conjugate, the
anti-Pfaffian (aPf) state[6, 7] to explain this phenomenon.
Another related state that has recently attracted consid-
erable attention is the PH-Pfaffian[8] (PH-Pf). It is so
named because, unlike the MR or the aPf, this state is
symmetric under PH conjugation. All three are expected
to be Hall superconductors[9], but with different pairing
symmetries. There is however scant support in numeri-
cal studies of the 5/2-state for the PH-Pfaffian. Instead,
there is considerable evidence in favor of the MR and aPf.
Some examples in different geometries are given in these
papers: [10–15].

Earlier studies, for the most part, preserved the P-H
symmetry of the Hamiltonian and were unable to discrim-
inate between the latter two ground states. In the pres-
ence of inter-Landau-level transitions or mixing (a ubiq-
uitous feature of experiments), PH symmetry is broken
and the aPf gains the advantage[16–18]. However, the
energy splitting per particle is small and omitting some
pseudopotential components of the 3-body mixing[19] cor-
rections stabilizes[20] the MR-Pf[21–23]. The quasiparti-
cle excitations of all three states possess Majorana zero
modes and are expected to obey non-Abelian statistics[5,
24], which is a necessary ingredient for quantum infor-
mation processing. They are also fully spin-polarized, in
agreement with both experiment[25, 26] and numerical
calculations[10, 27] of the 5/2-effect.

Recent measurements[28] of quantized thermal Hall
conductance κxy, however, found a value that is only con-
sistent with the PH-Pf state. There are several interest-
ing scenarios for explaining this observation. Disorder,
which is present in experiment, has been put forward as
the decisive factor in stabilizing the PH-Pfaffian[29]. An-
other possibility is the formation of Pf and aPf domains
in the presence of disorder[30–32], which under suitable
conditions could result in the measured quantized ther-
mal Hall conductance. Whether this mechanism can ac-
count for the experimental observation is unclear[33, 34].
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FIG. 1. Top left: in first row: comparison of pseudopotentials vm,
for spin-polarized electrons of the lowest and first excited Lan-
dau levels. Top right: ground state energies for the Coulomb
potential in 1LL as the flux Nφ is varied for 16 electrons. Bot-
tom: v1 of 1LL Coulomb is varied by ±0.05.

Another possibility is that the aPf ground state, un-
der certain conditions could produce the measured κxy[35,
36]. However, a more recent experiment also supports
a PH-PF ground state[37]. In any event, these develop-
ments call for a thorough examination of the PH-Pfaffian
state.

In this paper we formulate an exact procedure for cal-
culating the ground state and charged quasiparticle ex-
cited states of the PH-Pfaffian. We then obtain results
for up to fourteen and twelve electron systems for the
ground and charged excited states respectively. These
sizes are comparable to previous exact diagonalization
studies of the 5/2-effect. We use the spherical geometry
since the angular momentum “technology” simplifies the
construction. In what follows, all energies are given in
units of e2/4πε`B. Distances (wavevectors) are given in
units of the magnetic length `B (inverse magnetic length)
and densities in inverse 2π`2

B units. As a reminder, Fig.
1 shows the gapped phases of FQHE near the half-filled
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first excited Landau level (1LL) as the first Haldane pseu-
dopotential v1 is varied. Only the first 3 odd pseudopoten-
tials seem substantially different from their lowest Lan-
dau level (LLL) values. The arrows show the positions
of the MR, PH-Pfaffian, and the anti-Pfaffian from left
to right respectively. The only visibly gapped states ap-
pear to be MR-Pf and aPf, which are related by particle-
hole conjugation that maps the electrons to holes and vice
versa. The MR-Pf satisfies the relation Nφ = 2Ne − 3,
which has a shift of 3. The shifts of the PH-Pf and aPf
are 1 and -1 respectively. Different shifts generally sig-
nify a different topological phase of matter.

Computation of Wavefunction- While there may well be
other forms for the PH-Pf wavefunction we will use the
one from previous studies[29, 38–40]:

|ΨPH-Pf({r i})〉 =Pfi, j

{
1

ūi v̄ j − ū j v̄i

}
|Ψ1/2〉, (1)

where u and v are spinor coordinates[41] and the holo-
morphic part |Ψ1/2〉 is the ν= 1/2 bosonic Laughlin state:

|Ψ1/2({ui,vi})〉 =
∏
i> j

(uiv j −u jvi)2. (2)

Projection of the wavefunction to the LLL turns ū and v̄
into operators (usually derivatives[42]). The key idea in
our approach is to project one pair at a time. The projec-
tion operators are only in the Pfaffian, which is the pair-
ing part of the wavefunction. We thus start with project-
ing a single pair. Multiplying both numerator and denom-
inator by the factor uiv j −u jvi, we have:

1
ūi v̄ j − ū j v̄i

= uiv j −u jvi

|uiv j −u jvi|2
. (3)

This is a rotationally invariant holomorphic pair (scalar)
operator with a 1/r2 potential, where r is the chord dis-
tance between particles i and j on a unit sphere. This
potential is to be projected into the LLL. The numera-
tor is holomorphic and turns a 2-boson state into a state
of two fermions, which in total adds a flux quantum
NF
φ = NB

φ +1, without altering J and M: |J, M, NB
φ 〉 trans-

forms to |J, M, NF
φ 〉. J and M are the total and azimuthal

angular momenta of the pair. Using the Wigner-Eckart
theorem we obtain the reduced matrix elements below.
These are, in fact, the Haldane pseudopotentials for a 1/r2

“Hamiltonian” that changes a pair of bosons into a pair
of fermions. Therefore, we set M = J, simplifying the 2-
particle wavefunctions[41] to:

|J, J; NB(F)
φ

〉 = (uiv j −u jvi)
NB(F)
φ

−J uJ
i uJ

j , (4)

where B(F) refers to bosons(fermions). The number
of bosons and fermions are equal and is denoted by Ne.
The matrix element of the pair-operator between the 2-
particle states is reduced to the expectation value of 1/r2

TABLE I. Some attributes, indicated by the column headings,
of PH-Pf and MR states for different sizes Ne.

Ne |〈Ψ|ΨSym〉| Variational E0 E0/Ne E0(Pf)/Ne

6 0.9999996 -2.583729 -0.4306215 -0.4868794
8 0.9999633 -3.291081 -0.4113851 -0.4458210

10 0.9999807 -3.993417 -0.3993417 -0.4248679
12 0.9999463 -4.694213 -0.3911844 -0.4122298
14 0.9998940 -5.404673 -0.3860481 -0.4040570

(apart from normalization factors) for a two-fermion state.
The pseudopotentials are:

VJ =
NF
φ +1√

(NF
φ
− J)(NF

φ
+1+ J)

(5)

To get the matrix elements in a more convenient form
(Eq. (6)), we expand the pair creation annihilation opera-
tors in terms of a pair of single particle boson annihilation
and a pair of fermion creation operators. Again, because
of the additional flux quantum for fermions relative to
bosons, the needed Clebcsh-Gordan (CG) coefficients for
the same J and M have the correct parity under particle
exchange for both bosons and fermions. Combining the
CG coefficients with VJ and summing over J and M yields
the desired matrix elements, which can be separately cal-
culated and stored:

V (m f
i ,m f

j ;mb
i ,mb

j )= 〈m f
i ,m f

j |
uiv j −u jvi

|uiv j −u jvi|2
|mb

i ,mb
j 〉,

m f
i +m f

j = mb
i +mb

j . (6)

The matrix elements can easily be antisymmetrized in the
two fermion and symmetrized in the two boson orbitals.

The coordinates in the Pfaffian can now be integrated
out. The antisymmetrization required in the Pfaffian
can, by a change of integration variables, be compen-
sated by the exchange of fermion orbitals. The inter-pair
anti-symmetrization of the fermion orbitals only requires
N f act = Ne!/(2Ne /2(Ne/2)!) = (Ne −1)!! independent terms,
which is much smaller than N!. However, this opera-
tion has to be done for all occupied single particle states
with total zero azimuthal angular momentum. The total
number of configurations for fermions is Nc = N f actNH ,
where NH is the dimension of the appropriate many-body
fermion Hilbert space[43].

The main calculation is organized in a single loop of
size Nc for fermions. Because of the conseveration law
for each pair of bosons in Eq. (6), there are an additional
Ne/2 inner loops for boson orbitals. In the inner core of
these Ne/2+1 loops the PH-PF wavefunction is obtained
from the product of the matrix elements, other informa-
tion on fermion basis, and the Laughlin wavefunction. be
separately zero.
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FIG. 2. Variational energies of the PH-Pfaffian state for 6-14
electrons. The straight line is a least squares fit of the data,
yielding a an infinite-size value of −0.3523±0.0004 per electron.

While the code is very short and relatively simple, it
still is an Ne-body operator with a much higher degree of
complexity than diagonalizing a many-body Hamiltonian.
On the other hand, the computations for different sets of
fermion orbitals {mi} are independent and the outer loop
can be massively parallelized. We have also taken ad-
vantage of reflection symmetry to divide the basis (by its
parity), and hence the outer fermion loop, into two inde-
pendent, but nearly equal parts, providing further paral-
lelization.

The Ground State (GS)- The PH-Pfaffian wavefunc-
tions are very nearly particle-hole symmetric. However,
they cannot be fully symmetrized or anti-symmetrized
by the usual means (making a linear combination of
the two states) because of the anti-unitarity of the PH-
transformation. The problem is overcome if the eigenvec-
tors of the 2×2 overlap matrix of the two states related
by PH-conjugation are obtained. The parity of the state
is immaterial. One eigenvector would have an overlap of
near unity with the calculated wavefunction (see Table I)
and the other a very small overlap. The table also shows
their variational energies for the 1LL Coulomb potential.
These are plotted in Fig. 2 and give an extrapolation to
infinite size of −0.3523. That is larger than −0.3675 for
the Pf (or equivalently for aPf) energies extrapolated in
Fig. 3. We note that the PH-Pf on the sphere is aliased
(same Ne and Nφ) with the particle-hole symmetric ver-
sion of Jain’s[44] composite fermion (CF) with an effective
magnetic flux quantum of one: N∗

φ = Nφ − 2(N − 1) = 1
as opposed to zero [45, 46]. This has been called the
Dirac CF (DCF) [8, 47] since its Berry phase, when taken
around the Fermi surface, is π[8, 48, 49]. Both compos-
ite Fermi liquids of CF and DCF are appropriate ground
states in the LLL at ν = 1/2 but not at 5/2 filling. In
the PH-symmetric case the electrons form closed shells
with total angular momentum L = 0 for sizes given by
Ne = (n+1)(n+2), with n a non-negative integer. For par-
tially filled shells, the inter-DCF distances can be maxi-
mized for non-zero values of angular momentum, which
vary systematically with size[46].

Fig. 4 shows the pair correlation function for even
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FIG. 3. Variational energies of the MR-Pfaffian state for 6-14
electrons. The curve is a fit of the data to polynomial of degree
2. The intercept in the infinite-size limit is −0.3675±0.0004 per
electron.

sizes of 6-14 electrons. Oddly, there is no indication of
convergence, in sharp contrast to the case of the MR-Pf
state, where a clear picture emerges with 12 electrons[50].
In addition long-range tail oscillations, which are typical
of composite Fermi liquids[46] persist to large sizes[40].
Also, there appears to be two classes of states determined
by whether the DCF’s form a closed shell or not. Fig.
5 shows the (LL-independent) guiding center structure
factor S0(Q). We separate the filled shell configurations
N = 6 and 12 (n = 1, and 2 respectively) from the rest.
Only the first group exhibits a single sharp peak at a
wavevector that approaches 2k f for large sizes. This sep-
aration agrees with the high overlap of DCF with the PH-
Pf for N = 12 obtained by the Monte-Carlo method[38].
Since the PH-Pf is in fact a paired state of DCF’s, this
trend is not entirely surprising. For unfilled shells the an-
gular momentum of DCF is non-zero and, thus, will have
no overlap with the PH-Pf GS. However, these trends may
not bode well for a gapped topological phase. Moreover,
the n=1 LL Coulomb potential is insufficient for the pair-
ing of DCF’s into a Hall superconductor and it is left as
a compressible state. It seems unlikely that disorder can
overcome these shortcomings.

Charge Excitations-To complete the picture of the PH-
Pf, we turn to the quasielectron and quasihole excitations.
These, given below, are the most natural extension of the
ground state wavefunction:
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FIG. 4. Pair correlation function for 6-14 electrons as a function
of the large circle distance.
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FIG. 5. (a) Guiding center structure factor with a single main
peak for Ne = 6 and 12. (b) Same as in (a) except with two
main peaks for Ne = 8, 10, and 14. Filled (open) symbols are
for cases where the larger peak is to the left (right) of the other
main peak. The dotted line is the known asymptotic value[51]
of S0(Q) for large wavevector Q.
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FIG. 6. The density of the PH-Pf (upper figures) two quasielec-
trons (QEs) and two quasiholes (QHs) for 12 electrons as a func-
tion of the large circle distances. The horizontal lines mark the
density of the fluid if the charge was distributed uniformly. The
lower two figures are the MR QEs and QHs densities.

|ΨQE(r i)〉 =Pfi, j

{ ūi v̄ j + ū j v̄i

ūi v̄ j − ū j v̄i

}
|Ψ1/2〉, (7)

and

|ΨQH(r i)〉 =Pfi, j

{ uiv j +u jvi

ūi v̄ j − ū j v̄i

}
|Ψ1/2〉. (8)

The two quasiparticles are at the poles of the sphere.
As a result, the full rotational symmetry is downgraded to

TABLE II. The variational energies of GS, charge excitations,
and the gaps of PH-Pf and MR state for 12 electrons.

State QE Energy QH Energy GS Energy ∆c

PH-Pf -4.774736 -4.615954 -4.694213 -0.001132
MR-Pf -5.028995 -4.833692 -4.946758 0.015415

azmuthal symmetry. We have included the corresponding
MR quasiparticle states for comparison. The wavefunc-
tion of a pair of quasielectrons and quasiholes[14, 50] are
the same as in Eqs. (7) and (8), but with a holomorphic
denominators[52]. The calculation becomes a little more
complicated, due to the loss of full rotational symmetry,
but the matrix elements of the 2-body interactions can
still be computed by transformation of coordinates [53].
Fig. 6 shows the densities of these states for N = 12. We
also compare the variational energies in Table II. Again,
the MR state and the corresponding quasiparticles have
lower energies. Whether they remain so in the thermo-
dynamic limit is unclear. A more meaningful comparison
would be to calculate the gaps for creating a neutral pair
of quasiparticles. Since a pair of quasiparticles is created
for each quantum of flux above or below the GS, we divide
the energies by two. The gap for creating the neutral pair
is ∆c defined by:

∆c =
E(Nφ+1, Ne)+E(Nφ−1, Ne)−2E(Nφ, Ne)

2
, (9)

where Nφ is the number of flux quanta for the ground
state. We have used the actual values of the energies
without any subtractions or rescaling. The last column of
Table II shows the results for both PH-PF and MR for 12
electrons. A more telling picture of the gaps as a function
of inverse size is shown in Fig.7 for 8, 10 and 12-electron
systems. The stark difference in the gaps between the
MR-Pf the and PH-Pf is clearly visible.

In summary, we have presented an exact method for
projecting the PH-Pfaffian as well as its quasiparticle
states to the lowest Landau level. The calculations can
be organized in a way that allows efficient use of mas-
sively parallel machines. We obtained wavefunctions for
up to 14 and 12 electrons for the GS and charge excita-
tions respectively. By extrapolating finite-size results to
large sizes in a pure system, we unequivocally find that
the PH-Pf energetically falls short of the Moore-Read Pf
(or aPf) state. Other factors such as Landau-level mixing
or disorder are unlikely to reverse these trends.

We thank Steve Simon, Mike Zaletel, Zlatko Papic, and
Jie Wang for helpful discussions. The authors grate-
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FIG. 7. Charge gaps in 8-12 electron systems for both MR and
PH-Pf states.



5

fully acknowledge DOE support under the grant DE-
SC0002140.

[1] X. G. Wen, International Journal of Modern Physics B 04,
239 (1990); X.-G. Wen, International Journal of Modern
Physics B 06, 1711 (1992).

[2] R. Willett, J. P. Eisenstein, H. L. Störmer, D. C. Tsui, A. C.
Gossard, and J. H. English, Phys. Rev. Lett. 59, 1776
(1987).

[3] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and
S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).

[4] T. H. Hansson, M. Hermanns, S. H. Simon, and S. F.
Viefers, Rev. Mod. Phys. 89, 025005 (2017).

[5] G. Moore and N. Read, Nuclear Physics B 360, 362 (1991).
[6] M. Levin, B. I. Halperin, and B. Rosenow, Phys. Rev. Lett.

99, 236806 (2007).
[7] S.-S. Lee, S. Ryu, C. Nayak, and M. P. A. Fisher, Phys. Rev.

Lett. 99, 236807 (2007).
[8] D. T. Son, Phys. Rev. X 5, 031027 (2015).
[9] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

[10] R. H. Morf, Phys. Rev. Lett. 80, 1505 (1998).
[11] E. H. Rezayi and F. D. M. Haldane, Phys. Rev. Lett. 84, 4685

(2000).
[12] A. E. Feiguin, E. Rezayi, C. Nayak, and S. Das Sarma,

Phys. Rev. Lett. 100, 166803 (2008).
[13] M. R. Peterson, T. Jolicoeur, and S. Das Sarma, Phys. Rev.

Lett. 101, 016807 (2008).
[14] X. Wan, Z.-X. Hu, E. H. Rezayi, and K. Yang, Phys. Rev. B

77, 165316 (2008).
[15] J. Zhao, D. N. Sheng, and F. D. M. Haldane, Phys. Rev. B

83, 195135 (2011).
[16] S. H. Simon and E. H. Rezayi, Phys. Rev. B 87, 155426

(2013); E. H. Rezayi and S. H. Simon, Phys. Rev. Lett. 106,
116801 (2011).

[17] M. P. Zaletel, R. S. K. Mong, F. Pollmann, and E. H. Rezayi,
Phys. Rev. B 91, 045115 (2015).

[18] E. H. Rezayi, Phys. Rev. Lett. 119, 026801 (2017).
[19] I. Sodemann and A. H. MacDonald, Phys. Rev. B 87, 245425

(2013).
[20] If the first 5 as opposed to 6 or more 3-body pseudopoten-

tials are included[54].
[21] K. Pakrouski, M. R. Peterson, T. Jolicoeur, V. W. Scarola,

C. Nayak, and M. Troyer, Phys. Rev. X 5, 021004 (2015).
[22] M. R. Peterson and C. Nayak, Phys. Rev. B 87, 245129

(2013).
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